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Abstract Let G be a graph and H a subgraph of G. A D(G,H, λ) design is
a collection D of subgraphs of G each isomorphic to H so that every 2-path
(path of length 2) in G lies in exactly λ subgraphs in D. The problem of
constructing D(Kn, Cn, 1) designs is the so-called Dudeney’s round table
problem. We denote by Ck a cycle on k vertices and by Pk a path on k
vertices.

In this paper, we construct D(Kn,n, C2n, 1) designs and D(Kn, Pn, 1) de-
signs when n ≡ 0, 1, 3 (mod 4); andD(Kn,n, C2n, 2) designs andD(Kn, Pn, 2)
designs when n ≡ 2 (mod 4). The existence problems of D(Kn,n, C2n, 1)
designs and D(Kn, Pn, 1) designs for n ≡ 2 (mod 4) remain open.

1 Introduction

Consider a graph G and a subgraph H of G. A D(G,H, λ) design is a collection D
of subgraphs of G each isomorphic to H so that every 2-path (path of length 2) in G
lies in exactly λ subgraphs in D. We call this design a Dudeney design. A D(G,H, λ)
design is resolvable or vertex-resolvable if the subgraphs in the design can be partitioned
into classes so that every vertex appears exactly once in each class. Each such class is
called a parallel class of the design.

Let Kn be the complete graph on n vertices, Kn,n the complete bipartite graph
on the partite sets with n vertices each, Ck a cycle on k vertices, and Pk a path on k
vertices. We restrict our attention to D(G,H, λ) designs in which G is Kn or Kn,n and
H is Ck or Pk.

The problem of constructing D(G,H, λ) designs have been solved for the following
cases:

1. D(Kn, P3, λ) designs (trivial) and resolvable D(Kn, P3, λ) designs ([4] Th. 2.9)

2. D(Kn, C3, λ) designs (trivial) and resolvable D(Kn, C3, λ) designs ([4] Th. 2.9)

3. D(Kn, P4, 1) designs ([4] Th. 2.20)

4. D(Kn, C4, λ) designs [5] and resolvable D(Kn, C4, 1) designs [9]

5. D(Kn, P5, 1) designs [10]
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6. D(Kn, P6, 1) designs [12, 13]

7. D(Kn, C6, 1) designs [11]

8. D(Kn, P7, 1) designs [1]

9. D(Kn,n, P4, 1) designs and resolvable D(Kn,n, P4, 1) designs ([4] Th. 3.3)

10. D(Kn,n, C4, 1) designs and resolvable D(Kn,n, C4, 1) designs ([4] Th. 3.1).

A D(Kn, Cn, 1) design is a solution of the famous Dudeney’s round table problem
which asks for a seating of n people at a round table on consecutive days so that
each person sat between every pair of other people exactly once [2, 3]. It has been
conjectured2 that there exists a D(Kn, Cn, 1) design for every n, but it has not been
solved in general [7]. The following theorem is known.

Theorem A [6, 8] Let n ≥ 3 be an integer.
(1) There exists a D(Kn, Cn, 1) design when n is even.
(2) There exists a D(Kn, Cn, 2) design when n is odd.

In this paper, we consider D(Kn,n, C2n, λ) designs and D(Kn, Pn, λ) designs. We
may call the problem of constructing D(Kn, Pn, 1) designs for every n Dudeney’s
counter table problem. We obtain the following results.

Theorem 1.1 Let n ≥ 2 be an integer.
(1) There exists a D(Kn,n, C2n, 1) design when n is odd.
(2) There exists a D(Kn,n, C2n, 1) design when n ≡ 0 (mod 4).
(3) There exists a D(Kn,n, C2n, 2) design when n ≡ 2 (mod 4).

Theorem 1.2 Let n ≥ 3 be an integer.
(1) There exists a D(Kn, Pn, 1) design when n is odd.
(2) There exists a D(Kn, Pn, 1) design when n ≡ 0 (mod 4).
(3) There exists a D(Kn, Pn, 2) design when n ≡ 2 (mod 4).

