
A General LTL Framework for
Describing Control Knowledge in

Classical Planning
Master’s Thesis

Faculty of Science, University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence
ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert
Supervisor: Gabriele Röger

Salomé Simon
salome.simon@unibas.ch

March 31st, 2014

Abstract

State-of-the-art planning systems use a variety of control knowledge in order
to enhance the performance of heuristic search. Unfortunately most forms of
control knowledge use a specific formalism which makes them hard to com-
bine. There have been several approaches which describe control knowledge
in Linear Temporal Logic (LTL). We build upon this work and propose a
general framework for encoding control knowledge in LTL formulas. The
framework includes a criterion that any LTL formula used in it must fulfill
in order to preserve optimal plans when used for pruning the search space;
this way the validity of new LTL formulas describing control knowledge can
be checked. The framework is implemented on top of the Fast Downward
planning system and is tested with a pruning technique called Unnecessary
Action Application, which detects if a previously applied action achieved no
useful progress.

Contents

1 Introduction 2
1.1 Related Work . 3

2 Background 5
2.1 Planning Task Representation 5
2.2 A* search algorithm . 6
2.3 Linear Temporal Logic . 9

2.3.1 Evaluating LTL Formulas with progression 10

3 LTL in Classical Planning 13
3.1 Adaption of LTL for Classical Planning 13
3.2 Evaluating LTL formulas during Search 15
3.3 Merging LTL Formulas from Nodes with Identical State 17
3.4 Integration in A* search . 19

4 Unnecessary Action Applications in LTL 23
4.1 Intended Effects . 23
4.2 Unnecessary Action Applications 24
4.3 Adaption to LTL . 27

5 Experimental Results 30
5.1 Implementation . 30

5.1.1 LTL framework . 30
5.1.2 Unnecessary Action Application 31

5.2 Results . 32
5.2.1 Memory Efficiency . 33
5.2.2 Search Time . 35
5.2.3 UAA with a Specifically Designed Domain 38

6 Conclusion 44
6.1 Future work . 44

1

Chapter 1

Introduction

Classical search tries to solve problems by creating graphs based on states
which represent the current situation and actions which lead from one state
to another; and trying to find a path from the initial state to a state which
includes all goal constraints. Since these graphs usually grow very big, search
algorithms can be enhanced with several methods in order to guide the search.
The most known method is using heuristic functions which estimate the dis-
tance from a given state to the nearest goal state. Another method (which is
often used in combination with heuristics) is using control knowledge. Con-
trol knowledge describes information gained by analyzing the problem do-
main and can constrain the search space. One example of control knowledge
are invariants. Invariants describe statements which are true in any state
reachable from the initial state of a planning task.

A promising way of describing such control knowledge is using Linear
Temporal Logic (Pnueli, 1977). Linear Temporal Logic (LTL) allows us to
express logical formulas where variable assignments change over time; such
as “if action ai is applied, apply action aj next”, or “eventually v must be
true”. Bacchus and Kabanza (2000) created a system called TLPlan, which
uses domain dependent control knowledge encoded in first-order LTL to limit
the search space in a forward-chaining planner. TALplanner (Kvarnström
and Doherty, 2000) introduces a complex temporal logic called Temporal
Action Logic (TAL) which encodes actions into logical formulas with a time
component, and combines this with domain dependent control knowledge in
a forward-chaining planner.

While both approaches use temporal logic to describe control knowledge,
they use hand-coded domain dependent control knowledge and offer no cri-
terion that LTL formulas describing control knowledge must fulfill in order
to correctly guide the search. Furthermore, their application of temporal
logic is built into a planner which was specifically designed for this use. The

2

Chapter 1. Introduction

framework we propose is usable in any forward search planner. It describes
how LTL formulas can be integrated into the search and what criterion those
formulas must fulfill. We will implement the framework in a heuristic for-
ward search planner and test one concrete implementation of LTL-encoded
domain independent control knowledge on the framework.

The thesis is organized in the following way: Chapter 2 gives some back-
ground about the planning formalism we use, the A* forward search algo-
rithm and the LTL formalism. In Chapter 3 we explain how LTL can be
translated into the planning setting and what requirements LTL formulas
should fulfill in order to use them in optimal planning. In Chapter 4 we
propose a pruning technique called Unnecessary Action Application and de-
scribe how it can be used in the LTL framework. In Chapter 5 we show
some details on how the framework was implemented in Fast Downward,
and present and analyze the results of testing the Unnecessary Action Ap-
plication pruning technique in combination with heuristic search on several
standard benchmarks for optimal planning. In Chapter 6 we conclude the
thesis and present some ideas on how to extend and utilize the presented
LTL framework in future work.

1.1 Related Work

TLPlan (Bacchus and Kabanza, 2000) is a knowledge-based forward-chaining
planner which utilizes user-defined first order LTL formulas in order to prune
paths which do not fulfill the given formulas. It uses a progression technique
which incrementally checks if plan prefixes can satisfy the given formulas.
TLPlan’s search algorithm is only complete if there exists a plan which sat-
isfies the user-defined LTL formulas, but it does not provide any guidance
on how to build such formulas.

TALplanner (Kvarnström and Doherty, 2000) is based on TLPlan, but in-
troduces a new temporal logic language called Temporal Action Logic (TAL).
The language is split into a surface language, which is easier to read, and
a base language. Control knowledge is user-defined in the surface language
and automatically translated to the base language used by the planner. The
surface language describes actions as STRIPS variables with time variables,
where the preconditions of an action must be true at a time t1, and the ef-
fects take place at a time t2 (in between t1 and t2 the variables affected by
the action are undefined). Furthermore TAL can define observations, which
must be true at all times (for example invariants can be described this way)
and goal control statements, which are temporal logic formulas and must
be fulfilled by any optimal plan. With all these features, TAL is a very

3

Chapter 1. Introduction

expressive language which also allows to define concurrent actions. For clas-
sical nontemporal planning however, TAL provides more functionality than
needed.

Baier and McIlraith (2006) proposed to convert LTL formulas into infinite
state automata. Such automtata can be added to a planning task, where
each state in the search space will be given an additional variable for each
automaton, denoting in which state the automaton currently is. Since au-
tomata can have dead-end states (non-final states from which no final state
can be reached), a state in the search space can be pruned if one of the
automata variables denotes such a dead-end state. In order to transit from
one automaton state to another, two approaches are suggested: either the
actions in the planning task are modified in such a way that they also reflect
the automaton transitions, or the automata variables are defined as derived
predicates (axioms) and causal rules are defined which decide in which state
the automaton currently is.

Wang et al. (2009) described how landmarks (Porteous et al., 2001) and
their orderings can be described in LTL. Based on Baier and McIlraith (2006)
they translated those formulas into automata and augmented the FF heuris-
tic (Hoffmann and Nebel, 2001) by including the automata variables in the
relaxed planning graph created by FF.

4

Chapter 2

Background

In this chapter we define the planning and Linear Temporal Logic formalism
used in this thesis. Furthermore, we describe the A* search algorithm, which
we will later use as an example on how to integrate our LTL framework into
search algorithms.

2.1 Planning Task Representation

We consider planning tasks given in the STRIPS formalism (Fikes and Nils-
son, 1972):

Definition 2.1 (STRIPS task). A STRIPS planning task is a quadruple
Π = 〈V,A, I,G〉, where

• V is a finite set of propositional variables.

• A is a finite set of actions a = 〈pre(a), add(a), del(a), cost(a)〉, where
pre(a) ⊆ V , add(a) ⊆ V , del(a) ⊆ V and cost(a) ∈ N0.

• I ⊆ V is the initial state.

• G ⊆ V is the set of goal variables.

A state s is defined as a set of variables v ∈ V , e.g. the initial state I.
An action a is applicable to a state s if pre(a) ⊆ s. When a is applied to s,
the successor state is defined as follows: succa(s) := (s \ del(a)) ∪ add(a). A
sequence of actions 〈a0, a1, . . . an〉 is applicable to s if a0 is applicable to s, a1
is applicable to succa0(s) and so forth. When several actions are applied in a
row we will use a short notation: succ〈a0,...,an〉(s) := succan(...(succa0(s))...).

A sequence of actions ρ = 〈a0, . . . , an〉 applicable to a state s resulting
in a state succρ(s) is also called a path from s to succρ(s). The cost of a

5

Chapter 2. Background

path is defined as the sum of the cost of each action application in the path
(meaning that if an action is for example applied twice in a path, its costs
also need to be counted twice).

A goal state is a state s which includes all goal variables: G ⊆ s. A plan
π is a path from the initial state to a goal state. An optimal plan πopt is a
plan with the lowest possible cost, meaning that there exists no other plan
π

′
with cost(π

′
) < cost(πopt).

2.2 A* search algorithm

The STRIPS formalism for describing planning tasks contains an implicit
definition of a weighted directed graph, where nodes represent states and
edges represent actions. An edge between node n1 and n2 exists, if the
action a represented by the edge is applicable to the state s1 represented by
n1, and the resulting state s2 = succa(s1) is represented by n2. This graph
is called the state space. Based on this, many search algorithms build parts
of the so-called search space, until they find a goal node (a node with a goal
state). The search space is similar to the state space, but nodes are not only
a representation of a state, they also hold other (partially path-dependent)
information. It is build by expanding an already existing node (the first
existing node is nI with state I). Expanding a node n with associated state
s means that for each action a which is applicable to s, a new node n′ with
state succa(s) is created and an edge from n to n′ with weight cost(a) is
added. This means the search space is actually a tree with nI as root.

Search algorithms which explore the search space by expanding nodes
mainly differ in how they choose which nodes to expand. They usually use
a priority queue called open list in which they save nodes that are created
but not yet expanded, and choose the node with highest priority for the next
expansion. This is called best-first search. The A* algorithm (Hart et al.,
1968) assigns each node n inserted in the open list a value f = g(n) + h(n),
where lower f values relate to higher priorities. The value g(n) is the cost
of the path from nI to the current node, and h(n) is the expected cost for
reaching a cheapest reachable goal node from n. The value g(n) of a child
node n with parent np is the sum of g(np) and cost(a), where a is the action
represented by the edge from np to n (for the initial node, g(nI) = 0 is
assigned). For calculating h(n), a variety of heuristics exists.

