

Optimizations for the Additive Heuristic in Fast Downward

Simona Wittner <simona.wittner@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel Artificial Intelligence Research Group

15.07.2024

Background	Optimization Idea	Implementation	Experiments	Conclusion
Motivation				

- > Unary operators used to calculate values of additive heuristic in Fast Downward
- > Reduce number of unary operators for more efficient calculation

Background	Optimization Idea	Implementation	Experiments	Conclusion
Planning Task				

State variables: for example on(C, B), ontable(A), handempty(), holding(C), clear(A)

Background	Optimization Idea	Implementation	Experiments	Conclusion
Planning Task				

Actions: for example action unstack(C, B), with cost 1

Preconditions: on(C, B), clear(C),
handempty()

Add effects: *holding*(C), *clear*(B) Delete effects: *on*(C, B), *clear*(C), *handempty*()

Background	Optimization Idea	Implementation	Experiments	Conclusion
Δ.				
Atom				

To enable switch between ground & lifted representation of planning task

Definition (Atom)

```
Atom P(\langle t_1, ..., t_n \rangle) with
```

- P n-ary predicate symbol
- $>\langle t_1,...,t_n
 angle$ tuple, where $t_1,...,t_n$ objects or variables

Ground atom:

- > All variables replaced by objects
- > Variable mapping $\sigma: \mathcal{V} \mapsto \mathcal{O}$
- Ground atoms similar to state variables

Lifted Planning Task

Lifted actions: for example action unstack(x, y), with cost 1

Preconditions: on(x, y), clear(x),
handempty()

Add effects: *holding*(x), *clear*(y) Delete effects: *on*(x, y), *clear*(x), *handempty*()

Background	Optimization Idea	Implementation	Experiments	Conclusion
Planning				

- > Find sequence of actions (plan) from initial state to a goal state of planning task
- > Use search algorithms
- > Search algorithms can use heuristics to enhance efficiency

Background	Optimization Idea	Implementation	Experiments	Conclusion	
Heuristics					

- > Guide the search
- > Provide estimates of distance from states to nearest goal state
- > Additive heuristic h^{add}

Weighted Datalog Program

Definition (Weighted Datalog Program)

- $\mathcal{D} = \langle \mathcal{F}, \mathcal{R} \rangle$ with
 - ${\cal F}$ facts (set of ground atoms)
 - ${\mathcal R}$ weighted rules
 -) Consist of atoms ϕ_i and have form $\phi_0 \leftarrow \phi_1,...,\phi_m$, for $m \geq 0$
 - Weight w(r) of rule $r \in \mathcal{R}$

- > Calculate reachable atoms of planning task for grounding of actions
- > Use Datalog program for planning task and initial state
- > Facts: ground atoms of initial state
- > Rules:
 - > For goal: goal-reachable \leftarrow goal atoms, weight 0
 - > For each action a:
 - > a-applicable \leftarrow precondition atoms, weight is cost(a)
 - > For each effect: effect atom \leftarrow *a*-applicable, weight 0

Construction of Rules

- > Calculate values of h^{add} using weighted Datalog program (in lifted planning)
- From paper "Delete-relaxation heuristics for lifted classical planning" by A. B.
 Corrêa, G. Francès, F. Pommerening and M. Helmert, 2021
- > Special construction of rules for efficient calculation:
 - 1. Action Predicate Removal
 - 2. Rule Splitting
 - 3. Duplicate Rule Removal

Action Predicate Removal

- > Remove all *a*-applicable atoms
- > For each action:
 - > Take rule with preconditions *a*-applicable \leftarrow precondition atoms
 - > For each rule effect atom \leftarrow *a*-applicable set new rule:

 $effect \ atom \leftarrow precondition \ atoms,$

where weight is cost of action

Background	Optimization Idea	Implementation	Experiments	Conclusion
Rule Splitting				

- > Already in Fast Downward, here adapted for weighted rules
- > Split rules in smaller rules
- > New auxiliary atoms
- > For each rule:
 - > One "root" rule with weight of original rule
 - > Other rules with weight 0

Duplicate Rule Removal

- > Remove rules only different due to naming of variables
- > Considers rules that define auxiliary atom
- > Keep only one such rule
- > Weights not affected

- Reformulate unary operators, i.e. operators with one effect
- > Use weighted Datalog program with optimized rules instead of actions
- > Reduce number of unary operators
- > Could lead to more efficient computation of values of $h^{\rm add}$