The existence problems of D(Kn,n, C2n, 1) designs and D(Kn, Pn, 1) designs for
n ≡ 2 (mod 4) remain open. We note that the existence problem of D(Kn,n, P2n, λ)
designs also remains open.

2 Dudeney posed the problem and he wrote “I discovered a subtle method for solving all cases” in
his book ([2], p. 237), but he appears never to have published the method. No one knows whether he
discoverd it, but at least he must have believed that there are solutions for all cases, so we may call it
Dudeney’s conjecture. One of the authors Nakamura also conjectured it and he wrote “it seems that a
solution of the problem is possible for any number of persons” ([14], p. 218).
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2 Notation and Preliminaries

We use the following notation to prove our theorems. For two sequences X = (x1, x2,
. . . , xn) and Y = (y1, y2, . . . , yn) of length n, define a sequence X × Y of length 2n as

X × Y = (x1, y1, x2, y2, . . . , xn, yn),

where xi and yi are variables.
Define sjY (0 ≤ j ≤ n− 1) as

sjY = (yn−j+1, yn−j+2, . . . , yn−j),

and define Y rev and sjY rev (0 ≤ j ≤ n− 1) as

Y rev = (yn, yn−1, . . . , y1),
sjY rev = (yj , yj−1, . . . , yj+1),

where the subscripts of the yi are calculated modulo n. Then we have

X × sjY = (x1, yn−j+1, x2, yn−j+2, x3, yn−j+3, . . . , xn, yn−j),
X × sjY rev = (x1, yj , x2, yj−1, x3, yj−2, . . . , xn, yj+1).

3 Proof of Theorem 1.1

Let n be an integer with n ≥ 2. Let Kn,n = (V,E) be the complete bipartite graph
with the partite sets V1 and V2. Then we have V = V1 ∪ V2 and |V1| = |V2| = n. Let
KV1 = (V1, E1) and KV2 = (V2, E2) be the complete graphs on the vertex sets V1 and
V2, respectively.

3.1 Proof of (1)

Let n ≥ 3 be an odd and put r = (n − 1)/2. Let H = {Hi | 1 ≤ i ≤ r} and
G = {Gi | 1 ≤ i ≤ r} be Hamilton decompositions in KV1 and KV2 , respectively. (A
Hamilton decomposition of a graph is a set of Hamilton cycles such that every edge of the
graph appears exactly once. The complete graph KV1 and KV2 have Hamilton decom-
positions since n is odd.) Put Hi = (a1i, a2i, . . . , ani) and Gi = (b1i, b2i, . . . , bni), where
a1i, a2i, . . . , ani ∈ V1, b1i, b2i, . . . , bni ∈ V2, 1 ≤ i ≤ r. Consider Hi = (a1i, a2i, . . . , ani)
and Gi = (b1i, b2i, . . . , bni) as sequences of vertices and put

D1 = {Hi × sjGi | 0 ≤ j ≤ n− 1, 1 ≤ i ≤ r}.

Consider Hi × sjGi as a Hamilton cycle in Kn,n. There are many representations of a
Hamilton cycle, for example,Hi = (a2i, a3i, . . . , ani, a1i) orHi = (ani, an−1,i, . . . , a2i, a1i),
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etc, but D1 is uniquely determined as a set of Hamilton cycles. We will show that D1

is a D(Kn,n, C2n, 1) design.

Lemma 3.1 Any 2-path in Kn,n lies in exactly one cycle of D1.

Proof. For any 2-path (x, y, z) with x, z ∈ V1, y ∈ V2, there is a Hamilton cycle Ht such
that an edge {x, z} belongs to Ht (1 ≤ t ≤ r). Since y is one of the vertices in Gt, the
2-path (x, y, z) lies in a Hamilton cycle Ht × sjGt for some j (0 ≤ j ≤ n− 1).

