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Find sequence of operators to solve a given planning problem

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Find sequence of operators to solve a given planning problem

Initial state

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Find sequence of operators to solve a given planning problem

Initial state → operator

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Find sequence of operators to solve a given planning problem

Initial state → operator → successor state → …

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Find sequence of operators to solve a given planning problem

Initial state → operator → successor state → … → goal

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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FDR Planning Task

Π = (V, s
0
, s*, O)

● V: set of state variables with finite domain

● s
0
: initial state as a set over V

● s*: set of goals as partial states

● O: set of operators with:
● pre(o): preconditions as set a of facts

● eff(o): effect of the operator

● cost(o): cost

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Operators:
● move_left
● move_right
● move_up
● move_down

move_left:
● Precondition: not in outer left column

● Effect: switch X with tile on left

● Cost: 1

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html
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Initial state
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move_left

Initial state
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move_left

Initial state successor state
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move_left ...

Initial state successor state
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move_left ...

Initial state successor state

goal state
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op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)
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Pre03
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Pre01
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op01

Pre01
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Pre02
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Pre03
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Pre01
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op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
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op01



Naive Successor Generator

University of Basel 20

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)

op01
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Fast Downward Successor Generator
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V
0
 = {0, 1}

v
1
 = {0, 1} 0v

0
1 T

root

v
1 0 1 T 0 1 T 0 1 T
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0
1 T

root
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

Counter: [2, 3, 3]

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op03 op03

op03

Precondition of:
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
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op02 op03 op03

op03

Precondition of:

→ Counter: [1, 2, 2]
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
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State:
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op03

Precondition of:

→ Counter: [0, 2, 1]
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
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Pre03
(2,1)

Counter: [0, 2, 1]

State:
(0, 0, 1)
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({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op02 op03

op03

Precondition of:

→ Counter: [0, 1, 0]
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PSVN Successor Generator
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Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash



PSVN Successor Generator
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Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash

Idea:
● Choose variable v, which has not been assigned

● For each value in D
v
 a outgoing edge

● For each outgoing edge, new vertex, with values from parent

● Apply value to plausible operators and split (sat/unsat/plaus)
and remove satisfied precons

● Remove variable assignments which aren’t referenced anymore

● Check if vertex exists
● If yes: edge goes to this one, stop recursion
● If no: create new vertex and continue

● If DAG too big, restart and split operators in half
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Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variables Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: -1
Hash: ####
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: -1
Hash: ####

0
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####



PSVN Successor Generator
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Create Children



PSVN Successor Generator

University of Basel 39

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Edit Children
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

0 1

Update Vars
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [0, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Update Ops
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Update Ops
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Create Hash &
Check for Existence &
New Choice
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: [1,2]
Vars: [0, 0]

Sat: []
Choice: 1

Hash: ####

Plaus: [1,2]
Vars: [0, 1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, 0]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, 1]

Sat: []
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1
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Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1
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Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1
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Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1
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Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1
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SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨
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SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems
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SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems

Update to DPLL:
● If only one literal left, we know 

how to assign that variable (unit 
propagation)

● If clause is satisfied, it stays 
that way
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SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems

Update to DPLL:
● If only one literal left, we know 

how to assign that variable (unit 
propagation)

● If clause is satisfied, it stays 
that way

Improving DPLL → 2 Watched Literals:
● Only want to know if one literal left for 

unit propagation
● Watch two literals:

● If one satisfied, then clause is satisfied
● If one unsatisfied, choose new 

unassigned to watch
● If not possible → unit propagation
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Adaption:
● All preconditions must be satisfied

● When checking state:
● For each variable assignment in the state:

● Check each operator watching that variable assignment
● If any precondition unsatisfied, watch unsatisfied 

precondition
● If all preconditions satisfied, operator is applicable
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:
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op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:
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1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.
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Evaluation – How was tested
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● A* with blind search

● 1827 different planning tasks
from 65 different domains



Evaluation - Results
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Summary 10’000 limit Fast Downward PSVN Marking Watched 
Literals

Naive

Coverage 254 161 225 227 255

Out Of Memory 0 1’393 0 0 0

Out Of Time 0 0 0 0 0

SG Init Time 0.08 325.98 0.58 0.02 0.01

GAO Time 3.27 3.67 10.77 35.86 30.55

GAO Mean 0.0014 0.0015 0.0045 0.0148 0.0126

Total Time - Mean 0.03 0.34 0.04 0.04 0.04



Evaluation – Conclusion
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● No precomputation → faster init time, less out of memory

● A lot precomputation → faster GAO time, less out of time

● Trade off between faster initialization and faster GAO

● Choose correct successor generator for planning task!
 



Thank you
for your attention.

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

