
Construction of Pattern Database Heuristics using Cost Partitioning

Simon Wang

Department of Informatics & Computational Science

University of Basel

Abstract

Pattern databases (Culberson & Schae�er, 1998) or PDBs, have
been proven very e�ective in creating admissible Heuristics for
single-agent search, such as the A*-algorithm. Haslum et. al
proposed, a hill-climbing algorithm can be used to construct the
PDBs, using the canonical heuristic. A di�erent approach would
be to change action-costs in the pattern-related abstractions, in
order to obtain the admissible heuristic. This the so called
Cost-Partitioning.

Introduction

Planning tasks are of fundamental importance for single-agent search in
Arti�cial Intelligence. Such tasks are given by a set of states, including an
initial state and a goal description, further, a set of actions, allowing us to make
transitions between the states. As we aim for an e�cient, automated han-
dling of any given planning tasks, the single-agent search is often guided by
an heuristic. Given an admissible heuristic (which never overestimates the
actual cost to the goal state), theA*-algorithm, is guaranteed to �nd the opti-
mal path through the states. In recent times there have been several promising
approaches in creating admissible heuristics, e.g Pattern Database Heuris-
tics.

The basic idea of Pattern databases (Culberson & Schae�er, 1998) or PDBs,
is to simplify the original search space, which is often very large, into smaller
subspaces, or patterns, for which we compute the exact goal distance, and store
their optimal distances in a database.

The advantage is that we can reduce the time-vasting search of the complete
searchspace to a lookup-table. There has been several succesfull attempts in
automatically generate these PDB Heuristics for domain-independent planning,
such as Edelkamp (2001) or more recently Haslum et al. (2007). Haslum et al.
propose to start with several initial patterns, each one only containing one goal
variable, and then gradually extending and improving them, by exploring the

1

neighbourhood. These patterns typically will have the same action costs as in
the original space, but to guarantee the admissible heuristic, not every pattern
may be considered in the end for the heuristical estimate.

However there exists another way to obtain the admissible heuristic. Instead of
dropping patterns, we may change the action cost in the patterns. But it's
not always clear, how this cost-partitioning should be done exactily. This is
where our focus will be. It has been shown (Katz & Domshlack, 2008) that there
exists a general procedure to generate an optimal action-cost partitoning, which
can be done in polynomial-time. Nevertheless the polynomial time is still very
long in practice. The aim of this paper is to �nd a simple cost-partitioning, which
can be combined with the original Haslum Pattern-Collection-search.

Before introducing the formal de�nitions, we will show a simple example, the
15-Puzzle, to illustrate the idea.

The 15-puzzle-example

The 15-puzzle-problem is a 4 x 4 sliding tile puzzle. In its goal state, each
tile is numbered left to right, top to bottom, from 1 to 15 (one �eld is blank).
At each state, one is allowed to move one tile (up, left, right, down) to the
blank �eld. The target is to reach the goal state using as few moves as possible.
Normally, each move has an operation cost of 1.

Now we can simplify the original problem into several ones, let's say two tiles.
So with our 15-puzzle, we try to solve the problem by only regarding 1-7, the
other tiles are indistinguishable. And we do the same for tiles 8-15. Formally
these are two abstractions, and we solve them, targeting their goal. An admissi-
ble heuristic is an approximation of the optimal cost (e.g 12 moves), which will
never overestimate. Such heuristics are easily calculated and help us to guide
the search for larger problems. The two abstractions (1-7, 8-15) are said to be
additive if the sum of their heuristic values is never larger than the actual cost
in the original space (1-15). The question now is not how to generate these
abstractions (see the Haslum algorithm section below), but how to do the cost-
partitoning of the operation-costs (op-costs) if we want a good heuristic.

Preliminairies

1. Planning task

In this work we consider the SAS+ planning formalism (Bäckström & Nebel,
1995).

A SAS+ planning task is a quintuple Π =< V,A, I,G >
V = {v1, ..., vn}
V is a set of state variables, each having a �nite domain dom(vi) of possible

2

values
each complete variable assignement of V is called a state
I is the initial state
G is a partial assignement, describing the set of goal states: {s ∈ S | G ⊆ s}

A = {a1, ..., an}
is a �nite set of actions where each action a is 3-tuple< precondition(a), e�ect(a), cost(a) >
where precondition(a) and e�ect(a) are partial assignments
and cost(a) assigns to the variables a non-negative, real value: cost : A�R+

0

Each planning task induces a transition-system, which allows us to label the
state-to-state-transitions with costs.