For any 2-path (x, y, z) with x, z ∈ V2, y ∈ V1, there is a Hamilton cycle Gs such
that an edge {x, z} belongs to Gs (1 ≤ s ≤ r). Since y is one of the vertices in Hs, the
2-path (x, y, z) lies in a Hamilton cycle Hs × skGs for some k (0 ≤ k ≤ n − 1). Thus
any 2-path in Kn,n lies in a cycle of D1.

The number of the 2-paths in Kn,n is n2(n− 1), and the number of the 2-paths in
a Hamilton cycle in Kn,n is 2n. Since the cardinality of D1 is nr, any 2-path in Kn,n

lies in exactly one cycle in D1. 2

From Lemma 3.1, D1 is a D(Kn,n, C2n, 1) design. This completes the proof of (1)
of Theorem 1.1.

3.2 Proof of (3)

The proof of (3) is similar to that of (1). Let n ≥ 4 be an even. Let H = {Hi | 1 ≤
i ≤ n − 1} and G = {Gi | 1 ≤ i ≤ n − 1} be Hamilton cycle double covers in KV1 and
KV2 , respectively. (A Hamilton cycle double cover of a graph is a collection of Hamilton
cycles such that every edge of the graph appears exactly twice. The complete graphs
KV1 and KV2 have Hamilton cycle double covers.)

Put
D2 = {Hi × sjGi | 0 ≤ j ≤ n− 1, 1 ≤ i ≤ n− 1}

similarly in 3.1. Then D2 is a collection of Hamilton cycles in Kn,n.

Lemma 3.2 Any 2-path in Kn,n lies in exactly two cycles of D2.

The proof of Lemma 3.2 is similar to that of Lemma 3.1, so we omit the proof here.
From Lemma 3.2, D2 is a D(Kn,n, C2n, 2) design. When n = 2, it is easy to see that
there is a D(Kn,n, C2n, 1) design. Thus there is a D(Kn,n, C2n, 2) design for every even
n ≥ 2.

This completes the proof of (3) of Theorem 1.1. We note that the assumption n ≡ 2
(mod 4) is not required in the proof.
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3.3 Proof of (2)

Let n ≥ 4 be an integer with n ≡ 0 (mod 4) and put m = n/2 and l = n/4. We put
the vertex sets V1 and V2 as follows;

V1 = {∞, 0, 1, 2, . . . , n− 2},
V2 = {∞′, 0′, 1′, 2′, . . . , (n− 2)′}.

Addition of vertices except ∞,∞′ in V1 and V2 is calculated modulo n − 1. Let σ be
the vertex permutation (∞)(0 1 2 · · · n− 2)(∞′)(0′ 1′ 2′ · · · (n− 2)′) in Kn,n and put
Σ = ⟨σ⟩. When C is a set of cycles in Kn,n, define

ΣC = {σtC | 0 ≤ t ≤ n− 2, C ∈ C}.

For any integer i (0 ≤ i ≤ n− 2), define the 1-factors of KV1 and KV2 :

Fi = {{∞, i}} ∪ {{a, b} ∈ E1 | a, b ̸= ∞, a+ b ≡ 2i (mod n− 1)},
F ′
i = {{∞′, i′}} ∪ {{a′, b′} ∈ E2 | a′, b′ ̸= ∞′, a′ + b′ ≡ 2i (mod n− 1)}.

Let F0,m and F ′
0,m denote the following sequences of vertices obtained from F0 ∪ Fm

and F ′
0 ∪ F ′

m, respectively:

F0,m = (∞, 0, 1,−1, 2,−2, 3,−3, . . . ,m− 2,−(m− 2),m− 1,−(m− 1))
F ′
0,m = (0′, 1′, (−1)′, 2′, (−2)′, 3′, (−3)′, . . . , (m− 2)′, (−(m− 2))′,

(m− 1)′, (−(m− 1))′,∞′).

Then we have

(F ′
0,m)rev = (∞′, (−(m− 1))′, (m− 1)′, (−(m− 2))′, (m− 2)′,

. . . , (−3)′, 3′, (−2)′, 2′, (−1)′, 1′, 0′)

and

F0,m × (F ′
0,m)rev = (∞,∞′, 0, (−(m− 1))′, 1, (m− 1)′,−1, (−(m− 2))′, 2, (m− 2)′,

. . . ,m− 2, 2′,−(m− 2), (−1)′,m− 1, 1′,−(m− 1), 0′).

Consider F0,m × (F ′
0,m)rev as a Hamilton cycle in Kn,n. Put

C = {F0,m × sj(F ′
0,m)rev | 0 ≤ j ≤ m− 1},

and rotate them, then we obtain a set of Hamilton cycles

D3 = ΣC

in Kn,n. We will show that D3 is a D(Kn,n, C2n, 1) design.
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Lemma 3.3 Any 2-path in Kn,n lies in a cycle in D3.

Proof. If a 2-path (x, y′, z) with x, z ∈ V1 and y′ ∈ V2 lies in a cycle in D3, then
the 2-path (x′, y, z′) with x′, z′ ∈ V2 and y ∈ V1 lies in a cycle in D3, and vice versa.
Therefore we will only show that any 2-path (x, y′, z) with x, z ∈ V1 and y′ ∈ V2 lies in
a cycle in D3.

For a 2-path (x, y′, z) with x, z ∈ V1 and y′ ∈ V2, there is a 2-path (a, b′, c) with
{a, c} ∈ F0 and b′ ∈ V2 such that (x, y′, z) = σj(a, b′, c) for some j (0 ≤ j ≤ n− 1). So
we only need to show that any 2-path (a, b′, c) with {a, c} ∈ F0 and b′ ∈ V2 lies in a
cycle in D3.
(i) A 2-path (∞, b′, 0) lies in C, where b = ∞, 0,±1,±2, . . . ,±(l − 1).
(ii) A 2-path (a, b′,−a) with 1 ≤ a ≤ l − 1 lies in C, where b = ±(m − a),±(m − a +
1), . . . ,±(m− 1),∞, 0,±1,±2, . . . ,±(l − 1− a).
(iii) A 2-path (a, b′,−a) with l ≤ a ≤ m− 1 lies in C, where b = ±(m− a),±(m− a+
1), . . . ,±(m+ l − a− 1).
(iv) A 2-path (∞, b′, 0) lies in σm−1C, where b = ±l,±(l + 1), . . . ,±(m− 1).
(v) A 2-path (a, b′,−a) with 1 ≤ a ≤ l− 1 lies in σm−1C, where b = ±(l− a),±(l− a+
1), . . . ,±(m− a− 1).
(vi) A 2-path (a, b′,−a) with a = l lies in σm−1C, where b = ∞, 0,±1,±2, . . . ,±(l− 1).
(vii) A 2-path (a, b′,−a) with l + 1 ≤ a ≤ m − 1 lies in σm−1C, where b = ±(m + l −
a),±(m+ l − a+ 1), . . . ,±(m− 1),∞, 0,±1,±2, . . . ,±(m− 1− a).

Thus we complete the proof of Lemma 3.3. 2

Lemma 3.4 Any 2-path in Kn,n lies in exactly one cycle in D3.

Proof. The number of 2-paths in Kn,n is n2(n − 1), and the number of 2-paths in a
Hamilton cycle in Kn,n is 2n. Since the cardinality of D3 is n(n− 1)/2, any 2-path in
Kn,n lies in exactly one cycle in D3 by Lemma 3.3. 2

From Lemma 3.4, D3 is a D(Kn,n, C2n, 1) design. This completes the proof of (2)
of Theorem 1.1. This also completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

We use the following notation to prove Theorem 1.2. Consider a sequence Z =
(z1, z2, . . . , z2n) of length 2n, where zi (1 ≤ i ≤ 2n) is a vertex in Kn. If there is an in-
teger k (1 ≤ k ