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Abstract Directed model checking is a well-established
approach for detecting error states in concurrent systems. A
popular variant to find shortest error traces is to apply the
A* search algorithm with distance heuristics that never over-
estimate the real error distance. An important class of such
distance heuristics is the class of pattern database heuristics.
Pattern database heuristics are built on abstractions of the sys-
tem under consideration. In this paper, we propose downward
pattern refinement, a systematic approach for the construc-
tion of pattern database heuristics for concurrent systems of
timed automata. First, we propose a general framework for
pattern databases in the context of timed automata and show
that desirable theoretical properties hold for the resulting pat-
tern database. Afterward, we formally define a concept to
measure the accuracy of abstractions. Based on this concept,
we propose an algorithm for computing succinct abstractions
that are still accurate to produce informed pattern databases.
We evaluate our approach on large and complex industrial
problems. The experiments show the practical potential of
the resulting pattern database heuristic.

Keywords Directed model checking - Heuristic search -
Pattern databases - Bug finding - Timed Automata

1 Introduction

Model checking [4] is an automated approach for the ver-
ification of concurrent systems. For a given mathematical
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model M of a system and a given property ¢, the objec-
tive of model checking is to prove that M satisfies ¢, i.e.,
M = ¢. To prove this, common model checking algorithms
perform a search in the state space that is induced by M, and
check whether the induced state space satisfies ¢.

Complementary to proving that a mathematical model
satisfies a property, an important practical aspect of model
checking is bug finding, i.e., to detect reachable error states
in faulty systems where M = ¢. This is important because
during the development of systems, bugs do often occur, and
therefore, effective and efficient approaches for bug finding
are required. In addition, to be able to debug a system effec-
tively, it is important to have short or preferably shortest
possible error traces because short error traces are easier to
understand than longer ones.

Directed model checking is a variant of model check-
ing that is specifically optimized to find short error traces
in faulty systems. Directed model checking has recently
found much attention in different variants and contexts
[9,12,14,19,22,23,30,32,34-37]. For a given model M of a
system, the main idea is to focus the search on those parts of
the state space of M that appear to be promising to contain
a reachable error state. The required information to guide
the search accordingly is obtained from a distance heuris-
tic. For each encountered state, distance heuristics estimate
the distance to a nearest error state, where states with lower
estimated error distance are preferably explored. Distance
heuristics are usually based on abstractions of the original
system and computed fully automatically. As shorter error
traces are easier to understand than longer ones, ultimately
shortest possible error traces are desired to effectively debug
the system. Shortest possible error traces can be found with
admissible distance heuristics, i. €., heuristics that never over-
estimate the real error distance, together with the A* search
algorithm [15,16].
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An important class of admissible distance heuristics is
the class of pattern database heuristics. Pattern databases
(PDBs) have originally been introduced in the area of Artifi-
cial Intelligence [5, 10]. More recently, PDBs have also been
applied for directed model checking [23,30]. To compute a
PDB for a given system, a subset of the automata and vari-
ables of the original system (the so-called pattern) is selected,
which determines a corresponding abstraction of the original
system. The resulting PDB is defined as a data structure that
contains the abstract state space of this abstraction together
with the abstract error distances. Pattern databases can be
used as a distance heuristic by estimating the error distance
for a concrete state with the abstract error distance of the
corresponding abstract state in the PDB. Obviously, the most
crucial part in the design of a pattern database heuristic is the
choice of the pattern, which determines the heuristic’s behav-
ior and therefore the overall quality of the resulting heuristic.
Ultimately, one seeks for patterns that are as small as possible
(to be able to handle large systems) and that yield abstrac-
tions that are as “similar” to the original system as possible
to appropriately reflect the original system behavior.

In recent years, directed model checking has particularly
found increasing attention for finding bugs in concurrent sys-
tems of timed automata. The theory of timed automata [1]
provides a formalism to model timed systems, which fre-
quently occur in practice as embedded systems. In particu-
lar, timed systems often represent safety critical applications
such as airbags or traffic light control systems. Obviously,
especially for such safety critical systems, automated tech-
niques are desired that help the engineer to systematically
debug the system. However, model checking and specifically
directed model checking becomes more difficult for such
systems because of the clock variables that are real-valued
and obey a special semantics. Although it is well-known that
reachability is decidable for a certain class of timed automata
(e.g., [3]), clocks generally cause an additional exponen-
tial blow-up of the state space that needs to be effectively
addressed in order to make model checking approaches scal-
able for practically relevant timed automata systems.

In this paper, we present downward pattern refinement, a
systematic approach to the pattern selection problem for con-
current systems of timed automata. We first present a general
framework for pattern database heuristics in the context of
timed automata, and particularly show that the resulting pat-
tern database heuristic is consistent, which is a stronger prop-
erty than admissibility and offers desirable properties that
simplify the search algorithm [28]. Afterward, we present
our downward pattern refinement approach as a mechanism
for the pattern selection problem. The presentation of down-
ward pattern refinement consists of two parts. In the first
part, we present the underlying theory by identifying suit-
able criteria to estimate the quality of abstractions. For this
purpose, we develop suitable criteria to estimate the similar-
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ity of systems. In the second part, based on these criteria, we
present a pattern selection algorithm based on successively
abstracting the original system as long as the resulting system
remains similar according to these criteria (i.e., as long as
only little spurious behavior is introduced). We have imple-
mented downward pattern refinement and the corresponding
architecture for pattern databases into our model checking
tool MCTA [25,36]. We demonstrate that downward pattern
refinement can result in small patterns that still lead to very
informed pattern database heuristics. This yields a powerful
approach that is able to handle large problems that could not
be solved optimally before. In particular, we show that the
resulting pattern database heuristic recognizes many dead
end states. Correctly identifying dead end states is useful to
reduce the search effort significantly, since such states can be
excluded from the search process without losing complete-
ness. This even allows us to efficiently verify correct systems
with abstraction-based directed model checking techniques.

Let us have a look at the relationship of directed model
checking with abstraction-based distance heuristics to counter-
example guided abstraction refinement (CEGAR). In con-
trast to CEGAR (which aims at computing accurate abstrac-
tions for proving or refuting a property), distance heuristics
like PDBs can be computed based on abstractions that are not
(yet) fine enough to entirely prove or refute the property—this
is because for directed model checking, abstractions are used
as the basis for a distance heuristic to guide the search. Accu-
rate abstractions are expected to yield accurate search guid-
ance, whereas coarse abstractions will possibly lead to rather
uninformed search behavior. Overall, there is a relationship
between the accuracy of the abstraction and the search behav-
ior with the resulting distance heuristic. We will come back
to this point later.

The remainder of the paper is organized as follows.
In Sect. 2, we introduce the necessary background that
is needed for this work, including the concepts of timed
automata, directed model checking and pattern databases.
Section 3 provides a generic framework for pattern data-
bases when applied to timed automata. Based on these
results, we present the theoretical basis for downward pat-
tern refinement in Sect. 4. Based on this basis, we propose
a corresponding pattern selection algorithm in Sect. 5. Our
approach is evaluated within our MCTA model checker on
large real-time benchmarks that stem from an industrial case
study. The results show that our approach is able to outper-
form related approaches, including the state-of-the-art tool
UPPAAL [2,26]. Finally, we conclude the paper and give a
short outlook on future work.

2 Preliminaries

We present the preliminaries that are needed for this work.
These include the computational model in Sect. 2.1 and a
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detailed introduction to directed model checking in Sect. 2.2.
Furthermore, we describe the general approach for pattern
database heuristics in Sect. 2.3.

2.1 Notation

Our computational model is based on the model of timed
automata as proposed by Behrmann et al. [2]. We focus on a
subclass thereof that is sufficiently rich to capture the central
ideas of this paper. In order to define our model, we first
need some more terminology. Let X be a finite set of clocks,
V be a finite set of bounded integer variables, and ¥ be a
finite set of synchronization labels that particularly contains
a special internal void label 7. For n € N and ~e {<, <,
=, >, >}, let IntGrd be the set of conjunctions of integer
constraints over V of the form v >< n with v € V, and let
ClockCstr be the set of clock constraints of the form x 0< n
with x € X. Furthermore, let IntEff be the set of integer
effects over V, where an integer effect is defined as a set of
integer assignments of the form v := m withv € V andm €
N. Finally, Reset € X is defined as a subset of the clocks.
Based on these notations, we define a network M of timed
automata as a set of timed automata Ay, ..., A,, where for
eachi € {1, ..., n}, the timed automaton A; = (L;, I;, E;)
consists of a finite set of locations L;, an invariant I; : L; —
2ClockCsir “and a set of edges E;. The invariant represents a
(possibly empty) set of clock constraints of the form x < n
for clocks x € X and integer values n € N. Furthermore, the
set of edges is defined as E; € L; x IntGrd x ClockCstr x
Y. x IntEff x Reset x L;.

The semantics of M is defined as follows. As the domain
of clocks is the set of the nonnegative real numbers, the state
space of networks of timed automata is infinite. However,
reachability can be decided because there are finite partition-
ings of the infinite state space that are sound and complete [1].
An efficient partitioning in practice is based on zones. A zone
is a symbolic representation of clock values based on clock
constraints. The corresponding state space is also called the
zone graph of the system. In the following, we always refer
to this symbolic setting. We define a global symbolic system
state s (or state for short) of M as a valuation that maps each
automaton 4; to a location [ € L;, together with a valua-
tion that maps each integer variable to an integer value of
its domain, together with a zone, i.e., a conjunction of clock
constraints that express the possible values of the clocks in
s. A global system transition t (or transition for short) con-
sists of an action transition ¢, and a delay transition #4. The
action transition f, is either asynchronous and consists of
one edge that is annotated with the synchronization label t,
or it is synchronous and consists of two edges (from differ-
ent automata) with a common synchronization label that is
different to 7. If more than two edges in different automata
share the same synchronization label # t, there are several

corresponding action transitions, i.e., one action transition
for every pair of edges with this label. The delay transition
tq lets time pass by simultaneously increasing the values of
the clocks. A transition ¢ is applicable in a state s if and only
if s satisfies the location and the integer guards of #,, and the
zone of s satisfies the clock guards of #,. The application of
a transition 7 in a state s results in a state that is obtained by
first applying t, in s, which updates the locations and inte-
ger values. From this intermediate state, the zone of s is first
updated according to the clock guard and the clock resets of
t,. Finally, 7y maximizes the resulting zone while preserving
consistency with the invariants of the destination locations
of t,. We denote the resulting state with s = ¢[s].

We define a directed model checking (DMC) problem
O = (M, V, X, sg, ¢) as atuple that consists of a network of
timed automata M, a set of integer variables V, a set of clock
variables X, the initial state so of @, and a property ¢. A trace
T =t,...,t in O is defined as a sequence of transitions
that are sequentially applicable in a state reachable from the
initial state so. The length ||| of a trace 7 is defined as the
number of transitions in 7, i.e., ||| = n for the example
trace. An error trace is defined as a trace that ends with a
state that violates the property ¢. The error distance d(s) of
a state s is defined as the length of a shortest error trace that
starts in s. When we want to stress that d is a function also of
the system M, we write d(s, M). In this paper, we address
the task to find a shortest possible error trace from sy, i.e., a
trace that starts in sg and ends in a state s, with s, = ¢.

2.2 Directed model checking

Directed model checking is a variant of explicit state model
checking that directs the search toward error states with dis-
tance heuristics. In the context of timed automata, the search
is performed on the zone graph of the system, where states are
defined as described above. Directed model checking influ-
ences the order in which the states are explored until an error
state is found, where error states are defined as states that
violate a given property ¢. We consider the situation where
Q= /\{'(:1 @; is a conjunction. Without loss of generality, we
assume that each ¢; is a location constraint A = [,, which
states that A is in location /, (integer and clock constraints
¢ can be modeled by introducing edges to a new location /,
with ¢ as guard).

Figure 1 shows a basic DMC algorithm. The input of the
algorithm is a network of timed automata M, the initial state
so of M, a property ¢, and a distance heuristic /. In the fol-
lowing, a state is called explored if all its successor states
have already been computed. For the search, we maintain a
priority queue open, which maintains states that have been
created but not yet explored. Furthermore, a closed list main-
tains the explored states in order to avoid exploring cycles
in the state space. In the main loop of the algorithm, the
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1 function dmc(M, so, @, h):

2 open = empty priority queue

3 closed =0

4 open.insert(so, priority(so))

5 while open # () do:

6 s = open.getMinimum()

7 if s [~ ¢ then:

8 generateErrorTrace(s)

9 closed = closed U {s}
10 for each transition ¢ that is applicable in s do:
11 compute s’ = t[s]
12 if 5" & closed then:
13 open.insert(s’, priority(s’))
14 return True

Fig. 1 A basic directed model checking algorithm

method open.get-Minimum() takes a state s with lowest pri-
ority value from open (see below how the priority values are
computed). Afterward, s is explored by first checking if it is
an error state, i.e., if s & @. If this is the case, an error trace
is generated by back-tracing from s (for this, in a practical
implementation, we additionally store for each state s how s
has been reached). If not, i.e., if s |= ¢, the successor state
s" = t[s] is computed for each transition ¢ that is applicable
in 5. If s’ has not already been encountered before, then the
priority value is computed and s’ is inserted into open.

The priority of a state s is defined as A (s) + c(s), where
h(s) € N U {oo} reflects the estimation of the error distance
of s, and c(s) is defined as the length of a shortest trace from
so to s. A distance heuristic & is admissible if h(s) < d(s) for
all states s, i.e., if & never overestimates the real error dis-
tance d. Under the assumption that the distance heuristic / is
consistent, the resulting algorithm is equal to the A* search
algorithm. A distance heuristic £ is defined as consistent if
h(s,) = 0 for all error states s,, and h(s) < h(s") + 1 for all
states s and successor states s’. Consistency implies admis-
sibility, and therefore, we get shortest possible error traces
with consistent distance heuristics and A* [28]. Furthermore,
consistent distance heuristics have the property that once a
state has been explored, it does not have to be reopened in
any case, i.e., A* directly finds shortest possible traces to
all explored states [28]. Overall, consistency is a desirable
property for distance heuristics; we will show that our pat-
tern database heuristic is consistent in Sect. 3.

Fig. 2 Runnin.g c.sxample: a:=0 a
System S consisting of two
timed automata P and Q that
share an integer variable a and a
clock variable x e
p1
P
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2.3 Pattern database heuristics

Let ® = (M, V, X, 50, ¢) be a DMC problem for M =
{A1, ..., Ay}, integer variables V and clock variables X. A
pattern database heuristic for ® is computed prior to directed
model checking as follows. First, a pattern is selected, i.e.,
a subset of automata, integer variables and clock variables.
For a given pattern P € MUV U X, a projection abstraction
M| p of M is computed, where basically only automata and
variables from P are kept. More precisely, given a system M
and a pattern P, the abstraction M| p is computed as follows.
Every automaton .4 € M is replaced by an abstract automa-
ton A’, where A’ is computed as follows. For all integer
variables v ¢ P and for all edges e of A, A’ is computed by
removing all constraints in the guards and all integer assign-
ments in the effect of e where v occurs. Accordingly, for all
clock variables ¢ ¢ P, all clock guards and resets where ¢
occurs are removed. Furthermore, for all locations / in A,
clock constraints of invariants of / for such clock variables
are removed as well. Finally, for all automata A that do not
occur in P, the abstracted automaton A" consists of only
one location that contains self-loop edges, where the self-
loop edges are obtained from the edges e of .4 by abstracting
the guard of e according to the abstraction method described
above, while keeping the effects (i. e., the integer assignments
and clock resets of e are not removed). This ensures that the
resulting abstraction M|p is an overapproximation of M.
To see that this abstraction method for automata is needed
to obtain overapproximations, we provide a small example
in Fig. 2, which will also serve as a running example in the
paper.

The example shows a DMC problem that consists of a
system S with two parallel automata P and Q. Initially, both
automata are in their initial locations p; and g1, respectively
(indicated with an incoming edge in Fig. 2). The error prop-
erty is given by ¢ = (.q4 (indicated with Q’s double circled
location g4 in Fig. 2), i.e., the error states in S are defined as
the set of states where O has reached location g4. All action
transitions of S are asynchronous. We observe that an error
state is reachable by, e. g., first applying the transitions from
q1 to g2 and from g3 to g3 in Q, then setting a to 1 by apply-
ing the corresponding transitions in P, and finally applying
the transition from g3 to g4 in Q. Suppose we abstract away
automaton P. First, we observe that simply throwing P away
would resultin a system (only consisting of Q) where no error

a>0

x>nq3 q4
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states are reachable any more because the variable a could
not be set to a value greater than zero in location g3. In con-
trast, abstracting P as described above yields an automaton
P’ with two self-loops that set the variable a to 0 and to 1,
respectively. We obtain an overapproximation because, e. g.,
a can be set to 1 in P’ already in the initial state.

For the computation of the pattern database, the abstract
state space of M|p is enumerated exhaustively and stored
in a lookup table (the pattern database) together with the
abstract error distances for each abstract state. We define the
pattern database heuristic h” based on P as follows.

Definition 1 (Pattern database heuristic) Consider a DMC
problem ® = (M, V, X, sg, ¢) and a pattern P. The heuris-
tic value hP(s) for a state s is defined as

hp(s) := min{||r || | 7 is error trace in " from slpl,

where ©% = Mlp, VAP, XNP, s|p, ¢|p) consists of the
abstract system of M |p, the abstracted variable sets w.r.t. P,
the abstract initial state s|p (the projection of s onto P), and
the abstract property ¢|p (the projection of ¢ onto P).

We remark that in terms of exact error distances d, we
could equivalently define hP(s)asd(s |p, M|p), namely as
the minimum number of abstract transitions that is needed
to reach an error state from s|p to an abstract error state in
M| p. Overall, Definition 1 provides a general framework
how pattern database heuristics are computed. However, in
the context of timed systems, the question about the projec-
tion from a concrete state s to an abstract state s|p remains.
More precisely, what is the relationship between the zone of
s and s|p? In general, s might correspond to several abstract
states that agree on the discrete parts and have a non-empty
intersection of the zones. We formally define abstract states
s|p for networks of timed automata in Sect. 3.

When designing a pattern database heuristic, the most
important part is the automatic selection of a suitable pattern.
At one extreme end of a spectrum of possible patterns, one
could choose the empty pattern, which yields a pattern data-
base heuristic A7 that is efficiently computable. However, it
is obvious that k" = 0forall states s, and no further guidance
information is obtained. At the other extreme end of the spec-
trum, one could choose the pattern that contains al/l automata
and variables, which yields a pattern database heuristic that is
equal to the real error distance function. However, computing
this distance heuristic is as hard as solving the original DMC
problem, and overall, no performance improvements com-
pared to blind search are obtained either. The challenge we
address in this paper is to automatically find “good” patterns
that are somewhere in between these extreme ends. Ideally, a
pattern should provide a small abstract system such that the
abstract state space can be efficiently enumerated on the one
hand, and retain as much of the original system behavior as
possible on the other hand.

3 Pattern database heuristics for timed automata

In Sect. 2.3, we have introduced the general framework that
is commonly used for the construction of pattern database
heuristics. However, for networks of timed automata, the
problem about the mapping from a state s to a corresponding
abstract state remained. In this section, we provide the for-
mal basis to address and to solve this problem. We remark
that, although this problem is related to other approaches as
well that deal with pattern databases in the context of timed
automata, the formal framework and theoretical results that
we are going to present in this section have not been stated
elsewhere so far.

For a pattern P and a state s, we define the set of abstract
candidate states s* of the abstract system M |p as

ACS(s) = {s" abstract state in M|p | dP(s) = dP(s")
and Zone(s) = Zone(s")},

where dP(s) denotes the discrete part of s, 1. e., a formula that
expresses the valuation of s for the automata locations and
integer variables, and Zone(s) denotes the zone of s. As we
are dealing with timed automata, ACS(s) contains more than
one element in general. Based on this definition, we define a
pattern database heuristic for timed automata as follows.

Definition 2 (Pattern database for timed automata) Let
O = (M,V, X,sp, ¢) be a DMC problem and P be a pat-
tern. The heuristic value AT (s) for a state s is defined as in
Definition 1, where the corresponding abstract state to s is
defined as

slp = argmaxd(s*, M|p),

s*eACS(s)
i.e., s is mapped to the state in ACS(s) that maximizes the
abstract error distance.

In the following, we show that the resulting distance
heuristic 27 (s) is consistent. We remark that this result is
also related to other approaches that deal with pattern data-
bases and timed automata, but has not been stated elsewhere
so far.

Proposition 1 For a DMC problem ©® = (M, V, X, 59, ),
the pattern database heuristic K7 is consistent, i.e.,

WP (s) < hP (s +1

for all states s and transitions t with s’ = t[s], and hP (s¢) =
0 for all states s, = ¢.

Proof First, hP (s.) = 0 for all error states s, holds by def-
inition of abstract error states. In the following, we show
that K7 (s) < hP(¢[s]) + 1 for all states s and transi-
tions ¢ that are applicable in s. Recall that pattern data-
base heuristics are defined over the real error distance
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function d in M|p, i.e., hP(s) = d(s|p, M|p). As
M| p is an overapproximation of M, and by definition of
abstract states s|p, the abstract transition #|p that corre-
sponds to ¢ in M|p is applicable in s|p. As d is consis-
tent, we have d(s|p, M|p) < d(t|pls|pl, M|p)+1 for the
resulting abstract state ¢|p[s|p]. Furthermore, ¢|p[s|p] €
ACS(t[s]) because the discrete part of ¢[s] implies the dis-
crete part of #|p[s|p], and Zone(t[s]) &= Zone(t|p[s|p]).
Therefore, h” (t[s]) > d(t|p[s|p]l, M|p). Overall, we can
observe that the following equation holds for hP: hP(s) =
d(slp. Mlp) < d(t|plslpl. Mlp) + 1 < hP(t[s]) + 1.
This proves the claim.

As a consequence of the above consistency result, states
in the closed list of the algorithm shown in Fig. 1 do not
have to be considered again in any case, as it is guaranteed
that the priority value of states does not have to be updated in
any case either. Furthermore, we will exploit this consistency
result for our downward pattern refinement approach, which
is described in the subsequent sections.

4 Downward pattern refinement: the theory

In this section, we describe the underlying theory that our
pattern selection algorithm is based on. As already outlined,
the selection of the pattern is crucial for the entire approach
because the pattern determines the overall behavior of the
resulting pattern database heuristic. Obviously, there is a
tradeoff: pattern should be as small as possible (because the
abstract state space of the corresponding abstraction has to be
enumerated exhaustively to computed the pattern database),
but should also reflect the original system as accurately as
possible—in other words, the abstraction should be as “sim-
ilar” to the original system as possible. An obvious question
in this context is the question about similarity: What does it
mean for a system to be “similar” to an abstract system? In
the following, we derive precise, but computationally hard
properties of similarity of abstract systems. Furthermore, we
provide ways to efficiently approximate these properties in
practice. These approximations lend themselves to a pattern
selection algorithm, which will be described afterward in
Sect. 5.

4.1 Sufficiently and relatively accurate distance heuristics

We derive a precise measure for abstractions to obtain
informed pattern database heuristics. As already outlined
above, the most important question in this context is the ques-
tion about similarity. At the extreme end of the spectrum of
possible abstractions, one could choose a pattern that leads to
bisimilar abstractions to the original system. This yields a pat-
tern database heuristic 27 that is perfect,i.e., hp(s) =d(s)
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for all states s, where d is the real error distance function.
However, apart from being not feasible in practice, we will
see that this condition is stricter than needed for obtaining
perfect search behavior. It suffices to require hp(s) =d(s)
only for states s that are possibly explored by A*. In this
context, Pearl [28] gives a necessary and sufficient condition
for a state to be explored by A*. Consider a DMC prob-
lem ® = (M, V, X, 50, ¢) and let d(sp) denote the length
of a shortest error trace of @. Recall that the priority func-
tion of A* is priority(s) = h(s) + c(s), where c(s) is the
length of a shortest trace from sg to s. Pearl shows that if
h is consistent, and if priority(s) < d(so), then s is nec-
essarily explored by A*, whereas exploring s implies that
priority(s) < d(sg). This gives rise to the following defini-
tion for a distance heuristic to be sufficiently accurate.

Definition 3 (Sufficiently accurate) Consider a DMC prob-
lem (M, V, X, so, ¢) with shortest error trace length d(so).
Furthermore, let P be a pattern, and 1" be the pattern data-
base heuristic for P. If hP(s) = d(s) for all states s with
nP (s)+c(s) < d(sp), then M|p is called a sufficiently accu-
rate abstraction of M, and h is called sufficiently accurate
distance heuristic for M.

Obviously, the requirement for a distance heuristic nP
to be sufficiently accurate is weaker than the requirement
hp(s) = d(s) for all possible states. However, with the
results given by Pearl, we still know that A* with a PDB
heuristic 47 (which is consistent by Proposition 1) that is
also sufficiently accurate delivers perfect search behavior,
i.e., the same search behavior as that of A* with d. This
justifies Definition 3 and is stated formally in the following
proposition.

Proposition 2 Let (M, V, X, so, ¢) be a DMC problem, h¥
be a distance heuristic that is sufficiently accurate for M.
Then the set of explored states with A* applied with d is
equal to the set of explored states of A* applied with h* .

Proof The claim follows immediately from the results given
by Pearl [28] and from Proposition 1. As hP is consistent
and sufficiently accurate, we know that for every state s that
is possibly explored by A* applied with 2" it holds A7 (s) =
d(s). Therefore, the behavior of A* withd and 1" isidentical.

As an immediate result of the above considerations, it
suffices to have patterns that lead to sufficiently accurate dis-
tance heuristics to obtain perfect search behavior with A*. On
the one hand, this notion is intuitive and reasonable. On the
other hand, it is still of rather theoretical nature. It should be
obvious that a sufficiently accurate heuristic is hard to com-
pute as it relies on exact error distances d; as a side remark,
if d was given, the overall model checking problem would
be already solved, and there would be no need to compute
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a pattern database heuristic. However, Definition 3 also pro-
vides a first intuitive way for approximating this property, an
approximation which is described next.

According to Definition 3, an abstraction M|p is suffi-
ciently accurate if hP (s) = d(s) for all states s that are possi-
bly explored by A*. In this case, the pattern database heuris-
tic based on M|p is sufficiently accurate for M. For the
following considerations, note that hp(s) =d(s|p, M|p),
and therefore, a direct way to approximate this test is to use
a distance heuristic h instead of d. This is reasonable as
distance heuristics are designed exactly for the purpose of
approximating d, and various distance heuristics have been
proposed in the directed model checking literature. Further-
more, as checking all states that are possibly explored by
A* is not feasible either, we check this property only for the
initial system state. This is the only state for which we know
a priori that it is explored by A*. Overall, this gives rise to
the following definition of relatively accurate abstractions.

Definition 4 (Relatively accurate) Consider a DMC prob-
lem ® = (M, V, X, 59, ¢) with system M and initial state
so. Further, let PP be a pattern of M, and let M|p be the cor-
responding abstraction to P with abstract initial state so|p.
Furthermore, let i be a distance heuristic, % (sg, M) the dis-
tance estimate of so € S(M), and i (so|p, M|p) the distance
estimate of so|p € S(M|p). If

h(so, M) = h(solp, Mlp),

then M |p is called the relatively accurate abstraction of M
induced by /# and P.

We observe that the notion of relatively accurate abstrac-
tions is a 2-stage approximation for computing sufficiently
accurate abstractions. This approximation is obtained by
applying a second distance heuristic (instead of the exact
error distance), and additionally, by checking the necessary
distance equation only for the initial state (instead of for all
states that are possibly explored by A*). Obviously, the qual-
ity of this approximation strongly depends on the quality of
the applied distance heuristic /. In the experimental section,
we will see that even this rather simple approximation of
sufficient accuracy can yield informed abstract systems.

Example 1 Consider again the system S in Fig. 2, and
assume that we want to abstract a, i.e., P = {P, O, x}.
Further assume that we want to check if S|p is the relatively
accurate abstraction of S induced by the 4 heuristic [22]
and P. The h” heuristic relaxes the concrete system seman-
tics by assuming that discrete variables become set-valued,
and all values obtained during the computation of a trace are
unified to this set. Constraints are evaluated to true if there
exist corresponding values in these sets. (A more detailed
discussion is provided in Sect. 6.) We observe that

h* (s, S) = h:(solp, SIp) =3

for the example system in Fig. 2, i.e., S|p is the relatively
accurate abstraction of S induced by hL and P: First, we
observe that % (sg, S) = 3 because starting in so and after
applying the two transitions in Q leading from ¢; to g3,
a has been assigned both values 0 and 1, and hence, the
guard in Q’s third transition evaluates to true. Second, we
observe that i%(so|p, S|p) = 3 because after abstracting a,
the 4 value in the resulting abstraction S|p boils down to
the graph distance from g to g4 in Q (as clocks are ignored
by hb).

4.2 Largely informed distance heuristics

As observed in the last section, the notion of relatively accu-
rate abstractions is a 2-stage approximation for computing
sufficiently accurate abstractions. On the positive side, given
that the second distance heuristic is cheap to compute, rel-
atively accurate abstractions can be efficiently computed as
well. However, relatively accurate abstractions in this gen-
eral form have two main drawbacks. First, on a theoretical
level, we do not get any guarantees on the resulting abstrac-
tion because we did not formulate any restrictions to the
second distance heuristic. Second, on a practical level for
timed automata, although there are several distance heuris-
tics “on the market” (as discussed in the introduction), many
of these distance heuristics are not able to properly deal with
clock variables. In more detail, there are powerful distance
heuristics that have been proposed for timed automata that
just ignore the clock variables, and focus on the automata
and integer variables instead [9,22]. However, considering
the definition of relatively accurate abstractions, we observe
that if the applied distance heuristic does ignore clocks, then
abstracting all clocks will always lead to relatively accurate
abstractions. Therefore, relatively accurate abstractions with
respect to clock-ignoring distance heuristics are suited best
for the data (i. e., automaton and integer) part of a given sys-
tem of timed automata, whereas more sophisticated meth-
ods are needed for the clock part. In the following, as a
special case of the generic definition of relatively accurate
abstractions, we formulate a more fine grained criterion to
overcome these limitations. This criterion will turn out to be
more expensive to compute than the general definition, but
the resulting abstractions will satisfy certain quality guaran-
tees.

Let® = (M, V, X, 50, ¢) be a DMC problem and P be a
pattern for &. Furthermore, recall that c(s) denotes the depth
of a state s, and that the following results given by Pearl [28]
hold for A*. If h(s) + c(s) < d(so) for a consistent distance
heuristic 4 and a state s, then s is definitely explored by A*,
whereas if i (s) + c(s) > d(sp), s is definitely not explored.
For states s with h(s) 4 c(s) = d(sp), it depends on the tie-
breaking of the priority queue open if s is explored or not.
This gives rise to the following definition.
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Definition 5 (Largely informed) Let hy and h, distance
functions for a DMC problem ®. Then hj is largely as
informed as hy if {s | hi(s) + c(s) < d(so)} = {s |
ha(s) + c(s) < d(so)}, and {s | ha(s) + c(s) = d(s0)} S
{s [ hi(s) +c(s) = d(s0)}-

According to the above definition, h; is largely as
informed as h if the set of states that is definitely explored
by A* with & is the same as with h;, and only some states
may be explored by /1 and not by /2, depending on the imple-
mentation of the priority queue. From the consistency result
of Proposition 1, it follows that a pattern database heuristic
h" is largely as informed as the real error distance function
d if M|p is the relatively accurate abstraction of M induced
by P and the real error distance function d. This is formally
stated in the following proposition.

Proposition 3 Let ©® = (M, V, X, sg, ¢) be a DMC prob-
lem. Let P be a pattern with P € MUV U X. If M|p is
the relatively accurate abstraction of M induced by P and
the real error distance function d, i. e., if

1P (s0) = d(s0),
then h? is largely as informed as d.