For an SAS+task Π =< V,A, I,G > the induced transition-system (or
TS) is a 4-tuple
T = (S,A, Tr, I,G, cost)
S is the �nite set of all possible states induced by the SAS+ planning task
cost : A�R+

0 is a transition cost-function.
Tr = {< s, a, s′ > |s, s′ ∈ S, a ∈ A} is a set of action-linked transitions
where a is applicable in s (means precondition(a) ⊆ s) and
s′ is the result of applying a in s, where applying a in s is de�ned for each
assigned variable v in s as follows:

appa(s)(v) =

{
s(v) if vis unspeci�ed in e�ect(a)is unspeci�ed

e�ect(a)(v) otherwise

Furthermore:

distance(s, S′) in T , is given by the cost of a cheapest (with respect to cost)
path from s, (with s ∈ S) to a state in S′ (with S′ ⊆ S) along the transitions
of T .

A plan for T is any path from the initial state to a goal state.
and cheapest paths are called optimal plans.

The aim of a planning task is to �nd an optimal plan of a given problem.

2. Heuristics

For computational reasons, we will calculate an estimate of the optimal search
cost, called Heuristic, to guide the optimal search.

The heuristic function h : S�R+
0 for an transition-system T = (S,A, Tr, I,G, cost),

assignes each state s ∈ S a real, non-negative value.

For our purposes, we need additionally the properties admissible and consis-

3

tent, in order to guarantee optimality of the reslut and avoid reopening
of states with the A* search.

The heuristic function h : S�R+
0 de�nes an admissible heuristic h(s,G)

for an transition-system T = (S,A, Tr, I,G, cost)
if for all s ∈ S holds:

h(s) ≤ distance(s,G)

The heuristic function h : S�R+
0 de�nes an consistent heuristic h for an

transition-system T = (S,L, Tr, I,G, cost)
if for all s, s′ ∈ S with distance(s′, G) < distance(s,G) holds:

h(s) ≤ h(s′) + distance(s, s′)

One possibility to de�ne a heuristic is by simplifying the transition sys-
tem. That means, we map our set of possible states to a smaller
set, in such a way that the costs of each state-transition in our simpli�ed tran-
sition system, don't exceed the corresponded original costs. The gain of this
constraint, is that each admissible, consistent heuristic for the abstraction, will
still be admissible, consistent in the original transititon-system. Formally:

An abstraction-projection α is a surjective mapping function α : S�S′

which de�nes for a transition-system T = (S,A, Tr, I,G, cost)
an abstract transition-system, or abstraction
Tα = (S′, A, Tr′, I ′, G′, cost)
S′ = {α(s)|s ∈ S}
T ′ = {< α(s), a, α(s′) > | < s, a, s′ > ∈Tr}
I ′ = α(I)
G′ = {α(s)|s ∈ G}

This allows us to de�ne:

An abstraction-heuristic hα(s) with s ∈ S is given by the cost of a cheapest
path,
from α(s) towards a goal state in Tα.

3. Pattern Database Heuristics

One way of de�ning abstraction-heuristics are Pattern Database Heuris-
tics (or PDB Heuristics).
A pattern P is a partial speci�cation of a complete set of variables (Culberson
& Schae�er, 1998).

For P ⊆ V , where V is the set of state variables of a given SAS+ planning
task Π, with state set S,

4

αP is the abstraction-projection induced by P , which is de�ned as
αP = s |P for all s ∈ S
We denote haP by hP

The idea is to construct a Pattern Collection C = {P1, . . . , Pk} with
corresponding abstraction-projections αPi and abstractions Tαi

with i = 1, ...k , in such way, that the following property holds:

k∑
i=1

hPi is an admissible and consistent heuristic for Π

A su�cient criterium for this property is:

There exists no operator in Π which has an e�ect on a variable vi in Pi, and on
a variable vj in Pj , for i 6= j
The patterns in C are then, said to be additive.

This leads us to 2 possible approaches, dealing with the case,
where the property is not given, through our abstractions :

Approach I

The PDB-heuristics are non-additive, in order to keep the patterns, we use
Cost-Partitioning. This means we change the costi of our abstractions Tαi =
(Si, Ai, T ri, Ii, Gi, costi), in such a way that:

for all < s,L, s′ >∈ Tr of a transition-system T = (S,A, Tr, I,G, cost)

n∑
i=1

costi(αi(s), L, αi(s
′)) ≤ cost(< s,L, s′ >) (1)

with αi(s) 6= αi(s
′)

Now, this allows us some freedom of the choise of the costs. One possible
approach could be the Zero-One-Cost-Partitioning,
where we can simplify (1) to some extend:

for all < s, a, s′ >∈ Tr of a transition-system T = (S,A, Tr, I,G, cost):
costi(αi(s), a, αi(s

