
Implementing and 
Evaluating Successor 
Generators in the Fast 
Downward Planning System
Bachelor Thesis

Yannick Zutter, 09.10.2020



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 2



Introduction – What is Planning?

University of Basel 3

Find sequence of operators to solve a given planning problem

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 4

Find sequence of operators to solve a given planning problem

Initial state

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 5

Find sequence of operators to solve a given planning problem

Initial state → operator

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 6

Find sequence of operators to solve a given planning problem

Initial state → operator → successor state → …

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 7

Find sequence of operators to solve a given planning problem

Initial state → operator → successor state → … → goal

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 8

FDR Planning Task

Π = (V, s
0
, s*, O)

● V: set of state variables with finite domain

● s
0
: initial state as a set over V

● s*: set of goals as partial states

● O: set of operators with:
● pre(o): preconditions as set a of facts

● eff(o): effect of the operator

● cost(o): cost

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 9

Operators:
● move_left
● move_right
● move_up
● move_down

move_left:
● Precondition: not in outer left column

● Effect: switch X with tile on left

● Cost: 1

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html (07.10.20)

https://www.jameswatkins.me/puzzles/2019/06/30/understanding-the-rubiks-cube.html


Introduction – What is Planning?

University of Basel 10

Initial state



Introduction – What is Planning?

University of Basel 11

move_left

Initial state



Introduction – What is Planning?

University of Basel 12

move_left

Initial state successor state



Introduction – What is Planning?

University of Basel 13

move_left ...

Initial state successor state



Introduction – What is Planning?

University of Basel 14

move_left ...

Initial state successor state

goal state



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 15



Naive Successor Generator

University of Basel 16

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)



Naive Successor Generator

University of Basel 17

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)



Naive Successor Generator

University of Basel 18

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)



Naive Successor Generator

University of Basel 19

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)

op01



Naive Successor Generator

University of Basel 20

op01

Pre01
(0,0)

Pre02
(1,2)

Pre03
(4,2)

op02

Pre01
(1,1)

Pre02
(4,2)

State:
 (0, 2, 0, 2, 2)

op01



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 21



Fast Downward Successor Generator

University of Basel 22

V
0
 = {0, 1}

v
1
 = {0, 1} 0v

0
1 T

root

v
1 0 1 T 0 1 T 0 1 T



Fast Downward Successor Generator

University of Basel 23

V
0
 = {0, 1}

v
1
 = {0, 1} 0v

0
1 T

root

v
1 0 1 T 0 1 T 0 1 T

State:
(1,1)



Fast Downward Successor Generator

University of Basel 24

V
0
 = {0, 1}

v
1
 = {0, 1} 0v

0
1 T

root

v
1 0 1 T 0 1 T 0 1 T

State:
(1,1)



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 25



Marking Successor Generator

University of Basel 26

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)



Marking Successor Generator

University of Basel 27

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

Counter: [2, 3, 3]

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op03 op03

op03

Precondition of:



Marking Successor Generator

University of Basel 28

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

Counter: [2, 3, 3]

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op03 op03

op03

Precondition of:

→ Counter: [1, 2, 2]



Marking Successor Generator

University of Basel 29

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

Counter: [1, 2, 2]

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op03 op03

op03

Precondition of:

→ Counter: [0, 2, 1]



Marking Successor Generator

University of Basel 30

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

Counter: [0, 2, 1]

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op01 op02 op02

op02 op02 op03

op03

Precondition of:

→ Counter: [0, 1, 0]



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 31



PSVN Successor Generator

University of Basel 32

Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash



PSVN Successor Generator

University of Basel 33

Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash

Idea:
● Choose variable v, which has not been assigned

● For each value in D
v
 a outgoing edge

● For each outgoing edge, new vertex, with values from parent

● Apply value to plausible operators and split (sat/unsat/plaus)
and remove satisfied precons

● Remove variable assignments which aren’t referenced anymore

● Check if vertex exists
● If yes: edge goes to this one, stop recursion
● If no: create new vertex and continue

● If DAG too big, restart and split operators in half



PSVN Successor Generator

University of Basel 34

Vertex:
● Plausible operators
● Variable assignments
● Satisfied operators
● Children
● Choice
● Hash

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})



PSVN Successor Generator

University of Basel 35

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variables Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: -1
Hash: ####



PSVN Successor Generator

University of Basel 36

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: -1
Hash: ####

0



PSVN Successor Generator

University of Basel 37

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####



PSVN Successor Generator

University of Basel 38

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Create Children



PSVN Successor Generator

University of Basel 39

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Edit Children



PSVN Successor Generator

University of Basel 40

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

0 1

Update Vars



PSVN Successor Generator

University of Basel 41

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [0, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2,3,4]
Vars: [1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Update Ops



PSVN Successor Generator

University of Basel 42

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 0

Hash: ####

v=1v=0

Update Ops



PSVN Successor Generator

University of Basel 43

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Create Hash &
Check for Existence &
New Choice



PSVN Successor Generator

University of Basel 44

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1



PSVN Successor Generator

University of Basel 45

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: [1,2]
Vars: [0, 0]

