
Implementation and Evaluation of Depth-First IBEX in Fast
Downward

Petr Sabovčik <petr.sabovcik@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

30.07.2024

Background Depth-First IBEX Implementation Evaluation Conclusion

Background

Implementation and Evaluation of Depth-First IBEX in Fast Downward 2 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

State Spaces
Includes:

An initial state:

A goal state:

Implementation and Evaluation of Depth-First IBEX in Fast Downward 3 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First Search (DFS)

Uninformed

Explores as far as possible along each branch before backtracking

Not optimal

Implementation and Evaluation of Depth-First IBEX in Fast Downward 4 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First Search - Outline

1. Check if the current state is the goal state and return the path if it is

2. If not, move to a successor state and repeat, backtrack if no more successors

Implementation and Evaluation of Depth-First IBEX in Fast Downward 5 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First Search

Implementation and Evaluation of Depth-First IBEX in Fast Downward 6 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Iterative Deepening A* (IDA*)

Informed

Iterative-deepening approach

Combination of DFS and A*

Optimal

Implementation and Evaluation of Depth-First IBEX in Fast Downward 7 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Iterative Deepening A* (IDA*)

1. Set f-bound to h(initial state)

2. Start f-bouned DFS

2.1 Check if the current state is the goal state and return the path if it is
2.2 If the f-bound is exceeded, backtrack
2.3 Move to a successor state and repeat, backtrack if no more successors

3. Repeat with a higher f-bound if a solution was not found

Implementation and Evaluation of Depth-First IBEX in Fast Downward 8 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

IDA*

f-bound = h(initial state) = 5
Implementation and Evaluation of Depth-First IBEX in Fast Downward 9 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

IDA*

f-bound = 6, solution found: op1, op1, op2
Implementation and Evaluation of Depth-First IBEX in Fast Downward 10 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX

Implementation and Evaluation of Depth-First IBEX in Fast Downward 11 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX Overview

Depth-First IBEX or Budgeted Tree Search (BTS) is an informed
iterative-deepening search algorithm

Enforces each iteration to consider exponentially more nodes

Optimal

Uses exponential search

Implementation and Evaluation of Depth-First IBEX in Fast Downward 12 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Exponential Search

Exponential Search

Implementation and Evaluation of Depth-First IBEX in Fast Downward 13 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Exponential Search

Exponential Search Phase, i = 0 + 21 = 2

Implementation and Evaluation of Depth-First IBEX in Fast Downward 14 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Exponential Search

Exponential Search Phase, i = 0 + 22 = 4

Implementation and Evaluation of Depth-First IBEX in Fast Downward 15 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Exponential Search

Exponential Search Phase, i = 0 + 23 = 8

Implementation and Evaluation of Depth-First IBEX in Fast Downward 16 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Exponential Search

Binary Search Phase, i = (4 + 8)/2 = 6

Implementation and Evaluation of Depth-First IBEX in Fast Downward 17 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX

1. Set f-bound to h(initial state)

2. Start f-bouned DFS

2.1 Check if the current state is the goal state and return the path if it is
2.2 If the f-bound is exceeded, backtrack
2.3 Move to a successor state and repeat

3. Repeat with a higher f-bound if a solution was not found and the number of
expansions is higher than desired growth rate

4. Enter exponential search phase

4.1 Grow f-bound exponentially until budget hit or exhausted
4.2 If budget is exhausted, find an f-bound within the budget using binary search

5. Repeat until a proven optimal solution is found

Implementation and Evaluation of Depth-First IBEX in Fast Downward 18 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX Properties

Worst-case time complexity: O(Nlog(C ∗/ϵ))

C∗ - optimal solution cost
ϵ - granularity of action costs
With a linear growth of expansions in each iteration IDA* has a worst-case time
complexity of Θ(N2)

Space complexity: O(bd)

b - branching factor
d - depth of the optimal solution
Same as IDA*

Implementation and Evaluation of Depth-First IBEX in Fast Downward 19 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX Example - Difference between iterations