A* can guarantee to find optimal plans if the used heuristic is admissible,
meaning the heuristic never overestimates the costs for reaching the closest
goal node. A* also uses a technique called duplicate elimination. This means,
A* only keeps one node for each unique state in the search space, the node n

6

Chapter 2. Background

with lowest g(n) (because it is desirable to reach a state with lowest possible
cost).

A pseudo code of A* can be seen in Algorithm 1. The algorithm starts with
creating a node nI , assigning the initial state I to nI , 0 as the g-cost g(nI)
and the heuristic estimate for I as h(nI) (heuristic estimates are typically
only state dependent). It then inserts nI into the open list with priority
g(nI) + h(nI). The actual search is done in the while loop starting at line 8.
As long as the open list is not empty, a node n with minimal f value is picked
from the open list (line 9) and put in the closed list (line 10). If n is a goal
node (line 11), the algorithm reconstructs the plan by backchaining through
the parent nodes and returns the plan (line 12). If n is not a goal node, its
children are generated: The algorithm loops over all actions a applicable to
the state s(n) associated with n (line 14) and creates children nodes with
associated state succa(s(n)). Since A* uses duplicate elimination, not all
children nodes are necessarily created. This is done in the following way:

For a successor state ssucc, a temporary g value for reaching ssucc over
parent node n is calculated (line 16). Then, the algorithm checks if the state
has been seen already. If not (line 17), a node nsucc is created (line 18), ssucc
is associated with nsucc (line 19), g(nsucc) is set to gtemp (line 20), h(nsucc) is
estimated (line 21), the parent pointer parent(nsucc) is set to n (line 22) and
nsucc is inserted into the open list with priority g(nsucc) + h(nsucc) (line 23).
If the state has been seen before in a node n′, but the temporary g value is
lower than g(n′) (line 33), then, instead of creating a new node, the algorithm
simply updates the g(n′) value to gtemp and parent pointer parent(n′) to n
(line 25 and 26). Since the heuristic estimate is typically only state depen-
dent, it does not need to be recalculated. If n′ is already in the closed list
(line 27), it needs to be reopened by taking it out of the closed list (line 28)
and inserting it again into the open list with the sum of h(n′) and the newly
assigned g(n′) as priority (line 29). If n′ is in the open list (line 30), the al-
gorithm simply updates the priority of n′ to the sum of h(n′) and the newly
assigned g(n′) (line 31). If there exists a node n′ with ssucc in the open and
closed list with g(n′) ≤ gtemp, then the algorithm does nothing, since the
existing node is equally good or better than the new found path to ssucc.

Finally, if the while loop should end without finding a solution, the algo-
rithm will report that the problem is unsolvable (line 36).

7

Chapter 2. Background

Algorithm 1 A* search

1: nI ← new node
2: s(nI)← I
3: g(nI)← 0
4: h(nI)← heuristic estimate for I
5: closed ← []
6: open ← new priority queue
7: insert nI in open with priority g(nI) + h(nI)
8: while open not empty do
9: n← remove minimum from open

10: insert n in closed
11: if n is a goal node then
12: return reconstruct path from n
13: end if
14: for all actions a applicable to s(n) do
15: ssucc ← succa(s)
16: gtemp = g(n) + cost(a)
17: if there exists no n′ with s(n′) = ssucc in open or closed then
18: nsucc ← new node
19: s(nsucc)← ssucc
20: g(nsucc)← gtemp

21: h(nsucc)← estimate heuristic value of ssucc
22: parent(nsucc)← n
23: insert nsucc in open with priority g(nsucc) + h(nsucc)
24: else if there exists n′ with s(n′) = ssucc in open or closed and

gtemp < g(n′) then
25: g(n′)← gtemp

26: parent(n′)← n
27: if n′ in closed then
28: remove n′ from closed
29: insert n′ in open with priority g(n′) + h(n′)
30: else
31: change priority of n′ to g(n′) + h(n′)
32: end if
33: end if
34: end for
35: end while
36: return unsolvable

8

Chapter 2. Background

2.3 Linear Temporal Logic

The idea of creating a formalism for Temporal Logic was first proposed by
Pnueli (1977) in order to provide a method for verifying the correctness of
both serial and parallel programs. The basic idea is to express logical formu-
las where the variable assignment can change over time. Since change over
time can be interpreted in several ways, there have been various approaches
on how to formalize Temporal Logic (e.g. can there be concurrent actions,
do actions have a duration and so on).

Since we will use Temporal Logic in classical, nontemporal planning, we
chose to use Linear Temporal Logic (LTL). Linear Temporal Logic interprets
temporal change as an (infinite) sequence of worlds w = 〈w0, w1, . . . 〉, where
each world wi is of a truth assignment for a set of propositional variables V
(wi : V → {T,F}). As will be shown later, this setting can easily be adapted
into the planning formalism. LTL exists both as Propositional LTL and
First-Order LTL. We will use Propositional Linear Temporal Logic (PLTL)
as described in Emerson (1990). PLTL extends Propositional Logic by four
modal operators:  (Always),  (Eventually),  (Next) and U (Until).
The following two definitions (based on Emerson (1990) but with different
notation) describe syntax and semantics of PLTL:

Definition 2.2 (PLTL syntax). The set of PLTL formulas over a set of
propositional variables V is inductively defined as follows:

• > and ⊥ are PLTL formulas.

• p is a PLTL Formula for p ∈ V .

• if ϕ and ψ are PLTL formulas, then ¬ϕ, (ϕ ∨ ψ) ,(ϕ ∧ ψ), ϕ, ϕ,
ϕ and (ϕUψ) are PLTL formulas.

The order of precedence used in this thesis differs slightly from Emerson
(1990): Unary operators bind the strongest (¬, , , ), followed by U ,
followed by ∧, and finally followed by ∨ as operator with weakest binding
power. As an example, consider the following equivalence:

a ∨ ¬b ∧ cUd ≡ (a) ∨
((
¬(b)

)
∧ (cUd)

)
Definition 2.3 (PLTL semantics). Let ϕ be a PLTL formula over a set of
propositional variables V , w = 〈w0, w1, . . . 〉 an infinite sequence of worlds
where wi : V → {T,F}, and let wi = 〈wi, wi+1, . . . 〉 denote an infinite
subsequence of w for i ≥ 0.

9

Chapter 2. Background

• if ϕ = p where p is a propositional variable in V , then w |= p iff
w0(p) = T

• if ϕ = ¬ψ, then w |= ϕ iff w 6|= ψ

• if ϕ = ψ1 ∨ ψ2, then w |= ϕ iff w |= ψ1 or w |= ψ2

• if ϕ = ψ1 ∧ ψ2, then w |= ϕ iff w |= ψ1 and w |= ψ2

• if ϕ = ψ, then w |= ϕ iff for all i ≥ 0: wi |= ψ

• if ϕ =ψ, then w |= ϕ iff there exists a i ≥ 0 where wi |= ψ

• if ϕ = ψ, then w |= ϕ iff w1 |= ψ

• if ϕ = ψ1Uψ2, then w |= ϕ iff there exists a i ≥ 0 where wi |= ψ2 and
for all 0 ≤ j < i, wj |= ψ1

• if ϕ = > then w |= ϕ

• if ϕ = ⊥ then w 6|= ϕ

For the remainder of this paper, we will refer to PLTL simply as LTL.

2.3.1 Evaluating LTL Formulas with progression

Sometimes we want to evaluate an LTL formula when we do not have the
whole sequence of worlds w = 〈w0, w1, . . . 〉 given but only the beginning of
that sequence w[i] = 〈w0, w1, . . . , wi〉. In these cases we can evaluate the
formula progressively over w[i] (Bacchus and Kabanza, 2000). Progressing
an LTL formula ϕ with a world w means that we build a new formula ϕ′ which
is satisfied by all sequences of worlds 〈w0, w1, . . . 〉, where the same sequence
of worlds preceded by w: 〈w,w0, w1, . . . 〉 satisfies ϕ. In the above example,
we could progress an LTL formula ϕ first with w0, then progress the resulting
formula with w1 and so forth until wi, and we would get a formula which is
satisfied by all sequences of worlds 〈wi+1, . . . 〉 where 〈w0, w1, . . . , wi, wi+1, . . . 〉
satisfies ϕ.

The use of progressing a formula ϕ over w[i] becomes apparent when
the progressed formula can be proven to be unsatisfiable or a tautology. In
these cases we know that any sequence of worlds starting with w[i] will never
satisfy ϕ or respectively always satisfy ϕ.

Definition 2.4. progress(ϕ,w) must fulfill the following condition:
〈w1, w2, . . . 〉 |= progress(ϕ,w0) iff 〈w0, w1, w2, . . . 〉 |= ϕ .

10

Chapter 2. Background

In order to avoid a nested notation we will use a short notation for iter-
ative progression:

progress〈w0,w1,...,wi〉(ϕ) := progress(. . . progress(ϕ,w0) . . . , wi)

Bacchus and Kabanza (2000) introduced progression rules for all First-
Order LTL operators with bounded quantification and proved their correct-
ness. The following definition includes all progression rules needed for Propo-
sitional LTL:

Definition 2.5 (Progression rules (Bacchus and Kabanza, 2000)). Let ϕ be
an LTL formula over V which should be evaluated over a sequence of worlds
starting with world w. Then progress(ϕ,w) is recursively defined as follows:

ϕ = p ∈ V progress(ϕ,w) := > if w |= p, ⊥ otherwise
ϕ = f1 ∧ f2 progress(ϕ,w) := progress(f1, w) ∧ progress(f2, w)
ϕ = f1 ∨ f2 progress(ϕ,w) := progress(f1, w) ∨ progress(f2, w)
ϕ = ¬f progress(ϕ,w) := ¬progress(f, w)
ϕ = f progress(ϕ,w) := progress(f, w) ∧ ϕ
ϕ =f progress(ϕ,w) := progress(f, w) ∨ ϕ
ϕ = f progress(ϕ,w) := f
ϕ = f1Uf2 progress(ϕ,w) := progress(f2, w) ∨ (progress(f1, w) ∧ ϕ)

While progressing one can use the following equivalences to shorten the
formula:

• ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ ≡ ⊥

• ϕ ∨ > ≡ > ∨ ϕ ≡ >

• ϕ ∧ > ≡ > ∧ ϕ ≡ ϕ

• ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ ≡ ϕ

• ¬> ≡ ⊥

• ¬⊥ ≡ >

Example 2.1. Consider a formula ϕ = (aUb) ∨ (c ∧ d), and a world
w : {a → F, b → F, c → T, d → T}. We can calculate the progression of ϕ
with w as follows:

11

Chapter 2. Background

progress(ϕ,w) = progress(aUb, w) ∨ progress(c ∧d, w)

=
(

progress(a, w) ∨
(
progress(b, w) ∧ (aUb)

))
∨
(
progress(c, w) ∧ progress(d, w)

)
=

(
⊥ ∨

(
⊥ ∧ (aUb)

))
∨
(
c ∧ (progress(d, w) ∧d)

)
= c ∧ (> ∧d)

= c ∧d

As we will see in Chapter 3, the progression technique will be very impor-
tant when using LTL in classical Planning, because during the search we will
never have complete sequences of worlds.

