
Optimizations for the Additive Heuristic in Fast Downward

Simona Wittner <simona.wittner@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

Artificial Intelligence Research Group

15.07.2024

Background Optimization Idea Implementation Experiments Conclusion

Motivation

Unary operators used to calculate values of additive heuristic in Fast Downward

Reduce number of unary operators for more efficient calculation

Optimizations for the Additive Heuristic in Fast Downward 2

Background Optimization Idea Implementation Experiments Conclusion

Planning Task

Initial state Goal

State variables: for example on(C, B), ontable(A), handempty(), holding(C), clear(A)

Optimizations for the Additive Heuristic in Fast Downward 3

Background Optimization Idea Implementation Experiments Conclusion

Planning Task

Actions: for example action unstack(C, B), with cost 1

Preconditions: on(C, B), clear(C),
handempty()

Add effects: holding(C), clear(B)

Delete effects: on(C, B), clear(C),
handempty()

Optimizations for the Additive Heuristic in Fast Downward 4

Background Optimization Idea Implementation Experiments Conclusion

Atom

To enable switch between ground & lifted representation of planning task

Definition (Atom)

Atom P(〈t1, ..., tn〉) with

P n-ary predicate symbol

〈t1, ..., tn〉 tuple, where t1, ..., tn objects or variables

Ground atom:

All variables replaced by objects

Variable mapping σ : V 7→ O

Ground atoms similar to state variables

Optimizations for the Additive Heuristic in Fast Downward 5

Background Optimization Idea Implementation Experiments Conclusion

Lifted Planning Task

Lifted actions: for example action unstack(x, y), with cost 1

Preconditions: on(x, y), clear(x),
handempty()

Add effects: holding(x), clear(y)

Delete effects: on(x, y), clear(x),
handempty()

Optimizations for the Additive Heuristic in Fast Downward 6

Background Optimization Idea Implementation Experiments Conclusion

Planning

Find sequence of actions (plan) from initial state to a goal state of planning task

Use search algorithms

Search algorithms can use heuristics to enhance efficiency

Optimizations for the Additive Heuristic in Fast Downward 7

Background Optimization Idea Implementation Experiments Conclusion

Heuristics

Guide the search

Provide estimates of distance from states to nearest goal state

Additive heuristic hadd

Optimizations for the Additive Heuristic in Fast Downward 8

Background Optimization Idea Implementation Experiments Conclusion

Weighted Datalog Program

Definition (Weighted Datalog Program)

D = 〈F ,R〉 with

F facts (set of ground atoms)

R weighted rules

Consist of atoms φi and have form φ0 ← φ1, ..., φm, for m ≥ 0
Weight w(r) of rule r ∈ R

Optimizations for the Additive Heuristic in Fast Downward 9

Background Optimization Idea Implementation Experiments Conclusion

Reachable Atoms

Calculate reachable atoms of planning task for grounding of actions

Use Datalog program for planning task and initial state

Facts: ground atoms of initial state

Rules:

For goal: goal-reachable← goal atoms, weight 0

For each action a:

a-applicable← precondition atoms, weight is cost(a)

For each effect: effect atom ← a-applicable, weight 0

Optimizations for the Additive Heuristic in Fast Downward 10

Background Optimization Idea Implementation Experiments Conclusion

Construction of Rules

Calculate values of hadd using weighted Datalog program (in lifted planning)

From paper ”Delete-relaxation heuristics for lifted classical planning” by A. B.
Corrêa, G. Francès, F. Pommerening and M. Helmert, 2021

Special construction of rules for efficient calculation:

1. Action Predicate Removal
2. Rule Splitting
3. Duplicate Rule Removal

Optimizations for the Additive Heuristic in Fast Downward 11

Background Optimization Idea Implementation Experiments Conclusion

Action Predicate Removal

Remove all a-applicable atoms

For each action:

Take rule with preconditions a-applicable← precondition atoms

For each rule effect atom ← a-applicable set new rule:

effect atom← precondition atoms,

where weight is cost of action

Optimizations for the Additive Heuristic in Fast Downward 12

Background Optimization Idea Implementation Experiments Conclusion

Rule Splitting

Already in Fast Downward, here adapted for weighted rules

Split rules in smaller rules

New auxiliary atoms

For each rule:

One ”root” rule with weight of original rule
Other rules with weight 0

Optimizations for the Additive Heuristic in Fast Downward 13

Background Optimization Idea Implementation Experiments Conclusion

Duplicate Rule Removal

Remove rules only different due to naming of variables

Considers rules that define auxiliary atom

Keep only one such rule

Weights not affected

Optimizations for the Additive Heuristic in Fast Downward 14

Background Optimization Idea Implementation Experiments Conclusion

Optimization Idea

Reformulate unary operators, i.e. operators with one effect

Use weighted Datalog program with optimized rules instead of actions

Reduce number of unary operators

Could lead to more efficient computation of values of hadd

Optimizations for the Additive Heuristic in Fast Downward 15

Background Optimization Idea Implementation Experiments Conclusion

Example

Action a[∆] with

pre(a[∆]) = {P(x),Q(x , y),R(z)}
add(a[∆]) = {A(x),B(y)}
del(a[∆]) = ∅

cost(a[∆]) = 1

∆ = {x , y , z}

O = {o1, o2, o3} set of objects

Unary operator: consists of one ground atom from add list & all ground atoms from
precondition list

If each variable of ∆ can be mapped to each object of O:

|O||∆| · |add(a[∆])| = 33 · 2 = 54 unary operators after grounding

Optimizations for the Additive Heuristic in Fast Downward 16

Background Optimization Idea Implementation Experiments Conclusion

Example

Rules corresponding to action a[∆] (without rule construction approaches):

A(x)← a-applicable weight 0

B(y)← a-applicable weight 0

a-applicable← P(x),Q(x , y),R(z) weight 1

With action predicate removal:

A(x)← P(x),Q(x , y),R(z) weight 1

B(y)← P(x),Q(x , y),R(z) weight 1

Optimizations for the Additive Heuristic in Fast Downward 17

Background Optimization Idea Implementation Experiments Conclusion

Example

Rules corresponding to action a[∆] (without rule construction approaches):

A(x)← a-applicable weight 0

B(y)← a-applicable weight 0

a-applicable← P(x),Q(x , y),R(z) weight 1

With action predicate removal:

A(x)← P(x),Q(x , y),R(z) weight 1

B(y)← P(x),Q(x , y),R(z) weight 1

Optimizations for the Additive Heuristic in Fast Downward 17

Background Optimization Idea Implementation Experiments Conclusion

Example

A(x)← P(x),Q(x , y),R(z) weight 1

B(y)← P(x),Q(x , y),R(z) weight 1

With rule splitting:
A(x)← θ0(x), θ1() weight 1

B(y)← θ4(y), θ5() weight 1

θ0(x)← θ2(x),P(x) weight 0

θ2(x)← Q(x , y) weight 0

θ1()← R(z) weight 0

θ4(y)← Q(x , y),P(x) weight 0

θ5()← R(z) weight 0

No atom with θ3: created & removed again

Optimizations for the Additive Heuristic in Fast Downward 18

Background Optimization Idea Implementation Experiments Conclusion

Example

A(x)← P(x),Q(x , y),R(z) weight 1

B(y)← P(x),Q(x , y),R(z) weight 1

With rule splitting:
A(x)← θ0(x), θ1() weight 1

B(y)← θ4(y), θ5() weight 1

θ0(x)← θ2(x),P(x) weight 0

θ2(x)← Q(x , y) weight 0

θ1()← R(z) weight 0

θ4(y)← Q(x , y),P(x) weight 0

θ5()← R(z) weight 0

No atom with θ3: created & removed again

Optimizations for the Additive Heuristic in Fast Downward 18

Background Optimization Idea Implementation Experiments Conclusion

Example

A(x)← P(x),Q(x , y),R(z) weight 1

B(y)← P(x),Q(x , y),R(z) weight 1

With rule splitting:
A(x)← θ0(x), θ1() weight 1

B(y)← θ4(y), θ5() weight 1

θ0(x)← θ2(x),P(x) weight 0

θ2(x)← Q(x , y) weight 0

θ1()← R(z) weight 0

θ4(y)← Q(x , y),P(x) weight 0

θ5()← R(z) weight 0

No atom with θ3: created & removed again

Optimizations for the Additive Heuristic in Fast Downward 19

Background Optimization Idea Implementation Experiments Conclusion

Example

With duplicate rule removal:

A(x)← θ0(x), θ1() weight 1

B(y)← θ4(y), θ1() weight 1

θ0(x)← θ2(x),P(x) weight 0

θ2(x)← Q(x , y) weight 0

θ1()← R(z) weight 0

θ4(y)← Q(x , y),P(x) weight 0

Four rules depend on one variable & two rules depend on two variables

If each variable can be mapped to any object of O = {o1, o2, o3}:

31 · 4 + 32 · 2 = 30 unary operators after grounding (instead of 54 with actions)

Optimizations for the Additive Heuristic in Fast Downward 20

Background Optimization Idea Implementation Experiments Conclusion

Implementation (in Translate Component)

Translate component: responsible for translating planning task from PDDL
representation into FDR representation, grounding of planning task

Changes:

Build second Datalog program (weighted):

Use existing code from paper for construction of rules, only slightly modified

Remove duplicate preconditions in actions

Allow rules with no preconditions and only effect

Compute reachable atoms of weighted Datalog program

Optimizations for the Additive Heuristic in Fast Downward 21

Background Optimization Idea Implementation Experiments Conclusion

Implementation (in Translate Component)

Changes (continued):

New grounding algorithm for rules:

Use reachable atoms

For each rule: work on precondition list of rule, then on effect, build variable
mappings

Consider atoms removed by translator:

Atom in initial state ⇒ atom true in every reachable state ⇒ ignore atom

Atom not in initial state ⇒ atom false in every reachable state ⇒ remove operator

Write unary operators (ground rules) to new output file

Optimizations for the Additive Heuristic in Fast Downward 22

Background Optimization Idea Implementation Experiments Conclusion

Implementation (in Search Component)

Search component: responsible for finding a plan for ground planning task

Changes:

Constructor of class RelaxationHeuristic:

Parse ground rules from new output file

Use new structs and vectors

Change build unary operators function:

Use parsed ground rules as unary operators

Remember new propositions in own vector (propositions similar to state variables)

Check proposition ID and set it with new function for new propositions

Optimizations for the Additive Heuristic in Fast Downward 23

Background Optimization Idea Implementation Experiments Conclusion

Experiments

New Original

Coverage – Sum 1’030 1’030
Unary operators – Sum 12’112’234 42’903’919

Search algorithm: eager best-first search

hadd

Without preferred operators

Optimizations for the Additive Heuristic in Fast Downward 24

Background Optimization Idea Implementation Experiments Conclusion

Experiments

10−2 100 102

10−2

100

102

fa
il
ed

failed

New (lower for 74 tasks)

O
ri

g
in

al
(l

ow
er

fo
r

9
1

4
ta

sk
s)

Planner Time

10−2 100 102

10−2

100

102

fa
il
ed

failed

New (lower for 198 tasks)

O
ri

g
in

al
(l

ow
er

fo
r

5
3

5
ta

sk
s)

Search Time

Optimizations for the Additive Heuristic in Fast Downward 25

Background Optimization Idea Implementation Experiments Conclusion

Experiments

Coverage per domain (where different value of coverage):

New Original
driverlog (20) 18 19
logistics98 (35) 18 27
parcprinter-08-strips (30) 23 24
parking-sat11-strips (20) 20 18
parking-sat14-strips (20) 20 5
pipesworld-notankage (50) 26 27
pipesworld-tankage (50) 20 21
rovers (40) 25 29
satellite (36) 34 30
storage (30) 16 17
thoughtful-sat14-strips (20) 12 15

Possibly beneficial domain properties: less preconditions, more effects and only few
variables in actions ⇒ many variables omitted & many duplicate rules removed

Optimizations for the Additive Heuristic in Fast Downward 26

Background Optimization Idea Implementation Experiments Conclusion

Conclusion

Optimizations to reduce number of unary operators used to calculate values of hadd

Use weighted Datalog program with specially constructed rules

Algorithm for grounding the rules

Ground rules as unary operators

Number of unary operators significantly reduced

Search time generally not improved

For specific domains: reduced search time & in some cases even planner time

Optimizations for the Additive Heuristic in Fast Downward 27

Background Optimization Idea Implementation Experiments Conclusion

Future work

Get mapping between ground rules & FDR operators used for the search

Store transformations of Datalog program with a similar approach to annotated
Datalog programs as presented in ”The FF heuristic for lifted classical planning” by
A. B. Corrêa, F. Pommerening, M. Helmert and G. Francès, 2022

⇒ To get preferred operators for efficient search

⇒ To support domains with cost depending on parameter

⇒ To allow domains with negative preconditions

Optimizations for the Additive Heuristic in Fast Downward 28

	Background
	Optimization Idea
	Implementation
	Experiments
	Conclusion