′)) = cost(< s, a, s′ >) for at most one i ∈ {1, ..., n} with
αi(s) 6= αi(s

′)
and costj(αj(s), L, αj(s

′)) = 0
for all j 6= i if αj(s) 6= αj(s

′)

5

Approach II

The PDB-heuristics are not all (or partially) additive, in order to combine them
optimally, we use the canonical heuristic

where the canonical heuristic of a pattern collection C = {P1, ..., Pk}is de-
�ned as

hC(s) = max
S∈A

∑
P∈S

hP (s)

A being the set of all maximal (w.r.t. set inclusion) additive subsets of C

4. The Haslum Algorithm

One way to generate a good Pattern Collection C = {P1, ..., Pk} with the canon-
ical heuristic, given a SAS+ planning task Π =< V,A, I,G >,
is the Haslum method (2007).

The search e�ort, which we aim to minimize, given cost bound L, and ad-
missible and consistent heuristic h, can be estimated by the number of expanded
states in a tree search (using IDA*) with the following formula (Korf,Reid &
Edelkamp, 2001):

L∑
i=0

n(L− i)P (i) (2)

L is the cost bound
n(i) gives the number of states s, where distance(I, s) = i,
P (i) gives the probability that h(t) < i, where t is a random state, drawn uni-
formly from the set of all states
occuring in the search-tree up to depth L

Inspired by this aim the algorithm performs a hill-climbing search in the space
of pattern collections as follows:

(a) We start the search with a Pattern Collection C = {P1, ..., Pn} contain-
ing one pattern for each goal variable V = {v1, . . . , vn}, each containing only
that variable. (So with the 15-puzzle we would start with 15 1x1 puzzles each
having one tile to move.)

(b) From the given Collection C, a new collection C´ can be constructed, by
selecting a pattern Pi ∈ C, a variable v /∈ Pi , and adding the new pattern

6

Pk+1 = Pi ∪ {v} to the collection. The range of possible patterns, constructed
this way, de�nes our neighbourhood.

Also we can simplify the neighbourhood-evaluation, by considering only vari-
ables v, that will in�uence some variable v′ in our Pattern Pi, which means
there exists a action, which changes v′, and has a precondition or e�ect on v.

(c) Evaluating the neighbourhood: this step is crucial for the algorithm,
for the decision which new collection C ′ is the best.
In order to evaluate the neighbours of our pattern collection, we need a ran-
dom sample of states, drawn uniformly from the search space up to the cost
bound. For a complete, uniform tree, a uniformly sampled state can be found by
a random walk trough the tree. However the search space of a planning prob-
lem is rarely uniform or a tree, and additionally the depth is unknown. Still,
random walks perform good results, if we estimate the solution depth of
the uniform drawn sample by the current heuristic, multiplied by a constant
(e.g 2), since the heuristic is underestimating. (For problems with non-uniform
action costs, the depth-estimate is done with the average cost.)

Using these sampled states we can measure the quality of a pattern
collection using formula (2). Since the new collection C ′ di�ers from the old C,
only by one new pattern, the canonical heuristic hC′

can never be less then
hC , and the gained improvement is given by

1

m

∑
s∈{si,...,sm}

∑
hC≤k<hC′

n(L− k) (3)

{s1, ..., sm} are the sampled states

Assuming that n(k) dominates
∑
i<k

n(i), we can simplify (3), to get the so called

counting approximation:

1
m

∑
{s|hC(s)<hC′ (s)}

n(L− hC(s))

s is a random state within the uniform drawn sample

(d) The search is ended, when no pattern within our size limit improves
the current pattern collection, or the search-e�ort exceeds the value
of the gain in heuristic accuracy. The second case occurs more in practice.

This is the common algorithm with the original action-costs unchanged.
What we do is to change the action-costs in (c) after new abstractions have

7

been created. For testing and implementing, the Fast Downward planning
system was used.

The crucial step (c), refered as hill-climbing, is shown below in a simpli�ed
code.

Pseudo-Code of the Haslum Hill-climbing

h i l l_c l imb ing ()

vec to r new_candidates // conta in s the new candidate pdbs as de s c r ibed above
vec to r candidate_pdbs // conta in s a l l the candidate pdbs

whi l e (t rue)

samples=sample_states ()
update_candidates (new_candidates)

f o r each pdb in candidate_pdbs

improvement=0
count=0

fo r each sample in samples
i f i s_heur i s t ic_improved (pdb , sample)

++count

i f (count > improvement)
improvement = count
best_pdb = pdb

i f (improvement < min_improvement)
break

add_pattern_to_canonical_heurist ic (best_pdb)

where update_candidates is di�erently implemented. For the original canonical
Heuristic it is de�ned as:

Canonica l_Heur i s t i c : : update_candidates (new_candidates)

8

f o r each pdb in new_candidates
i f is_new_candidate (pdb)

insert_into_candidate_pdbs (pdb)

Experiment

1. Zero-One Cost-Partitioning

Now a simple approach of partitioning the costs, in order to guarantee ad-
ditiviy of the abstractions, could be the zero-one cost partitioning. The
idea is that the operation-cost are updated each time a new pattern is added
to our current pattern collection (inside one hill-climbing-step), in such a way,
that operators which have been used in a previous PDB, will be assigned
a cost of zero.

Or in pseudo-code:

ZeroOneHeur ist ic : : add_pattern_to_zero_one_heuristic (pattern)
pdb = new PDBHeuristic (pattern , operator_costs)
insert_into_pattern_databases (pdb)

fo r each operator in ope ra to r s
i f used_in_a_previous_PDB(operator)

operator . co s t=0

We remember from step (b) of the Haslum Algorithm, that only variables are
considered to be included in the new Pattern, which will a�ect our current set
of variables over some action. In setting the cost of these actions, which are our
used operators, to 0, we can guarantee the additivity-constraint:

We change the costi of our abstractions Tαi = (Si, Ai, T ri, Ii, Gi, costi), in
such a way that:
for all < s, a, s′ >∈ Tr of a transition-system T = (S,A, Tr, I,G, cost):
costi(αi(s), a, αi(s

′)) = cost(< s, a, s′ >) for at most one i ∈ {1, ..., n} with
αi(s) 6= αi(s

′)
and costj(αj(s), L, αj(s

′)) = 0
for all j 6= i if αj(s) 6= αj(s

′)

2. Implementation

Several things will change slightly in the implementation of the original Haslum-
algorithm:

9

(a) is_heuristic_improved() becomes much simpler for the zero-one-cost-
partitioning, since we don't have to go over the maximal additive subsets to
obtain the canonical heuristic anymore. The heuristics of the subsets are al-
ways additive, thus we simply need to check, wheather the heuristic of the
added pattern is greater zero: hPnew > 0.

(b) Initial Pattern collection: We remember from the Haslum algorithm, we
start the hill-climbing with one pattern, for each goal variable, with Zero-One
now will be initially empty (constant zero-heuristic).

(c) Initial candidate patterns: With the Haslum method, we will start
right away, with each possible extension of a pattern {v}
in the initial collection with one variable v′, if v′ in�uences v in the causal graph.
However with Zero-One, we have now a candidate pattern for each goal variable,
since our inital pattern collection is empty.

(d) update_canditates: Since we modify the costs of our newly added pat-
tern, we have to do so, for the PDBs of the other candidate patterns in our
current collections as well, since they may still have the original costs. In the
implementation we �rst recompute the old candidate pdb's with the updated
costs, before adding the pdb's for the new patterns.

ZeroOneHeur ist ic : : update_candidates (pattern)

f o r each pdb in candidate_pdbs
recomputePDB(pdb , updated_operator_costs) //update the o ld pdb operator c o s t s

f o r each pdb in new_candidates
insert_into_candidate_pdbs (pdb)

3. Experiment Preparation

For more generalizable results, a range of search problems (Grid) have been
tested, using the Zero-One-cost-partioning.
The time limit was set to 30 minutes for the search component of Fast
Downward (including the computation of the heuristic).
The memory limit was set to 2GB.

(a)We compared the original haslum algorithm using the canonical heuris-
tic (I), with the modi�ed haslum algorithm
using Zero-One-heuristic (II).

10

(b) We run both algorithms with following the di�erent initial parame-
ters:

pdb_max_size = 500000, 1000000, 2000000, 5000000, 10000000
and collection_max-size always 10 times greater
refered as plan11, plan12, plan13, plan14, plan15 in the result tables for the
canonical
and refered as plan31, plan32, plan33, plan34, plan35 for the zero-one

Note: Since the di�erent parameter only showed minor variations, only plan11
and plan 31 were included in this work.

(c) Di�erent result attributes were compared: most importantly:
coverage (how many problems solved)
expansions (number of searchnodes in the closed list, giving a measure for the
quality of the heuristic)
generated (number of searchnodes that have been in the open list, typically a
exponential relation to expansions)
iPDB:time (hill-climbing time)
iPDB:iterations (hill-climbing iterations)
inital h-value (inital heuristic value)
search_time

(d) We run the experiment with 14 di�erent set of benchmarks each con-
taining 20 planning problems, overall 280 planning problems (which have
been used as the benchmark instances of the optimal tracks in the International
Planning Competition 2011).

4. Experiment Results

11

coverage WORK-plan11 WORK-plan31
barman-opt11-strips (20) 4 4
elevators-opt11-strips (20) 16 9
�oortile-opt11-strips (20) 2 2
nomystery-opt11-strips (20) 16 14
openstacks-opt11-strips (20) 14 14
parcprinter-opt11-strips (20) 7 11
parking-opt11-strips (20) 5 5
pegsol-opt11-strips (20) 0 17
scanalyzer-opt11-strips (20) 10 9
sokoban-opt11-strips (20) 20 18
tidybot-opt11-strips (20) 14 14
transport-opt11-strips (20) 6 6
visitall-opt11-strips (20) 12 9
woodworking-opt11-strips (20) 2 5
SUM (280) 128 137

dead_ends WORK-plan11 WORK-plan31
barman-opt11-strips (4) 0 0
elevators-opt11-strips (9) 0 0
�oortile-opt11-strips (2) 0 0
nomystery-opt11-strips (14) 28134 348258
openstacks-opt11-strips (14) 0 0
parcprinter-opt11-strips (7) 89606 1234895
parking-opt11-strips (5) 2721620 2721620
scanalyzer-opt11-strips (9) 0 0
sokoban-opt11-strips (18) 197230 584356
tidybot-opt11-strips (14) 0 0
transport-opt11-strips (6) 0 0
visitall-opt11-strips (9) 0 0
woodworking-opt11-strips (2) 1704 48753
SUM (113) 3038294 4937882

12

expansions WORK-plan11 WORK-plan31
barman-opt11-strips (4) 16760296 20153723
elevators-opt11-strips (9) 1666477 21385762
�oortile-opt11-strips (2) 319348 1203126
nomystery-opt11-strips (14) 260595 3438968
openstacks-opt11-strips (14) 33488248 33488248
parcprinter-opt11-strips (7) 192091 1833722
parking-opt11-strips (5) 1771523 1771523
scanalyzer-opt11-strips (9) 17263329 58624853
sokoban-opt11-strips (18) 4332897 56062414
tidybot-opt11-strips (14) 2294879 2173777
transport-opt11-strips (6) 1329539 5984270
visitall-opt11-strips (9) 24675 7810517
woodworking-opt11-strips (2) 1257 146951
SUM (113) 79705154 214077854

generated WORK-plan11 WORK-plan31
barman-opt11-strips (4) 73367303 88189263
elevators-opt11-strips (9) 41157505 398213753
�oortile-opt11-strips (2) 2128490 7698475
nomystery-opt11-strips (14) 1978035 23670553
openstacks-opt11-strips (14) 169608236 169608236
parcprinter-opt11-strips (7) 1400188 13529516
parking-opt11-strips (5) 23848596 23848596
scanalyzer-opt11-strips (9) 310547468 846977345
sokoban-opt11-strips (18) 11243074 148077198
tidybot-opt11-strips (14) 7521817 7186790
transport-opt11-strips (6) 10216603 43913733
visitall-opt11-strips (9) 84459 25028583
woodworking-opt11-strips (2) 15545 1954140
SUM (113) 653117319 1797896181

13

iPDB_generated WORK-plan11 WORK-plan31
barman-opt11-strips (8) 3509 1382
elevators-opt11-strips (20) 1567 93
�oortile-opt11-strips (10) 1497 966
nomystery-opt11-strips (20) 183 320
openstacks-opt11-strips (20) 1041 390
parcprinter-opt11-strips (7) 1607 1011
parking-opt11-strips (20) 15240 15580
scanalyzer-opt11-strips (20) 3240 1314
sokoban-opt11-strips (20) 4569 3194
tidybot-opt11-strips (20) 7662 8694
transport-opt11-strips (20) 921 715
visitall-opt11-strips (20) 753 880
woodworking-opt11-strips (2) 477 162
SUM (207) 42266 34701

iPDB_improvement WORK-plan11 WORK-plan31
barman-opt11-strips (8) 61 0
elevators-opt11-strips (20) 95 0
�oortile-opt11-strips (10) 41 0
nomystery-opt11-strips (20) 84 0
openstacks-opt11-strips (20) 0 0
parcprinter-opt11-strips (7) 22 27
parking-opt11-strips (20) 0 0
scanalyzer-opt11-strips (20) 56 0
sokoban-opt11-strips (20) 22 41
tidybot-opt11-strips (20) 10 13
transport-opt11-strips (20) 110 0
visitall-opt11-strips (20) 60 0
woodworking-opt11-strips (2) 0 0
SUM (207) 561 81