12

Chapter 3

LTL in Classical Planning

3.1 Adaption of LTL for Classical Planning

Our goal is to describe control knowledge in LTL. Since we want to use our
LTL framework in optimal planning, we are interested in control knowledge
describing statements which are true in any optimal plan. Translated into
the LTL setting this means that LTL formulas representing control knowledge
should be satisfied by any infinite sequence of worlds representing an optimal
plan. To define such a representation of an optimal plan, we first need to
define what a world is in classical planning and then describe how plans can
be expressed as infinite sequences of worlds.

In Chapter 2 we defined that in STRIPS states are represented as the
set s of propositional variables which are true in this state. Since in LTL a
world is defined as a truth assignment for a set of propositional variables, we
can easily interpret a state as a world by assigning all propositional variables
which are in the state set s the value T and all other propositional variables
V \ s the value F (where V is the set of all propositional variables that exist
for the given planning task).

When trying to describe a plan as an infinite sequence of worlds, we have
two problems: a plan is finite, and plans are described as a sequence of actions
that are applied to a state, not a sequence of states. The latter problem is
easily solved by replacing the sequence of actions with the corresponding se-
quence of states. Given a plan π = 〈a0, a1, . . . , an〉 applied to state I, the state
sequence induced by this world is 〈I, succa0(I), succ〈a0,a1〉(I), . . . , succπ(I)〉.

The most common solution to the former problem was proposed by Bac-
chus and Kabanza (2000). They argued that the goal state in a plan should
be repeated indefinitely, since as soon as a goal state is reached, no more
actions will be applied and thus the state will not change anymore. We will

13

Chapter 3. LTL in Classical Planning

use the same idea but extend it to not only plans but all paths that lead
from any state to a goal state. We will use a short notation for the infinite
sequence of worlds describing these paths:

Given a path ρ = 〈a0, a1, . . . , an〉 which is applicable to a state s and
results in a goal state succρ(s), the following notation describes an infinite
sequence of states (worlds), which starts with s, follows the path to succρ(s)
and repeats the last state indefinitely:

ws
ρ = 〈s, succa0(s), succ〈a0,a1〉(s), . . . , succρ(s), succρ(s), . . . 〉

We will call this notation the infinite extension of a path ρ.
With this notation, we can now define what an LTL formula must fulfill

in order to represent control knowledge in optimal planning:

Definition 3.1 (LTL Formulas Describing Control Knowledge in Optimal
Planning). An LTL formula describing control knowledge for a STRIPS task
Π = 〈V,A, I,G〉 must be satisfied by the infinite extension wI

πopt
of any

optimal plan πopt of the task Π.

Bauer and Haslum (2010) summarized some alternatives on how to deal
with finite trace semantics for LTL and compared them to the infinite exten-
sion method, focusing on the question whether an LTL formula ϕ should
be satisfied at the end of a finite trace (i.e. if we progress a given formula over
a finite trace and the resulting formula is ϕ). With the infinite extension
method this would depend on whether ϕ is satisfied by the infinite extension
of the last world in the finite trace.

One alternative proposed by Manna and Pnueli (1995) is to change the
semantics of LTL to finite traces, i.e. ϕ is satisfied by a sequence of worlds
〈w0, . . . , wn〉 iff for all 0 ≤ i ≤ n : 〈wi, . . . , wn〉 |= ϕ holds. The next operator
is treated in a special way: a formula ϕ is satisfied by a sequence of worlds
ending with wn only if there exists a next world wi and if 〈wi, . . . , wn〉 |= ϕ. If
no next world exists, ϕ is not satisfied. They also introduce a “weak next”
operator, which is the same as the normal next operator except that a formula
with the weak next operator is also satisfied if no next world exists. Baier
and McIlraith (2006) propose a similar finite trace semantics, but instead of
the weak next operator they introduce a 0-ary FINAL operator which is only
true in the last world of the finite trace. Bauer and Haslum (2010) showed
that these two semantics are equivalent, since the weak next operator can
be expressed by ϕ∨FINAL and the FINAL operator by ¬TRUE. They
also showed that the satisfiability of those two semantics differs from the
satisfiability of the infinite extension semantics, but only as soon as the weak
next operator (or FINAL operator) is used.

14

Chapter 3. LTL in Classical Planning

Bauer and Haslum (2010) also mention two other semantics: LTL3 and
RV-LTL. The LTL3 semantics adds inconclusive as a possible evaluation value
besides > and ⊥. So if for example a formula ϕ should be evaluated over
a finite trace where no next world exists, the evaluation would return “in-
conclusive”. RV-LTL extends this idea and instead of “inconclusive” reports
possibly true or possibly false, depending on whether the infinite extension
semantics would evaluate the formula to > or ⊥.

We decided to use the infinite extension semantics since we currently do
not need added semantics such as weak next or inconclusive evaluation. It is
however possible to change the framework to use one of the above mentioned
semantics instead of infinite extension, should the need arise.

3.2 Evaluating LTL formulas during Search

As described in the previous section, we want to evaluate an LTL formula
describing control knowledge over a sequence of states induced by a plan.
We assume for the moment that control knowledge is given in the beginning
of the search in form of a “global” LTL formula which must be satisfied by
any optimal plan. We will show later how control knowledge can be added
during the search.

While searching we cannot evaluate the given global LTL formula yet
since we do not have a plan, but only nodes with states in a search tree.
Since those node sequences can denote beginnings of plans, we can use the
progression technique presented in Section 2.3.1 by progressing the given
formula over the states sequence induced by the path from the initial node
to each node. If this progressed formula should be equal to ⊥ at any node,
we know that the path to this node cannot be the beginning to an optimal
plan (see Section 2.3.1) and we can prune the node from the search space.
Furthermore, if the progressed formula is not equal to ⊥, it will give us
information on what requirements a path from the current node to the nearest
goal node must fulfill in order to result in an optimal plan.

When progressing a given LTL formula, we will associate each node in
the search tree with a separate LTL formula. We will use the notation ϕn
to describe a formula which is associated to a node n. Given a global for-
mula ϕ we associate the node nI representing the initial state I with the
formula ϕnI

= progress(ϕ, I). Each successor node of the initial node is as-
sociated with the formula which results by progressing ϕnI

with the state of
the successor node, and so forth. More formally:

15

Chapter 3. LTL in Classical Planning

Definition 3.2. For a node n with state s, parent node np and formula ϕnp

associated to np we assign the following formula to n:

ϕn = progress(ϕnp , s)

Note that ϕn must be evaluated over a path starting with a successor
state of s and not a path starting with s, since we progressed ϕn with s
already,

Example 3.1. Consider a sequence of three nodes n[2] = 〈n0, n1, n2〉 with
states s(n0) = {a, b}, s(n1) = {a, b, c}, s(n2) = {a, d} as shown in Figure 3.1,
and a global LTL formula ϕ = a ∧c ∧ (e ∨ (bUd). We associate the
following formulas with the nodes ni:

n0: ϕn0 = progress(ϕ, s(n0)) = a ∧c ∧ (e ∨ (bUd))
n1: ϕn1 = progress(ϕn0 , s(n1)) = a ∧ (bUd)
n2: ϕn2 = progress(ϕn1 , s(n2)) = a

n0

{a, b}

a ∧c ∧ (e ∨ (bUd))

n1

{a, b, c}

a ∧ (bUd)

n2

{a, d}

a

Figure 3.1: A Progression Example

Associating each node with its own LTL formula also gives us the pos-
sibility of adding control knowledge during the search. We will do this by
progressing the formula from the parent node and adding new information to
the progressed formula. Thus we must define a criterion for node-associated
LTL formulas which ensures that if the node is part of an optimal plan, the
continuation of the optimal plan satisfies the node-associated LTL formula.

Definition 3.3 (Optimal Plan Satisfiability Criterion for Node-associated
LTL Formulas). Consider a planning task Π = 〈V,A, I,G〉 with a node n in
its search tree. The node n is associated with state s and an LTL formula
ϕn, and was reached with cost g(n). For all paths ρ = 〈a0, a1, . . . , an〉 that
are applicable to s and where G ⊆ succρ(s) and g(n) + cost(ρ) equals the
cost of any optimal plan of the task Π, we require

w
succρ[0](s)

ρ+
|= ϕn, where ρ[0] = a0 and ρ+ = 〈a1, . . . an〉

16

Chapter 3. LTL in Classical Planning

Theorem 3.1 (LTL-based node pruning). Consider a node np with associ-
ated LTL formula ϕnp which fulfills the Optimal Plan Satisfiability Criterion,
and a node n with state s which is a successor of np. If the progression of ϕnp

with s results to ⊥, the path to n cannot be the beginning of an optimal plan,
and thus n can be pruned from the search space without loss of optimality.

Proof. Since ϕnp fulfills the Optimal Plan Satisfiability Criterion, it is satis-
fied by any state sequence induced by a path that will result in an optimal
plan when appended to np. Since the progression of ϕnp with s is unsat-
isfiable, there can be no state sequence starting with s which satisfies ϕnp

(according to Definition 2.4), and thus any state sequence starting with s
cannot describe a path that will result in an optimal plan when appended
to np. But any path from np over n induces such a state sequence (since s
is the state associated to n), thus no path over n can be the beginning of an
optimal plan.

3.3 Merging LTL Formulas from Nodes with

Identical State

In classical planning it often happens that several nodes share the same state.
In these cases, it would be desirable to conjunct the LTL formulas associated
to these nodes in order to gain more information for the individual nodes.
This is however not always correct with our requirement to node-associated
LTL formulas, as the following example will show.