Proof When A* is applied with d, then d(s) + c(s) > d(sp)
for all reachable states s.! We show by induction over c(s)
that the same holds for 7, i.e., k7 (s) 4 c(s) > d(so) for all
reachable states s from sq. For the base case, we have c(s) =
0 for s = sg. By assumption, hP(s0) = d(so), therefore
hP (so) > d(so). For the induction step, consider states s and
s" with ¢(s”) = ¢(s)+ 1. In Proposition 1, we have shown that
hP is consistent, i.e., hp(s) < hp(s’) + 1. It follows that
hP(s") + ¢(s") = hP(s) + c(s). By induction hypothesis,
hP(s) 4+ c(s) > d(sg). Furthermore, {s | d(s) + c(s) =
d(sg)} € {s | hp(s) + c(s) = d(sg)}: Assume there is a
state s with d(s) + c(s) = d(sg), but hp(s) + c(s) > d(sg).
Then h” (s) > d(s), which contradicts that 4" is admissible.

From Proposition 3, it follows that it actually suffices to
have pattern database heuristics that agree with d on the ini-
tial state to get largely as informed distance heuristics as d.
In other words, specializing the (general) 2-stage approxima-
tion of sufficiently accurate abstractions (where we do not get
any guarantees) to a 1-stage approximation where the exact
error distance is used as a distance function yields abstrac-
tions that already guarantee to be largely as informed as the
real error distance function. Let us point out the relationship
of relatively accurate abstractions and largely informed dis-
tance heuristics in more detail. For general relatively accurate

! Note that, nevertheless, given that the tie-breaking criterion of open is
chosen such that states with lower d values are explored first in case of
equal lowest priority values, a shortest possible error trace 7* is found
by A* with a linear number of state explorations in the length of 7*.
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abstractions, we seek abstractions with the property that the
estimated error distance of the initial abstract state is equal to
the estimated error distance in the original system w.r.t. a sec-
ond distance heuristic. This technique is used as an approxi-
mation of sufficiently accurate abstractions, and we do not get
any guarantees for the resulting (relatively accurate) abstrac-
tion. As a special case, we can use the exact error distance
function as a second “distance heuristic”, which guarantees
to obtain largely informed distance heuristics.

Example 2 Consider again the system S in Fig. 2, and
assume that we want to abstract a, i.e., P = {P, Q, x}. We
observe that b7 (so) = 3 as we only need the three transitions
in Q to reach g4 from g in S|p. In contrast, d(sg) = 5, i.e.,
the exact error distance from s is equal to 5 in the original
system S because we additionally need to apply two transi-
tions in P to set a to 1 in order to apply the transition from
g3 t0 g4 in Q. Hence, we cannot conclude with Proposition 3
that 2% is largely as informed as d.

Proposition 3 particularly allows us to deal with clock
variables explicitly because we do no longer rely on clock-
ignoring distance heuristics. Overall, this suggests to use rel-
atively accurate abstractions (that are cheaply computable)
for the data part of the system, whereas for the timed part,
a more refined approach motivated by largely informed dis-
tance heuristics (which is more expensive to compute, but
able to properly deal with clock variables) is suitable. We
will come back to these points in Sect. 5.

We close the section with the observation that for a
restricted class of timed automata, abstracting clock vari-
ables x that only occur in simple clock constraints of the
form x > n for a fixed n € Ny yields abstractions that are
relatively accurate with respect to d and hence, with Propo-
sition 3, yields pattern database heuristics that are largely as
informed as d.

Proposition 4 Let ® = (M, V, X, so, ¢) be a DMC prob-
lem with M = {Ay,..., A,}. Let n € Ny be a natural
number. Let x € X be a clock variable with the property that
in guards of transitions, x only occurs in clock constraints of
the form x > n, and there are no invariants in the automata
A; that contain x. Furthermore, for all y € X, there are
no constraints (i. e., clock guards or invariants) in M of the
formy < m forva € {<,<,=}and m € {0,...,n}. Let
P=MUVUX\ {x}. Then h” (so) = d(s0).

Proof Without loss of generality, ¢ = /\ff:l @i, where each
@; 1s a location constraint (see the preliminaries section). We
show that for all states s and transitions 7: if 7| p is applicable
in s|p, then 7 is applicable in 5. Assume there is a state s and
a transition ¢ such that 7|p is applicable in s|p, but 7 is not
applicable in s. As P = MUV U X \ {x}, s and s|p have
the same discrete part, and Zone(s) = Zone(s|p). It follows



Downward pattern refinement for timed automata

that there exists a clock constraint ¢ in the clock guard of ¢
or in the invariant of one of the source locations of # such
that Zone(s) F= ¢ and Zone(s|p) = c¢ (otherwise, ¢ would
be applicable in s as well). As x does not occur in invariants
and only in the form x > n, it follows that for all clocks
y € X, only the lower bound of abstract zones are affected
(lowerBound(y, Zone(s|p)) < lowerBound(y, Zone(s))),
whereas the upper bound of y remains unchanged (formally:
upperBound(y, Zone(s|p)) = upperBound(y, Zone(s))).
Therefore, ¢ must be of the form y o< m for a clock y, b«
€ {<, <,=},andm € {0, ..., n}. However, such constraints
do not exist by assumption.

Proposition 4 implies that a pattern selection algorithm can
abstract clock variables that only occur in simple constraints
(corresponding to the assumptions of Proposition 4) to obtain
distance heuristics that are largely as informed as the real
error distance function. Intuitively, abstracting such clock
variables does not introduce shortcuts because in the original
system, we only have to let time pass (if necessary) to satisfy
such constraints.

Example 3 Consider again the system S inFig.2.Letn € Ny
be a natural number. We observe that the guard x > n satis-
fies the requirements of Proposition 4, and hence, hp(so) =
d(sp) for the pattern P = {P, Q, a}. With Proposition 3, it
follows that 4 ” is largely as informed as d.

4.3 Concretizable traces and safe abstractions

In addition to the criteria from the last sections, we derive a
sufficient criterion for a distance heuristic to be sufficiently
accurate that is still weaker than the requirement hP (s) =
d(s) for all states s. It is based on the observation that abstract
systems where every spurious error trace is longer than d (sg)
are not harmful.

Proposition 5 Let (M, V, X, 5o, ¢) be a DMC problem, P
be a pattern such that every spurious error trace 1 in the
corresponding abstraction M|p is longer than a shortest
possible error trace in M, i.e., ||| > d(so). Then WP is
sufficiently accurate for M.

Proof First, recall that hP(s) < d(s) forall states s € S(M)
because M |p is an overapproximation of M. We show that
W (s)+c(s) > d(so) for all states s € S(M) with h7 (s) <
d(s). Assume hp(s) < d(s)forastates € S(M). Lets|p €
S(M|p) be the corresponding abstract state to s. As hP(s) <
d(s),thereis an abstract trace - thatis spurious and contains
s|p. As all spurious error traces are longer than d(sp) by
assumption, we have ||wp| > d(sp). Therefore, |mp| =
cP(slp) + dP (slp) > d(so), where ¢P(s|p) denotes the
length of a shortest abstract trace from the initial abstract state
to s|p, and dP (s|p) denotes the abstract error distance of

s|p € S(M|p). As dP (s|p) = hP(s) and c(s) > cF (s|p),
we have c(s) + AP (s) > d(s0).

Again, identifying abstractions with the property given by
the above proposition is computationally hard as it relies on
checking all possible spurious error traces. In the following,
we show that a subclass of abstractions for a slightly stronger
condition can be identified efficiently. To be more precise, we
focus on abstractions that only introduce spurious error traces
that can be concretized in the following sense.

Definition 6 (Concretizable Trace) Consider a DMC prob-
lem (M, V, X, 50, ¢). Let P be a pattern, and M |p be the
corresponding abstraction of M. Let mp = tf, e tf be
an abstract error trace of M|p with corresponding con-
crete transitions fq, ..., t, of M. Let wp be spurious, i.e.,
1, ..., 1, is not a concrete error trace of M. The error trace
7p is concretizable in M if and only if there is a concrete
error trace

T = n03t19 7T17I277t27 ---snn—l»tnann

in M that embeds 11, ..., t,. The m; are traces in M with
ll7r; || = 0, fori € {0, ..., n}.

