Potential Heuristics in Satisficing Planning J

Alexander Rovner
University of Basel

February 12, 2020

DA

SAS™ Planning Task I = (V, 1,7, 0):

«O>» «Fr «=»

« =)

DA

Classical Planning

SAST Planning Task M = (V. [,~, O):

state variables V = {player-pos, box-pos}

DA

Classical Planning

SAS™ Planning Task I = (V, 1,7, 0):

state variables V = {player-pos, box-pos}

initial state /

goal state s, D~y

DA

Classical Planning

SAS™ Planning Task I = (V, 1,7, 0):

state variables V = {player-pos, box-pos}

initial state /

and a cost

goal state s, D~y
set of operators O, where each o € O has a precondition, effect,

Definitions DDA Complexity Approximation Algorithms Results Conclusion
9000000 000 00000 000000000 o

Classical Planning

SAS™ Planning Task I = (V, 1,7, 0):
state variables V = {player-pos, box-pos}

initial state / goal state s, D~y

set of operators O, where each o € O has a precondition, effect,
and a cost
Goal: find a sequence of actions that transforms / into a goal state

Definitions DDA Complexity Approximation Algorithms Results
0e00000 [e]e]e} 00000

Potential Heuristics

Conclusion
000000000 o

@ Task induces a graph called transition system/state space.

@ Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

@ Search algorithms are guided towards the goal by heuristic
functions.

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 o000 00000 000000000 o

Potential Heuristics

@ Task induces a graph called transition system/state space.

@ Use search algorithm (e.g. A*, GBFS) to find a path from the
initial state to some goal state.

@ Search algorithms are guided towards the goal by heuristic
functions.

@ In this thesis: potential heuristics.

Definitions DDA Complexity Approximation Algorithms Results Conclusion
00@0000 o000 00000 000000000 o

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPo(s) ==)~ w(F)[F C 5]
FeF

where w(F) is the weight of feature F and F is a set of facts.

Definitions DDA Complexity Approximation Algorithms Results Conclusion
00@0000 o000 00000 000000000 o

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPY(s) = > w(F)[F C s]
FeF

where w(F) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F) for each F € F?

Definitions DDA Complexity Approximation Algorithms Results Conclusion
00@0000 o000 00000 000000000 o

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPo(s) ==)~ w(F)[F C 5]
FeF

where w(F) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F) for each F € F?
@ In Optimal Planning: choose w(F) such that hP°" is admissible

Definitions DDA Complexity Approximation Algorithms Results Conclusion
00@0000 o000 00000 000000000 o

Potential Heuristics

Definition: Potential Heuristics

Linear combination of features F € F that are present in the given

state s:
hPo(s) ==)~ w(F)[F C 5]
FeF

where w(F) is the weight of feature F and F is a set of facts.

Central Question: how to select weights w(F) for each F € F?
@ In Optimal Planning: choose w(F) such that hP°" is admissible

@ In Satisficing Planning: we focus on heuristics that are
descending and dead-end avoiding (DDA)

)

start _)

@

«O> < Fr «=>»

«=>

Q>

Definitions DDA Complexity Approximation Algorithms Results
0000e00 000 00000 000000000

DDA Heuristics

start —

States that are reachable and solvable are called alive.

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results Conclusion
000000 000 00000 000000000 o

DDA Heuristics

start —

A heuristic is descending if every alive non-goal state has an
improving successor.

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0O00000e 000 00000 000000000 o

DDA Heuristics

start —

A heuristic is dead-end avoiding if only alive successors are
improving.

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

DA

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 ®00 00000 000000000 o

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: ISDDA decision problem

GIVEN: heuristic h and task I
QUESTION: is h DDA in task 17

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 ®00 00000 000000000 o

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: ISDDA decision problem

GIVEN: heuristic h and task I
QUESTION: is h DDA in task 17

IsDDA is a PSPACE-complete problem. \

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 ®00 00000 000000000 o

Complexity of Computing DDA Heuristics

Central Question: How hard is it to come up with a DDA heuristic?

Definition: ISDDA decision problem

GIVEN: heuristic h and task I
QUESTION: is h DDA in task 17

IsDDA is a PSPACE-complete problem.

Proof idea: show that NOTDDA (complement of ISDDA) is
PSPACE-complete and use the fact that PSPACE=coPSPACE.

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 oceo 00000 000000000 o

PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...

A\

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 oceo 00000 000000000 o

PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...
e construct a heuristic that is never DDA (e.g. h(s) = 0 Vs)

A\

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 oceo 00000 000000000 o

PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...
e construct a heuristic that is never DDA (e.g. h(s) = 0 Vs)
e M e PLANEX iff (M, h) € NoTDDA.

A\

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 oceo 00000 000000000 o

PSPACE-hardness of NOTDDA

Key Observations

@ |If task I is unsolvable then it has no alive states.

