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Abstract

Increasing Cost Tree Search is a promising approach to multi-agent pathfinding problems,

but like all approaches it has to deal with a huge number of possible joint paths, growing

exponentially with the number of agents. We explore the possibility of reducing this by

introducing a value abstraction to the Multi-valued Decision Diagrams used to represent

sets of joint paths. To that end we introduce a heat map to heuristically judge how collision-

prone agent positions are and present how to use and possible refine abstract positions in

order to still find valid paths.
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1
Introduction

In AI, many problems can be described as finding a path through a graph. Multi-Agent

Pathfinding is the task of finding such a path for not just one agent, but multiple agents

each with their own initial and goal positions traversing the graph concurrently. This intro-

duces the additional constraint of avoiding conflicts between agents, such as occupying the

same vertex or traversing the same edge at the same time, though there can be any number

of criteria for which actions are considered conflicting in certain contexts. And since the

number of possible joint paths grows exponentially with the number of agents involved, this

problem can be very hard to solve.

The Increasing Cost Tree Search[1, 2] is an algorithm that guarantees optimal solutions to

Multi-Agent Pathfinding problems by essentially subdividing the space of joint paths and

searching through the subsets in ascending order of optimality. In doing that it has to

handle representations of sets of paths that can be very large. In this work we explore the

possibility of applying value abstraction to these representations to reduce their size and

improve performance.

In Chapter 2 we go into detail on how ICTS works without any abstractions, and how Multi-

valued Decision Diagrams are used to encode sets of paths. This includes the Independence

Detection framework which, while not strictly a part of ICTS, is an essential part of an

implementation with good performance. Chapter 3 will describe how we build MDDs and

the methods of abstraction for them we explore in this work. In Chapter 4 we will see an

empirical evaluation of an implementation with these methods and Chapter 5 will conclude

and discuss the findings.

Related Work
ICTS was introduced by Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner in

2011[1]. Later that year they introduced pruning techniques[3] which aim reduce the number

of possible joint paths by first testing if they work in smaller subgroups and otherwise

discarding them for the full problem.
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The Independence Detection framework[4] was introduced shortly before in conjunction

with A*-based approaches. It is a general framework for MAPF solvers in which agents are

subdivided into groups which can be planned for in isolation without conflicting with the

other groups.

For a different approach to Optimal Multi-Agent Pathfinding by many of the same authors

as ICTS see Conflict Based Search[5]. Unlike ICTS, CBS never plans for groups of multiple

agents at once. Instead it plans each agent individually, and, if the resulting joint path has

conflicts, replans individual agents with additional constraints to avoid the conflicts as they

come up.



2
Background

In this chapter, we define the Multi-Agent Path Finding problem as well as the variant of

Multi-valued Decision Diagrams we use to encode sets of paths. Furthermore, we describe

the Increasing Cost Tree Search and the Independence Detection Framework.

2.1 Muti-Agent Path Finding
Definition 2.1.1. (MAPF Problem Instance). An Instance of the Multi-Agent Path Find-

ing problem is a tuple I = �(V,E), A, start, goal, conflicts�, where

• (V,E) is a directed graph with a set of vertices V and a set of edges E ⊆ {(u, v) |u, v ∈
V }. The graph includes self loops for all vertives ∀v ∈ V : (v, v) ∈ E.

• A is a finite set of agents.

• start : A → V and goal : A → V are injective functions which assign each agent a start

and goal position.

• conflicts ⊆ {{e1, e2} | e1, e2 ∈ E} is the subset of unordered edge pairs that are con-

sidered conflicting.

The agents are traversing the graph concurrently. At any given time step t each agent a ∈ A

is positioned at one respective vertex vt ∈ V . Between time steps all agents travel along

an edge of the graph to their next position vt+1 such that (vt, vt+1) ∈ E. Since we demand

that the graph has self loops for every vertex, waiting in the current position is always a

possible move. Once an agent has reached its final position and does not move again, it is

considered resting.

A path π of length n for a single agent ai is a sequence of n+1 vertices π = (v0, v1, . . . , vn)

where start(ai) = v0 and goal(ai) = vn and all consecutive vertices (vt, vt+1) have a transi-

tion in E. Furthermore we demand that vn−1 �= vn meaning that the last transition of the

path is not a self loop. We define π(t) to denote the vertex vt of the path if t ≤ n or the final

resting position vn of the path if t > n. That means that for the length of a path we only
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consider transitions until the final position is reached, but we expect π(t) to give the position

of the agent traversing the path even after it has come to rest. This is important to en-

sure that even resting agents are taken into account when avoiding collisions between agents.

We define two paths π1,π2 to be conflicting if ∃t : {(π1(t),π1(t + 1)), (π2(t),π2(t + 1))} ∈
conflicts. That means two paths are conflicting if at any point in time two conflicting

transitions occur simultaneously. A tuple of paths is considered conflict-free if no pair of

paths in it is conflicting.

For k agents a1, a2, . . . , ak, a solution to an instance of the MAPF problem is a conflict-free

k-tuple Π = �π1, . . . ,πk� of paths for all agents.

While the methods used support a directed Graph, in this thesis we only use undirected

graphs, meaning (u, v) ∈ E ⇔ (v, u) ∈ E. Specifically, we work with both 4-connected

and 8-connected grids whose conflict cases are illustrated in Figure 2.1. In any scenario

∀(u, v), (u�, v) ∈ E : {(u, v), (u�, v)} ∈ conflicts, meaning that transitions, which place agents

on the same position, are always conflicting. For 4-connected grids the only other type of

transitions we treat as conflicting are head-on collisions of agents swapping positions; e.g.

∀(u, v) ∈ E : {(u, v), (v, u)} ∈ conflicts. Conversely, moving an agent to a state that is being

vacated in the same time step is allowed, even in the case of agents following each other in

a cycle. For 8-adjacent grids we additionally consider the possibility that two agents collide

by moving over each other diagonally as visualized in Figure 2.1.

While not necessarily true for all definitions of conflicts, we notice that in our conflict def-

inition {(u, v), (u�, v�)} ∈ conflicts ⇒ (v, v�) ∈ E holds. This means that in order for two

transitions to conflict, they must move their agents on neighbouring positions. It should

be noted that semantically this is the property that the destination positions are at most

one move away from each other, meaning neighbours or themselves. But since we demand

self-loops everywhere the criterion of neighbouring is sufficient. We can make use of that

property to more efficiently implement conflict detection. Specifically, we can use it to

quickly ensure that a set of transitions with destination positions U ⊆ V can not conflict

with another set of transitions with destination positions U � ⊆ V if the neighbours of U do

not intersect U �. Formally speaking this is {n ∈ V | ∃u ∈ U : (u, n) ∈ E} ∩ U � = ∅.

conflict conflict

conflict no conflict

Figure 2.1: Visualisation of which transition pairs are considered conflicting in this thesis.

A solution is considered optimal with respect to a cost function if no solution with a lower

cost exists. This cost function can be split in two parts, path cost : π �→ c ∈ R which assigns
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costs to individual paths and joint cost : Π �→ c ∈ R which assigns costs to joint paths

based on the costs of its individual paths.

