
Depth-Bound Heuristics and
Iterative-Deepening Search Algorithms

in Classical Planning

Departement of Mathematics and Computer Science
Artificial Intelligence

Bachelor’s Thesis Presentation
Florian Spiess, 13 June 2017

Classical Planning

• Goal: Find series of actions from initial to goal state

• Static, deterministic, fully observable, discrete,
single-agent problems

• E.g.:

- Shortest package delivery route

- Stacking blocks

Blocks World

• Goal: Stack blocks in a certain order

• Only move one block at a time

• Only move blocks at the top of stacks

Blocks World
State Space

Initial

Goal

Heuristics

• Approximate goal distance

• Require time to construct / calculate

Goal

• Depth-bound heuristics

• Evaluate with iterative-deepening search algorithms

• Implementation in Fast Downward

Merge-and-Shrink

• Constructs abstract state space

• Calculates heuristic value in abstract state space

Merge-and-Shrink
• States can be represented as lists of variables

• E.g. Logistics with one package, two trucks:

- Package —> Left

- Truck A —> Right

- Truck B —> Left

State Space Representation

B A

Merge-and-Shrink
• Only considers state change of one variable

• E.g. projection onto:

Projection

L

A

B

R L

Package

R

Truck A

Merge-and-Shrink
• Merge through synchronized product

• E.g. merge of projections on Package and Truck A:

Merge

LL LR

AL

BL BR

RL RR

AR

Merge-and-Shrink

• Combine states to reduce size

Shrink

LL LR

AL

BL BR

R?

AR

Merge-and-Shrink

• Prune abstract states with cost > f-bound

- Reduce construction time

- Increase heuristic accuracy

Modification

Landmark Cut
• States can be represented as set of propositions

• E.g. Blocks world:

- state = {Y-on-B, B-on-F, R-on-F}

State Space Representation

Landmark Cut

• Acquired proposition cannot be lost

• E.g.: 
{Y-on-F, B-on-F, R-on-F}  
 
— move Yellow onto Blue —>  
 
{Y-on-F, B-on-F, R-on-F, Y-on-B}

Delete Free Planning Task

Landmark Cut

• Estimates the minimum cost of a delete free plan

• Iteratively sums costs of required actions

Landmark Cut

• Stop calculation once sum of costs > f-bound

- Reduce calculation time

Modification

IDA* Search

• Iterative-deepening A*

• Tree search

• Explores paths until f > f-bound

• Restarts with increased f-bound

• No open list

• No closed list —> low memory usage

IDA* Search

• Successor generation requires closed list in Fast
Downward

• With closed list

• With duplicate detection

Implementation

IDBFA* Search

• Iterative-deepening breadth-first A*

• A* search but prunes nodes with f > f-bound

• No solution —> increase f-bound

Breadth-First
Heuristic Search

• Store explored nodes —> High space complexity

• Only search frontier required to find goal  
 
—> Delete visited nodes

• No duplicate detection!

• No solution path!

• Breadth-first search explores nodes in ‘depth-layers’

Breadth-First
Heuristic Search

• Save one intermediate layer

• Recursively solve problems

Breadth-First
Heuristic Search

Initial Goal

• Nodes pruned with f-bound

Breadth-First
Heuristic Search

Evaluation

• Experiments on 1667 Tasks  
(from 57 domains)

• IDBFHS on subset of 160 Tasks  
(from 6 unit-cost, undirected graph domains)

Results
IDA* Comparison

Evaluation 16

4.2 IDA∗

An individual comparison of the results of IDA∗ with standard merge-and-shrink against

depth-bound merge-and-shrink and standard landmark cut against depth-bound landmark

cut can be seen in table 4.3. This table includes a new attribute: the geometric mean of

the real search time. The real search time is the pure search time, disregarding time spent

constructing new depth-bound merge-and-shrink heuristics. Real search time is smaller than

search time even for configurations not using depth-bound merge-and-shrink, because search

time includes the time required for the initialization of the search algorithm, part of which

is the generation of the closed list, while real search time does not.

Merge-and-Shrink Landmark Cut
Standard Depth-bound Difference Standard Depth-bound Difference

Coverage 725 721 -4 848 833 -15
Expansions 4252.10 2790.90 -1461.2 3259.94 3286.78 26.84
Memory 62302616 61688396 -614220 12920584 12326636 -593948
Real search time 0.05 0.03 -0.01 0.68 0.72 0.04
Search time 0.24 4.62 4.38 1.20 1.37 0.17
Total time 2.79 4.69 1.9 1.30 1.49 0.19

Table 4.3: Comparison of standard against depth-bound merge-and-shrink and standard
against depth-bound landmark cut for IDA∗.