Example 3.2. Consider two nodes n1 and n2 in the search tree of a plan-
ning task Π, which share the same state s and are reached with cost g(n1),
respectively g(n2), as shown in Figure 3.2. The associated LTL formulas
ϕn1 and ϕn2 both fulfill the Optimal Plan Satisfiability Criterion. Further
assume that g(n1) < g(n2) and that there exists a path ρ = 〈a0, a1, . . . , an〉
applicable to s, where succρ(s) is a goal state and g(n1) + cost(ρ) = copt (copt
being the optimal plan cost for Π). Note that g(n2) + cost(ρ) can never be
equal to the optimal plan cost, since g(n1) < g(n2).

In Definition 3.3 we required that the LTL formula associated to a node
n with state s needs to be satisfied by the infinite extension of all paths
applicable to s which reach a goal state with overall optimal costs. Since
there can be no such state sequence for n2, ϕn2 might not be satisfied by any
state sequence. The formula associated to n1 however needs to be satisfied by

w
succρ[0](s)

ρ+
. If we assign ϕn1 ∧ϕn2 to n1, we cannot guarantee that ϕn2 would

be satisfied by w
succρ[0](s)

ρ+
and thus we cannot guarantee that the formula

17

Chapter 3. LTL in Classical Planning

I

n1

s
ϕn1

n2

s
ϕn2

Figure 3.2: A search tree with two nodes with identical state

assigned to n1 is satisfied by all state sequences which represent a path to a
goal state with overall optimal plan costs. This would violate the requirement
from Definition 3.3 and is therefore not a correct assignment.

The example above is based on different g-costs. When the g-costs are
the same, it is indeed possible to conjunct the two LTL formulas, which we
will show with the proof of the following theorem.

Theorem 3.2. Consider two nodes n1 and n2 in the search tree of a planning
task Π, which share the same state s and are reached with cost g(n1), respec-
tively g(n2). The associated formulas ϕn1 and ϕn2 both fulfill the Optimal
Plan Satisfiability Criterion for their respective node. If g(n1) = g(n2) then
ϕn1 ∧ϕn2 fulfills the Optimal Plan Satisfiabilty Criterion for both n1 and n2.

Proof. Since the role of n1 and n2 is symmetric in the theorem, it is sufficient
to show that ϕn1 ∧ ϕn2 satisfies the Optimal Plan Satisfiability Criterion for
n1:

We need to show that w
succρ[0](s)

ρ+
|= ϕn1 ∧ ϕn2 for all paths ρ applicable

to s (the state of n1), where succρ(s) is a goal state and
g(n1) + cost(ρ) = copt (copt being the optimal plan cost of Π). Consider
an arbitrary such path ρ. It is sufficient to show separately that the infinite

extension w
succρ[0](s)

ρ+
(1) satisfies ϕn1 and (2) satisfies ϕn2 , because from this

follows that w
succρ[0](s)

ρ+
|= ϕn1 ∧ ϕn2 .

1. This is already granted in the theorem since ϕn1 fulfills the Optimal
Plan Satisfiability Criterion for n1.

18

Chapter 3. LTL in Classical Planning

2. Since ϕn2 fulfills the Optimal Plan Satisfiability Criterion for n2, the
infinite extension of all ρ′ satisfies ϕn2 , where ρ′ is applicable in s (the
state of n2, succρ′(s) is a goal state and g(n2) + cost(ρ′) = copt. Since
n1 and n2 have the same state and g(n1) = g(n2), ρ is such a ρ′ and
thus its infinite extension satisfies ϕn2

3.4 Integration in A* search

Since pruning based on LTL formulas that fulfill the Optimal Plan Satisfia-
bilty Criterion preserves optimality, it can be used in the A* algorithm.

If we look at Algorithm 1 we see two possibilities where to include our
LTL evaluation. The first option is to evaluate the formula once the node is
expanded. This will often result in substantially less LTL formula evaluations
since there are usually many more nodes generated than actually expanded.
The second option is to evaluate the formula as soon as a node is generated.
While it will be more effort and take more memory to do this, we argue that
it is in most cases more beneficial for several reasons:

• The evaluation of the LTL formula is time efficient in comparison to
most heuristic estimates (as long as the formula is not too long).

• If a node which reaches a new state is pruned, the heuristic estimate
for that state does not need to be computed.

• The open list is smaller if nodes are pruned (potentially saving memory
and reducing time required for open list operations depending on the
implementation).

• If we progress the formula only when the node is expanded, we can-
not gain additional information from other nodes with identical state
anymore. A* prunes nodes with states that are already reached with
lower or equal cost, before putting the nodes into the open list, thus
when expanding a node there is no other node with the same state in
the search space.

If however the formulas are too long, memory usage and evaluation time
can become a problem. In this case, it might be more suitable to evaluate
the formula only when expanding the node.

19

Chapter 3. LTL in Classical Planning

Algorithm 2 A* search with LTL pruning

1: nI ← new node
2: s(nI)← I
3: g(nI)← 0
4: h(nI)← estimate heuristic value of I
5: closed ← []
6: open ← new priority queue
7: ϕnI

← progress(ϕ, I)
8: insert nI in open with priority g(nI) + h(nI)
9: while open not empty do

10: n← remove minimum from open
11: insert n in closed
12: if n is a goal node then
13: return reconstruct path from n
14: end if
15: for all actions a applicable to s(n) do
16: ssucc ← succa(s)
17: gtemp = g(n) + cost(a)
18: ϕtemp ← simplified version of progress(ϕn, ssucc)
19: if ϕtemp equals ⊥ then
20: continue with next successor
21: end if
22: if new control knowledge ϕnew can be deduced then
23: ϕtemp ← ϕtemp ∧ ϕnew

24: end if
25: if there exists no n′ with s(n′) = ssucc in open or closed then
26: nsucc ← new node
27: s(nsucc)← ssucc
28: g(nsucc)← gtemp

29: h(nsucc)← estimate heuristic value of ssucc
30: parent(nsucc)← n
31: ϕnsucc ← ϕtemp

32: insert nsucc in open with priority g(nsucc) + h(nsucc)

20

Chapter 3. LTL in Classical Planning

Algorithm 2 A* search with LTL pruning (continued)

33: else if there exists n′ with s(n′) = ssucc in open or closed and
gtemp < g(n′) then

34: g(n′)← gtemp

35: ϕn′ ← ϕtemp

36: parent(n′)← n
37: if n′ in closed then
38: remove n′ from closed
39: insert n′ in open with priority g(n′) + h(n′)
40: else
41: change priority of n′ to g(n′) + h(n′)
42: end if
43: else if there exists n′ with s(n′) = ssucc in open or closed and

gtemp = g(n′) then
44: ϕn′ ← ϕn′ ∧ ϕtemp

45: end if
46: end for
47: end while
48: return unsolvable

A conceptual example of how to integrate LTL evaluation into A* can be
seen in Algorithm 2. It is based on the same pseudocode as in Algorithm 1;
added lines are colored red.

In line 7 the progression of a given global formula with the initial state is
associated with nI . When expanding a node n, for each successor state ssucc
the progression of ϕn with ssucc is calculated, simplified and saved temporarily
as ϕtemp (line 18). If the simplified progression is equal to ⊥, the node will be
pruned by just continuing with the next successor (lines 19 and 20). If not, we
can enhance ϕtemp with additional control knowledge fulfilling the Optimal
Plan Satisfiability Criterion, if such control knowledge exists (line 22 and
23).

If there exists no other node in the search space with ssucc as state and
thus the node nsucc is created, ϕtemp is assigned to nsucc (line 31). If there
exists a node n′ but gtemp (the costs of reaching ssucc over expanding n) is
lower than g(n′), then ϕtemp is assigned to n′, since n′ will represent the new
path over n (line 35). Else, if gtemp is equal to g(n′) , then the conjunction
ϕn′ ∧ ϕtemp will be assigned to n′, which is valid according to Theorem 3.2
(line 43 and 44). If gtemp is larger than g(n′), we do not need to do anything,
since we cannot gain any information from ϕtemp in this case.

21

Chapter 3. LTL in Classical Planning

Algorithm 2 could be improved in two ways:

1. If the simplified progression of an LTL formula ϕnp with state s is
equal to ⊥, we could check the open list for nodes n which have the
same state s and are reached with higher or equal costs than reach-
ing s over np. These states could also be pruned from the open list,
because technically we could assign progress(ϕnp , s) = ⊥ respectively
(progress(ϕnp , s) ∧ ϕn) = ⊥ to n according to Theorem 3.2 and thus
show that the path to n cannot denote an optimal plan

2. For each pruned node we could save the information that a node with
state s and g-cost g(n) has been pruned. If A* would later on create a
node n′ with state s and g(n′) ≥ g(n), this node could also be pruned
(for the same reasons as above).

22

Chapter 4

Unnecessary Action
Applications in LTL

This chapter presents a concrete example of control knowledge in form of
a pruning technique that we call Unnecessary Action Applications. It then
shows how this control knowledge can be translated into LTL formulas which
can be used in optimal planning. Unnecessary Action Applications are based
on intended effects, which were introduced by Karpas and Domshlak (2012).

4.1 Intended Effects

Karpas and Domshlak (2012) defined intended effects as a way of describing
the potentially useful progress a path from the initial state to any state has
made. Their definition is built on the terms achiever and consumer. Given
a state s reached by a path ρ = 〈a0, a1, . . . , an〉, an achiever of a variable
p ∈ s is the last action application ai with i ≤ n that made p true. In an
path ρ′ = 〈an+1, . . . , am〉 applied to s, the consumer of p ∈ s is the first
action application aj with j > n which has p in its preconditions. Given a
node n with state s which is reached at some point in a plan π, they further
define π1 as the path that reached n from the initial state and π2 as the path
that will reach a goal state from n. An intended effect at node n is now the
set of variables which is achieved by an action application in π1 and will be
consumed by an action application π2.