@ In tasks without alive states, any heuristic is DDA.

v

Proof: NoTDDA is PSPACE-hard

Reduction from PLANEX: given task I1...
e construct a heuristic that is never DDA (e.g. h(s) = 0 Vs)
e M e PLANEX iff (M, h) € NoTDDA.
o M ¢ PLANEX iff (M, h) ¢ NoTDDA.

A\

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 ocoe 00000 000000000 o

PSPACE-membership of NOTDDA

PSPACE algorithm sketch

For each state s of the planning task:

@ if s is not alive = continue
@ for all successors s’ of s:
@ if s’ is not alive and h(s’) < h(s) = accept
© if there exists no s’ with h(s’) < h(s) = accept

otherwise fail

Definitions DDA Complexity Approximation Algorithms Results Conclusion

0000000 ooe 00000 000000000 o

PSPACE-membership of NOTDDA

PSPACE algorithm sketch

For each state s of the planning task:

@ if s is not alive = continue
@ for all successors s’ of s:
@ if s’ is not alive and h(s’) < h(s) = accept
© if there exists no s’ with h(s’) < h(s) = accept

otherwise fail

DDA computation is as hard as planning itself!
= Need approximation algorithms.

Naive Approach: compute weights by solving a MIP model.

«O>» «Fr «=»

« =)

DA

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 90000 000000000

Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0
s.t. \/ h(s') +1 < h(s) forse Sy
s’esucc(s)

h(s") > h(s) for (s,s') € Tp

Sa: set of all alive states
Tp: set of all transitions from an alive state to an unsolvable

Conclusion
o

one

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 90000 000000000 o

Naive Approach

Naive Approach: compute weights by solving a MIP model.

min 0 (1)
s.t. \/ h(s') +1 < h(s) forse Sy (2)
s’esucc(s)
h(s") > h(s) for (s,s') € Tp (3)

Sa: set of all alive states

Tp: set of all transitions from an alive state to an unsolvable one
Problem: Solver usually fails to find an initial solution.

= Add slack variables to the model.

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 0®000 000000000

Naive Approach

MIP model with slack variables:

min Zaer Z B(s,s")

sESp (s,s")eTp
s.t. \/ h(s') +1—as < h(s) forse Sa
s’ esucc(s)

h(Sl)+/3<s75/> > h(s) for (s,s') € Tp
as >0 forse Sy
ﬁ<575/> >0 for <S,S/> € TD

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 0®000 000000000

Naive Approach

MIP model with slack variables:

min Zaer Z B(s,s")

sESp (s,s")eTp
s.t. \/ h(s') +1—as < h(s) forse Sa
s’ esucc(s)

h(Sl)+/3<S7S/> > h(s) for (s,s') € Tp
as >0 forse Sy
/3<575/> >0 for <S,S/> € TD

@ Simple first solution: assign large values to all a and 3

Conclusion
o

@ Can stop MIP solver early and work with an approximation.

@ Problem: this does not scale!

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 00e00 000000000 o

Forward-Sampling

@ Simple Alternative: construct the same MIP over a random
subset of all states.

@ Main Question: how to generate the subset?
= perform a random walk starting in the initial state

@ The sample will only contain reachable states
= can only assume that they are also solvable

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 [eleTe] Yo} 000000000 o

Backward-Sampling

@ Can also generate the sample by walking backwards from
some goal

@ This also gives us the goal-distance of each state

@ Idea: sample a pair of states where one is closer to the goal
than the other

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 [eleTe] Yo} 000000000 o

Backward-Sampling

@ Can also generate the sample by walking backwards from
some goal

@ This also gives us the goal-distance of each state

@ Idea: sample a pair of states where one is closer to the goal

than the other
= can formulate an LP instead of a MIP

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 [eleTe] Yo} 000000000 o

Backward-Sampling

@ Can also generate the sample by walking backwards from
some goal

@ This also gives us the goal-distance of each state

@ Idea: sample a pair of states where one is closer to the goal
than the other
= can formulate an LP instead of a MIP

min Z O(s,s") (9)

(515/)€Ssample
st. h(s) — h(s') + os) > 1 (10)
Q(s,s) >0 for (S,Sl) € Ssample (11)

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 ooooe 000000000 o

Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 ooooe 000000000 o

Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 ooooe 000000000 o

Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space

@ Abstract DDA Potential Heuristics:

use pattern selection algorithm to select an abstraction P
create corresponding abstract task 7

use exact algorithm to compute DDA heuristic h3P4 for P
use hBPA for searching the original state space

0000

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 ooooe 000000000 o

Abstract DDA Potential Heuristics

o Naive algorithm does not scale due to the large state space

@ |dea: use abstractions to obtain a smaller state space
@ Abstract DDA Potential Heuristics:

@ use pattern selection algorithm to select an abstraction P
@ create corresponding abstract task M7

© use exact algorithm to compute DDA heuristic h8P4 for N7
@ use hBPA for searching the original state space

we can combine multiple such heuristics by summation

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 00000 ©00000000 o

Experimental Setup

Setup:
@ 1816 planning tasks
@ 83 GB memory limit
@ 30 min time limit

@ systematically generate all features up to dimension 2

@ 157 out of 1816 tasks solved

«O>» «Fr «=»