4.2.1 Merge-and-Shrink
As can be seen in Table 4.3, IDA∗ with standard merge-and-shrink was able to solve 4

more problems than IDA∗ with depth-bound merge-and-shrink. This is most likely because

IDA∗ with depth-bound merge-and-shrink takes more total time in the geometric mean and

therefore more easily violates the time constraint. The results show that IDA∗ expanded

about 34% fewer nodes in the geometric mean with depth-bound in comparison to standard

merge-and-shrink. This is quite interesting, since it shows that depth-bound merge-and-

shrink is in some cases more informative than standard merge-and-shrink. This confirms

that there is an advantage to using depth-bound merge-and-shrink over standard merge-

and-shrink. The difference in real search time also seems to support this theory, since the

geometric mean of the real search time is lower for depth-bound merge-and-shrink. The

difference in peak memory for depth-bound and standard merge-and-shrink in Table 4.3

is not particularly large. While the pruning of the merge-and-shrink abstraction might

reduce the memory requirements for very low depth-bounds, the difference in peak memory

required is probably this small because the space freed by pruning during the merge-and-

shrink abstraction process is used to make the resulting abstraction more accurate. The

geometric means of search time and total time are clearly better with standard merge-and-

shrink instead of depth-bound merge-and-shrink with IDA∗ search, which can be explained

by the overhead of constructing a new merge-and-shrink abstraction before every iteration.

A detailed plot showing the comparison of expansions between depth-bound and standard

merge-and-shrink can be seen in Figure 4.1. For the majority of problems the number of

expanded nodes is very similar between IDA∗ with standard and depth-bound merge-and-

shrink. This becomes especially clear for problems requiring large numbers of expansions

to solve. However, while there are some problems for which IDA∗ with depth-bound merge-

• Depth-bound heuristics have lower coverage

• Depth-bound heuristics are slower

• Depth-bound M&S requires fewer expansions

Results

Evaluation 17

and-shrink expanded more search nodes than IDA∗ with standard merge-and-shrink, for

many problems that require few expansions to solve, the opposite is the case. What this

shows is that depth-bound merge-and-shrink is only more informative for problems that do

not require many expansions to solve. This is most probably the case because depth-bound

merge-and-shrink construction only increases the accuracy of the resulting heuristic if states

in the abstract state spaces are pruned. For larger problems, where no more states can be

pruned from the depth-bound merge-and-shrink heuristic during construction, the resultant

heuristic will be identical to an unbound merge-and-shrink heuristic and therefore expand

the same number of states.

10−1 101 103 105 107 109
10−1

101

103

105

107

109

109

109

IDA* ms

ID
A
*
d
b
m
s

Figure 4.1: Comparison of expansions for IDA∗ search with standard against depth-bound
merge-and-shrink

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

IDA* ms

ID
A
*
d
b
m
s

Figure 4.2: Comparison of total time for IDA∗ search with standard against depth-bound
merge-and-shrink

A plot comparing the total time for depth-bound against standard merge-and-shrink with

IDA∗ search can be seen in Figure 4.2. As expected, the total time taken for most problems

is larger for IDA∗ with depth-bound merge-and-shrink than for IDA∗ with standard merge-

Expansions

Results
Expansions

Evaluation 19

the geometric mean of expansions for the equivalent depth-bound heuristic with IDBFA∗

search. This is expected, because expansions for iterative-deepening algorithms includes

the expansions during all iterations. IDBFA∗ with depth-bound merge-and-shrink becomes

an unbound A∗ search once no more states are pruned during construction of the merge-

and-shrink abstraction, while IDBFA∗ with depth-bound landmark cut continues to iterate.

Because of this, the relative difference in geometric mean of expansions of IDBFA∗ to A∗

with the equivalent unbound heuristic is greater for landmark cut than for merge-and-shrink.

