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Classical Planning

SAS™ Planning Task I = (V, 1,7, 0):
state variables V = {player-pos, box-pos}

initial state / goal state s, D~y

set of operators O, where each o € O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms / into a goal state
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@ Task induces a graph called transition system/state space.

@ Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

@ Search algorithms are guided towards the goal by heuristic
functions.
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Potential Heuristics

@ Task induces a graph called transition system/state space.

@ Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

@ Search algorithms are guided towards the goal by heuristic
functions.

@ In this thesis: potential heuristics.
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Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPo(s) == )~ w(F)[F C 5]
FeF

where w(F) is the weight of feature F and F is a set of facts.
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Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPo(s) == )~ w(F)[F C 5]
FeF

where w(F) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F) for each F € F?
@ In Optimal Planning: choose w(F) such that hP°" is admissible

@ In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)
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DDA Heuristics

start —

States that are reachable and solvable are called alive.

Conclusion
o
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DDA Heuristics

start —

A heuristic is descending if every alive non-goal state has an
improving successor.
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DDA Heuristics

start —

A heuristic is dead-end avoiding if only alive successors are
improving.



Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?
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Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: ISDDA decision problem

GIVEN: heuristic h and task I
QUESTION: is h DDA in task 17
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Definition: ISDDA decision problem
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IsDDA is a PSPACE-complete problem. \
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Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: ISDDA decision problem

GIVEN: heuristic h and task I
QUESTION: is h DDA in task 17

IsDDA is a PSPACE-complete problem.

Proof idea: show that NOTDDA (complement of ISDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.
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PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...

A\
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PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...
e construct a heuristic that is never DDA (e.g. h(s) = 0 Vs)
e M e PLANEX iff (M, h) € NoTDDA.
o M ¢ PLANEX iff (M, h) ¢ NoTDDA.

A\
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PSPACE-membership of NOTDDA

PSPACE algorithm sketch

For each state s of the planning task:

@ if s is not alive = continue
@ for all successors s’ of s:
@ if s’ is not alive and h(s’) < h(s) = accept
© if there exists no s’ with h(s’) < h(s) = accept

otherwise fail
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PSPACE-membership of NOTDDA

PSPACE algorithm sketch

For each state s of the planning task:

@ if s is not alive = continue
@ for all successors s’ of s:
@ if s’ is not alive and h(s’) < h(s) = accept
© if there exists no s’ with h(s’) < h(s) = accept

otherwise fail

DDA computation is as hard as planning itself!
= Need approximation algorithms.
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Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0
s.t. \/ h(s') +1 < h(s) forse Sy
s’esucc(s)

h(s") > h(s) for (s,s') € Tp

Sa: set of all alive states
Tp: set of all transitions from an alive state to an unsolvable

Conclusion
o

one
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Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)
s.t. \/ h(s') +1 < h(s) forse Sy (2)
s’esucc(s)
h(s") > h(s) for (s,s') € Tp (3)

Sa: set of all alive states

Tp: set of all transitions from an alive state to an unsolvable one
Problem: Solver usually fails to find an initial solution.

= Add slack variables to the model.
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Naive Approach

MIP model with slack variables:

min Zaer Z B(s,s")

sESp (s,s")eTp
s.t. \/ h(s') +1—as < h(s) forse Sa
s’ esucc(s)

h(Sl)+/3<s75/> > h(s) for (s,s') € Tp
as >0 forse Sy
ﬁ<575/> >0 for <S,S/> € TD

Conclusion
o
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Naive Approach

MIP model with slack variables:

min Zaer Z B(s,s")

sESp (s,s")eTp
s.t. \/ h(s') +1—as < h(s) forse Sa
s’ esucc(s)

h(Sl)+/3<S7S/> > h(s) for (s,s') € Tp
as >0 forse Sy
/3<575/> >0 for <S,S/> € TD

@ Simple first solution: assign large values to all a and 3

Conclusion
o

@ Can stop MIP solver early and work with an approximation.

@ Problem: this does not scale!
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Forward-Sampling

@ Simple Alternative: construct the same MIP over a random
subset of all states.