They approximate intended effects by building a shortcut library for each
node n, considering the entire path ρ = 〈a0, a1, . . . , an〉 that reached that
node from the initial state. First, they build a so-called causal structure of ρ.
This is a graph where the action applications a in ρ are the nodes, and there
is a directed arc from each action application i to an action application j,

23

Chapter 4. Unnecessary Action Applications in LTL

where ai is an achiever of a variable that is consumed by aj. With this graph
they can define isolated chains, that is a chain of action applications in the
graph that does not have any outgoing arcs to an action application outside
the isolated chain. As example, consider a path ρ = 〈a0, a1, a2, a3〉 where the
causal structure would have the following arcs: a0 → a1 and a1 → a3. The
chain a0 → a1 → a3 would be such a chain, but also a1 → a3 and the single
action applications a3 and a2. These isolated chains can be removed from ρ
resulting in a path ρ′ which is still applicable to the initial state.

For each of the paths ρ′ found by analyzing the causal structure of ρ where
cost(ρ′) < cost(ρ), a shortcut is saved denoting that a state succρ′(I) can be
reached with cost cost(ρ′) (they showed that under certain assumptions a
ρ′ with equal costs as ρ can also be utilized, but we omit this for the sake
of simplicity). For all sets of variables that are true in both the state s
belonging to n and in a state of the shortcut library, it can be concluded
that this cannot be the entire intended effect of ρ for any continuation of an
optimal plan, since it can be accomplished with a shorter path. Thus, for all
states in the shortcut library s′, all sets of variables that are true in s, but
not in s′, are possible intended effects. If there exists no such set of variables
for a particular s′, (meaning that s ⊆ s′), then ρ cannot have any intended
effects.

4.2 Unnecessary Action Applications

Intended effects are inspired by the idea that every action must be there
for a reason. Based on this we define the notion of an Unnecessary Action
Application. Intuitively an action application in a path is unnecessary if it
achieves nothing that is useful for the continuation of the path. By achieving
something useful, we mean that the action ai is the achiever of at least one
variable v which is consumed by a future action aj, or the achiever of a goal
variable.

Example 4.1. Consider the following planning task (see Figure 4.1):

• V = {i, v, x, g1, g2, g3}

• A = {a1, a2, a3, a4} with a1 = 〈∅, {x, g1, g2}, {i}, 1〉; a2 = 〈∅, {v, x}, ∅, 1〉;
a3 = 〈{v}, {g3}, {g1, g2}, 1〉 and a4 = 〈{g3}, {g1, g2}, ∅, 1〉

• I = {i}

• G = {g1, g2, g3}

24

Chapter 4. Unnecessary Action Applications in LTL

I{i}

s1{x, g1, g2}

s2{v, x, g1, g2}

a2

s3{v, x, g3}

a3

s′1 {i, v, x}

s′2 {i, v, x, g3}

a3

a1
a2

Figure 4.1: Illustration of Example 4.1

Since action a1 adds two of the three goal variables it seems to be a
good idea to start with this action, resulting in s1 = {x, g1, g2}. Next we
will execute a2, because it s the only action (aside from a1 which we just
executed) that is applicable, resulting in s2 = {v, x, g1, g2}. Then we can
only proceed by executing a3, resulting in s3 = {v, x, g3}. At this point we
can see however that the execution of a1 was unnecessary. Action a1 added
three variables: x, g1 and g2. Variable x was made true again by a2, g1
and g2 were deleted by a3, and none of the three variables was used as a
precondition by a2 or a3. Thus, a1 did not add any effects that were of use.
If we would just execute 〈a2, a3〉 we would arrive at a state s′2 = {i, v, x, g3}.
While it is not the same state as s3, we can reach any state from s′2 that we
could reach from s3, since s3 ⊂ s′2.

Formally we say that in a plan π = 〈a0, . . . , ai, . . . , an〉 of planning task
Π, the application of ai at step i is unnecessary if for all of its add-effects
e ∈ add(ai):

• e is falsified or made true by another action application aj with
j > i, before it is used as a precondition for any action application
ak with i < k ≤ j,

• or (if no such action aj exists) e is still true in the goal state but is not
a goal variable and has never been used as a precondition for another
action application ak with k > i.

25

Chapter 4. Unnecessary Action Applications in LTL

If the first case is true, then the intended effect technique by Karpas and
Domshlak (2012) can detect ai as an isolated chain when analyzing the node
n reached by ρ = 〈a0, . . . , aj〉, where j is the step where the last add-effect
of ai is falsified or made true again. The shortcut saved by removing ai will
be a state s′ ⊇ s (where s is the state associated to n), and thus it can be
concluded that there exists no intended effect on path ρ.

In order to avoid the special treatment for effects that are never falsified
and never added again, we change Π = 〈V,A, I,G〉 by adding an artificial
goal action which has all goal variables in its precondition, deletes all vari-
ables and adds a new variable which will be the new goal. More formally,
we define a new planning task Π′ = 〈V ′, A′, I, G′〉 with V ′ = V ∪ {vgoal},
A′ = A ∪ {agoal = 〈G, vgoal, V, 0〉} and G′ = {vgoal}. This definition implies
that any plan π′ for such a Π′ is equal to a plan π = 〈a0, . . . , an〉 for Π
extended with agoal, which also means that for any optimal π′ of Π′, the
corresponding π of Π is also optimal, and vice versa. For the remainder
of this chapter we will assume that planning task Π is represented by the
corresponding task Π′ with an artificial goal action.

Definition 4.1 (Unnecessary Action Applications). Consider a planning
task Π′. Let π = 〈a0, . . . , ai, . . . , an = agoal〉 be a plan with only one oc-
currence of agoal. An action ai 6= agoal is applied unnecessarily at step i iff for
all of its add-effects e ∈ add(ai), e has not been a precondition in an action
application ak with i < k ≤ j, where j is the first step after i where the
applied action aj has e in its add- or delete-effects.

Note that agoal cannot be unnecessary. The artificial goal action ensures
that achievers of the original goal variables are necessary, and that for any
effect e of an action a 6= agoal, there will be a future action (agoal) which
will delete e (the only effect that is not deleted by agoal is vgoal, but the only
action having vgoal in its add-effects is agoal).

Our goal is to describe control knowledge which is true for any optimal
plan. The statement any action application must be necessary is not true for
all optimal plans: Consider two plans π = 〈a0, . . . ai−1, ai, ai+1, . . . , an〉 with
unnecessary action application ai, and π′ = 〈a0, . . . , ai−1, ai+1, . . . , an〉 (this
is for example possible if ai adds a single variable v 6= vgoal which is never
used as a precondition for any action application aj with j > i. If π′ is an
optimal plan and cost(ai) = 0, then π is also an optimal plan, even though
it has an unnecessary action application. If we would however say that any
application of an action with cost > 0 must be necessary, then this statement
is true for any optimal plan:

26

Chapter 4. Unnecessary Action Applications in LTL

Theorem 4.1. If in a plan π = 〈a0, . . . , ai−1, ai, ai+1, . . . , an〉 the action
application ai is unnecessary and cost(ai) > 0, then π cannot be an optimal
plan.

Proof. We prove this theorem by showing that there exists a plan
π′ = 〈a0, . . . ai−1, ai+1, . . . , an〉 with lower costs. For this we need to prove
that (1) π′ is applicable to the initial state I, (2) G ⊆ succπ′(I) and
(3) cost(π′) < cost(π):

1. If π′ was not applicable to the initial state, ai must be an achiever of a
variable v which is consumed by an action aj with j > i. But ai is an
unnecessary action application and thus cannot be an achiever for any
variable v ∈ pre(aj).

2. The only goal variable vgoal is added only by an = agoal. Since π′ has
an, as last action (and π′ is applicable to the initial state), succπ′(I)
must have vgoal in its set of variables.

3. Plan π′ consists of exactly the actions of π minus action ai. Thus
cost(π′) = cost(π)− cost(ai). Since cost(ai) > 0, we can conclude that
cost(π′) < cost(π).

4.3 Adaption to LTL

In order to construct an LTL formula which forbids unnecessary action ap-
plications (for actions a with cost(a) > 0), we need to include actions into
the definition of a world. Calvanese et al. (2002) did this by introducing a
propositional variable for each action. To ensure that at any time exactly
one action is applied, they constructed additional formulas expressing this
constraint. We will use a similar approach, but we will denote the action
that reached the current world separately from the variables which are true
in the current world. Thus we do not need to add additional formulas to
ensure exactly one action is applied at any time.

Definition 4.2 (Modified Definition of World). Let V be the set of vari-
ables that are true in state s of a given search node n, and a be the action
that reached this node. Then the world describing n is defined as a tuple
wi = 〈a, V 〉. We will further on refer to the action belonging to world wi
as awi

and respectively the set of variables belonging to world wi as Vwi
.

For the initial state we define an empty action ainit, where pre(ainit) = ∅,
add(ainit) = ∅ and del(ainit) = ∅.

27

Chapter 4. Unnecessary Action Applications in LTL

With this modified definition of a world we need to define new semantics
for w |= ϕ where ϕ is an propositional variable or an action. All other
semantics rules remain unchanged.

Definition 4.3 (Changes in LTL Semantics with Modified Worlds). Given
an LTL formula ϕ and an infinite sequence of worlds w = 〈w0, w1, . . . 〉:

• if ϕ = p where p is a propositional variable, then w |= p iff Vw0(p) = T

• if ϕ = a where a is an action, then w |= p iff a = aw0

We want to construct an LTL formula which describes that in a plan
π = 〈a0, . . . an = agoal〉 all action applications ai at step i (with 0 ≤ i < n)
must be necessary if cost(ai) > 0. First we need to define what a necessary
action application is. Above we defined that in π the action application
ai 6= agoal at step i is unnecessary if for all of its add-effects e ∈ add(a), e is
falsified or made true again by a future action application aj with j > i and
for all ak with i < k ≤ j, e is not in the preconditions of ak. Since for all
add-effects e of any action application ai 6= agoal at step i there always exists
an action application aj at step j > i which deletes e (at the latest, this aj
is agoal), an action application is only necessary if for at least one add-effect
e an action application ak at step k with i < k ≤ j exists which has e in its
preconditions.