In this thesis we only work with a unit cost model for transition costs, which gives a cost

of one for every transitions in the path. Effectively that means that for a path π of length

n, path cost(π) = n. A common alternative is a cost function that only counts transitions

(u, v) with u �= v, effectively making it a free action for an agent to wait in place. Rather

than counting them as zero or one, in theory we could assign costs based on any arbitrary

transition cost function. ICTS is, however, not suited for any cost function in which the

length of a path does not equal its cost.

A very commonly used cost function for joint paths is makespan[6–9]. It defines the cost of a

joint path as the cost of the most expensive path therein. So for a joint path Π = �π1, . . . ,πk�
the cost is joint cost(Π) = max1≤i≤k(path cost(πi)). With our unit cost model, optimising

for makespan effectively means minimising the number of time steps until the entire problem

is solved. The joint path cost function used in this thesis however is the sum-of-costs. In

this cost function we simply sum up the costs of all individual paths as joint cost(Π) =�k
i=1(path cost(πi)). In our unit cost model, optimising for sum-of-costs means minimising

the number of transitions taken across all agents.

While sum-of-costs is most straightforward to use, ICTS can work with makespan as well.

And while we work with unweighted agents in this thesis, ICTS could be adjusted to use a

cost function which assigns weights to the costs incurred by different agents with relative

ease, as elaborate in section 2.2.1.

2.2 Increasing Cost Tree Search
Increasing Cost Tree Search (ICTS) is an optimal multi-agent path finding algorithm for

unit-cost cost functions first published in 2011[1, 2]. The general idea in ICTS is to divide

the space of potential MAPF solutions (joint paths) into subsets defined by how much cost

each individual agent incurs in them. We can then explore the joint path space subset by

subset.

Whatever cost function we use in our joint pathfinding problem, be it makespan or a sum-

of-cost model, will be solely determined by the costs of the paths that the agents take. Thus,

all joint paths contained in a subset have the same cost. A joint path that does not include

any conflicts would be a valid solution.

2.2.1 High-Level Search
In order to ensure optimality we must explore these subsets in monotonically ascending

order of cost. In other words, when we search through a subset and end up finding a valid

solution in it, we want to be sure that no valid solution with a lower cost exists. This process

of systematically searching through subsets of joint paths until a valid solution is found is



Background 6

called the high-level search of the algorithm.

�2, 5, 6�

�3, 5, 6� �2, 6, 6� �2, 5, 7�

�4, 5, 6� �3, 6, 6� �3, 5, 7� �2, 7, 6� �2, 6, 7� �2, 5, 8�

Figure 2.2: Compact representation of an example high-level search tree in which equivalent
nodes of the tree are displayed as a single node with multiple parents

In practice this high-level search takes the form of traversing a search tree where each subset

is a node. The nodes are identified by a vector of individual agent costs �c1, . . . , ck� and

represents the set of all joint paths in which every agent ai reaches the goal in exactly ci

time steps. The children of a node are all nodes which allot exactly one unit cost more for

exactly one of their agents. As many different nodes will produce equivalent child nodes,

duplicate detection is a necessity in any efficient implementation. For simplicity we consider

two nodes with the same cost vector to be identical. This means such a node can have mul-

tiple parent nodes, which technically makes the search tree just an acyclic directed graph.

We will however continue to call it a search tree in deference to the underlying tree structure

and the original authors’ decision to name it such.

For a unit cost sum-of-cost cost function with unweighted agents, as we use it, this tree

is simply traversed in breadth-first order. In order to optimise for makespan or weighted

agents instead we have to explicitly explore the nodes in order of least cost. For that we

can simply add the children of each newly explored node to a priority queue sorting by cost

and pull the next node to be explored from that queue.

A good starting point to use as the root is the node where all agents incur exactly as much

cost as they would in their respective single-agent pathfinding problem. We can be certain

that there exists no solution to the joint problem in which an agent takes a shorter path than

this, because that shorter path would then have been a better solution to the single-agent

pathfinding problem. A node is considered a goal node if its subset of joint paths contains at

least one joint path without any conflicts, which is then a solution to the problem instance.

In Figure 2.2 we have an example of a high-level search tree for three agents whose respective

optimal cost for single-agent pathfinding is 2, 5 and 6 for a sum of 13. In order to be able to

reach the goal concurrently without conflict we need to at least incur two additional points
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for a sum of 15. Specifically, giving both point to the third agent yields a valid solution

which is then also optimal with respect to the sum-of-costs.

2.2.2 Low-Level Search
The process of searching through the subset of a high-level node and trying to find a valid

solution in it is called the low-level search of the algorithm. The low-level search, in the

original implementation by Sharon et al.[2] as in the one made for this thesis, is done using

a variant of Multi-valued Decision Diagrams (MDDs). MDDs were originally used to encode

logical formulas [10], as an extension of the Reduced Ordered Binary Decision Diagrams[11],

but for this thesis we simply use its convenient graph structure to encode our sets of paths.

Since in this thesis we focus exclusively on unit-cost models we will from this point on con-

sider the cost and length of a path to be the same; the number of time steps it takes until

the agent comes to rest at the goal.

These MDDs encode every possible way for a specific agent to reach its goal node with a

path of a specific cost (without paying attention to any other agents). This cost has to be

met exactly, which means that reaching the destination too soon is just as disqualifying as

reaching it too late. As stated in Definition 2.1.1 we assert that a path does not end in a

self loop. So it is important to note that waiting in the goal position at the end of the path

does not count towards reaching the specified cost.

Definition 2.2.1. (MDD). A Multi-valued Decision Diagram as used here is a tuple M =

�(V,E), P, position, layer, depth, root�, where

• (V,E) is a directed acyclic graph with vertices V and edges E ⊆ {(u, v) | u, v ∈
V ; layer(v) = layer(u) + 1}.

• P is a set of positions.

• position : V → L is a function assigning each vertex a position unique for its layer,

with the property that for u �= v, layer(v) = layer(u) ⇒ position(v) �= position(u).

• layer : V → {i ∈ N | 0 ≤ i ≤ depth} is a function assigning each vertex a layer.

• depth ∈ N, the number of steps the deepest vertex is away from the root and therefore

�v ∈ V such that layer(v) > depth.

• root ∈ V is the root node, with the property that layer(v) = 0 ⇔ v = root.

When we have a MAPF instance I = �(V,E), A, start, goal, conflicts� for which we wish to

encode all the paths an agent a can take with costs c, we build a Multi-valued Decision

Diagram M = �(V �, E�), V, position, layer, c, root�.
The positions assigned to the nodes V � of the MDD are the vertices of the graph V in the

MAPF instance, and position(root) = start(a).

The MDD nodes of each layer t represent all positions that the agent can occupy at time

step t when it is on any path from start(a) to goal(a) of length c. The transitions to and



Background 8

from such an MDD node mark all the MAPF vertices from which the agent can come and

to which it can go while staying on a path with the required cost. Therefore a transition

(u�, v�) ∈ E� in the MDD requires a transition (position(u), position(v)) ∈ E.

In effect that means that a path π = (v0, v1, . . . , vc), vi ∈ V with start(a) = v0 and

goal(a) = vc exists if and only if a respective path (v�0, v
�
1, . . . , v

�
c), v�i ∈ V � exists such

that ∀v�i : position(v�i) = vi.