@ Main Question: how to generate the subset?
= perform a random walk starting in the initial state

@ The sample will only contain reachable states
= can only assume that they are also solvable
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Backward-Sampling

@ Can also generate the sample by walking backwards from
some goal

@ This also gives us the goal-distance of each state

@ Idea: sample a pair of states where one is closer to the goal
than the other
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@ Idea: sample a pair of states where one is closer to the goal
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= can formulate an LP instead of a MIP
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Backward-Sampling

@ Can also generate the sample by walking backwards from
some goal

@ This also gives us the goal-distance of each state

@ Idea: sample a pair of states where one is closer to the goal
than the other
= can formulate an LP instead of a MIP

min Z O(s,s") (9)

(515/)€Ssample
st. h(s) — h(s') + os ) > 1 (10)
Q(s,s) >0 for (S,Sl) € Ssample (11)
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o Naive algorithm does not scale due to the large state space
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o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space
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Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space

@ Abstract DDA Potential Heuristics:

use pattern selection algorithm to select an abstraction P
create corresponding abstract task 7

use exact algorithm to compute DDA heuristic h3P4 for P
use hBPA for searching the original state space

0000
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Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space
@ Abstract DDA Potential Heuristics:

@ use pattern selection algorithm to select an abstraction P
@ create corresponding abstract task M7

© use exact algorithm to compute DDA heuristic h8P4 for N7
@ use hBPA for searching the original state space

we can combine multiple such heuristics by summation
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Experimental Setup

Setup:
@ 1816 planning tasks
@ 83 GB memory limit
@ 30 min time limit

@ systematically generate all features up to dimension 2



@ 157 out of 1816 tasks solved
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Coverage: Naive Approach

@ 157 out of 1816 tasks solved
@ Scalability issues:

e too many constraints
e too many features
e MIP hardness

Conclusion
o
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Coverage: Forward-Sampling

Scalability issues:
@ too many constraints
= formulate MIP over a sample (sz € {125, 250,500,1000})
@ too many features
= use all features vs. use only 1000 randomly selected ones
@ MIP hardness = unaddressed
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Coverage: Forward-Sampling

Scalability issues:

@ too many constraints
= formulate MIP over a sample (sz € {125, 250,500,1000})

@ too many features
= use all features vs. use only 1000 randomly selected ones

@ MIP hardness = unaddressed

all features | 1000 features

sz =125 442 521
sz =250 431 512
sz =500 409 493

sz = 1000 381 490
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Coverage: Backward-Sampling

Scalability issues:
@ too many constraints
= formulate LP over a sample (sz € {125,250, 500, 1000})
@ too many features
= use all features vs. use only 1000 randomly selected ones
@ MIP hardness = use an LP model
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Coverage: Backward-Sampling

Scalability issues:

@ too many constraints

= formulate LP over a sample (sz € {125,250, 500, 1000})
@ too many features

= use all features vs. use only 1000 randomly selected ones

@ MIP hardness = use an LP model

all features | 1000 features

sz =125 469 538
sz = 250 477 560
sz =500 479 575

sz = 1000 487 575
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Coverage: Single Abstract DDA Heuristic

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {256,512,1024,2048})

@ too many features = resolved due to abstraction

@ MIP hardness = unaddressed

Conclusion
o
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Coverage: Single Abstract DDA Heuristic

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {256,512,1024,2048})

@ too many features = resolved due to abstraction

@ MIP hardness = unaddressed

single abs-DDA | single PDB

sz = 256 581 732
sz =512 561 747
sz = 1024 513 758

sz = 2048 455 768

Conclusion
o
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Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

@ too many constraints

= formulate MIP for an abstraction

(sz € {128,256,512,1024}) and atomic abstractions
@ too many features = resolved due to abstraction
@ MIP hardness = unaddressed

Conclusion
o
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Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {128,256,512,1024}) and atomic abstractions

@ too many features = resolved due to abstraction
@ MIP hardness = unaddressed

multiple abs-DDA | multiple PDB

atomic 1028 1107
sz =128 1005 1121
sz = 256 1005 1130
sz =512 1005 1128

sz = 1024 999 1130

Conclusion
o
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Coverage
bw-sampling | multiple abs-DDA | multiple PDBs

logistics98 3 8 35
visitalll4 0 0 20
openstacks08 8 30 6
parcprinterll 0 12 0
tpp 8 29 9
snakel8 18 5 7
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Conclusion

@ DDA heuristics are PSPACE-hard to compute

@ approximation algorithms are necessary
=- most promising approach: abs-DDA potential heuristics

@ outscaled by PDBs (PDB computation is more efficient)

@ Heuristic quality is comparable to PDBs
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