Implementation and Evaluation of Depth-First IBEX in Fast Downward 20 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Depth-First IBEX Example - Animation

https://www.movingai.com/SAS/BTS/BTS.mp4

Implementation and Evaluation of Depth-First IBEX in Fast Downward 21 / 35

https://www.movingai.com/SAS/BTS/BTS.mp4

Background Depth-First IBEX Implementation Evaluation Conclusion

Implementation

Implementation and Evaluation of Depth-First IBEX in Fast Downward 22 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Implementation

Implemented as a SearchAlgorithm in Fast Downward

Requires cache estimates option to be disabled

Path checking option - disables duplicate states in one path

Implementation and Evaluation of Depth-First IBEX in Fast Downward 23 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Path Checking

✓ ✓ ×
Implementation and Evaluation of Depth-First IBEX in Fast Downward 24 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Evaluation

Implementation and Evaluation of Depth-First IBEX in Fast Downward 25 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Evaluation - hLM-CUT

Algorithm Name A* BTS BTS path checking IDA* IDA* path checking

Coverage 966 559 596 556 591
Exponential search — 13.82% 17.88% — —
Expansions until last jump — 978.25 1629.09 767.11 1091.47
Iterations — 1757 1988 1821 2188
Search time (s) 0.09 0.77 0.54 0.70 0.49

Implementation and Evaluation of Depth-First IBEX in Fast Downward 26 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Evaluation - hblind

Algorithm Name A* BTS BTS path checking IDA* IDA* path checking

Coverage 718 257 287 246 270
Exponential search — 19.21% 23.17% — —
Expansions until last jump — 171745.17 121924.19 127070.28 54197.04
Iterations — 2158 2398 3075 3316
Search time (s) 0.02 1.11 0.53 1.43 0.62

Implementation and Evaluation of Depth-First IBEX in Fast Downward 27 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Differences in Coverage - hLM-CUT

Domain BTS IDA*

mprime(35) 21 20

nomystery-opt11-strips(20) 11 12

organic-synthesis-split-opt18-strips(20) 14 13

parcprinter-08-strips(30) 14 13

parcprinter-opt11-strips(20) 9 8

Implementation and Evaluation of Depth-First IBEX in Fast Downward 28 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Differences in Coverage - hblind

Domain BTS IDA*

movie(30) 3 2

organic-synthesis-split-opt18-strips(20) 10 9

parcprinter-08-strips(30) 5 3

parcprinter-opt11-strips(20) 2 0

pegsol-08-strips(30) 26 24

pegsol-opt11-strips(20) 16 14

pipesworld-notankage(50) 6 5

Implementation and Evaluation of Depth-First IBEX in Fast Downward 29 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Stack Overflows

Stack overflows occurred as result of
too-deep recursion

Happens in certain problems with 0 cost
actions

f-bound never met

Avoided with path checking

Sokoban

Implementation and Evaluation of Depth-First IBEX in Fast Downward 30 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Number of Iterations - hLM-CUT

100 101 102

100

101

102

BTS (lower for 41 tasks)

ID
A
*
(l
ow

er
fo
r
1
ta
sk
)

Implementation and Evaluation of Depth-First IBEX in Fast Downward 31 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Number of Iterations - hblind

100 101 102

100

101

102

BTS (lower for 41 tasks)

ID
A
*
(l
ow

er
fo
r
0
ta
sk
s)

Implementation and Evaluation of Depth-First IBEX in Fast Downward 32 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Conclusion

Implementation and Evaluation of Depth-First IBEX in Fast Downward 33 / 35

Background Depth-First IBEX Implementation Evaluation Conclusion

Conclusion

BTS improves on the number of iterations required

Requires more expansions

A* better suited for the IPC benchmark suite

Implementation and Evaluation of Depth-First IBEX in Fast Downward 34 / 35

Questions?

petr.sabovcik@stud.unibas.ch

	Background
	Depth-First IBEX
	Implementation
	Evaluation
	Conclusion