Furthermore, Figure 4.3 shows that the number of expansions for most tasks is greater for

IDBFA∗ with depth-bound merge-and-shrink than A∗ with merge-and-shrink. However,

there are some tasks that require relatively low numbers of expansions with IDBFA∗, where

IDBFA∗ requires fewer expansions than A∗ despite the expansions overhead due to iterative-

deepening. This is a similar result as can be observed for IDA∗ with standard and depth-

bound merge-and-shrink and is most likely due to the increased accuracy of depth-bound

merge-and-shrink for relatively easy problems. The peak memory usage of IDBFA∗ search

with depth-bound heuristics is slightly lower than that of A∗ search with the equivalent

unbound heuristic, however not significantly. The search time and total time results for

IDBFA∗ and A∗ show a trend similar to the results for expansions.

10−1 101 103 105 107 109
10−1

101

103

105

107

109

109

109

A* ms

ID
B
F
A
*
d
b
m
s

Figure 4.3: Comparison of expansions for A∗ search with standard merge-and-shrink
against IDBFA∗ search with depth-bound merge-and-shrink

4.4 IDBFHS
The results for the experiments of IDBFHS in comparison to A∗ on problems from six

unit-cost and undirected graph domains can be seen in Table 4.5.

Most of the results displayed in Table 4.5 are very similar to the results observed for IDBFA∗.

IDBFHS does not have as high a coverage as A∗, expands more search nodes in the geometric

mean due to iterations and solution reconstruction steps and takes longer both in search

time and total time. What is surprising, is that IDBFHS has a higher peak memory than

A∗. Since IDBFHS is designed to use as little memory as possible during a search, this is

Results

• IDBFHS completed fewer tasks than A*

• IDBFHS had higher peak memory

Evaluation 20

A∗ IDBFHS
Merge-and-Shrink Landmark Cut Merge-and-Shrink Landmark Cut

Coverage 88 82 75 80
Expansions 2184.86 2020.73 23929.42 11388.37
Memory 6320500 1032548 9927308 1518924
Search time 0.14 0.50 4.39 1.79
Total time 1.30 0.52 4.43 1.81

Table 4.5: Experiment results of A∗ with merge-and-shrink and landmark cut heuristics
and IDBFHS with depth-bound merge-and-shrink and landmark cut heuristics for
problems from six unit-cost and undirected graph domains.

Number A∗ IDBFHS
Domain of tasks Merge-and-Shrink Landmark Cut Merge-and-Shrink Landmark Cut

Blocks 24 1.95 0.13 8.46 0.30
Depot 6 10.45 3.84 59.51 10.09
Driverlog 12 1.50 0.31 4.16 1.09
Gripper 6 0.02 0.68 0.43 2.31
Logistics00 20 1.02 0.48 1.80 1.61
Logistics98 5 6.39 0.37 4.62 2.86

Total 73 1.30 0.52 4.43 1.81

Table 4.6: Total time results of A∗ with merge-and-shrink and landmark cut heuristics and
IDBFHS with depth-bound merge-and-shrink and landmark cut heuristics by domain.

rather unfortunate and probably means that, due to the involved implementation of closed

lists in Fast Downward, search node information is not correctly removed from memory in

our implementation.

A more detailed summary of total time by domain for IDFHS and A∗ search can be seen in

Table 4.6. Most domains show a clear advantage of A∗ search over BFHS. Curiously, there is

one domain where this is not the case. For the planning domain Logistics98 IDBFHS with

depth-bound merge-and-shrink achieves a lower total time than A∗ search with standard

merge-and-shrink. Since only five tasks in this domain were solved by all four algorithm

configurations this could simply be an outlier, but if it is not, this could show that the

combination of IDBFHS with depth-bound merge-and-shrink can find solutions faster than

A∗ search with merge-and-shrink for some domains.

4.5 Discussion
The experiments have shown that depth-bound heuristics tend to take longer during searches

than their unbound equivalents. This is particularly apparent for depth-bound merge-and-

shrink, where most of the time during a run is spent on generating new merge-and-shrink

heuristics, as can be seen from the comparison of real search time to search time. The

experiments also show that iterative-deepening searches with depth-bound merge-and-shrink

can reduce the number of expansions necessary to find a solution. This observation can be

attributed to the increased accuracy of depth-bound merge-and-shrink for problems where

states are still pruned from the abstract state space due to the depth-bound during heuristic

construction in the final iteration.

A* and IDBFHS

Conclusion

• Depth-bound LM-cut not enough time gain

• Depth-bound M&S slower because of construction

• Depth-bound M&S more accurate for easy tasks

Future Work

• Algorithm determines task complexity:

• Simple: use depth-bound M&S

• Complex: use unbound M&S

• Increase M&S depth-bound in greater steps

Thank you for your attention!