14

iPDB_iterations WORK-plan11 WORK-plan31
barman-opt11-strips (8) 186 132
elevators-opt11-strips (20) 181 20
�oortile-opt11-strips (10) 179 154
nomystery-opt11-strips (20) 114 210
openstacks-opt11-strips (20) 20 20
parcprinter-opt11-strips (7) 80 112
parking-opt11-strips (20) 20 360
scanalyzer-opt11-strips (20) 110 119
sokoban-opt11-strips (20) 82 119
tidybot-opt11-strips (20) 132 213
transport-opt11-strips (20) 106 145
visitall-opt11-strips (20) 61 166
woodworking-opt11-strips (2) 23 18
SUM (207) 1294 1788

iPDB_max_pdb_size WORK-plan11 WORK-plan31
barman-opt11-strips (8) 1336 208
elevators-opt11-strips (20) 132783 308
�oortile-opt11-strips (10) 0 712
nomystery-opt11-strips (20) 0 1740
openstacks-opt11-strips (20) 1230 60
parcprinter-opt11-strips (7) 5886 4368
parking-opt11-strips (20) 1060 1060
scanalyzer-opt11-strips (20) 4884 2956
sokoban-opt11-strips (20) 44660 33360
tidybot-opt11-strips (20) 2044 992
transport-opt11-strips (20) 172271 4335
visitall-opt11-strips (20) 1660 8
woodworking-opt11-strips (2) 140 84
SUM (207) 367954 50191

15

iPDB_num_patterns WORK-plan11 WORK-plan31
barman-opt11-strips (8) 206 124
elevators-opt11-strips (20) 254 0
�oortile-opt11-strips (10) 313 144
nomystery-opt11-strips (20) 244 190
openstacks-opt11-strips (20) 390 0
parcprinter-opt11-strips (7) 193 105
parking-opt11-strips (20) 340 340
scanalyzer-opt11-strips (20) 522 99
sokoban-opt11-strips (20) 145 99
tidybot-opt11-strips (20) 192 193
transport-opt11-strips (20) 211 125
visitall-opt11-strips (20) 794 146
woodworking-opt11-strips (2) 51 16
SUM (207) 3855 1581

iPDB_rejected WORK-plan11 WORK-plan31
barman-opt11-strips (8) 376 0
elevators-opt11-strips (20) 0 0
�oortile-opt11-strips (10) 2814 0
nomystery-opt11-strips (20) 29 0
openstacks-opt11-strips (20) 0 0
parcprinter-opt11-strips (7) 0 0
parking-opt11-strips (20) 0 0
scanalyzer-opt11-strips (20) 322 0
sokoban-opt11-strips (20) 0 0
tidybot-opt11-strips (20) 0 0
transport-opt11-strips (20) 0 0
visitall-opt11-strips (20) 0 0
woodworking-opt11-strips (2) 0 0
SUM (207) 3541 0

16

iPDB_size WORK-plan11 WORK-plan31
barman-opt11-strips (8) 1422232 888
elevators-opt11-strips (20) 144756 0
�oortile-opt11-strips (10) 10370944 576
nomystery-opt11-strips (20) 320400 294764
openstacks-opt11-strips (20) 1170 0
parcprinter-opt11-strips (7) 4492 1878
parking-opt11-strips (20) 9280 9280
scanalyzer-opt11-strips (20) 2314872 994
sokoban-opt11-strips (20) 3852 1778
tidybot-opt11-strips (20) 1628 1286
transport-opt11-strips (20) 60427 2031
visitall-opt11-strips (20) 2992 2266
woodworking-opt11-strips (2) 503 93
SUM (207) 14657548 315834

iPDB_time WORK-plan11 WORK-plan31
barman-opt11-strips (8) 3068.82 3.85
elevators-opt11-strips (20) 75.54 0.20
�oortile-opt11-strips (10) 3021.93 6.13
nomystery-opt11-strips (20) 9.33 9.52
openstacks-opt11-strips (20) 1.64 0.27
parcprinter-opt11-strips (7) 894.60 2.59
parking-opt11-strips (20) 53.98 449.72
scanalyzer-opt11-strips (20) 84.60 49.91
sokoban-opt11-strips (20) 63.54 3.75
tidybot-opt11-strips (20) 287.68 201.38
transport-opt11-strips (20) 74.58 3.00
visitall-opt11-strips (20) 6.82 2.34
woodworking-opt11-strips (2) 1298.80 0.37
SUM (207) 8941.86 733.03