« =)

DA

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 0®0000000

Coverage: Naive Approach

@ 157 out of 1816 tasks solved
@ Scalability issues:

e too many constraints
e too many features
e MIP hardness

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results

Conclusion
0000000 000 00000

00®@000000 o

Coverage: Forward-Sampling

Scalability issues:
@ too many constraints
= formulate MIP over a sample (sz € {125, 250,500,1000})
@ too many features
= use all features vs. use only 1000 randomly selected ones
@ MIP hardness = unaddressed

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 00000 00@000000 o

Coverage: Forward-Sampling

Scalability issues:

@ too many constraints
= formulate MIP over a sample (sz € {125, 250,500,1000})

@ too many features
= use all features vs. use only 1000 randomly selected ones

@ MIP hardness = unaddressed

all features | 1000 features

sz =125 442 521
sz =250 431 512
sz =500 409 493

sz = 1000 381 490

Definitions DDA Complexity Approximation Algorithms Results

Conclusion
0000000 000

00000 000®@00000 o

Coverage: Backward-Sampling

Scalability issues:
@ too many constraints
= formulate LP over a sample (sz € {125,250, 500, 1000})
@ too many features
= use all features vs. use only 1000 randomly selected ones
@ MIP hardness = use an LP model

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 00000 000®00000 o

Coverage: Backward-Sampling

Scalability issues:

@ too many constraints

= formulate LP over a sample (sz € {125,250, 500, 1000})
@ too many features

= use all features vs. use only 1000 randomly selected ones

@ MIP hardness = use an LP model

all features | 1000 features

sz =125 469 538
sz = 250 477 560
sz =500 479 575

sz = 1000 487 575

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 0000@0000

Coverage: Single Abstract DDA Heuristic

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {256,512,1024,2048})

@ too many features = resolved due to abstraction

@ MIP hardness = unaddressed

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 0000@0000

Coverage: Single Abstract DDA Heuristic

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {256,512,1024,2048})

@ too many features = resolved due to abstraction

@ MIP hardness = unaddressed

single abs-DDA | single PDB

sz = 256 581 732
sz =512 561 747
sz = 1024 513 758

sz = 2048 455 768

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 00000®000

Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

@ too many constraints

= formulate MIP for an abstraction

(sz € {128,256,512,1024}) and atomic abstractions
@ too many features = resolved due to abstraction
@ MIP hardness = unaddressed

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 00000®000

Coverage: Multiple Abstract DDA Heuristics

Scalability issues:

@ too many constraints
= formulate MIP for an abstraction
(sz € {128,256,512,1024}) and atomic abstractions

@ too many features = resolved due to abstraction
@ MIP hardness = unaddressed

multiple abs-DDA | multiple PDB

atomic 1028 1107
sz =128 1005 1121
sz = 256 1005 1130
sz =512 1005 1128

sz = 1024 999 1130

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results Conclusion
Coverage
bw-sampling | multiple abs-DDA | multiple PDBs

logistics98 3 8 35
visitalll4 0 0 20
openstacks08 8 30 6
parcprinterll 0 12 0
tpp 8 29 9
snakel8 18 5 7

Definitions DDA Complexity Approximation Algorithms Results
0000000 000 00000 0000000e0
Heuristic Quality
expansions
T T T T T [
— 109 % X X ORX X IEOMROOHBIOBIEICINSDSIEIOL —
S 108 [N X g
N x % X %
~ % x XX Sl ¥
< L X XX %
(@) 105 L * x XX L |
(@) X’ % X X
N X% X
Q0 %
© 5 X R X *
%0]_0 [X o B
[
‘n
101 \ \ \ \ [
10-1 10! 10% 10° 107 10°

single PDB (256)

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results
0000000 [e]e]e) 00000 Q0000000 e
Heuristic Quality
expansions
T T T T T
T 100 o x]
g 108 [Xx¢ x ¥
NI ><§ % « X
XX X % % X
< X o % % o XXX, X
Qa Xos XX R @‘;"
51 % X X i
ch].0 ><;§§<)}<<>$< XS 2 *;% ><><
o) X
30} x R >>: XX(-
[2 X X X
a]_0 [x x ¥ X |
= *x X
=)
€
101 \ \ \ \ [
10~ 10t 10® 105 107 10°

multiple PDB (128)

Conclusion
o

Definitions DDA Complexity Approximation Algorithms Results Conclusion
0000000 000 00000 000000000 .

Conclusion

@ DDA heuristics are PSPACE-hard to compute

@ approximation algorithms are necessary
=- most promising approach: abs-DDA potential heuristics

@ outscaled by PDBs (PDB computation is more efficient)

@ Heuristic quality is comparable to PDBs

	Definitions
	subsec

	DDA Complexity
	subsec

	Approximation Algorithms
	Results
	subsec

	Conclusion
	subsec