We can reformulate this the following way: An action application ai is
necessary at step i, if for at least one add-effect e there exists an action
application ak at step k with k > i which has e in its preconditions, and
until then no action application al at step l with i < l < k has e in its add-
or delete-effects. Since the definition of a necessary action application ai at
step i is only dependent on the path 〈ai+1, . . . an〉 to a goal node, we can
formulate this definition as a node-associated LTL formula:

Definition 4.4 (Necessary Action Applications in LTL). Consider a node
n in the search space of a planning task Π′ = 〈V,A, I,G〉, where n has
associated state s and was reached over a path ρ1 = 〈a0, . . . ai〉. For any plan
π of Π′ resulting from extending ρ1 with a path ρ2 = 〈ai+1, ai+2, . . . , an〉, ai
is necessary in π if the following formula is satisfied by w

succρ2[0](s)

ρ
+
2

(otherwise

ai is unnecessary):∨
e∈add(ai)

[(e ∧
∧

a∈A with e∈add(a)

¬a)U
∨

a∈A with e∈pre(a)

a]

Note that the LTL formula requires that at least one effect is actually used in
a precondition, since aUb requires that b is eventually satisfied. The condition

28

Chapter 4. Unnecessary Action Applications in LTL

that no action application can delete e until it is used as a precondition was
simplified to the equivalent condition that e must stay true.

Theorem 4.2. In a planning task Π′ with artificial goal action, consider a
node n with state s and which was reached with action a. If cost(a) > 0,
adding the LTL formula from Definition 4.4 for action a (denoted by ϕa) to
ϕn fulfills the Optimal Plan Satisfiability Criterion.

Proof. The Optimal Plan Satisfiability Criterion requires that for any path ρ
which is applicable to s and where succρ(s) is a goal state and g(n) + cost(ρ)

is equal to the optimal plan cost, the sequence of worlds w
succρ[0](s)

ρ+
must

satisfy ϕa.
Let ρ′ be an arbitrary such ρ. Assume that its infinite extension does not

satisfy ϕa. Then a is unnecessary for the plan π resulting by appending ρ′ to
n. We showed in Theorem 4.1 that a plan with an unnecessary application
of an action ai with cost > 0 cannot be optimal. Since cost(a) > 0 and a is
unnecessary, π cannot be an optimal plan, and thus g(n) + cost(ρ′) cannot
be equal to the optimal plan costs. This is a contradiction to the definition
of ρ′, and from this follows that its infinite extension must satisfy ϕa.

From Theorem 4.2 follows, that for each node n reached with an action
a with cost(a) > 0, we can add the LTL formula from Definition 4.4 for a to
ϕn without loss of optimality.

29

Chapter 5

Experimental Results

5.1 Implementation

The described LTL framework and the Unnecessary Action Application prun-
ing technique have been implemented on top of the Fast Downward Planning
System (Helmert, 2006), a state-of-the-art heuristic forward search planner.

5.1.1 LTL framework

Fast Downward uses a finite domain representation (FDR) instead of STRIPS,
which represents sets of mutually exclusive STRIPS variables by one variable
with a finite domain (the domain is defined by the set of STRIPS variables
mapped in this mutex group and an optional “none of those” value, which
means that none of the STRIPS variables is true). Thus we could not directly
use STRIPS variables in our LTL formulas. Instead an LTL formula describ-
ing a STRIPS variable holds a FDR variable-value pair, which represents the
STRIPS variable.

The LTL formulas are created by a factory, which also takes care of saving
the formulas. Formulas are created incrementally, meaning that first the
atomic formulas are created and then the more complex formulas, which only
hold pointers to their subformulas. Conjunctions and disjunctions can have
n subformulas, where n ≥ 2. Progression is done in a top-down approach, as
described in Definition 2.4.

In order to limit memory usage, any particular formula is only saved
once in the factory. The factory takes care of detecting if a formula exists
already when we try to create it from the factory; and if yes simply returns
the pointer to the already existing formula. This also extends to conjunctive
and disjunctive formulas: When creating a conjunctive or disjunctive formula
with n subformulas, the subformulas are ordered according to their hashvalue

30

Chapter 5. Experimental Results

and the framework can then detect if there exists such an conjunctive or
disjunctive formula already. For example, if there is an LTL formula a∧ b∧ c
in the factory and we ask the factory to create a formula b∧a∧c, the factory
would recognize them to be identical and return the pointer for a ∧ b ∧ c
without actually creating a new formula.

5.1.2 Unnecessary Action Application

In order to implement the Unnecessary Action Application pruning tech-
nique, we need to have access to the add-effects and preconditions of an
action. However, in FDR actions are not defined in STRIPS semantics, they
have so-called Prevail and PrePost tuples. A Prevail is a pair 〈variable, value〉
and is equivalent to a precondition for a mutex-group variable that is not
changed by the action. A PrePost is a triple 〈variable, pre-value, post-value〉
which makes a variable change to a new value. It is thus precondition and
effect in one (if the pre-value is -1, then the PrePost is a pure effect). A
PrePost can optionally have a vector of Prevails which describes conditional
effects, meaning that this particular variable change only takes effect if the
vector of Prevails is true in the state where the action is applied to (else
the action is still applicable, but the variable change in the PrePost with
unsatisfied conditional effects will not be executed). We do however not yet
support conditional effects.

Add-effects are recognized easily: all executed PrePosts which change a
variable to a value other than “none of those”, is an add-effect. Preconditions
however can take several forms:

• A Prevail tuple describes a precondition of a STRIPS variable and can
easily be recognized

• In a PrePost tuple 〈var, pre-val, post-val〉, var and pre-val denote a
precondition if pre-val 6= −1. This can also easily be recognized.

• In a PrePost, an element of the vector of Prevails describing conditional
effects usually describes a precondition for the conditional PrePost ef-
fect. Since we do not support conditional effects, we do not need to
consider those preconditions.

In order to optimize our code, the implementation of the Unnecessary
Action Applications formula differs from the formula defined in Definition 4.4.
Instead of enumerating two sets of actions (those that have e in their add-
effects and those that have e in their precondition), we introduced two new

31

Chapter 5. Experimental Results

abbreviations as pseudo LTL operators: Use and Add. Both operators can
only be used in combination with a FDR pair 〈mutex group variable, value〉.
The progression of the Use operator on a pair 〈var, val〉 returns > if an action
is applied which has a Prevail 〈var, val〉 or a PrePost with var as variable and
val as pre-value; ⊥ otherwise. The progression of the Add operator is similar:
If an action is applied which has a PrePost with var as variable and val as
post-value, > is returned; ⊥ otherwise. While semantically identical, this
notation takes less space and the progression is easier to compute.

5.2 Results

We tested the Unnecessary Action Application pruning technique (UAA) on
the benchmarks from the deterministic sequential optimization track of the
International Planning Competition (IPC) 2011 1. We omitted the tidybot
domain, because it has negative preconditions, and we assumed in UAA that
all preconditions are positive. We tested UAA in combination with the LM-
Cut heuristic hLM-Cut (Helmert and Domshlak, 2009) as a state-of-the-art
heuristic, and with the Max heuristic hmax (Bonet and Geffner, 2001) as a
less informed heuristic.

Unfortunately, UAA could not prune a single node on these benchmarks
with either configuration. After analyzing the domains we realized that there
simply do not exist any operators on these domains which could potentially
be unnecessary. The reason for this is that if a STRIPS variable occurs as
a delete effect in an action, it is also in the precondition of this action. For
example consider the transport domain, where vehicles with limited capacity
deliver packages to destinations. The domain has three types of actions:
drive, pick-up and drop. Drive moves a vehicle from one location l1 to another
location l2. The only delete effect is that the vehicle is not at location l1
anymore, but obviously this is also a precondition of this action. Pick-up
loads a package in a vehicle v and decreases the usable capacity of v. There
are two delete effects: the package is not at l1 anymore (but in the vehicle)
and the old capacity for v is not true anymore. But again, both of these
delete-effects are also in the precondition of the action. Drop is basically
the inverse action of pick-up and also has no delete-effects which are not
preconditions at the same time.

While the pruning technique did not actually prune anything, we can still
draw conclusions on how efficient the LTL framework in itself is. For this,

1http://www.plg.inf.uc3m.es/ipc2011-deterministic/

32

http://www.plg.inf.uc3m.es/ipc2011-deterministic/

Chapter 5. Experimental Results

Table 5.1: Memory usage with hLM-Cut

Domain no UAA with UAA Factor
barman-opt11-strips (4) 719880 2010888 2.79
elevators-opt11-strips (13) 243592 451704 1.85
floortile-opt11-strips (6) 283948 1011108 3.56
nomystery-opt11-strips (14) 122952 148088 1.20
openstacks-opt11-strips (17) 11502180 12734540 1.11
parcprinter-opt11-strips (13) 242188 424064 1.75
parking-opt11-strips (2) 57988 73888 1.27
pegsol-opt11-strips (17) 598792 775356 1.29
scanalyzer-opt11-strips (12) 416568 1200640 2.88
sokoban-opt11-strips (20) 444116 547364 1.23
transport-opt11-strips (6) 64368 81672 1.27
visitall-opt11-strips (11) 2134956 2291988 1.07
woodworking-opt11-strips (11) 407456 739132 1.81
Sum (146) 17238984 22490432 1.30

we ran the benchmarks for both heuristics without UAA and compared the
results. We were mainly interested in how search time and memory usage
increase when UAA is used.

5.2.1 Memory Efficiency

Tables 5.1 and 5.2 show a summary of the memory usage in the tested do-
mains and configurations (the memory usage is calculated by adding the
memory usage of each single problem in the domain that was solved by both
configurations). As we can see, the difference between memory usage when
using UAA and when not using it is very varied. For example, with hLM-Cut,
the floortile domain uses 3.56 times as much memory with UAA as without,
while the visitall domain only uses 1.07 times as much memory with UAA
as without. One reason for this is that floortile has a higher ratio of action-
s/problem than visitall (the ratio of actions/problem for problems that were
solved by both configurations is 188 for floortile and 66.2 for visitall). More
unique actions in a problem mean that there exists more unique LTL formu-
las describing the necessary action application criterion. However, it seems
that the most prominent reason for high memory consumption is the number
of evaluations. We see this best when comparing the absolute memory differ-
ence to the number of evaluations. The biggest absolute memory difference
for the hLM-Cut configurations is in the barman domain. This is also by far

33

Chapter 5. Experimental Results

Table 5.2: Memory usage with hmax

Domain no UAA with UAA Factor
barman-opt11-strips (4) 826596 2076376 2.51
elevators-opt11-strips (3) 60440 181520 3.00
nomystery-opt11-strips (8) 240592 897588 3.73
openstacks-opt11-strips (16) 9405504 10642760 1.13
parcprinter-opt11-strips (4) 27096 30292 1.12
pegsol-opt11-strips (17) 840044 1124756 1.34
scanalyzer-opt11-strips (3) 24608 102192 4.15
sokoban-opt11-strips (20) 1024964 1324108 1.29
transport-opt11-strips (6) 141664 365044 2.58
visitall-opt11-strips (16) 14852184 15191692 1.02
Sum (97) 27443692 31936328 1.16

the domain with the highest evaluations/problem ration (see Table 5.3).
This correlation seems to imply that there are many nodes which have a

unique LTL formula. We believe this could be improved in our implemen-
tation: When building LTL formulas for a node in the Unnecessary Action
Application pruning technique, we progress the parent formula and build the
new UAA formula for the applied action. We then create a new conjunction
with the two previous formulas as subformulas. This leads to a nested con-
junction looking like a∧ (b∧ (c∧ (d∧ e))). If there would be another formula
b ∧ (a ∧ (c ∧ (d ∧ e))), then our framework would not identify the two as
being the same formula because of the nesting. If we would avoid nesting the
formulas, the framework could identify the two formulas as being identical,
and we would save memory.

This problem should also be considered for other implementations of LTL
control knowledge, because when adding control knowledge during the search
we will always end up with a conjunction: We defined that control knowledge
can be added by progressing the parent formula and adding more control
knowledge, which leads to a formula looking like

b ∧ progress(c ∧ progress(d, s0), s1)

This formula is equivalent to

b ∧ progress(c, s1) ∧ progress(progress(d, s0), s1)

because the progression of progress(a ∧ b, s) is equivalent to progress(a, s) ∧
progress(b, s). If we nest these conjunctions, then the framework cannot
recognize symmetries and creates more unique formulas than needed.

34

Chapter 5. Experimental Results

Table 5.3: Evaluations with hLM-Cut

Domain Evaluations
barman-opt11-strips (4) 1614166.25
elevators-opt11-strips (13) 84426.71
floortile-opt11-strips (6) 198754.83
nomystery-opt11-strips (14) 1728.80
openstacks-opt11-strips (13) 848018.63
parcprinter-opt11-strips (13) 1311.40
parking-opt11-strips (2) 95692.04
pegsol-opt11-strips (17) 82661.29
scanalyzer-opt11-strips (12) 3233.60
sokoban-opt11-strips (20) 27027.59
transport-opt11-strips (6) 12153.84
visitall-opt11-strips (10) 516.12
woodworking-opt11-strips (11) 16034.78

5.2.2 Search Time

Tables 5.4 and 5.5 show a summary of the average search time in the tested
domains and configurations (the depicted number is the average search time
on all problems of the domain where both configurations found a solution).
Since no pruning was achieved with UAA, it is obvious that the search times
with UAA are higher. The difference is however higher than expected. We
saw two possible explanations as to why the search time increased so much:

• the progression is more expensive than expected

• when there is a big amount of nodes, the fetching and saving of the
formulas takes long (they are stored in a hashtable)

We ran a profiler on an example problem in order to find out where the
code spends so much time when using UAA. We chose problem 14 from the
nomystery domain because in the hmax configurations this problem used a
lot more memory and time with UAA than without. The profiler showed
that with the hmax configuration with UAA, 81.95% of the search time was
spent progressing the formula, while only 0.04% was spent with fetching and
0.08% with saving the formulas.

This shows that the progression of the formula is the bottleneck in our
implementation. When progressing a formula, the framework first creates
a tentative formula by simply applying the progression rules from Defini-
tion 2.5. In a second step, it simplifies the tentative formula with the equiva-
lences listed in Section 2.3.1. It then deletes the tentative formula and saves

35

Chapter 5. Experimental Results

Table 5.4: Search Time with hLM-Cut

Domain no UAA with UAA Factor
barman-opt11-strips (4) 233.59 851.74 3.65
elevators-opt11-strips (13) 8.41 24.45 2.91
floortile-opt11-strips (6) 9.68 39.09 4.04
nomystery-opt11-strips (14) 0.98 1.04 1.06
openstacks-opt11-strips (13) 14.05 26.34 1.88
parcprinter-opt11-strips (13) 60.48 0.55 1.15
parking-opt11-strips (2) 135.22 138.12 1.02
pegsol-opt11-strips (17) 2.97 3.90 1.31
scanalyzer-opt11-strips (12) 5.05 5.83 1.16
sokoban-opt11-strips (20) 3.31 3.48 1.05
transport-opt11-strips (6) 5.14 5.73 1.11
visitall-opt11-strips (10) 0.30 0.32 1.06
woodworking-opt11-strips (11) 3.79 5.73 1.51
Geometric mean (141) 5.56 8.59 1.54

Table 5.5: Search Time with hmax

Domain no UAA with UAA Factor
barman-opt11-strips (4) 60.48 1662.42 27.49
elevators-opt11-strips (3) 3.12 163.16 52.27
nomystery-opt11-strips (8) 0.61 2.25 3.69
openstacks-opt11-strips (13) 17.54 30.10 1.72
parcprinter-opt11-strips (4) 0.10 0.33 3.27
pegsol-opt11-strips (17) 3.00 4.44 1.48
scanalyzer-opt11-strips (3) 0.39 4.00 10.26
sokoban-opt11-strips (20) 2.33 2.70 1.16
transport-opt11-strips (6) 2.72 23.57 8.67
visitall-opt11-strips (9) 0.22 0.34 1.57
Geometric mean (87) 1.78 8.64 4.85

36

Chapter 5. Experimental Results

the simplified formula. The profiler shows that 28.61% of the time spent pro-
gressing the formula is used for deleting the tentative formula, and 28.19%
for creating it. This could be avoided by simplifying the formula on the go
when progressing it and thus avoiding to create a tentative formula which
must again be deleted.

We argued in chapter 3 that the evaluation time of LTL formulas is small
in comparison to most heuristics. As we see in Table 5.4 and 5.5 this is
only partially true. Since hmax is a heuristic that is calculated very fast, the
evaluation time of LTL formulas is very large in comparison. The hLM-Cut

heuristic takes longer to calculate, thus most domains in the hLM-Cut config-
uration do not take much more time for searching with UAA than without.
But there are some domains where the time increase is still very large. We
assume that in those domains, the formulas are longer in average, resulting
in longer progression time. We do not have a measurement for formula size
implemented in the framework, but when simply printing out the formulas
during the search we saw that formulas from the floortile domain are much
longer than formulas in domains like nomystery and sokoban.

We can also try to estimate how long the UAA formulas can become.
The formulas consist of the UAA formula for the newly applied action and
the progressed formula for the previously applied actions, for example: ϕa2 ∧
progress(ϕa1 ∧ progress(ϕa0 , s0), s1). The UAA formula of an action is a
disjunction over Until formulas for each add-effect of the action. The (sim-
plified) progression of an Until formula aUb is either > if b is true, ⊥ if a and
b is false, or the formula itself if a is true but not b. Since the UAA formula
is a disjunction of these formulas, the progression of it will return true as
soon as one add-effect has been used, otherwise the disjunction of the Until-
formulas for all add-effects which are still true and not added again. The
formula associated with a node consists now of a conjunction of the newest
UAA formula and the progression of the old UAA formulas. This means the
length of the formula depends on two factors:

• how many previous actions have not yet been detected necessary (in-
creasing the size of the conjunction)

• how many add-effects these unclassified actions have that are still true
and not added again (increasing the size of the disjunction for each
action)

Thus, if a domain has many actions which have a lot of add-effects (it
is hard to tell how long they can stay true and are not added again, so we
just take the absolute number of add-effects as measurement), and a lot of

37

Chapter 5. Experimental Results

actions are independent of each other (meaning the add-effects of one action
are not needed as precondition of another action), it seems likely that in this
domain, the node-associated LTL formulas from UAA grow rather long. In
the floortile domain, there exists two actions types which paint a tile in a
certain color. These effects are never used as precondition, but only as a
goal variable; nor are they falsified. Thus, all these paint actions can never
be declared unnecessary or necessary during the search, meaning that those
actions will pile up in the conjunction of the node-associated LTL formula.
In the domain nomystery, which describes a transport problem with three
action types load, unload and drive, the actions depend much more on each
other, and thus an action is faster detected as being necessary or unnecessary.

5.2.3 UAA with a Specifically Designed Domain

In order to still be able to test the Unnecessary Action Application prun-
ing technique, we designed a new domain which should be more suitable
to demonstrate the pruning technique (meaning actions have delete effects
which are not at the same time preconditions). The domain describes a
minigame consisting of tiles in a grid that can be activated. Given an ac-
tivated tile tij with two opposing neighbors, one of its neighbors can be
activated, but the other (opposing) neighbor will be deactivated. As an ex-
ample, Listing 5.1 shows the action which activates the left neighbor (“(right
?t1 ?t2)” denotes that t1 is right of t2), and Figure 5.1 shows an exemplary
application of this action.

Listing 5.1: Definition for Action activate-left

(:action activate-left

:parameters (?t1 ?t2 ?t3)

:precondition (and (activated ?t2) (right ?t1 ?t2) (right ?t2

?t3))

:effect (and (activated ?t3) (not(activated ?t1))))

A total of 45 problems with increasing difficulty were generated, where
some problems might be unsolvable.

The domain was again tested with a total of 4 configurations for optimal
planning: hLM-Cut without UAA, hLM-Cut with UAA, hmax without UAA and
hmax with UAA. Table 5.6 and 5.7 show the number of evaluations in each
problem for hLM-Cut without and with UAA, respectively hmax without and
with UAA. They also show how many nodes could be pruned in total with
UAA.

38

Chapter 5. Experimental Results

Table 5.6: Evaluations and Pruning in Minigame Domain with hLM-Cut

Problem no UAA with UAA Factor pruned with UAA
prob01.pddl 31 31 1.00 0
prob02.pddl 86 81 0.94 11
prob03.pddl 12 12 1.00 0
prob04.pddl 1670 1646 0.99 392
prob05.pddl (unsolvable) 18177 18075 0.99 15804
prob06.pddl 167 149 0.89 33
prob07.pddl 4289 4186 0.98 1385
prob08.pddl 954 929 0.97 196
prob09.pddl 994 979 0.98 231
prob10.pddl (unsolvable) 32354 32055 0.99 27996
prob11.pddl (unsolvable) 32354 32129 0.99 27767
prob12.pddl (unsolvable) 32354 32059 0.99 26538
prob13.pddl (unsolvable) 32354 32015 0.99 26966
prob14.pddl (unsolvable) 32354 32055 0.99 27996
prob15.pddl 499 483 0.97 86
prob16.pddl 3510 3432 0.98 595
prob17.pddl 39183 38238 0.98 9267
prob18.pddl 2554 2513 0.98 318
prob19.pddl 5028 4719 0.94 1127
prob20.pddl (unsolvable) 432723 431546 1.00 646980
prob21.pddl 144334 140009 0.97 45347
prob22.pddl 3644334 3514872 0.96 2045521
prob23.pddl 553546 536464 0.97 204018
prob24.pddl 491726 475355 0.97 195833
prob29.pddl 372750 351744 0.94 116694
prob32.pddl 862992 838451 0.97 193929
prob33.pddl 445058 434844 0.98 86145
prob34.pddl 6324423 6030014 0.95 1887638
prob35.pddl 2577325 2470621 0.96 719727

39

Chapter 5. Experimental Results

t03 t13 t23 t33

t02 t12 t22 t32

t01 t11 t21 t31

t00 t10 t20 t30

(a) initial state

t03 t13 t23 t33

t02 t12 t22 t32

t01 t11 t21 t31

t00 t10 t20 t30

(b) after activate-left(t21, t11, t01)

Figure 5.1: Exemplary Illustration of activate-left

Table 5.7: Evaluations and Pruning in Minigame Domain with hmax

Problem no UAA with UAA Factor pruned with UAA
prob01.pddl 141 132 0.94 14
prob02.pddl 342 332 0.97 40
prob03.pddl 23 22 0.96 1
prob04.pddl 9219 8874 0.96 3764
prob05.pddl (unsolvable) 18177 18078 0.99 8561
prob06.pddl 1958 1898 0.97 382
prob07.pddl 9858 9623 0.98 4356
prob08.pddl 11497 10945 0.95 2815
prob09.pddl 4833 4659 0.96 1818
prob10.pddl (unsolvable) 32354 32293 1.00 12387
prob11.pddl (unsolvable) 32354 32293 1.00 12421
prob12.pddl (unsolvable) 32354 32293 1.00 12305
prob13.pddl (unsolvable) 32354 32294 1.00 12140
prob14.pddl (unsolvable) 32354 32293 1.00 12387
prob15.pddl 13897 13449 0.97 3879
prob16.pddl 131556 123495 0.94 59328
prob18.pddl 122692 118721 0.97 27415
prob19.pddl 335708 315778 0.94 85731

40

Chapter 5. Experimental Results

(a) Search Time (b) Memory Consumption

Figure 5.2: Search Time and Memory Consumption with hLM-Cut

The results show, that UAA can indeed help the search by pruning nodes.
It is noteworthy however that the actual amount of evaluations saved is much
smaller than the pure amount of pruned nodes. This is because evaluations
are done only once for each state; and for many pruned nodes, the search later
finds a cheaper path to the corresponding state without unnecessary action
applications and thus evaluates that state anyway. It is also interesting, that
while UAA could prune more nodes in the hmax configuration, the actual
percentage-wise gain of avoided evaluations is no higher than in the hLM-Cut

configuration.
Since the amount of saved evaluations is rather small, the Unnecessary

Action Application pruning technique was not very helpful in this case ei-
ther, as shown in Figure 5.2 and 5.3. This is because the actual time spent
evaluating the LTL formulas is bigger than the time saved by avoiding the
other evaluations of the node. However, with a few optimizations in our
implementation these results should improve. The figures also show that
UAA performs much worse with hmax. This is because the search generates
more nodes with a less informed heuristic and we need to do an LTL evalua-
tion for all these nodes which is computationally much more expensive than
calculating the hmax heuristic.

41

Chapter 5. Experimental Results

(a) Search Time (b) Memory Consumption

Figure 5.3: Search Time and Memory Consumption with hmax

42

Chapter 6

Conclusion

This master’s thesis introduced a general framework which shows how the
LTL formalism can be used for describing control knowledge, and how LTL
formulas representing control knowledge can be used in heuristic forward
search. Furthermore we introduced a criterion that all LTL formulas de-
scribing control knowledge in optimal planning should fulfill in order to pre-
serve optimality if they are used for pruning. With the Unnecessary Action
Application pruning technique we showed a concrete example how such con-
trol knowledge can be adapted to LTL and used in the search. While the
pruning technique did not achieve positive results, its results still showed the
advantages and disadvantages of our framework. We expect that with a few
optimizations and with different control knowledge, our framework is capable
of achieving much better results.

6.1 Future work

There are a couple of already discussed improvements which can be added
to our current implementation of the LTL framework, such as more efficient
saving and progressing of the LTL formulas, and adaptions to the LTL inte-
gration in the A* search. We believe these improvements can considerably
increase the efficiency of our framework.

While the Unnecessary Action Application pruning technique seems to
add no useful information in commonly used planning domains, the LTL
framework in itself provides a number of opportunities. We only showed a
pruning technique as application of the framework, but it would also be possi-
ble to develop heuristics which return an actual goal distance estimate based
on this framework. There has been previous work showing how landmarks
and their orderings can be defined through LTL formulas (Wang et al., 2009).

43

Chapter 6. Conclusion

The integration into our LTL framework should be rather straightforward.
It remains open however, how to build a heuristic estimate out of these LTL
formulas. Wang et al. (2009) build finite state automata from their LTL for-
mulas and used them to enhance the FF heuristic by adding those automata
to the relaxed planning graph crated by FF. But since relaxed exploration
ignores all delete effects this could even be counterproductive with a general
LTL formula (i.e. if the formula describes ¬e for a STRIPS variable e), and
thus is not very suitable for general use.

While landmarks could also be implemented as a pure pruning-technique,
its uses are doubtful. Most landmarks and their orderings are derived in such
a way that the orderings are correct in any reachable state. An exception
are ”reasonable orderings”, but they are rather a recommendation and if a
reasonable ordering is not fulfilled in a path, this does not necessarily mean
that the path cannot be the beginning of a plan. Thus pruning based on
reasonable orderings would be incorrect.

The presented LTL framework is most efficient when the formulas used
are short and no big variety of unique formulas exist. An interesting approach
which would fulfill those criteria is to analyze a planning problem on whether
it makes sense to falsify reached goal variables. If we take the logistics domain
as example (where trucks and airplanes deliver packages to destinations), it
cannot be optimal to take a package away from its goal location. In this
case we could add an LTL formula g to any node reaching a goal variable
g which should not be falsified anymore. The memory consumption would
be minimal, since the LTL framework only needs to save one always-formula
for each goal state that should not be falsified once achieved. The difficulty
of this idea is to find a formal criterion which goal states should always stay
true once achieved.

Finally, the LTL framework could also utilize a new feature of PDDL 3.0
called State Trajectory Constraints (Gerevini and Long, 2005). These hard
constraints are encoded in modal-logic expressions (such as always ϕ and
sometime-after ϕ ψ) and added to the problem description. We think that
these constraints can easily be translated into our LTL framework and can
then be used for pruning or for heuristic estimates.

44

Bibliography

Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial Intelligence, 116(1):123–
191, 2000.

Jorge A Baier and Sheila A McIlraith. Planning with first-order temporally
extended goals using heuristic search. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI 2006), volume 21, pages 788–
795, 2006.

Andreas Bauer and Patrik Haslum. LTL goal specifications revisited. In Pro-
ceedings of the 19th European Conference on Artificial Intelligence (ECAI
2010), pages 881–886, 2010.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial In-
telligence, 129(1):5–33, 2001.

Diego Calvanese, Giuseppe De Giacomo, and Moshe Y Vardi. Reasoning
about actions and planning in LTL action theories. In Proceedings of the
8th International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR 2002), pages 593–602, 2002.

E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 995–1072. 1990.

Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial intelligence, 2(3):
189–208, 1972.

Alfonso Gerevini and Derek Long. Plan constraints and preferences in
PDDL3. Technical Report RT-2005-08-47, Dipartimento di Elettronica
per l’Automazione, Università degli Studi di Brescia, 2005.

45

Bibliography

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

Malte Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research (JAIR), 26:191–246, 2006.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In Proceedings of the 19th
International Conference on Automated Planning and Scheduling (ICAPS
2009), pages 162–169, 2009.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Re-
search (JAIR), 14:253–302, 2001.

Erez Karpas and Carmel Domshlak. Optimal search with inadmissible heuris-
tics. In Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012), pages 92–100, 2012.

Jonas Kvarnström and Patrick Doherty. TALplanner: A temporal logic based
forward chaining planner. Annals of Mathematics and Artificial Intelli-
gence, 30(1-4):119–169, 2000.

Zohar Manna and Amir Pnueli. Temporal verification of reactive systems:
safety, volume 2. Springer, 1995.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science (FOCS 1977),
pages 46–57, 1977.

Julie Porteous, Laura Sebastia, and Jrg Hoffmann. On the extraction, or-
dering, and usage of landmarks in planning. In Proceedings of the 6th
European Conference on Planning (ECP 2001), pages 37–48, 2001.

Letao Wang, Jorge Baier, and Sheila McIlraith. Viewing landmarks as tempo-
rally extended goals. In Proceedings of the ICAPS Workshop on Heuristics
for Domain Independent Planning (HDIP 2009), pages 49–56, 2009.

46

	Introduction
	Related Work

	Background
	Planning Task Representation
	A* search algorithm
	Linear Temporal Logic
	Evaluating LTL Formulas with progression

	LTL in Classical Planning
	Adaption of LTL for Classical Planning
	Evaluating LTL formulas during Search
	Merging LTL Formulas from Nodes with Identical State
	Integration in A* search

	Unnecessary Action Applications in LTL
	Intended Effects
	Unnecessary Action Applications
	Adaption to LTL

	Experimental Results
	Implementation
	LTL framework
	Unnecessary Action Application

	Results
	Memory Efficiency
	Search Time
	UAA with a Specifically Designed Domain

	Conclusion
	Future work