17

initial_h_value WORK-plan11 WORK-plan31
barman-opt11-strips (4) 79 36
elevators-opt11-strips (9) 244 0
�oortile-opt11-strips (2) 43 38
nomystery-opt11-strips (14) 232 231
openstacks-opt11-strips (14) 0 0
parcprinter-opt11-strips (7) 4004359 2975592
parking-opt11-strips (5) 61 61
scanalyzer-opt11-strips (9) 194 52
sokoban-opt11-strips (18) 246 63
tidybot-opt11-strips (14) 114 113
transport-opt11-strips (6) 712 50
visitall-opt11-strips (9) 91 50
woodworking-opt11-strips (2) 360 205
SUM (113) 4006735 2976491

memory WORK-plan11 WORK-plan31
barman-opt11-strips (8) 10151876 10469664
elevators-opt11-strips (20) 11124968 26623256
�oortile-opt11-strips (10) 12300728 16428284
nomystery-opt11-strips (20) 8719552 13088256
openstacks-opt11-strips (20) 17888272 17883680
parcprinter-opt11-strips (9) 116152 4645504
parking-opt11-strips (20) 31672172 31666792
scanalyzer-opt11-strips (20) 22224944 25983052
sokoban-opt11-strips (20) 590360 9115200
tidybot-opt11-strips (20) 13647648 13658024
transport-opt11-strips (20) 28681632 29226168
visitall-opt11-strips (20) 16420748 22899824
woodworking-opt11-strips (2) 7228 62304
SUM (209) 173546280 221750008

18

search_time WORK-plan11 WORK-plan31
barman-opt11-strips (4) 91.09 37.41
elevators-opt11-strips (9) 0.97 14.07
�oortile-opt11-strips (2) 2.05 4.62
nomystery-opt11-strips (14) 0.16 0.34
openstacks-opt11-strips (14) 4.69 4.62
parcprinter-opt11-strips (7) 0.31 0.34
parking-opt11-strips (5) 5.00 5.42
scanalyzer-opt11-strips (9) 1.31 15.13
sokoban-opt11-strips (18) 0.48 1.80
tidybot-opt11-strips (14) 1.75 1.62
transport-opt11-strips (6) 0.75 2.13
visitall-opt11-strips (9) 0.10 0.22
woodworking-opt11-strips (2) 0.43 1.26
GEOMETRIC MEAN (113) 1.17 2.54

search_error WORK-plan11 WORK-plan31
barman-opt11-strips (20) 16 16
elevators-opt11-strips (20) 4 11
�oortile-opt11-strips (20) 18 18
nomystery-opt11-strips (20) 4 6
openstacks-opt11-strips (20) 6 6
parcprinter-opt11-strips (20) 13 9
parking-opt11-strips (20) 15 15
pegsol-opt11-strips (20) 20 3
scanalyzer-opt11-strips (20) 10 11
sokoban-opt11-strips (20) 0 2
tidybot-opt11-strips (20) 6 6
transport-opt11-strips (20) 14 14
visitall-opt11-strips (20) 8 11
woodworking-opt11-strips (20) 18 15
SUM (280) 152 143

19

total_time WORK-plan11 WORK-plan31
barman-opt11-strips (4) 267.79 37.78
elevators-opt11-strips (9) 2.79 14.11
�oortile-opt11-strips (2) 11.75 4.85
nomystery-opt11-strips (14) 0.40 0.51
openstacks-opt11-strips (14) 4.81 4.67
parcprinter-opt11-strips (7) 41.51 0.68
parking-opt11-strips (5) 8.06 14.95
scanalyzer-opt11-strips (9) 8.90 15.78
sokoban-opt11-strips (18) 1.72 2.46
tidybot-opt11-strips (14) 16.30 10.63
transport-opt11-strips (6) 1.08 2.18
visitall-opt11-strips (9) 0.16 0.23
woodworking-opt11-strips (2) 614.44 1.45
GEOMETRIC MEAN (113) 7.24 3.63

5. Results Discussion

without cost-partitioning I zero-one-cost-partitioning II

initial parameter almost no di�erences minor variations

iPDB: iterations - more (alternating for benchmarks)

iPDB: size - always, much smaller

iPDB: improvement - mostly 0 but if not, then greater

iPDB: generated - less (alternating for benchmarks)

iPDB: rejected some 0

iPDB: max_pdb_size - less

iPDB: num_patterns - mostly less

iPDB: rejected sometimes greater 0 always 0

iPDB: time - much less

initial h-value always greater -

coverage - slightly more (caused by one benchmark)

dead ends fewer dead-ends -

expansions less -
generated less -
search time less -
total time - less overall (but alternating benchmarks)

(a) One can observe that the iPDB construction time (including hill-climbing)
was much shorter with the 0-1, but the actual search time was longer
(except in 3 benchmarks: barman, openstacks, tidybot), indicating that the
canonical heuristics had a better quality overall. But the total time
was still shorter for the 0-1.