A B

C D

A

AB C

B C

D

Layer 0

Layer 1

Layer 2

Layer 3

Figure 2.3: MDD (right) of how to get from tile A to tile D in a 2x2 grid (left) in exactly 3
time steps.

An example is given in Figure 2.3 where an agent on a 2x2 map with 4-adjacency tries to

reach a diagonal tile in exactly 3 time steps. The tth layer of that MDD contains all tiles

that the agent can be in after t time steps have elapsed while following a path that ends at

the goal at t = 3. For the 0th layer that is only the starting tile and for the 3rd layer that is

only the goal tile. Every way to traverse this MDD from top to bottom is a valid path from

A to D with cost 3 and conversely every valid path from A to D with cost 3 corresponds to

a path through this MDD.

The precise methods we used to construct MDDs to such specifications are elaborated in

Section 3.1.

2.2.2.1 Using MDDs

The MDDs only include valid paths and all valid paths are included. However, if two agents

try to reach their goals concurrently they might collide, effectively eliminating possible paths.

So we define a joint MDD to encode all possible ways for k agents to reach their respective

goals with their respective costs without any conflicts between them.

If there were no conflicts between two agents the layers of their joint MDD would be the

Cartesian product of the respective layer of the individual MDDs with connections between
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joint nodes when there was a connection between the nodes of all the respective single agent

MDDs. See Figure 2.4.

A1 A2

A3 A4

×
B1

B2 B3

=

�A1,B1� �A2,B1�

�A3,B2� �A3,B3� �A4,B2� �A4,B3�

Figure 2.4: Two adjacent layers taken from an example joint MDD with 2 agents (right)
and the MDDs of its agents (left) assuming there are no conflicts between the agents.

By taking into account conflicts between agents we eliminate transitions in the joint MDD.

Specifically, every joint transition �u, u�� → �v, v�� requires not only that the transitions

u → v and u� → v� are possible on their own ((u, v), (u�, v�) ∈ E) but also that they do not

conflict ({(u, v), (u�, v�)} �∈ conflicts). Regarding the example in Figure 2.4, if we assume

that the transition B1 → B2 conflicts with both A1 → A3 and A1 → A4 we get a sparser

MDD as seen in Figure 2.5.

Note that by dropping these transitions the node �A3,B2� becomes unreachable and dis-

appears from the joint MDD entirely while �A4,B2� remains reachable through a different

transition.

Removing transitions can sever the goal completely from the start. In this case the joint

MDD encodes no joint paths which means there is no valid joint paths, in which the in-

dividual paths have the exact costs specified in the MDD. This very succinctly answers

the question asked in the low-level search of whether or not a valid path for a cost vector

�c1, . . . , ck� exists. A solution exists if and only if the goal node is reachable in the respective

joint MDD.

Joining more than two MDDs works analogously. A set of transitions is conflicting if any

pair of conflicts therein is conflicting.

�A1,B1� �A2,B1�

�A3,B2� �A3,B3� �A4,B2� �A4,B3�
→

�A1,B1� �A2,B1�

�A3,B3� �A4,B2� �A4,B3�

Figure 2.5: By assuming the transition B1 → B2 conflicts with both A1 → A3 and A1 → A4

we lose two transitions in the joint MDD and drop a node in the process.

While it would not be hard to build such a joint MDD explicitly in memory, their size grows

exponentially in the number of agents and may become prohibitively large. Sharon et al.[2]

therefore decided to employ state-space search methods to search through this space of joint

MDD nodes by going from successor to successor.

Every node of the joint MDD search space consists of a tuple of nodes from the individual

MDDs, one from each respective MDD and all from the same layer. We can therefore think
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of the nodes of our joint MDD search space as tuple of pointers to nodes of the individual

MDDs. So the start node of the search space is the tuple which points to all the start nodes

of the MDDs. The children of a joint node point to all combinations of children of the

individual MDDs in the next layer, except for those removed by conflicts.

The joined MDDs are not necessarily of the same length. Once a shorter MDD has reached

its goal node it can treat that goal as its own child for subsequent time steps, effectively

resting at (and, as far as conflicts are concerned, still occupying) the goal.

We can continue this way, generating children as needed until we reach the joint goal node

(where our joint node points at all the goal nodes of the individual MDDs) or we run out

of children to generate.

Finding a heuristic to guide the search through the joint MDD search space would be difficult,

as the distance from the goal, assuming it is reachable from the current node, is simply the

remaining depth of the diagram. So a heuristic would have to be able to accurately predict

when a conflict will occur.

As long as we have no reason to prefer one solution over the other the best way to traverse

the the search space is a simple depth-first search. In Section 2.3 we will introduce a conflict

avoidance table which gives us a reason to prefer certain solutions, in which case we can use

a best-first search instead.

As long as we work with regular ICTS without abstraction, the goal reconstruction after a

successful search is very easy. During the search we just have to record, for every joint node

we traverse, through which predecessor joint node we first reached it. Once we arrive at the

joint goal node, we simply follow the chain of predecessors back to the beginning, recording

the position of each agent at each time step as we go. These recorded paths then need to

be reversed (since we went from goal to start position) and truncated, meaning that shorter

paths should end when the agent comes to rest. For path reconstruction with abstract nodes

see Section 3.4.

2.3 Independence Detection
The search time of a MAPF task grows exponentially in the number k of agents. Inde-

pendence Detection is a framework that aims to reduce the effective value of k by splitting

agents in independent subgroups. The total search time is then dominated by the largest

subgroup of k� agents (k� ≤ k) While it was first introduced by Trevor Standley in a short

paper[4] about solving MAPF tasks optimally with A* it is a general framework that can

be implemented on top of any MAPF solver while retaining optimality.
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The general idea is that as long as agents in a group do not have conflicts with agents

outside their group, the groups can be solved independently and their solutions just run

concurrently for a joint solution of the whole problem.

Algorithm 1: Independence Detection (by Standley[4])

1 assign each agent to its own group

2 plan a path for each group

3 fill conflict avoidance table with every path

4 repeat

5 simulate execution of all paths until a conflict between two groups G1 and G2

occurs

6 if these two groups have not conflicted before then

7 fill illegal move table with the current paths for G2

8 find another set of paths with the same cost for G1

9 if failed to find such a set then

10 fill illegal move table with the current paths for G1

11 find another set of paths with the same cost for G2

12 end if

13 end if

14 if no alternate set of paths for G1 and G2 was found then

15 merge G1 and G2 into a single group

16 cooperatively plan new group

17 end if

18 update conflict avoidance table with changes made to paths

19 until no conflicts occur

20 solution ← paths of all groups combined

21 return solution

As seen in Algorithm 1 this is achieved by first assuming that no agents have conflicts.

Since in this case they can all take the optimal path they would assume in a single-agent

pathfinding problem, we place them into a singleton group each. If the paths of two groups

can not be executed concurrently without conflicts, we can first see if there is not another

path of equal cost for one of the groups which avoids the conflict. This is not strictly

necessary but it avoids unnecessary merging of groups.