Results
Evaluation 15

A* IDA* IDBFA*
ms lmcut ms lmcut dbms dblmcut dbms dblmcut

Coverage 745 882 725 848 721 833 728 840
Expansions 1822.21 1301.20 3939.90 3088.52 2587.65 3113.72 2389.86 3079.64
Memory 63368336 21006000 53595072 9802372 52926128 9409960 60730232 20403740
Search time 0.13 0.60 0.22 1.12 4.46 1.28 4.76 1.33
Total time 2.01 0.65 2.68 1.22 4.53 1.40 5.07 1.45

Table 4.2: Summary of experiment results.

The summary values for coverage and memory are calculated as the sum of the problem-

wise results, while the values for expansions, search time and total time are calculated

as the geometric mean over commonly solved tasks. Coverage is defined as the number of

problems solved by an algorithm, where a problem is solved if a plan is found within the time

and memory constraints. Expansions is the number of search nodes expanded during the

search. For iterative-deepening search algorithms, this includes the number of expansions

of all iterations, not only the final one. For IDBFHS this also includes the number of nodes

expanded during the solution reconstruction searches. The value for memory is the peak

memory allocated during the search. Search time is the time in seconds required to solve the

problem after the initial heuristic generation but including the construction time of depth-

bound heuristics, whereas total time is the time in seconds required for the entire run. The

summary in Table 4.2 shows the results for the entire benchmark set, which is why results

for IDBFHS are not shown.

The results show, that algorithm configurations using a landmark cut heuristic generally

show better results than those using a merge-and-shrink heuristic. This was expected,

since, as has been shown by other authors in previous work, landmark cut provides more

accurate heuristic results and requires less total time for most problems. Peak memory usage

also shows an expected advantage of landmark cut over merge-and-shrink, since merge-

and-shrink stores an abstract state space representation while landmark cut does not. In

search time, standard merge-and-shrink has a great advantage over landmark cut, since all

heuristic values for merge-and-shrink are stored in the abstract state space representation,

while landmark cut needs to calculate heuristic values during the search. The total time

taken by landmark cut configurations is much lower than for merge-and-shrink searches,

because landmark cut does not take as long to initialize. Unsurprisingly, the measured search

time for depth-bound merge-and-shrink configurations is much larger than of the unbound

equivalent, since the search time measured includes the time taken during the search to

construct new depth-bound merge-and-shrink heuristics. Of the individual algorithms, A∗

search performed the best, which was also expected since A∗ search has been shown to find

a solution faster than IDA∗ search in most cases and since it is not an iterative-deepening

search, it expands far fewer search nodes during a search. As can be seen well from the

coverage of the different configurations, IDBFA∗ search performed better than IDA∗ search

when comparing only depth-bound heuristic configurations. This is most likely the case

because A∗ search, even with the overhead of iterative deepening searches performs better

than IDA∗ search in the final iteration, since the expansion order of A∗ search in the last

f -layer can be controlled with a tie-breaking strategy, while IDA∗ search must expand nodes

in the order of the tree search.

Summary

Results

Evaluation 17

and-shrink expanded more search nodes than IDA∗ with standard merge-and-shrink, for

many problems that require few expansions to solve, the opposite is the case. What this

shows is that depth-bound merge-and-shrink is only more informative for problems that do

not require many expansions to solve. This is most probably the case because depth-bound

merge-and-shrink construction only increases the accuracy of the resulting heuristic if states

in the abstract state spaces are pruned. For larger problems, where no more states can be

pruned from the depth-bound merge-and-shrink heuristic during construction, the resultant

heuristic will be identical to an unbound merge-and-shrink heuristic and therefore expand

the same number of states.

10−1 101 103 105 107 109
10−1

101

103

105

107

109

109

109

IDA* ms

ID
A
*
d
b
m
s

Figure 4.1: Comparison of expansions for IDA∗ search with standard against depth-bound
merge-and-shrink

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

IDA* ms

ID
A
*
d
b
m
s

Figure 4.2: Comparison of total time for IDA∗ search with standard against depth-bound
merge-and-shrink

A plot comparing the total time for depth-bound against standard merge-and-shrink with

IDA∗ search can be seen in Figure 4.2. As expected, the total time taken for most problems

is larger for IDA∗ with depth-bound merge-and-shrink than for IDA∗ with standard merge-

Total Time