(b) more search-nodes generated and expanded in 0-1, and smaller

20

iPDB size.

(c) The di�erent initial parameters showed almost no di�erences for 0-1, and
minor variations in the original. This indicates that the size limits were
rarely reached, which can be con�rmed, by the fact, that in 0-1, Pat-
terns were never rejected, and 0-1 iPDB size was mostly smaller.
There haven been more expansions in 0-1, and thus also more dead ends.

(d) In elevator and openstacks: the initial h-value for 0-1 was zero,
that's why the iPDB time is almost 0, thus the guided search, was very long,
and overall time was also much longer. The problem is that with 0-1, the
initial candidate patterns are just the goal variables, and may all be
reachable with zero-action-costs, which will lead to no improvement, and
a entirely uninformed heuristic.

(e) It's interesting that in the parking-opt, almost all the attributes (coverage,
size, search time, expansions...) were the same, but the iPDB time was much
longer for 0-1, (as one of the few benchmarks where iPDB time was longer in 0-
1). So the hill-climbing took more time with the 0-1-cost-partitioning
in that benchmark (since the iPDB iterations were more for 0-1).

(f) Though 0-1 had more expansions, it needed more in search time. Since
iPDB size was always smaller in 0-1, the PDB size seems a better measure
for the quality of the heuristic.

(g) Example, where total time of canonical was much shorter: If one
looks at the elevator-benchmarks more closely, one can see that in 0-1 less
problems were covered, iPDB size was mostly zero, iPDB time was thus smaller
and search time was much longer, caused by the bad heuristic.

(h) Example, where total time of zero was much shorter: In the wood-
working benchmark, the coverage was slightly bigger, iPDB size slightly less,
but iPDB time much less, and search-time slightly more. iPDB iterations about
the same.

Conclusion

Constructing PDBs using cost-partitoning is a rather unexplored �eld.

We have compared the standard algorithm by Haslum et. Al (2007), which uses
the unchanged original-operatorcosts, with a simple zero-one-costpartitioning.
We have seen, that the 0-1 is a rather simple method to guarantee additivity,
thus the PDB construction time is much shorter compared with the canonical
heuristic. For the same reason, the quality of the 0-1 heuristic is not so well
as the canonical, leading to a longer search-time. In our experiments, the total

21

time was still shorter for the 0-1, but one can expect that this changes, as the
search space grows. Mostly the 0-1 PDB had a much smaller size. In one of the
few benchmarks, where 0-1 was actually equal in PDB size, the hill-climbing
also took longer, but this may be benchmark-related.

But we have seen that not all the benchmarks used, delievered the same com-
parisson for the search time/ hill-climbing time though. One may assume, that
the 0-1 heuristic is better �tted for some special sort of domains. However there
have also been, obvious problems, like the initial h values of 0, caused by the
fact, that all goal variables, may be reachable within the �rst step. In future
implentations, this should be dealt as a special case, avoiding the hill-climbing
to break up immediately.

The problem seems to be, that the zero-one-cost-partitioning is too simplis-
tic, for the sometimes rather complex search spaces, and the results are thus
not predictable. But it may be, that even a cost-partitioning that makes more
assumptions about the search problem (which is not easy, since the procedure
should be domain-independent), will have rather random results.

Other challenges for the future may be:

Since the cost-partitioning may save time, in the PDB construction, one could
also try more sophisticated approaches, then the 0-1 approach (e.g. weighted
heuristics), also one could run the hill-climbing with normal Haslum method,
and then try to �nd a Cost-Partitioning that will improve our obtained heuristic.

References

Helmert, M. (2006). The Fast Downward Planning System. Journal of Ar-
ti�cial Intelligence Research 26, pp. 191-246.

Culberson, J. C., & Schae�er, J. (1998). Pattern databases. Computational
Intelligence, 14(3), pp. 318�334.

Edelkamp, S. (2001). Planning with pattern databases. In Proceedings of the
6th European Conference on Planning, pp. 13�24.

Haslum, P., Botea, A., Helmert, M., Bonet, B., & Koenig, S. (2007). Domain-
independent construction of pattern database heuristics for cost-optimal plan-
ning. In Proceedings of The Twenty-Second National Conference on Arti�cial
Intelligence (AAAI-07), pp. 1007�1012.

Katz, M, & Domshlak, C. (2008). Optimal Additive composition of abstraction-
based admissible heuristics. ICAPS-08. 18th International Conference on Au-
tomated Planning and Scheduling. pp. 174-181.

22