We do this by trying to replan for one of the groups while forbidding any moves that would

put it in conflict with the other. Only if replanning with the same costs while avoiding

collisions with the other group fails for both groups are the two groups merged into one. In

order to avoid endless cycles of a group switching back and forth between paths to avoid

alternating other groups we never do that reconciliation step for a single pair of groups more

than once (line 6). We can furthermore avoid many conflicts in the first place by using a

conflict avoidance table to tell the MAPF solver to prefer solutions which put a group in

conflict with the fewest other groups.
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It depends on the MAPF solver how to make use of the conflict avoidance table. For the

A* search, for which it was originally proposed, this takes the form of breaking ties between

states with equal f value by taking the state which introduces the least new conflicts.

For ICTS we can can switch the low-level search from depth-first to a best-first search that

again looks at states with the least new conflicts first.

It can be said that there are three levels of refinement with the ID framework. The most

basic implementation, if we neglect the optional merge-free conflict resolution in lines 6 to

13 as well as conflict avoidance tables this framework easily fits any solver. In order to

keep unnecessary merging low by checking for paths of equal cost before merging the solver

has to support respecting a set of illegal moves while planning, which should still be very

straightforward in any algorithm. And finally, to further refine the framework by avoiding

many such unnecessary conflicts in the first place, using a conflict avoidance table, the solver

needs to come with an approach custom tailored to the underlying algorithm. In any case

the order in which conflicts are addressed will influence the size of the subgroups. We can

not guarantee that the k� found will be the smallest possible.
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MDDs with Value Abstraction

In joint MDDs as described in Section 2.2.2.1 all valid joint paths are encoded, and all joint

paths which are encoded in them are also valid. This is certainly a nice property but also a

bit excessive. At the end of the algorithm, when a goal is found, we would like to have the

actual joint path associated with it. Up until that point, however, we only need the low-level

search to be able to differentiate two cases: Either no valid joint path exists or at least one

valid joint path exists. The only thing we must guarantee before we allow to high-level

search to continue, in order to retain optimality, is that we do not miss the existence of a

solution in our currently examined subset of possible solutions. Since the low-level search

will only return a found solution exactly once while it may return that no solution was found

a potentially very large number of times, it is best to assume that most high-level nodes are

not goal nodes. After all, if this assumption turns out to be false, the problem instance was

very small anyway.

With that in mind, we could certainly make use of a quick and faulty goal test which will

never return false negatives though it might return false positives. If this goal test returns

positive we can further refine the test until it returns negative or we have a certain posi-

tive. If it returns negative, however, we can cancel the low-level search right there. If our

assumption holds that most high-level nodes are not goals and our faulty goal test does a

decent job of recognizing these early we can see a significant performance increase.

A way to implement such a false negative free goal test in practice would be via abstract

nodes in MDDs. By introducing an over-approximation of some kind, merging together

nodes in the joint MDD, we lose the property that all paths encoded in the MDDs are valid,

though we would retain the property that all valid paths are encoded. So if we are unable to

find a joint path in the abstract joint MDD, there surely is no path. If we do find a path in

the abstract joint MDD we can not yet be sure it is actually valid. Using such an abstraction

could significantly cut into the size of the joint MDD, which is the largest part of the al-

gorithm that scales exponentially with the number of agents and is thus the likely bottleneck.
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As for what nodes of the joint MDD are eligible for joining, merging across layers is not a

viable option because of the importance of keeping to the exact costs demanded. Losing

the certainty of where an agent is is not much of a problem, but losing certainty of when an

agent is loses all coordination with the other agents.

Merging across agents is more reasonable, but still ill advised, because the algorithm makes

heavy use of reusing previous MDDs in new combinations with other MDDs. Every child

node of a node in the high-level search tree differs only for one agent, which means that as

long as merging happens only on the level of single agents, all other MDDs can be reused.

This leaves us with only one good option. We can use value abstraction of the position of

agents by assigning them not just one label, but a disjunction of labels, allowing the agent

to be in any of the positions. Since the joint MDD is formed by a cross product of the

single-agent MDDs, smaller single-agent MDDs translate nicely into a smaller joint MDD.

Halving the number of nodes in one of the single-agent MDDs effectively halves the number

of joint MDD nodes.

We have found that the most effective way to make use of these abstract MDDs during a

low-level search is to refine the abstractions for that specific search as soon we encounter it

during the search, but only if working with it would lead to an unreliable result. That way

we sort of roll both the faulty and the reliable tests into one, using the over-approximations

as long as we can and only refining them if they yield no satisfactory results.

3.1 Building MDDs
The way we use to build MDDs in this thesis is by first building a distance map for the goal

vertex. For every vertex of the graph we calculate the optimal distance from that vertex

to the goal vertex. We do this by assigning cost 0 to the goal vertex itself and exploring

the graph in a breadth-first manner. It is important to note that for a directed graph we

have to use transitions in reverse directions, as we explore paths from the destination to the

start. As we in this thesis use undirected graphs this is no particular concern. In Figure 3.1

building a distance map is demonstrated for the toy example from Figure 2.3.

We do not technically have to fill in the entire graph. In order to build an MDD we only

need to know the optimal goal distances in places where they are smaller than or equal to

the cost of the MDD we want to create. It is, however, easier in practice to just fill a distance

map of the entire graph for the goal vertices of every agent and then reuse the complete

distance maps for every MDD we build throughout the search.

Once we have the distance map we begin building the MDD. The 0th layer of the MDD

just contains a single node for the start vertex of the agent. For every successive layer we

go through the previous layer and expand the nodes present therein. We expand such a

node by taking its vertex and then consider making a child node in the next layer for every

neighbouring vertex it has in the graph. We do, however, only actually include this child if
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0

→
1

1 0

→
2 1

1 0

Figure 3.1: Generating a distance map for the toy example from Figure 2.3

the distance map reports that it is possible to reach the goal vertex from the vertex of that

child in the remaining number of time steps.

So, in our example we generate the 1st layer of the MDD by taking the only node in the 0th

layer, corresponding to vertex A, and looking at all neighbours of A: A, B, and C. Note that

A is its own neighbour because we have self loops everywhere in our graph, representing

wait actions. Since we want a total cost of 3 and we are already making our first move for

1 cost, the neighbours we accept must be able to reach the goal in at most 2 more steps.

According to the distance map in Figure 3.1 this is the case for all three of them, so all three

are made nodes in the 1st layer.

We then build the 2nd layer by expanding the 1st. The B node in the 1st layer has 3

neighbours as well: A, B, and D. But since we are already 2 steps in, we must be able to

reach the goal in just 1 more step from there. Since node A would take 2 steps it is thus

disqualified while B with a goal distance of only 1 is made a child node. A special case is,

however, encountered for D. Its goal distance of 0 is below 1, which would normally qualify

it. However, it becomes important that a path ends as soon as the agent comes to rest at

the goal. If we were to go to D in time step 2 we would not have enough time steps left to go

away and come back again (which needs 2 but we only have 1 left). So all we could do then

is to stay in node D which makes the effective cost of reaching the goal 2, not 3. An easy

way to avoid this scenario is to just categorically forbid the goal vertex to be represented in

the second-to-last layer of the MDD.

