
Background Pattern Selection Merge Avoidance Evaluation Conclusion

Pattern Selection using CEGAR

Alexander Rovner

University of Basel

July 31, 2018

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Planning Tasks

Definition: Planning Task

A planning task is a 4-tuple Π = 〈V, I,G,A〉 with:

V: finite set of variables. Each variable v ∈ V has a finite
domain Dv

I: initial variable assignment

G: goal assignment

A: set of actions. Each a ∈ A consists of:

pre(a): preconditions
eff(a): effects
cost(a): cost of performing a

Goal: find a cost-optimal plan

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Planning Tasks

Definition: Planning Task

A planning task is a 4-tuple Π = 〈V, I,G,A〉 with:

V: finite set of variables. Each variable v ∈ V has a finite
domain Dv

I: initial variable assignment

G: goal assignment

A: set of actions. Each a ∈ A consists of:

pre(a): preconditions
eff(a): effects
cost(a): cost of performing a

Goal: find a cost-optimal plan

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Heuristics

Task Π induces a state space S(Π) with
∏

v∈V |Dv | states.

Need to find a minimal cost path from initial state to a goal
⇒ A* with an admissible heuristic

here: Pattern Database (PDB) heuristics

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Pattern Databases

discard some variables of the concrete task Π

...to obtain an abstract task ΠP

Pattern P ⊆ V specifies which variables are kept in ΠP

compute perfect heuristic h∗ for all states of ΠP

use h∗ of ΠP as an admissible heuristic for Π

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Choosing a Good Pattern

Which subset of V should be our pattern?

small patterns lead to uninformative PDBs

PDBs of large patterns are informative but computationally
expensive

⇒ use combination of multiple PDB heuristics

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Combining PDB Heuristics

Given collection of patterns C and corresponding PDB heuristics
we can:

take maximum (always admissible!)

take sum (only admissible if patterns are additive)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Additivity

Additivity

Two patterns are additive if no action...

changes variables from both patterns (eff-eff correlation)

has a precondition on variables from one pattern and effects
on variables of the other pattern (pre-eff correlation)

If two patterns P1,P2 are additive: hP1∪P2(s) = hP1(s) + hP2(s)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Canonical Heuristic

Idea

Add PDB heuristics where possible and take max otherwise.

Example

C = {P1,P2,P3} where P1 and P2 are additive. Canonical
heuristic is hC (s) = max{hP1(s) + hP2(s), hP3(s)}

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Pattern Selection

Given a planning task Π, what pattern collection C should we use?
⇒ two ideas:

taking sum is better than
taking max

generate a collection in
which all patterns are
pairwise additive

⇒ CEGAR fadd

generate a collection of
disjoint patterns

no additivity enforcement

more patterns to choose
from

⇒ CEGARnadd

Background Pattern Selection Merge Avoidance Evaluation Conclusion

CEGAR Framework

CEGAR Algorithm

1 generate initial pattern collection

2 find flaws in the collection

3 refine collection s.t. detected flaws do not occur again

4 repeat steps 2-3 until all flaws repaired or size limit reached

5 return final collection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Flaws

Flaw Detection

Given pattern P, task ΠP and its optimal plan τP we try to
execute actions of τP in the concrete task Π.

What can go wrong?

Some action a from the plan τP is not applicable because
some precondition pre(a) is not satisfied.
⇒ precondition violation flaw

Plan could be executed but did not lead to a goal state.
⇒ goal violation flaw

Otherwise: solved during refinement

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Causes of Flaws

Precondition Violation Flaws

Precondition violations can happen if some action of τP has a
precondition on some v 6∈ P.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in
any pattern P ∈ C .

⇒ both flaw types occur because patterns are lacking certain
important variables!
⇒ refinement ≡ introduction of new variables

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Causes of Flaws

Precondition Violation Flaws

Precondition violations can happen if some action of τP has a
precondition on some v 6∈ P.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in
any pattern P ∈ C .

⇒ both flaw types occur because patterns are lacking certain
important variables!
⇒ refinement ≡ introduction of new variables

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Causes of Flaws

Precondition Violation Flaws

Precondition violations can happen if some action of τP has a
precondition on some v 6∈ P.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in
any pattern P ∈ C .

⇒ both flaw types occur because patterns are lacking certain
important variables!

⇒ refinement ≡ introduction of new variables

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Causes of Flaws

Precondition Violation Flaws

Precondition violations can happen if some action of τP has a
precondition on some v 6∈ P.

Goal Violation Flaws

Goal violations occur when some goal variable is not included in
any pattern P ∈ C .

⇒ both flaw types occur because patterns are lacking certain
important variables!
⇒ refinement ≡ introduction of new variables

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Abstraction Refinement: CEGARnadd

Reminder: CEGARnadd

We want to generate a collection C of disjoint patterns.

Refinement in CEGARnadd

Given flaw f with variable vf

If f is a goal violation: add pattern {vf } to collection

If f is a precondition violation raised by Pf :

a) if vf not part of any pattern yet: add vf to Pf

b) if vf already part of some P: merge Pf and P

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Abstraction Refinement: CEGAR fadd

Reminder: CEGAR fadd

We want to generate a collection C of pairwise additive patterns.

Refinement in CEGAR fadd

Given flaw f with variable vf
1 create pattern {vf }
2 select all patterns P ∈ C that are not additive with {vf }
3 merge {vf } with all selected patterns

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Merging

Both algorithms merge patterns to preserve
additivity/disjointedness

Merging is bad!

merging produces large patterns

large patterns lead to large state spaces
⇒ PDB construction becomes very expensive

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Merging

Both algorithms merge patterns to preserve
additivity/disjointedness

Merging is bad!

merging produces large patterns

large patterns lead to large state spaces
⇒ PDB construction becomes very expensive

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Merge Avoidance

Merging cannot be avoided entirely, but how can we minimize it?

Ideas:

better flaw selection strategy (LCF selection)

completely ignore highly correlated variables (blacklisting)

use different definition of additivity (partial additivity)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

LCF Flaw Selection

Given a set of flaws, which flaw should be repaired next?

⇒ until now: pick a random flaw from the list

Pattern Flaw Variable

P1 v1
P2 v1
P3 v1
P4 v2

with random selection: 75% probability to pick a flaw with v1
⇒ CEGAR fadd : guaranteed merge of P1, P2 and P3

would rather pick a flaw with the least common variable
⇒ Least-Common-First (LCF) Flaw Selection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

LCF Flaw Selection

Given a set of flaws, which flaw should be repaired next?
⇒ until now: pick a random flaw from the list

Pattern Flaw Variable

P1 v1
P2 v1
P3 v1
P4 v2

with random selection: 75% probability to pick a flaw with v1
⇒ CEGAR fadd : guaranteed merge of P1, P2 and P3

would rather pick a flaw with the least common variable
⇒ Least-Common-First (LCF) Flaw Selection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

LCF Flaw Selection

Given a set of flaws, which flaw should be repaired next?
⇒ until now: pick a random flaw from the list

Pattern Flaw Variable

P1 v1
P2 v1
P3 v1
P4 v2

with random selection: 75% probability to pick a flaw with v1
⇒ CEGAR fadd : guaranteed merge of P1, P2 and P3

would rather pick a flaw with the least common variable
⇒ Least-Common-First (LCF) Flaw Selection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

LCF Flaw Selection

Given a set of flaws, which flaw should be repaired next?
⇒ until now: pick a random flaw from the list

Pattern Flaw Variable

P1 v1
P2 v1
P3 v1
P4 v2

with random selection: 75% probability to pick a flaw with v1
⇒ CEGAR fadd : guaranteed merge of P1, P2 and P3

would rather pick a flaw with the least common variable
⇒ Least-Common-First (LCF) Flaw Selection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

LCF Flaw Selection

Given a set of flaws, which flaw should be repaired next?
⇒ until now: pick a random flaw from the list

Pattern Flaw Variable

P1 v1
P2 v1
P3 v1
P4 v2

with random selection: 75% probability to pick a flaw with v1
⇒ CEGAR fadd : guaranteed merge of P1, P2 and P3

would rather pick a flaw with the least common variable
⇒ Least-Common-First (LCF) Flaw Selection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Blacklisting

Blacklisting: Idea

Variables with many correlations are more likely to cause merges.
We put these variables on a blacklist B and ignore them.

⇒ precondition violation flaws cannot be raised for variables v ∈ B
⇒ v ∈ B are never added to the collection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Blacklisting

Blacklisting: Idea

Variables with many correlations are more likely to cause merges.
We put these variables on a blacklist B and ignore them.
⇒ precondition violation flaws cannot be raised for variables v ∈ B

⇒ v ∈ B are never added to the collection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Blacklisting

Blacklisting: Idea

Variables with many correlations are more likely to cause merges.
We put these variables on a blacklist B and ignore them.
⇒ precondition violation flaws cannot be raised for variables v ∈ B
⇒ v ∈ B are never added to the collection

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Partial Additivity

Idea

Relax definition of additivity, so that merging does not occur as
frequently.

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Partial Additivity

Reminder: Additivity

Two patterns are additive when no action...

changes variables from both patterns

has a precondition on variables from one pattern and effects
on variables of the other pattern

If two patterns P1,P2 are additive: hP1∪P2(s) = hP1(s) + hP2(s)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Partial Additivity

Partial Additivity

Two patterns are partially additive when no action...

changes variables from both patterns

has a precondition on variables from one pattern and effects
on variables of the other pattern

If P1,P2 are partially additive: hP1∪P2(s) ≥ hP1(s) + hP2(s)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

CEGARpadd algorithm

CEGARpadd functions analogously to CEGAR fadd but aims to
construct pairwise partially additive patterns.

Refinement in CEGARpadd

Given flaw f with variable vf
1 create pattern {vf }
2 select all P ∈ C that are not partially additive with {vf }
3 merge {vf } with all selected patterns

Background Pattern Selection Merge Avoidance Evaluation Conclusion

CEGARpadd algorithm

CEGARpadd functions analogously to CEGAR fadd but aims to
construct pairwise partially additive patterns.

Refinement in CEGARpadd

Given flaw f with variable vf
1 create pattern {vf }
2 select all P ∈ C that are not partially additive with {vf }
3 merge {vf } with all selected patterns

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Evaluation

3 Algorithms:

CEGAR fadd : additive patterns

CEGARpadd : partially additive patterns

CEGARnadd : disjoint patterns

3 Parameters:

Initial collection: random goal vs. all goals

Flaw selection strategy: random flaw vs. LCF

Blacklist size: 0 (no blacklisting) vs. 20 variables

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage

CEGAR fadd CEGARpadd CEGARnadd

random goal 735 (231) 736 (122) 757 (153)
all goals 736 (229) 740 (118) 790 (145)

max of both 750 (240) 724 (129) 791 (158)

random goal & LCF 737 (230) 742 (122) 757 (153)
all goals & LCF 739 (227) 740 (118) 790 (143)

max of both 748 (239) 721 (129) 793 (158)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage

CEGAR fadd CEGARpadd CEGARnadd

random goal 735 (231) 736 (122) 757 (153)
all goals 736 (229) 740 (118) 790 (145)

max of both 750 (240) 724 (129) 791 (158)

random goal & LCF 737 (230) 742 (122) 757 (153)
all goals & LCF 739 (227) 740 (118) 790 (143)

max of both 748 (239) 721 (129) 793 (158)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage

CEGAR fadd CEGARpadd CEGARnadd

random goal 735 (231) 736 (122) 757 (153)
all goals 736 (229) 740 (118) 790 (145)

max of both 750 (240) 724 (129) 791 (158)

random goal & LCF 737 (230) 742 (122) 757 (153)
all goals & LCF 739 (227) 740 (118) 790 (143)

max of both 748 (239) 721 (129) 793 (158)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage

CEGAR fadd CEGARpadd CEGARnadd

random goal 735 (231) 736 (122) 757 (153)
all goals 736 (229) 740 (118) 790 (145)

max of both 750 (240) 724 (129) 791 (158)

random goal & LCF 737 (230) 742 (122) 757 (153)
all goals & LCF 739 (227) 740 (118) 790 (143)

max of both 748 (239) 721 (129) 793 (158)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage: Blacklisting

CEGAR fadd CEGARpadd CEGARnadd

no blacklisting 737 (230) 742 (122) 790 (143)
blacklisting (20) 743 (34) 748 (36) 743 (4)

max of both 787 (230) 775 (119) 811 (146)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Coverage: Blacklisting

CEGAR fadd CEGARpadd CEGARnadd

no blacklisting 737 (230) 742 (122) 790 (143)
blacklisting (20) 743 (34) 748 (36) 743 (4)

max of both 787 (230) 775 (119) 811 (146)

Background Pattern Selection Merge Avoidance Evaluation Conclusion

iPDB vs CEGAR

iPDB (Haslum et. al., 2007)

pattern selection using hillclimbing

heuristic quality is evaluated empirically

Coverage:

iPDB coverage: 802

CEGARnadd without blacklisting: 790

CEGARnadd with+without blacklisting: 811

max(iPDB,CEGARnadd): 833

Background Pattern Selection Merge Avoidance Evaluation Conclusion

iPDB vs CEGAR

iPDB (Haslum et. al., 2007)

pattern selection using hillclimbing

heuristic quality is evaluated empirically

Coverage:

iPDB coverage: 802

CEGARnadd without blacklisting: 790

CEGARnadd with+without blacklisting: 811

max(iPDB,CEGARnadd): 833

Background Pattern Selection Merge Avoidance Evaluation Conclusion

iPDB vs CEGAR

iPDB (Haslum et. al., 2007)

pattern selection using hillclimbing

heuristic quality is evaluated empirically

Coverage:

iPDB coverage: 802

CEGARnadd without blacklisting: 790

CEGARnadd with+without blacklisting: 811

max(iPDB,CEGARnadd): 833

Background Pattern Selection Merge Avoidance Evaluation Conclusion

iPDB vs CEGAR

iPDB (Haslum et. al., 2007)

pattern selection using hillclimbing

heuristic quality is evaluated empirically

Coverage:

iPDB coverage: 802

CEGARnadd without blacklisting: 790

CEGARnadd with+without blacklisting: 811

max(iPDB,CEGARnadd): 833

Background Pattern Selection Merge Avoidance Evaluation Conclusion

iPDB vs CEGAR

iPDB (Haslum et. al., 2007)

pattern selection using hillclimbing

heuristic quality is evaluated empirically

Coverage:

iPDB coverage: 802

CEGARnadd without blacklisting: 790

CEGARnadd with+without blacklisting: 811

max(iPDB,CEGARnadd): 833

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Future Work

alternative flaw selection strategies

alternative blacklisting strategies

blacklist variables with the largest domains?

adaptive blacklisting

decide automatically if blacklisting is appropriate
adjust blacklist size depending on planning task

cost-partitioning

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Future Work

alternative flaw selection strategies

alternative blacklisting strategies

blacklist variables with the largest domains?

adaptive blacklisting

decide automatically if blacklisting is appropriate
adjust blacklist size depending on planning task

cost-partitioning

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Future Work

alternative flaw selection strategies

alternative blacklisting strategies

blacklist variables with the largest domains?

adaptive blacklisting

decide automatically if blacklisting is appropriate
adjust blacklist size depending on planning task

cost-partitioning

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Future Work

alternative flaw selection strategies

alternative blacklisting strategies

blacklist variables with the largest domains?

adaptive blacklisting

decide automatically if blacklisting is appropriate
adjust blacklist size depending on planning task

cost-partitioning

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Conclusion

CEGARnadd shows best performance

...and is competitive with iPDB

CEGARnadd and iPDB are complementary

combining a baseline CEGAR algorithm with its blacklisted
version gives a significant coverage boost

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Conclusion

CEGARnadd shows best performance

...and is competitive with iPDB

CEGARnadd and iPDB are complementary

combining a baseline CEGAR algorithm with its blacklisted
version gives a significant coverage boost

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Conclusion

CEGARnadd shows best performance

...and is competitive with iPDB

CEGARnadd and iPDB are complementary

combining a baseline CEGAR algorithm with its blacklisted
version gives a significant coverage boost

Background Pattern Selection Merge Avoidance Evaluation Conclusion

Conclusion

CEGARnadd shows best performance

...and is competitive with iPDB

CEGARnadd and iPDB are complementary

combining a baseline CEGAR algorithm with its blacklisted
version gives a significant coverage boost

	Background
	Pattern Selection
	Merge Avoidance
	Evaluation
	Conclusion