Informally speaking, an abstract trace 7 in M|p is con-
cretizable in M if there is a concrete trace in M so that the
corresponding abstract trace in M|p is equal to mp. Note
that from the above definition, concretizable error traces are
a subclass of spurious error traces; as a side remark, these are
exactly those error traces that preserve dead ends in M, i.e.,
states from which no error state is reachable. In the follow-
ing, we focus on finding abstractions that do not introduce
error traces that are not concretizable. We observe that safe
abstraction is an effective technique for this purpose.

Safe abstraction for directed model checking has been
introduced by Wehrle and Helmert [34]. Essentially, automata
and integer variables identified by safe abstraction can
change their values independently of and without affecting
any other automaton or variable, and every possible value of
its domain is reachable. In the following, we briefly give a
declarative definition of safe automata and safe integer vari-
ables that is sufficient for the need of this paper. For a more
detailed description, the reader is referred to the literature
[34].

Definition 7 (Safe automata and safe integer variables) Let
(M, V, X, so, ¢) be a DMC problem.

1. An automaton A € M is called safe if all of its loca-
tions are reachable from all other locations independently
of the current locations of other automata, and indepen-
dently of the current values of the variables.

2. An integer variable v is called safe if all of its values of
its domain can be obtained, independently of the current
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locations of the automata, and independently of the values
of all variables (including the values of v).

We observe that being safe is a rather strict requirement.
For example, integer variables v and w can only be safe if
there is no transition that reads v and writes to w, there is no
transition that reads w and writes to v, and additionally, there
must not be a transition that both writes to v and w. However,
safe automata and safe integer variables can be efficiently
identified by a static analysis of the causal dependencies of
the automata and integer variables of the given system.

Example 4 Consider again the system S in Fig. 2. We
observe that a is a safe integer variable because it can reach
all of its possible values in {0, 1} independently of the current
locations and values of the other automata and variables.

Wehrle and Helmert exploit this property by performing
directed model checking directly on a system obtained by
safe abstraction (i. e., on the abstract system that is obtained
by removing safe automata and safe integer variables), where
abstract error traces in M|p are finally extended to concrete
error traces in M. Doing so, however, is not optimality pre-
serving: shortest abstract error traces in M|p may not cor-
respond to any shortest error trace in M.

In this work, we use safe abstraction in a different context,
namely to select patterns for a pattern database. In particular,
we will observe that safe abstraction offers desirable prop-
erties for the pattern selection. Safe abstractions have the
property that every abstract error trace can be concretized.
This is summarized in the following proposition. A proof is
given by Wehrle and Helmert [34].

Proposition 6 Let (M, V, X, so, ¢) be a DMC problem and
let p be a safe automaton or a safe integer variable of M. Let
‘P be the pattern that is obtained from the full pattern where
p has been removed, and let M|p be the corresponding
abstract system. Then every abstract error trace in M|p is
concretizable.

We observe that under the assumptions of Proposition 6,
the set of unconcretizable abstract error traces is empty, and
of course, the same holds for the set of shorter or equally long
abstract traces {mp | mp is not concretizable and ||7p| <
d(so)}. In other words, abstracting safe automata and safe
integer variables does not introduce error traces that are
longer than d(sp) and that are not concretizable. Therefore,
we observe that safe abstraction provides an effective tech-
nique to approximate Proposition 5, where the condition of
spuriousness is strengthened to concretizability. The causal
analysis required for safe abstraction can be done statically,
is cheap to compute, and identifies system components with
the property that corresponding abstract systems approxi-
mate the conditions of Proposition 5. Overall, we observe that
safe abstraction can be effectively applied to pattern selection
and hence, to find shortest possible error traces with PDBs
and A*, which is a different purpose than it was originally
introduced.

As a summary of this section, we have introduced con-
cepts to systematically compute abstract systems for pattern
database heuristics. In the next section, we formulate a cor-
responding pattern selection algorithm.

5 Downward pattern refinement: the algorithm

In the last section, we have provided the theoretical back-
ground for a pattern selection algorithm for timed automata:
Based on the concepts provided by Definition 4 and Propo-
sitions 3, 4 and 6, we have derived tractable criteria to esti-
mate the similarity of abstractions for the purpose of comput-
ing pattern database heuristics. Based on these criteria, we
present the algorithm dprc (downward pattern refinement
with clocks) in Fig. 3. The resulting pattern database heuris-
tic is called 29", Starting with a large pattern P, the focus of
the dprc algorithm is to refine the current pattern by finding
smaller patterns P’ C P that yield pattern database heuristics
K"’ such that the resulting pattern satisfies the criteria from

Fig. 3 The dowpward pattern 1 function dprc (M, V, X, so, ¢, h, ¢):
refinement algorithm for pattern 2 P:=MUVUX\ {z € X |inclock guards, z occurs only in simple constraints }
selection . . . .
3 P =P\ ({v | v safe integer variable in M} U {p | p safe automaton in M?})
4 if (error distance d(so|p, M| ) can be identified within ¢ seconds) then:
5 P =P\ {z € X |h¥ is largely as informed as b7 \{*}}
6 return P
7 for each v € P do:
8 lfh(So,M) = h(so|7,\{v},/\/l|7,\{v})then:
9 P =P\ {v}
10 goto 7
11 if (error distance d(so|p, M| ) can be identified within ¢ seconds) then:
12 P =P\ {x € X | " is largely as informed as h”\{*}}
13 return P
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the last section. The algorithm is parametrized with a DMC
problem, a distance heuristic 4 to compute relatively accurate
abstractions, and a constant ¢ € N. To compute the pattern,
the algorithms starts with the full pattern P = MUV U X.
If M satisfies the preconditions of Proposition 4, we first
remove clocks x if in every clock guard of every transition,
x only occurs in simple clock constraints (line 2). After-
ward, based on Proposition 6, we remove automata and
integer variables that are safe in M (line 3). Subsequently,
motivated by Proposition 3, we try to find out the length
d(so|p, M|p) of a shortest error trace within ¢ seconds in
the resulting abstraction M|p (line 4). Therefore, we apply
search in this abstraction (i. e., the algorithm given in Fig. 1).
If it is possible to find such a shortest error trace, we check
for every clock variable x if removing x yields a largely as
informed distance heuristic as hP; more precisely, we check
if d(solp, Mlp) = d(solp\(x}» Mlp\(x}), and remove x
from P if this is the case (line 4-5). If it is not possible
to identify d(so|p, M|p) within ¢ seconds, then we remove
automata and variables that yield relatively accurate abstrac-
tions according to & (line 7-10) in order to get a smaller
abstraction. In the resulting abstraction, we try again to find
a shortest error trace within ¢ seconds and remove the corre-
sponding clock variables (line 11-13).

6 Related work

Directed model checking has found increasing attention in
the last years. A survey on this topic is provided by Edelkamp
et al. [14]. In particular, directed model checking has been
applied to timed systems.

The most related approach to this work is probably the
“Russian Doll” abstraction that has been proposed by Kupfer-
schmid et al. [23]. In this approach, the pattern selection
problem is addressed by computing an abstract error trace
using the so-called monotonicity abstraction [22], and then
collecting all variables that occur in & for the pattern. The
underlying idea is that variables that occur in the abstract
error trace 7 are likely to be important for the abstract system
as well. In contrast to our work, Kupferschmid et al. do not
iteratively refine the pattern. A further approach based on pat-
tern databases has been proposed by Qian and Nymeyer [30].
Starting with the variables that occur in the property ¢, Qian
and Nymeyer select a pattern by using a cone-of-influence
analysis up to a certain depth. The underlying assumption
of this approach is that variables that are “closer” to ¢ in
this sense are more important for the PDB, which is intu-
itively true for the variables that do occur in ¢. Moreover,
pattern database heuristics have also been proposed in the
more general setting of predicate abstraction by Smaus and
Hoffmann [32]. More precisely, Smaus and Hoffmann use
predicate abstraction (rather than projection abstractions) to

generate the abstract state space. The pattern selection prob-
lem generalizes to the question, which predicates should be
used for the abstraction. Smaus and Hoffmann propose to use
abstraction refinement for this purpose.