Background	Optimization Idea	Implementation	Experiments	Conclusion	
F					
Example					

Action $a[\Delta]$ with

 $\rightarrow del(a[\Delta]) = \emptyset$

- $pre(a[\Delta]) = \{P(x), Q(x, y), R(z)\}$ $add(a[\Delta]) = \{A(x), B(y)\}$
 - $angle \ cost(a[\Delta]) = 1$ $angle \ \Delta = \{x, y, z\}$

 $O = \{o_1, o_2, o_3\}$ set of objects

Unary operator: consists of one ground atom from add list & all ground atoms from precondition list

If each variable of Δ can be mapped to each object of O:

 $|O|^{|\Delta|} \cdot |add(a[\Delta])| = 3^3 \cdot 2 = 54$ unary operators after grounding

Background	Optimization Idea	Implementation	Experiments	Conclusion	
Example					

Rules corresponding to action $a[\Delta]$ (without rule construction approaches):

 $A(x) \leftarrow a$ -applicableweight 0 $B(y) \leftarrow a$ -applicableweight 0a-applicable $\leftarrow P(x), Q(x, y), R(z)$ weight 1

Background	Optimization Idea	Implementation	Experiments	Conclusion
Example				

Rules corresponding to action $a[\Delta]$ (without rule construction approaches):

 $\begin{array}{ll} \mathsf{A}(x) \leftarrow a\text{-applicable} & \text{weight 0} \\ \mathsf{B}(y) \leftarrow a\text{-applicable} & \text{weight 0} \\ a\text{-applicable} \leftarrow \mathsf{P}(x), \mathsf{Q}(x,y), \mathsf{R}(z) & \text{weight 1} \end{array}$

With action predicate removal:

$$\begin{split} \mathsf{A}(x) &\leftarrow \mathsf{P}(x), \mathsf{Q}(x,y), \mathsf{R}(z) \qquad \text{weight 1} \\ \mathsf{B}(y) &\leftarrow \mathsf{P}(x), \mathsf{Q}(x,y), \mathsf{R}(z) \qquad \text{weight 1} \end{split}$$

Example				
	$A(x) \leftarrow P(x),$	Q(x, y), R(z)	weight 1	
	$B(y) \leftarrow P(x),$	Q(x, y), R(z)	weight 1	

Optimization Idea

Background	Optimization Idea	Implementation	Experiments	Conclusion
Example				
	$A(x) \leftarrow P(x), G$		eight 1	
	$B(y) \leftarrow P(x), G$	Q(x,y), R(z) w	eight 1	
With rule splitting:	$A(x) \gets \theta_0($	$(x), heta_1()$ weight	: 1	
	$B(y) \gets \theta_4($	$(y), \theta_5()$ weight	t 1	
	$ heta_0(x) \leftarrow heta_2$	(x), P(x) weight	nt O	
	$ heta_2(x) \leftarrow Q(x)$	(x, y) weight	: 0	
	$ heta_1() \gets R(z$) weigh	t 0	
	$ heta_4(y) \leftarrow Q($	(x, y), P(x) weigh	nt O	
	$\theta_5() \gets R(z$) weigh	t 0	
No stopp with	A . exected & rem	avad again		

No atom with θ_3 : created & removed again

Background	Optimization Idea	Implementation	Experiments	Conclusion
Example				
	$A(x) \leftarrow P(x),$	Q(x, y), R(z)	weight 1	
	$B(y) \leftarrow P(x),$	Q(x, y), R(z)	weight 1	
With rule splitti	ng: $A(x) \leftarrow \theta_0$	$\theta(x), heta_1()$ weig	ht 1	
	$B(y) \leftarrow heta_{2}$	$\mu(y), heta_5()$ weig	;ht 1	
	$ heta_0(x) \leftarrow heta$	$_2(x), P(x)$ wei	ght 0	
	$ heta_2(x) \leftarrow \mathbf{G}$	Q(x,y) weig	ht 0	
	$ heta_1() \gets R($	z) weig	ght 0	
	$ heta_4(y) \leftarrow 0$	P(x, y), P(x) wei	ght 0	
	$ heta_5() \gets R($	z) weig	ght O	
No atom v	with θ_{2} created & reg	moved again		

No atom with θ_3 : created & removed again

Background	Optimization Idea	Implementation	Experiments	Conclusion	
Example					

With duplicate rule removal:

$A(x) \leftarrow \theta_0(x), \theta_1()$	weight 1
$B(y) \gets \theta_4(y), \theta_1()$	weight 1
$\theta_0(x) \leftarrow \theta_2(x), P(x)$	weight 0
$\theta_2(x) \leftarrow Q(x,y)$	weight 0
$\theta_1() \gets R(z)$	weight 0
$\theta_4(y) \leftarrow Q(x,y), P(x)$	weight 0

Four rules depend on one variable & two rules depend on two variables If each variable can be mapped to any object of $O = \{o_1, o_2, o_3\}$:

 $3^1 \cdot 4 + 3^2 \cdot 2 = 30$ unary operators after grounding (instead of 54 with actions)

Implementation (in Translate Component)

Translate component: responsible for translating planning task from PDDL representation into FDR representation, grounding of planning task

Changes:

- > Build second Datalog program (weighted):
 - > Use existing code from paper for construction of rules, only slightly modified
 - > Remove duplicate preconditions in actions
 - > Allow rules with no preconditions and only effect
- Compute reachable atoms of weighted Datalog program

Implementation (in Translate Component)

Changes (continued):

- > New grounding algorithm for rules:
 - > Use reachable atoms
 - > For each rule: work on precondition list of rule, then on effect, build variable mappings
 - > Consider atoms removed by translator:
 - > Atom in initial state \Rightarrow atom true in every reachable state \Rightarrow ignore atom
 - Atom not in initial state \Rightarrow atom false in every reachable state \Rightarrow remove operator

> Write unary operators (ground rules) to new output file

Implementation (in Search Component)

Search component: responsible for finding a plan for ground planning task

Changes:

- > Constructor of class RelaxationHeuristic:
 - > Parse ground rules from new output file
 - > Use new structs and vectors
 - > Change build_unary_operators function:
 - > Use parsed ground rules as unary operators
 - Remember new propositions in own vector (propositions similar to state variables)
 - Check proposition ID and set it with new function for new propositions

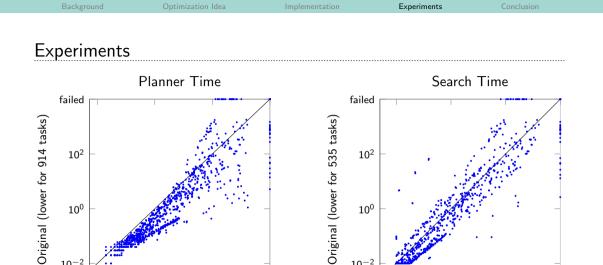
Experiments

	New	Original
Coverage – Sum	1'030	1'030
Unary operators – Sum	12'112'234	42'903'919

> Search algorithm: eager best-first search

> h^{add}

> Without preferred operators



 10^{0}

 10^{-2}

 10^{-2}

100

New (lower for 198 tasks)

10²

 10^{0}

New (lower for 74 tasks)

10²

failed

 10^{-2}

 10^{0}

 10^{-2}

failed

Background	Optimization Idea	Implementation	Experiments	Conclusion	
Experiments					

Coverage per domain (where different value of coverage):

	New	Original
driverlog (20)	18	19
logistics98 (35)	18	27
parcprinter-08-strips (30)	23	24
parking-sat11-strips (20)	20	18
parking-sat14-strips (20)	20	5
pipesworld-notankage (50)	26	27
pipesworld-tankage (50)	20	21
rovers (40)	25	29
satellite (36)	34	30
storage (30)	16	17
thoughtful-sat14-strips (20)	12	15

Possibly beneficial domain properties: less preconditions, more effects and only few variables in actions \Rightarrow many variables omitted & many duplicate rules removed

Background	Optimization Idea	Implementation	Experiments	Conclusion
Conclusion				

- > Optimizations to reduce number of unary operators used to calculate values of h^{add}
 - > Use weighted Datalog program with specially constructed rules
 - > Algorithm for grounding the rules
 - > Ground rules as unary operators
- > Number of unary operators significantly reduced
- > Search time generally not improved
- > For specific domains: reduced search time & in some cases even planner time

Background	Optimization Idea	Implementation	Experiments	Conclusion
Future work				

Get mapping between ground rules & FDR operators used for the search

- Store transformations of Datalog program with a similar approach to annotated Datalog programs as presented in "*The FF heuristic for lifted classical planning*" by A. B. Corrêa, F. Pommerening, M. Helmert and G. Francès, 2022
 - \Rightarrow To get preferred operators for efficient search
 - \Rightarrow To support domains with cost depending on parameter
 - \Rightarrow To allow domains with negative preconditions