Then we continue following these expansion rules until we reach the last layer, which will

only contain a single node representing the goal vertex.

3.2 Heat Map
The primary guidance used in this thesis to decide which nodes of an MDD to merge is

the heat map. The general idea is to rate the importance of specific nodes of the traversed

graph for conflict avoidance. Nodes which are on an optimal or near-optimal path for many

agents are likely to be the sites of collisions.

The heat map represents that property by assigning a heat value heat(s) to every node s of

the graph. Every agent ai has its own heat signature heati contributing to to the total heat

value heat(s) =
�

i heati(s) in the heat map. Visualization of a heat signature is given in
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Figure 3.2 with the exact values given in Figure 3.3.

If a graph node is on an optimal path for an agent, the heat signature of that agent assigns

the node a value of 1. For all graph nodes who, failing that, are on a suboptimal path which

is only 1 unit cost more expensive that the optimal one, a heat value of 1
2 is assigned. This

can be broadened further by assigning every graph node for which the best path passing

through it is k unit costs above optimal a heat value of 2−k. For the sake of practicality

only paths 3 unit costs above optimal are considered by our heat map.

An efficient algorithm for calculating a heat signature for an agent can be implemented by

re-using the distance maps calculated for the generation of MDDs as introduced in Sec-

tion 3.1. We call the start node sI and the goal node sG. From the distance map for sG we

get the optimal distance to the goal for every graph node s. In the style of classical planning

we call this optimal goal distance h∗(s). We can then start iterating through the graph in

a breadth-first manner, starting with sI . In doing so we keep track of each nodes distance

from the start, called g(s). Since we are working with unit cost transitions, the first time

any node s is reached, it is reached with optimal cost g(s).

For every new node encountered we calculate the heat value. For that we use that for every

node s on an optimal path from sI to sG the property g(s) + h∗(s) = h∗(sI) holds. More

generally, k = g(s) + h∗(s)− h∗(sI) gives us a measure of the suboptimality of a node s in

the sense that the best path from sI through s to sG is k steps more expensive than the

optimal path from sI to sG. In following our definition from before this gives s a heat value

of 2−k.

Finally, we can define a cut-off point for k, above which we do not consider a graph node

noteworthy. We can avoid exploring the area of the graph with k-values above our threshold

by simply ignoring neighbours with inadequate k-values when we first reach them during

our breadth-first traversal. After all, all nodes most optimally reached through a node with

k-value k1 must have a k-value k2 ≥ k1. Or in other terms, when the shortest path from sI

to sG through a node s takes c steps, adding another detour through a neighbour of s can

not result in a path with less than c steps.

The primary way we make use of the heat map values is to treat all MDD nodes in a layer

representing graph nodes with low heat as a single abstract MDD node, trusting the guidance

of the heat values that this node is comparatively unlikely to be involved in a conflict. Such

a heat threshold should grow with the number of agents, as more agents mean more total

heat.

3.3 Refinement
With the merging of nodes in an MDD comes an over-approximation of the represented

paths. That means in effect that when plotting a path through an MDD that passes through
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Figure 3.2: Visualization for the heat signature of an agent with starting position marked
in green and goal position marked in orange, going around a black obstacle. Exact values
given in Figure 3.3
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Figure 3.3: The exact values of the heat map from Figure 3.2

an abstract node we can not easily be certain whether or not an actual valid path through

the graph corresponds with that sequence of MDD nodes.

In order to determine if, for a given path through an abstract node, there exists a valid path

in the graph, we can refine the node – undo the merging – and see if a path through the

resulting unabstracted nodes can be found.

This can be done by taking the abstract MDD node S = {s1, s2, . . . , sn} and splitting off a

single graph node si represented in the abstract node. We then turn s−I into a new concrete

node, leaving us with two nodes SC = {si} and SA = {s1, . . . , si−1, si+1, . . . , sn}. SA and

SC will each retain a subset of the connections to nodes in the previous and following layer

of the MDD that S originally had. If a path through SC instead of S exists, the refinement

was successful in verifying a valid path exists. Should SC lack the connections needed we
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can try again, splitting of another graph node from SA.

A good criterion for selecting the node si to split off, is the conflict avoidance table of the

Independence Detection framework. By choosing to split off nodes first which can be reached

with fewer conflicts in other groups of the framework we can avoid some unnecessary merg-

ing of groups. This is, however, not as effective as the conflict avoidance we have without

abstractions, and we can expect slightly larger groups to be formed by the independence

Detection. Ties can be broken to prefer nodes with smaller heat map values.

This refinement can be repeated as necessary until only unabstracted nodes remain. If by

that time no concrete node could fill the place of S in the path we found, we can conclude

that the path was a false positive introduced by the over-approximation. Should every path

through the abstracted MDD we can find break apart by refining its abstract nodes there

is in fact no valid path represented in this MDD.

3.3.1 Refinement in Joint MDDs
When searching through the space of joint paths, represented by joint MDDs, we can reduce

the problem to the single-agent MDD variant. A joint MDD node is considered abstract –

and any path through it thus unreliable – as long as it contains at least one abstracted posi-

tion for an agent. Since a joint MDD is really just the combination of multiple single-agent

MDDs being traversed concurrently, with conflict rules pruning some of the connections,

we can describe a joint MDD node S = �S1, S2, . . . , Sk� as a tuple of single-agent MDD

nodes. We can refine a joint MDD node by refining the abstract single-agent nodes con-

tained therein.

This too can be done in steps by iteratively splitting off unabstracted nodes from the ab-

straction. We take one abstract single-agent node Si in the joint node and split it into

SiC and SiA as detailed above. We can then in much the same way split the joint node

S = �S1, . . . , Si, . . . , Sk� into SC = �S1, . . . , SiC , . . . , Sk� and SA = �S1, . . . , SiA , . . . , Sk�,
each having a subset of the connections S had to other joint nodes.

Should a joint node contain multiple abstract single-agent nodes this can be applied multiple

times to get a completely unabstracted joint node.

3.3.2 Avoiding Unnecessary Refinement
If we just refine every abstract node we come across during our search we will have expended

a great deal of computation and gained very little. It is therefore imperative to keep as many

nodes as we can abstracted. Abstract nodes treat certain positions as interchangeable. In

order to keep that over-approximation the positions have to actually be interchangeable for

the purposes of the search.

For one thing, that means that either all transitions to this node are conflicting, or none are.

The case where all transitions conflict is not very useful; detecting and handling it provides

no real advantage over refining the node. The case where no conflicts occur, however, is
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very interesting. It is very common, since even agents that potentially conflict somewhere

will usually spend most of their paths far apart from each other. For this reason we use

a simple heuristic to check if an abstract MDD node in a joint MDD node is too far away

from the other MDD nodes to cause any conflicts.

Specifically, we use the property of the conflict definition we use on our maps as addressed in

Section 2.1: Transitions with destination positions U ⊆ V can not conflict with transitions

with destination positions U � ⊆ V if the neighbours of U do not intersect U �. Formally

speaking this is {n ∈ V | ∃u ∈ U : (u, n) ∈ E} ∩ U � = ∅ implies that ∀(v, u), (v�, u�) with

v, v� ∈ V , u ∈ U and u� ∈ U � the property {(v, u), (v�, u�)} �∈ conflicts holds.

In order for a conflict to be possible, the destination positions must be at most one step

away from each other. For two grid positions with coordinates (x1, y1) and (x2, y2) we can

cheaply test that as |x1−x2|+ |y1−y2| ≤ 1 for 4-adjacency and max(|x1−x2|, |y1−y2|) ≤ 1

for 8-adjacency.

This is, of course, just a heuristic to determine if conflicts are possible, it does not mean

they are guaranteed. This test does, however, strike an excellent balance of great accuracy

while being very cheap to compute.

The other property we need to ensure before using an abstract node without refinement

is, that if we use it to find a path through the MDD, this abstract path will include an

actual path. See Figure 3.4 for a visualization. The ellipses represent MDD nodes while the

numbered squares encode positions. The arrows indicate between which positions actual

transitions exist while the MDD nodes have a transition so long as any tile within them is

reachable from any tile of the predecessor. Note that while in all three cases an abstract

path exists, the left case does not encode an actual path.

Figure 3.4: Three examples of a short abstract path. Note that the left path does not
correspond with any non-abstract path.

We ensure this property be asserting that any abstract node which does not need to be

refined has to have a predecessor position in the predecessor node for every position it

holds. In the example in Figure 3.4 this does not hold for the left case, where the position

3 has no predecessor in the previous node, but it does hold for both the other cases.

This again is just a heuristic. There is no need for every node to be connected as long as at

least one is part of an unbroken chain from start to goal. It is, however, very challenging

to detect if at least one path exists in the entirety. Detecting if a predecessor node has a

predecessor position for each position a node holds, on the other hand, is very easy.
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For every MDD node on an abstract path we can observe the following. If at least one

position in the node has a valid successor in the next node – which is given in any case

since the next node has to have at least one transitions to justify the abstract path – and

every position in the node has a valid predecessor in the previous node, then it is always

possible to traverse the node with an non-abstract path. Specifically, we can always go from

a predecessor position in the previous node to a position in our node, which in turn has a

successor position in the next node.

Having this stricter requirement to ensure the existence of non-abstract paths also makes it

easier to reconstruct a path at the end of the search, as described in Section 3.4.

3.4 Path Reconstruction with Abstract Nodes
When we attempt to reconstruct the path like we did for purely non-abstract nodes as

described in Section 2.2.2.1, we run into the problem that we can now encounter abstract

nodes encoding multiple positions. This makes it ambiguous which position to append to

the path. If we just take an arbitrary one, we could get paths with jumps in them, where

the agent moves between positions not connected by a transition.

But if the assertion holds, that if an abstract node can be used without refinement, every

position it encodes has a predecessor position in the predecessor node, we can make use of

that. We simply start retracing our steps from the joint goal node to the joint start node as

we did before. Now, if we encounter an abstract node we choose one position from it, which

is a predecessor position to the position we chose for the same agent in the last step. Since

the node we now explore is the predecessor node of the node that supplied our previous pick,

we know, thanks to our assertion, that it will always contain such a predecessor position.

This way, we build paths in which each position is guaranteed to be a neighbour of the

previous position. Other than that we proceed exactly as we did without abstract nodes,

recording the position of each agent at each step, reversing the paths at the end to go from

start to goal and truncating paths which ended before the longest path did.

One additional point to consider is how to choose a position from an abstract node if we

have multiple options. An arbitrary one will do and result in a valid path. But if we wish

to incorporate Independence Detection, we should attempt to choose a path least likely to

cause additional conflicts with other groups of the framework. In order to do this we can

consult the conflict avoidance table and choose the position that causes the fewest conflicts

with the paths of other groups. Ties can be broken in favour of taking the position with the

least amount of heat in the heat map.
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Evaluation

For an empirical evaluation of the concepts presented in this thesis we have implemented

an ICTS OMAPF solver with optional value abstraction in C++. The solver was almost

completely written from scratch, with the exception of a class to load scenario files (encod-

ing MAPF problem instances) written by Nathan Sturtevant. This class was made available

along with the benchmarks[12] for certain maps of the game Dragon Age: Origins, which

are used in this thesis.

We test our solver on a variety of grid-based maps. Each instance is solved with varying lev-

els of abstraction: No abstraction, light abstraction, medium abstraction, heavy abstraction

and total abstraction. In addition we vary the mobility of the agents. We test each problem

instance for both the case when agents are allowed to walk diagonally (8-adjacency), and

the case when they are not (4-adjacency).

The levels of abstraction are realized by using different thresholds for the heat map. The

exception to this is when we use no abstraction at all. For that we aim to implement normal

ICTS with Independence Detection as faithfully to the original description as possible. It

therefore does not generate a heat map, which would be unnecessary overhead. The other

levels of abstraction treat positions as interchangeable if their value in the heat map fails to

meet the threshold demanded.

For k agents the thresholds are defined as

• light abstraction: k
10

• medium abstraction: k
5

• heavy abstraction: k
3

• total abstraction: ∞

For comparison keep in mind that a position has a heat of 1 for each agent with an opti-

mal path through it and additional fractions for each agent with near-optimal paths. See

Section 3.2 for details.
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4.1 Test Instances
We try to imitate the tests performed by Sharon et al.[2] for the original solver. The actual

instances were unfortunately not available, so we generated our own test instances based on

their descriptions. The instances can be grouped into three classes as follows.

8x8 grids with varying number of agents
The first set of tests takes place on a very small, unobstructed map of 8 by 8 tiles. For each

problem instance we populate the map with a varying number of agents, ranging from 4 to

16. Each agents in the scenario has a random but unique start and goal position. There are

100 instances each for agent counts of 4, 6, 8, 10, 12, 14, and 16. All instances are solvable.

32x32 grids with varying number of obstacles
The second set of tests takes place on slightly larger map of 32 by 32 tiles. This map comes

in six variants, in which a varying percentage of tiles, ranging from 0 to 25 percent, are

impassable. The obstacles are randomly distributed.

The maps for 5% obstruction and 25% obstruction can be seen in Figure 4.1. Note how

the obstacles in the 5% map are loosely scattered in a way that will require only slight de-

tours from the agents while the 25% map routes agents through numerous small bottlenecks.

For each problem instance we populate the map with 40 agents. Each agents in the scenario

has a random but unique start and goal position. There are 100 instances each for obstacle

percentages of 0, 5, 10, 15, 20, and 25. All instances are solvable.

The solvability is ensured by solving the single-agent pathfinding problem with 4-adjacency

for every agent. If a pathfinding problem is solvable for 4-adjacency it is also solvable for

8-adjacency. Unless the map is designed to deprive agents of any space to manouver around

each other, which is not the case for my maps, this single-agent solvability for all agents

leads to a solvable joint pathfinding problem.

Figure 4.1: The maps used for 5% obstruction (left) and 25% obstruction (right).
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Maps from Dragon Age: Origins
The third set takes place on grid representations of maps from the game Dragon Age:

Origins. For this we do use the same maps as Sharon et al. made available by Nathan

Sturtevant[12] with the permission of the developer BioWare. We do, however, generate our

own problem instances on these maps. As for the other instances, we give agents random

but unique start and goal positions and ensure solvable instances by performing single-agent

pathfinding for all individual agents.

We use three maps, called den520d, ost003d, and brc202d. They can be seen visualized in

Figure 4.2. Sharon et al. chose them for their varied topologies, with a maze-like structure

in brc202d, multiple open sections connected by small passages in ost003d, and a broad,

tube-like structure with multiple branches in den520d.

Figure 4.2: The dragon age maps used, den520d (left), ost003d (middle), and brc202d
(right).

4.2 Results
In this section we will present and discuss the empirical results of the solver, running on the

Slurm Grid of the University of Basel.

4.2.1 8x8 grids with varying number of agents
For 8x8 grids we observe the following average search times in seconds. A table with the

exact values is given in Table 4.1. k is the number of agents. The best values in each

category are printed in bold. Figure 4.3 provides a visualization of the search times by

agent count.

Discussion

The search times for these small but crowded test instances are all over the place. There is

no meaningful distinction in the performance of the different abstraction levels. The wide

spread of the results is most likely due to the fact that Independence Detection will divide the

agents into groups of different sizes depending on what order conflicts are resolved in. That

in turn depends on the exact paths found which is influenced by the levels of abstraction

which represent paths differently.
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k
8-adjacency 4-adjacency

none light med heavy total none light med heavy total

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.04 0.06 0.06 0.04 0.03 0.18 0.18 0.15 0.11 0.10

10 0.23 0.01 0.03 0.91 0.50 0.46 0.45 0.45 1.19 0.64

12 7.27 7.38 7.41 6.68 6.76 3.91 3.49 3.44 1.49 3.70

14 21.30 16.34 22.48 17.66 22.08 21.38 16.88 27.95 15.77 36.76

16 11.16 7.80 14.02 24.71 26.34 15.22 15.28 11.19 19.57 16.72

Table 4.1: Search time for 8x8 grids

4.2.2 32x32 grids with varying number of obstacles
For 32x32 obstructed grids we observe the following average search times in seconds. A table

with the exact values is given in Table 4.2. o is the percentage of tiles which are impassable.

The best values in each category are printed in bold. Figure 4.4 provides a visualization of

the search times by obstruction percentage.

o
8-adjacency 4-adjacency

none light med heavy total none light med heavy total

0 7.17 21.47 23.24 36.46 22.19 1.44 4.63 11.54 2.61 0.82

5 1.76 1.66 18.79 1.68 4.67 1.47 7.70 1.67 4.49 3.95

10 0.62 1.35 9.53 7.91 7.68 1.47 6.60 3.03 4.35 4.35

15 5.53 4.66 29.10 32.62 23.47 12.24 8.20 17.07 37.89 15.06

20 21.99 1.43 7.80 34.46 16.80 61.06 61.35 165.01 101.47 84.37

25 4.02 18.02 6.54 26.00 4.23 10.29 27.92 18.12 15.04 13.89

Table 4.2: Search time for obstructed 32x32 grids

Discussion

The search times still vary quite a bit but we can see a trend of abstractions negatively

impacting performance. This makes sense given that the maps are crowded and full of

bottlenecks, such that the number of positions that are effectively interchangeable is very

limited.

We can see that 4-adjacency not only took noticeably longer for more obstructed maps,

but the times are also much more strongly determined by the map. The longer search

times can be explained by the fact that the random obstacles are much more permeable

with 8-adjacency than 4-adjacency, as diagonally adjacent obstacles do not form a wall for

8-adjacency.

The heavy dependence on the map stems from the fact that all instances with the same

obstruction percentage use the same map, so a difficult map will affect all instances. This

effect is especially strongly pronounced for the map with 20% obstruction. This map in



Evaluation 25

4 6 8 10 12 14 16
Number of Agents

0

5

10

15

20

25

30

Se
ar

ch
 T

im
e 

[s
]

Search Time on 8x8 Grids - 8 Adjacency

no abstraction
light abstraction
medium abstraction
heavy abstraction
total abstraction

4 6 8 10 12 14 16
Number of Agents

0

5

10

15

20

25

30

35

40

Se
ar

ch
 T

im
e 

[s
]

Search Time on 8x8 Grids - 4 Adjacency

no abstraction
light abstraction
medium abstraction
heavy abstraction
total abstraction

Figure 4.3: Average search time on 8x8 grids with 8-adjacency (top) and 4-adjacency
(bottom) by agent count.

particular has many obstacles lining up diagonally in a way that forms a wall in 4-adjacent

grids. The exact map used can be seen in Figure 4.5

4.2.3 Maps from Dragon Age: Origins
For the dragon age maps we observe the following average search times in seconds. A table

with the exact values is given in Table 4.3. k is the number of agents. The best values in
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Figure 4.4: Average search time on obstructed 32x32 grids with 8-adjacency (top) and
4-adjacency (bottom) by obstruction percentage.

each category are printed in bold. Figures 4.6, 4.7 and 4.8 provide a visualization of the

search times by agent count.

Discussion

For the larger, more expansive maps from the game Dragon Age: Origins seen in Figure 4.2

the abstractions finally begin to shine. With the exception of 8-adjacency on ost003d,
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Figure 4.5: The map used for 32x32 grids with 20% obstruction.

heavier abstraction tend to outperform lighter ones, especially for 4-adjacency. This can

be explained by the fact that on these large maps agents spend much larger portions of

their paths not in direct proximity to other agents. In addition, crossing an empty space

diagonally with 4-adjacency allows for huge amounts of possible paths of equal length, which

can be efficiently abstracted. This helps explain why ost003 is very partial to abstractions

for 4-adjacency but not so much for 8-adjacency.

4.3 Summary
In Table 4.4 we have the arithmetic mean of the search times across all test instances. These

averages are heavily dominated by the large problems from the dragon age maps, as they

are where the computation spent most of its time. Due to this fact, in the total average

the heaviest abstractions outperformed the lighter ones by a large margin. It should also

be noted that while we can see a direct correlation of abstraction strength to performance

in all cases where abstraction was used, using no abstraction at all always gives a solid

performance. From the experimental results given in this chapter it seems clear that using

light abstractions is not a good idea in general, but that total abstraction can substantially

speed up search time for suitable problem instances.
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map k
8-adjacency

none light med heavy total

den520d 10 1.11 1.18 1.39 1.42 1.40

den520d 20 40.15 46.08 42.76 25.18 12.49

den520d 30 87.67 100.47 53.86 45.81 19.65

den520d 40 257.27 259.10 187.11 144.07 55.61

den520d 50 200.34 208.29 249.73 152.45 172.89

ost003d 10 0.51 0.54 0.56 0.55 0.53

ost003d 20 3.86 3.63 3.88 6.49 2.90

ost003d 30 13.99 15.61 13.20 27.70 26.42

brc202d 5 0.82 0.89 0.89 0.89 0.89

brc202d 10 3.44 3.59 4.40 3.10 2.31

brc202d 15 3.17 4.20 4.29 4.17 3.94

brc202d 20 4.89 7.09 6.85 7.00 6.22

map k
4-adjacency

none light med heavy total

den520d 10 4.21 4.38 4.66 3.24 3.62

den520d 20 3.95 4.21 3.89 2.78 2.60

den520d 30 4.42 5.19 5.38 6.85 5.63

den520d 40 20.57 20.01 19.00 18.87 19.14

den520d 50 84.20 74.23 55.17 44.89 47.89

ost003d 10 0.85 0.89 0.86 0.97 0.93

ost003d 20 32.03 32.09 27.29 35.10 15.36

ost003d 30 47.57 48.64 43.25 56.55 21.70

brc202d 5 0.56 0.61 0.62 0.67 0.68

brc202d 10 2.74 2.85 3.05 2.99 2.33

brc202d 15 38.82 28.94 23.29 20.84 20.36

brc202d 20 51.21 49.36 40.07 32.97 22.08

Table 4.3: Search time for dragon age maps.

In particular it appears that large maps sparsely populated by agents are well suited for

abstraction while small, crowded maps with many bottlenecks are very ill-suited. And since

possible overhead of even the total abstraction, which requires a lot of refinement steps, is

not all that large, it seems that using value-abstracted MDDs is a solid improvement in

general.

Adjacency none light med heavy total

8-adjacency 27.93 29.23 28.32 24.32 17.60

4-adjacency 16.81 16.96 19.45 17.23 13.71

Table 4.4: Average search time across all instances.
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Figure 4.6: Average search time on Dragon Age: Origins map den520d with 8-adjacency
(top) and 4-adjacency (bottom) by agent count.
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Figure 4.7: Average search time on Dragon Age: Origins map ost003d with 8-adjacency
(top) and 4-adjacency (bottom) by agent count.
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Figure 4.8: Average search time on Dragon Age: Origins map brc202d with 8-adjacency
(top) and 4-adjacency (bottom) by agent count.



5
Conclusion

In this Thesis we introduced value abstraction to the Multi-valued Decision Diagrams used

to encode sets of paths for the low-level search of the Increasing Cost Tree Search algorithm.

We introduced the heat map as a way to heuristically judge how likely a position is to be the

site of a collision by rating how many agents are expected to want to pass through it. We

used this heat map to merge MDD nodes representing positions with a low heat value and

also used it to guide our search by preferring tiles with low heat when given an otherwise

equal choice between positions.

Furthermore, we presented an algorithm to refine abstractions again, allowing us to extract

reliable information from over-approximated representations. Importantly we also gave a

criterion used to determine when abstract nodes are allowed to remain abstract even if they

are used in a path to the goal and how we can still reconstruct the paths then.

We implemented all these concepts in C++ and gathered empirical results on 4-adjacent and

8-adjacent grids with different maps and agent configurations. From these results we can

judge that abstraction can speed up search time by a large margin, especially for expansive

or sparsely populated maps. A total abstraction, where by default all nodes in the same

layer of an MDD are merged into one, seems particularly promising. An implementation

which does not explicitly build non-abstract MDDs but instead starts with total abstraction

and refines as necessary to shape all MDDs seems like a solid improvement, on average, over

using MDDs without any abstraction.

5.1 Future Work
Having worked with and personally implemented ICTS search, we judge that the two most

important factors, for which there is still a lot of room for improvement, are reducing the

number of refinements needed and ensuring smaller groups in Independence Detection.

Reducing the number of refinement steps could take multiple forms. Finding stronger heuris-

tics to judge when a node is safe to leave unrefined is certainly one. We use cheap but pretty

accurate heuristics, but even so we will sill refine some nodes for being too close to another



Conclusion 33

node, even though there was no actual conflict, or for not having a predecessor for every

position even though in the end at least one path through the node would have worked. A

less demanding criterion for position predecessors that does not require one for every posi-

tion would also require a more involved path reconstruction. But since path reconstruction

is only used once per solver call, a fairly expensive one would be easy to justify.

In addition one could try to pick which nodes to refine more effectively. If we could ac-

curately predict which node best to refine into which smaller nodes, to achieve nodes that

need no further refinement and bring us closer to the goal would help tremendously.

As for the Independence Detection, it can be difficult to influence just how agents will be

grouped up. But making effective use of the conflict avoidance table is an easy way to start.

In our implementation we used the table to decide between different positions for both re-

finement (splitting off positions with fewer conflicts first, breaking ties with heat map) and

during path reconstruction (picking positions with fewer conflicts and heat to use for the

path). But this is certainly not the full extend to which the the conflict avoidance table

could be utilized, especially since execution time scales exponentially with the number of

agents in a group. With that in mind we could even justify a rather substantial drop in

performance (for fixed group size) if in exchange it gets us smaller groups.

And finally, one could very well try to use abstraction of things other than the positions. In

Chapter 3 we have given reasons why that might not work too well, but there might well be

ways to make them work.



Bibliography

[1] Sharon, G., Stern, R., Goldenberg, M., and Felner, A. The Increasing Cost Tree Search

for Optimal Multi-agent Pathfinding. In Proceedings of the Twenty-Second Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’11), pages 662–667 (2011).

[2] Sharon, G., Stern, R., Goldenberg, M., and Felner, A. The Increasing Cost Tree Search

for Optimal Multi-agent Pathfinding. Artificial Intelligence, 195:470–495 (2013).

[3] Sharon, G., Stern, R. T., Goldenberg, M., and Felner, A. Pruning Techniques for the

Increasing Cost Tree Search for Optimal Multi-agent Pathfinding. In Proceedings of the

Fourth Annual Symposium on Combinatorial Search (SoCS’11), pages 150–157 (2011).

[4] Standley, T. S. Finding Optimal Solutions to Cooperative Pathfinding Problems.

In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence

(AAAI’10), volume 1, pages 28–29 (2010).

[5] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R. Conflict-based Search for

Optimal Multi-agent Pathfinding. Artificial Intelligence, 219:40–66 (2015).

[6] Rajendran, C. and Ziegler, H. Ant-colony Algorithms for Permutation Flowshop

Scheduling to Minimize Makespan/Total Flowtime of Jobs. European Journal of Oper-

ational Research, 155(2):426–438 (2004).

[7] Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., and Gencyilmaz, G. A Particle Swarm

Optimization Algorithm for Makespan and Total Flowtime Minimization in the Per-

mutation Flowshop Sequencing Problem. European journal of operational research,

177(3):1930–1947 (2007).

[8] Surynek, P. Compact Representations of Cooperative Path-Dinding as SAT based

on Matchings in Bipartite Graphs. In Proceedings of Tools with Artificial Intelligence

(ICTAI), pages 875–882 (2014).

[9] Surynek, P. Makespan Optimal Solving of Cooperative Path-Finding via Reductions

to Propositional Satisfiability. arXiv preprint arXiv:1610.05452 (2016).

[10] Miller, D. M. Multiple-valued Logic Design Tools. In Proceedings of The Twenty-Third

International Symposium on Multiple-Valued Logic, pages 2–11 (1993).

[11] Bryant, R. E. Graph-based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers , 100(8):677–691 (1986).



Bibliography 35

[12] Sturtevant, N. Benchmarks for Grid-Based Pathfinding. Transactions on Computa-

tional Intelligence and AI in Games , 4(2):144 – 148 (2012).