In addition, PDB heuristics play an important role in the
area of Al planning. For planning, PDB heuristics have been
introduced by Edelkamp [10]. In addition, Haslum et al. [17]
have provided a powerful algorithm for selecting pattern col-
lections based on a search in the pattern space.

A further abstraction-based, but non-PDB approach called
distance preserving abstractions has been proposed by
Driger et al. [8,9]. For a concurrent system of timed
automata, distance preserving abstractions are computed by
successively computing the cross-product of two automata.
This process is interleaved by merging states in the resulting
abstraction to avoid the state explosion problem, where the
merging is performed until a certain threshold provided by
the user is no longer exceeded. This procedure is repeated
until only one automaton is left, which represents the final
abstraction. Distance heuristics based on distance preserving
abstractions have been generalized to the area of automated
planning by Helmert et al. [18]. In the planning community,
such distance heuristics are called merge-and-shrink heuris-
tics.

Apart from abstraction-based distance heuristics like PDB
heuristics and the distance preserving abstraction heuristic,
approaches based on other simplifications of the original sys-
tem have been proposed. One of these approaches is based on
the above-mentioned monotonicity abstraction proposed for
directed model checking by Kupferschmid et al. [22]. First,
let us remark that despite the name, the monotonicity abstrac-
tion is not an abstraction in the sense we described so far, but
rather a relaxation of the original system semantics with the
following underlying idea: System variables keep track of
the values achieved so far, and transitions are applicable if
there is a combination of so far achieved values such that
the guards are satisfied. Starting in the current state s, dis-
tance heuristics based on this approach iteratively apply all
transitions that are applicable under this relaxed semantics
until an error state or a fixed point is reached. Kupferschmid
et al. propose the two distance heuristics 4~ and AU that
exploit this principle in different ways. We remark that clock
variables are ignored because their values trivialize rather
quickly under this abstraction. More precisely, as soon as a
location is reached with no invariant for clock x that restricts
its values, the value range of x is equal to all nonnegative
real values. A further distance heuristic based on analyz-
ing the causal dependencies of the given system is proposed
by Wehrle and Helmert [34]. This causal graph heuristic
computes an approximation of the number of steps that are
needed to achieve the faulty values of the variables that occur
in the error property. For the computation, the corresponding
steps that are needed to achieve the required values of the
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transitions’ preconditions are taken into account recursively.
Again, the clock variables are ignored by the causal graph
heuristic. A further simplification of the causal graph heuris-
tic is proposed by Edelkamp et al. [12]. In this approach, the
graph distance of automata that occur in the error property
are considered, whereas other variables and synchronization
behavior is ignored completely.

In addition, external search has been applied for model
checking real-time systems. In this context, Edelkamp and
Jabbar [11] have proposed three external search algorithms
for priced timed automata, which they have implemented in
the Uppaal Cora model checker.

7 Experiments

In this section, we provide an experimental analysis of down-
ward pattern refinement which we have implemented in the
MCcCTA model checker. This model checker is described in
more detail in Sect. 7.1. Furthermore, the benchmarks are
described in Sect. 7.2. Finally, the experimental setup and
results are presented in Sect. 7.3.

7.1 The MCTA model checker

MCcCTA [25,36] is a model checking tool for concurrent timed
automata systems. It is released under the GPL and available
at http://mcta.informatik.uni-freiburg.de.

MCTA supports various (heuristic) search algorithms and
distance heuristics. Furthermore, MCTA currently supports a
subset of the input language that is supported by the UPPAAL
model checker. For the evaluation of our approach, we have
implemented the general framework for pattern database
heuristics, and the algorithm for downward pattern refine-
ment in particular.

7.2 Benchmarks

The first set of benchmarks stems from an industrial case
study called “Single-Tracked Line Segment”, which comes
from an industrial project partner of the UniForM-project
[20]. It models a distributed real-time controller for a seg-
ment of tracks where trams share a particular piece of track.
A distributed controller is supposed to ensure that there can-
not be trams in the critical section simultaneously if they drive
in different directions. The controller has been modeled in
terms of PLC automata [7], which have been afterward trans-
formed with the tool MOBY/RT [27] to concurrent systems of
timed automata. For the evaluation of our approach, we chose
the property that never both directions are given permission
to enter the shared segment simultaneously. We use three
problem families to evaluate our approach, denoted with C,
D, and E. The problem families differ as they have been
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obtained by applying different abstractions to the case study.
For each of them, nine models of increasing size have been
constructed, where the increasing size is obtained by decreas-
ing the number of abstracted variables. The total number of
variables in the C instances ranges from 15 to 28, the number
of automata ranges from 5 to 10. The corresponding num-
bers in the D problems range from 29 to 54 (variables) and
from 7 to 13 (automata). The E instances have 44 to 54
variables and 9 to 13 automata. For evaluating our directed
model checking approach, an error into the C and D prob-
lems has been inserted by manipulating an upper time bound.
The E instances are correct with respect to the chosen prop-
erty. A further set of benchmarks stems from a case study
called “Mutual Exclusion”. This case study models a real-
time controller that is supposed to ensure mutual exclusion
in a distributed system, where the system components com-
municate via asynchronous communication. The protocol is
described in more detail by Dierks [6]. We use two prob-
lem families called M and N, in which an error has been
inserted. All these benchmarks are publicly available on the
MCcCTA website.

7.3 Results and discussion

We have evaluated our implementation on a machine with an
AMD Opteron Processor 6174 with 2.2 GHz, using a memory
bound of 4 gigabyte. In addition to the theory described in the
last section, our implementation uses the following optimiza-
tions. To filter more clock variables, we extend the largely
informedness check (line 5 and line 12 in Fig. 3) such that
if no clock is found to be abstracted, we additionally check
every clock x again, where the corresponding abstraction is
then obtained by abstracting only the clock guards that con-
tain x, and keeping the invariants. Furthermore, the precon-
ditions of Proposition 4 can sometimes be relaxed in practice
and still guarantee correctness. In the following, we compare
the resulting pattern database heuristic 2% with the i dis-
tance heuristic [22], which is also implemented in MCTA.
Furthermore, we compare h4Pre 1o the Russian Doll heuristic
k@ [23] and to the distance preserving abstraction approach
h9 [9] as implemented in the tool UPPAAL/DMC [21]. Finally,
we also compare MCTA and A%’ to the efficient implemen-
tation of (uninformed) breadth-first search provided by the
UPPAAL model checker (version 4.0.13). Table 1 shows the
results for erroneous instances, where we set ¢ = 1 second
in the dprc algorithm (see below for a discussion for higher
¢ values). For the computation of relatively accurate abstrac-
tions, we use the 4V distance heuristic [22], which is among
the strongest (non-admissible) distance heuristics offered by
McTA. Note that although KU is not admissible (and hence,
A* with hY is not guaranteed to find shortest possible error
traces), 1V is well suited for computing patterns based on
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Table 1 Results for erroneous instances

