
Evaluation of Regression Search and State
Subsumption in Classical Planning

Andreas Thüring <a.thuering@stud.unibas.ch>
Department of Mathematics and Computer Science
Natural Science Faculty of the University of Basel

31.07.2015

Overview

Classical Planning

SAS+

Progression Search Algorithms

Regression Search

Subsumption Pruning

Subsumption Trie

Discussion of Results

Outlook

Evaluation of Regression Search and State Subsumption in Classical Planning 2 / 31

Classical Planning

Rational actor, acting upon predefined rules

Objective: Find a plan!

Evaluation of Regression Search and State Subsumption in Classical Planning 3 / 31

The SAS+ Formalism

4-tuple P = 〈V , s0, sE ,O〉, where

V is a set of state variables {v1, . . . , vn}
s0 is the initial state

sE is the partial goal state

A partial state has undefined variable assigments s[v] = u for some
v ∈ V

O is a set of operators

each operator o ∈ O is a tuple 〈cond(o), eff (o)〉 of partial states

Operators have a cost: cost(o) ∈ R+

Evaluation of Regression Search and State Subsumption in Classical Planning 4 / 31

Applying Operators

Last slide: each operator o ∈ O is a tuple 〈cond(o), eff (o)〉 of
partial states

Operator o is applicable in state s if no variable assignment of s
contradicts a condition of o

Successor state s ′ of application of o in s is identical to s except
for the variables changed by eff (o)

Evaluation of Regression Search and State Subsumption in Classical Planning 5 / 31

Forward Search Algorithms

Forward search algorithms try to find a plan 〈o1, . . . , on〉:
Search node n = 〈s, p, o, g〉
begin with state s0

Iteratively apply applicable operators on successor states

If a search node is generated with state that does not contradict
variable assignments of sE , a plan is found.

Evaluation of Regression Search and State Subsumption in Classical Planning 6 / 31

Regression

Idea:

Begin search with partial state sE

Iteratively apply regressable operators, generating new search
nodes.

If a search node is generated whose state fulfills all variable
assignments of s0, a plan is found

Evaluation of Regression Search and State Subsumption in Classical Planning 7 / 31

Regression: Regressability of Operators

Let P = 〈V , s0, sE ,O〉 be an SAS+ planning problem

An operator o ∈ O is regressable in partial state s, if:

At least one variable assignment of s fulfills an effect of o
No variable assignment of s directly contradicts any effect of o
No variable assignment of s directly contradicts any condition of o
which is not defined in an effect.

The predecessor of s under the regression application of o is
identical to s, except:

All variables which are defined in an effect but not in a condition of o
are set to undefined
All variables which are defined in a condition are assigned this value.

Evaluation of Regression Search and State Subsumption in Classical Planning 8 / 31

Subsumption

Motivation: Pruning

Partial state s subsumes s ′ (s v s ′) if s[v] = s ′[v] or s[v] = u for
all v ∈ V

If s v s ′, the set of regressable operators of s ′ is a subset of the set
of regressable operators of s: Prune s ′!

Optimal Planning: Consider path costs!

Evaluation of Regression Search and State Subsumption in Classical Planning 9 / 31

Implementation of Subsumption Pruning

Simple implementation based on existing closed list is highly
inefficient!

Use additional data structure for more efficient subsumption check

Evaluation of Regression Search and State Subsumption in Classical Planning 10 / 31

Subsumption Trie

Idea: Save search nodes in a trie data structure

Lookup given state s retrieves all search nodes which subsume s.

Evaluation of Regression Search and State Subsumption in Classical Planning 11 / 31

Insertion of Search Nodes into the Trie (1)

Insert search node n1 = 〈{0, 0, 1}, p1, o1, g1〉

n1

0

0

1

Evaluation of Regression Search and State Subsumption in Classical Planning 12 / 31

Insertion of Search Nodes into the Trie (2)

Insert search node n2 = 〈{1, u, 1}, p2, o2, g2〉

n1

0

0

1

Evaluation of Regression Search and State Subsumption in Classical Planning 13 / 31

Insertion of Search Nodes into the Trie (2)

Insert search node n2 = 〈{1, u, 1}, p2, o2, g2〉 (after insertion)

n1 n2

0

0

1

1

u

1

Evaluation of Regression Search and State Subsumption in Classical Planning 14 / 31

Insertion of Search Nodes into the Trie (3)

Insert search node n3 = 〈{1, 0, 1}, p3, o3, g3〉

n1 n2

0

0

1

1

u

1

Evaluation of Regression Search and State Subsumption in Classical Planning 15 / 31

Insertion of Search Nodes into the Trie (3)

Insert search node n3 = 〈{1, 0, 1}, p3, o3, g3〉 (after insertion)

n1 n2 n3

0

0

1

1

u

1

0

1

Evaluation of Regression Search and State Subsumption in Classical Planning 16 / 31

Insertion of Search Nodes into the Trie (4)

Insert search node n4 = 〈{1, 1, 0}, p4, o4, g4〉

n1 n2 n3

0

0

1

1

u

1

0

1

Evaluation of Regression Search and State Subsumption in Classical Planning 17 / 31

Insertion of Search Nodes into the Trie (4)

Insert search node n4 = 〈{1, 1, 0}, p4, o4, g4〉 (after insertion)

n1 n2 n3 n4

0

0

1

1

u

1

0

1

1

0

Evaluation of Regression Search and State Subsumption in Classical Planning 18 / 31

Lookup in the Subsumption Trie

Given search node n = 〈s, p, o, g〉:
Start in the root node

Follow all encountered edges:

which have the same label as the corresponding variable assigment of s
which have the label u

If a leaf node is reached, a subsuming state was found

Evaluation of Regression Search and State Subsumption in Classical Planning 19 / 31

Lookup of a Search Node in the Subsumption Trie (1)

Example: Lookup search node n = 〈{1, 1, 1}, p, o, g〉:

n1 n2 n3 n4

0

0

1

1

u

1

0

1

1

0

Evaluation of Regression Search and State Subsumption in Classical Planning 20 / 31

Lookup of a Search Node in the Subsumption Trie (2)

Example: Lookup search node n = 〈{1, 1, 1}, p, o, g〉:

n1 n2 n3 n4

0

0

1

1

u

1

0

1

1

0

Evaluation of Regression Search and State Subsumption in Classical Planning 21 / 31

Lookup of a Search Node in the Subsumption Trie (3)

Example: Lookup search node n = 〈{1, 1, 1}, p, o, g〉:

n1 n2 n3 n4

0

0

1

1

u

1

0

1

1

0

Evaluation of Regression Search and State Subsumption in Classical Planning 22 / 31

Lookup of a Search Node in the Subsumption Trie (4)

Example: Lookup search node n = 〈{1, 1, 1}, p, o, g〉:

n1 n2 n3 n4

0

0

1

1

u

1

0

1

1

0

n2 v n

Evaluation of Regression Search and State Subsumption in Classical Planning 23 / 31

Results: Overview

Implementation of

regr a basic regression search algorithm
regrs a regression search algorithm with simple

subsumption pruning
regrT a regression search algorithm with subsumption

pruning using a subsumption trie
UCF Uniform cost search implementation provided by Fast

Downward

in the planning System Fast Downward

Evaluation on grid using suite optimal with ipc11

Evaluation of Regression Search and State Subsumption in Classical Planning 24 / 31

Results: Overview

summary UCF regr regrs regrT

Coverage1 521 296 195 297
Expansions2 1216.81 14242.41 4418.32 4418.32
Search time2 0.02 0.38 3.46 0.30

1Sum across all domains
2geometric mean across all domains

Evaluation of Regression Search and State Subsumption in Classical Planning 25 / 31

Results: The Good

Domain Algorithm Expansions1 search time1

floortile-opt-11 UCF 13272509 65.13
regr 100029 1.55
regrs 59579 147.89
regrT 59579 2.00

miconic UCF 2350 0.04
regr 1002 0.05
regrs 1002 0.22
regrT 1002 0.05

rovers UCF 1055 0.01
regr 589 0.01
regrs 341 0.01
regrT 341 0.01

1geometric mean for that domain

Evaluation of Regression Search and State Subsumption in Classical Planning 26 / 31

Results: The Bad

Domain Algorithm Expansions1 search time1

parcprinter-opt11-strips UCF 2956 0.03
regr 44968 0.40
regrs 21955 28.21
regrT 21955 1.97

trucks-strips UCF 11764 0.02
regr 97303 2.41
regrs 16129 10.68
regrT 16129 0.56

blocks UCF 188 0.01
regr 14895 0.12
regrs 6739 2.39
regrT 6739 0.15

1geometric mean for that domain

Evaluation of Regression Search and State Subsumption in Classical Planning 27 / 31

Results: The Ugly

Domain Algorithm Expansions1 search time1

sokoban-opt11-strips UCF 649 0.01
regr 5840751 222.91
regrs 1182 1.29
regrT 1182 4.99

pegsol-opt11-strips UCF 252 0.01
regr 19105 0.74
regrs 19105 743.96
regrT 19105 1.38

1geometric mean for that domain

Evaluation of Regression Search and State Subsumption in Classical Planning 28 / 31

Results: Conclusion

Regression generally expands more states than uniform cost search,
though domain dependent

Simple subsumption is highly inefficient!

Subsumption trie comparable performance with no subsumption
pruning

In some domains the smallest number of expanded states of all
evaluated algorithms

Evaluation of Regression Search and State Subsumption in Classical Planning 29 / 31

Outlook

Further improvement of efficient subsumption check algorithms

Integrating and evaluating efficient subsumption checks for other
(bidirectional, heuristic, . . .) search algorithms

Evaluation of Regression Search and State Subsumption in Classical Planning 30 / 31

Questions?

a.thuering@stud.unibas.ch