Sat: []
Choice: 1

Hash: ####

Plaus: [1,2]
Vars: [0, 1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, 0]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, 1]

Sat: []
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1



PSVN Successor Generator

University of Basel 46

Op01: {(0,0), (1,1)}

Op02: {(0,0), (1,0)}

Op03: {(0,1), (1,0)}

Op04: {(0,1), (1,1)}

Variable Domains:
({0,1}, {0,1})

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

v=0 v=1 v=0 v=1



PSVN Successor Generator

University of Basel 47

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1



PSVN Successor Generator

University of Basel 48

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1



PSVN Successor Generator

University of Basel 49

Plaus: [1,2,3,4]
Vars: [-1, -1]

Sat: []
Choice: 0

Hash: ####

Plaus: [1,2]
Vars: [0, -1]

Sat: []
Choice: 1

Hash: ####

Plaus: [3,4]
Vars: [1, -1]

Sat: []
Choice: 1

Hash: ####

v=1v=0

Plaus: []
Vars: [0, 0]

Sat: [2]
Choice: 1

Hash: ####

Plaus: []
Vars: [0, 1]

Sat: [1]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 0]

Sat: [3]
Choice: 1

Hash: ####

Plaus: []
Vars: [1, 1]

Sat: [4]
Choice: 1

Hash: ####

State:
(0, 0)

v=0 v=1 v=0 v=1



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 50



Watched Literals Successor Generator

University of Basel 51

SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨



Watched Literals Successor Generator

University of Basel 52

SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems



Watched Literals Successor Generator

University of Basel 53

SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems

Update to DPLL:
● If only one literal left, we know 

how to assign that variable (unit 
propagation)

● If clause is satisfied, it stays 
that way



Watched Literals Successor Generator

University of Basel 54

SAT Solving:
● (a c) (¬b a) (¬a c d)∨ ∧ ∨ ∧ ∨ ∨

Backtracking algorithm:
● Assign unassigned literal
● Check if satisfied
● If not, assign other value and 

check again
→ creates two sub problems

Update to DPLL:
● If only one literal left, we know 

how to assign that variable (unit 
propagation)

● If clause is satisfied, it stays 
that way

Improving DPLL → 2 Watched Literals:
● Only want to know if one literal left for 

unit propagation
● Watch two literals:

● If one satisfied, then clause is satisfied
● If one unsatisfied, choose new 

unassigned to watch
● If not possible → unit propagation



Watched Literals Successor Generator

University of Basel 55

Adaption:
● All preconditions must be satisfied

● When checking state:
● For each variable assignment in the state:

● Check each operator watching that variable assignment
● If any precondition unsatisfied, watch unsatisfied 

precondition
● If all preconditions satisfied, operator is applicable



Watched Literals Successor Generator

University of Basel 56

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:



Watched Literals Successor Generator

University of Basel 57

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:



Watched Literals Successor Generator

University of Basel 58

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:

applicable



Watched Literals Successor Generator

University of Basel 59

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01

op02

op03

Watcher:

Pre02 !!



Watched Literals Successor Generator

University of Basel 60

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op02

op03

Watcher:



Watched Literals Successor Generator

University of Basel 61

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op02

op03

Watcher:

applicable



Watched Literals Successor Generator

University of Basel 62

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

Watcher:
(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op02

op03



Watched Literals Successor Generator

University of Basel 63

op01 op02 op03

Pre01
(0,0)

Pre02
(1,0)

Pre01
(0,0)

Pre02
(1,1)

Pre03
(2,1)

Pre01
(0,0)

Pre02
(1,0)

Pre03
(2,1)

State:
(0, 0, 1)

Variable Domains:
({0,1}, {0,1}, {0,1})

Watcher:
(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

op01 op02

op03



1 Introduction – What is Planning

2 The Successor Generators – Naive

3 The Successor Generators – Fast Downward

4 The Successor Generators – Marking

5 The Successor Generators – PSVN

6 The Successor Generators – Watched Literals

7 Evaluation

Agenda.

University of Basel 64



Evaluation – How was tested

University of Basel 65

● A* with blind search

● 1827 different planning tasks
from 65 different domains



Evaluation - Results

University of Basel 66

Summary 10’000 limit Fast Downward PSVN Marking Watched 
Literals

Naive

Coverage 254 161 225 227 255

Out Of Memory 0 1’393 0 0 0

Out Of Time 0 0 0 0 0

SG Init Time 0.08 325.98 0.58 0.02 0.01

GAO Time 3.27 3.67 10.77 35.86 30.55

GAO Mean 0.0014 0.0015 0.0045 0.0148 0.0126

Total Time - Mean 0.03 0.34 0.04 0.04 0.04



Evaluation – Conclusion

University of Basel 67

● No precomputation → faster init time, less out of memory

● A lot precomputation → faster GAO time, less out of time

● Trade off between faster initialization and faster GAO

● Choose correct successor generator for planning task!
 



Thank you
for your attention.

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