Inst. Runtime in seconds Explored states Trace length
hpre h* h h%  UPPAAL hiPre ht h haa UPPAAL
M, 2.2(0.3) 0.6 3.0(0.2) 0.3 0.5 29,029 41,455 190 21,945 14,290 47
M,  2.9(0.9) 2.6 3.2(0.2) 0.8 2.1 99,528 164,856 4,417 70,361 51,485 50
M3 3.7(1.7) 3.0 3.4(04) 1.3 22 165,336 189,820 11,006 108,968 52,987 50
My  82(6.2) 13.5 4.0 (1.0) 4.6 8.8 549,999 724,030 41,359 388,475 186,435 53
N 2.6 (0.1) 2.7 18.0(0.4) 2.5 3.8 3,606 93,951 345 46,996 28,196 49
N, 3.1(0.6) 14.7  12.1(0.5) 9.8 17.1 26,791 438,394 3,811 183,215 100,078 52
N3 42 (1.7 19.1 147 (4.5) 13.1 175 70,439 547,174 59,062 250,928 102,124 52
Ny 13.0(104) 953 343(27.8) 559 764 388,076 2,317,206 341,928 1,014,036 370,459 55
Ci 1.3(0.1) 0.2 0.8 (0.1) 02 02 98 12,458 130 8,649 21,008 54
Cy 1.4 (0.1) 0.7 1.1 (0.7) 04 05 98 32,751 89,813 21,719 55,544 54
C3 1.4 (0.1) 0.8 0.8 (0.0) 04 0.6 98 37,126 197 28,753 74,791 54
Cy 1.4 (0.1) 7.5 0.9 (0.1) 2.0 6.0 312 301,818 1,140 328,415 553,265 55
Cs 1.5(0.1) 60.9 1.0 (0.1) 134 531 1,178 2,174,789 7,530 2,466,025 3,977,279 56
Ce 1.5(0.1) 605.6 1.1(0.3) 166.0 514.3 2,619 20,551,913 39,436 24,754,930 33,526,538 56
C7 1.6 (0.1) - 1.7 (0.8) - - 4,247 - 149,993 - - 56
Cs 1.6 (0.1) - 1.7 (0.9) - - 5,416 - 158,361 - - 56
Co 1.7 (0.2) - 1.7 (0.8) - - 13,675 - 127,895 - - 57
D 9.2 (0.3) 81.2 84.7(65.0) 2.6 90.5 2,789 1,443,874 4,610,240 256,683 4,048,866 78
D, 11.2(04) 4334 2553(5.4) 12.6 539.0 5,086 6,931,937 4,223 1,413,123 21,478,364 79
Dz 11.2(04) 487.0 255.6(5.4) 12.8 548.4 5,161 7,900,038 2,993 1,401,701 21,553,760 79
Dy 12.8(0.3) 288.0 256.7(5.4) 10.8 476.4 1,023 4,660,652 2,031 1,285,670 18,487,819 79
Ds 58.9(6.4) - - - - 122,204 - - - - 102
Dg 654(105) - - - - 426,571 - - - - 103
D;  66.1(7.9) - - - - 180,132 - - - - 104
Dy 67.4(6.3) - - - - 28,285 - - - - 104
Dy 70.5(6.3) - - - - 12,186 - - - - 105

Runtime overall runtime including any preprocessing in seconds, explored states number of explored concrete states, trace length length of a shortest
error trace, dashes indicate out of memory (>4 gigabyte). For the %" and the ™ distance heuristic that rely on PDBs, the pure search time in the

concrete (i. e., time without preprocessing) is reported in parenthesis

relatively accurate abstractions, and hence, for computing
the admissible pattern database heuristic h9’.

First, let us discuss the results of 19 compared to related
directed model checking approaches (see below for a dis-
cussion with the UPPAAL results). The experimental data
shows that MCTA with the 2%"¢ distance heuristic outper-
forms the other distance heuristics on these benchmark sets.
Although most of the overall runtime is often spent for com-
puting the pattern database heuristic (i.e., for preprocess-
ing), we observe that this preprocessing mostly pays off in
better search guidance and overall model checking runtime.
Furthermore, comparing the results of 2%’ to the results
provided by the UPPAAL model checker, we observe that
significant improvements are obtained in many instances as
well. However, especially in the M and N problems, we also
observe that the number of explored states is often (remark-
ably) higher than with UPPAAL. Although we are not aware
of the exact reason, we suppose that this is the case because

UPPAAL uses a more efficient representation of the zone graph
than MCTA. Finally, let us have a closer look at the ¢ parame-
ter of the dprc algorithm. As mentioned above, the results in
Table 1 have been obtained by setting ¢ = 1, which means
that one second is spent for searching for exact error distances
d(so|p, M|p) inintermediate abstractions M| p. It turns out
that even for this rather low bound of ¢, exact error distances
could often identified (M, N, and C), whereas this was not
possible in the D problem family. Increasing this ¢ bound
leaves the results for M, N and C unchanged, whereas the
total runtime increases (linearly with ¢) in the D problems
as long as d(so|p, M|p) can still not be determined.

Table 2 shows the results for problem instances that are
correct with respect to the given property. We observe that
similar to the results in Table 1, MCTA with our #9"¢ distance
heuristic outperforms the other approaches on the E prob-
lems. At first glance, this might look astonishing—how can
a distance heuristic (which is rather supposed to guide the
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Table 2 Results for correct instances

Inst. Runtime in seconds Explored states
hpre K" h hae UPPAAL hpre ht h hae UPPAAL

E, 0.8 0.7 0.5 0.2 0.4 0 28,858 1 24,842 43,108
E; 31.9 289.0 - 65.5 183.1 1 5,951,782 - 6,367,202 11,015,906
E3 64.3 - - - - 1 - - - -

Ey4 167.5 - - - - 1 - - - -

Es 168.6 - - - - 1 - - - -

Eg 173.9 - - - - 2 - - - -

E; 181.8 - - - - 5 - - - -

Eg 186.1 - - - - 13 - - - -

Ey 194.5 - - - - 33 - - - -

Abbreviations as in Table 1

search) efficiently be applied for proving correctness? The
answer is as follows. Admissible distance heuristics # admit
pruning power in the state space because from % (s) = oo for
a state s, it follows that the real error distance of s is infinity
as well. This effectively means that no error trace starts from
s, and hence, s can safely be pruned in this case. Again, we
observe the close relationship of abstraction-based distance
heuristics and abstractions for efficient model checking in
general: the abstraction that 1%’ is based on is an overap-
proximation of the original problem, which means that if no
error state is reachable in the abstraction, then the system is
safe. However, even if the abstraction is not fine enough to
entirely prove this (i.e., if the abstraction is not fine enough
such that the initial state of the system is evaluated to infin-
ity with the corresponding distance heuristic), the abstrac-
tion might nevertheless already provide a distance heuris-
tic with strong pruning power. Apparently, with 7% this
occurs in the larger E problems, where the initial state is not
evaluated to infinity, but most other encountered states actu-
ally are, and only few states are explored until the system is
proved correct. In contrast, more traditional approaches like
counter-example-guided abstraction refinement would rely
on (at least) one more (possibly costly) refinement step in
the abstraction refinement loop in such cases.

Overall, we have observed that admissible distance heuris-
tics are interesting not only because they allow us to find
shortest possible error traces in faulty systems, but also
because they provide an effective pruning method that allows
for efficiently proving correctness without exploring the
entire reachable state space. We think that this is an interest-
ing relationship that should be further explored in the future.

8 Conclusions
We have presented downward pattern refinement, a system-

atic approach to the pattern selection problem in the con-
text of pattern database heuristics for concurrent systems
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of timed automata. Therefore, we have first provided the
necessary theoretical framework for pattern databases and
timed automata in general, and a formal basis for measur-
ing the similarity of abstractions in particular. These the-
oretical results have been put into practice by the down-
ward pattern refinement algorithm, which has shown supe-
rior performance compared to other directed model check-
ing approaches as well as UPPAAL on challenging real-time
benchmarks of industrial size. In particular, as admissible dis-
tance heuristics like 29" admit pruning power, we have been
able to efficiently verify correct systems with directed model
checking. This is particularly interesting because directed
model checking has originally been proposed to efficiently
guide the search to error states, rather than for proving cor-
rectness.

While the result of being able to efficiently proving cor-
rectness has been rather a side effect so far, it points us to
interesting questions for future research. In particular, we
observe the close relationship of computing accurate abstrac-
tions for verification (i.e., for proving correctness) and for
falsification (i.e., for finding error states). As already out-
lined, a well-established technique to compute abstractions
for the former case is counter-example-guided abstraction
refinement (CEGAR). CEGAR has already been applied
to compute distance heuristics for directed model check-
ing [32] and for domain-independent planning [31]. How-
ever, apart from computing accurate distance functions for
guiding the search, CEGAR has not yet been investigated for
computing distance heuristics with the additional purpose
of efficiently proving system correctness. In this context, an
important research problem will be to investigate principled
approaches for determining to which extent CEGAR should
be performed in order to obtain accurate abstractions.
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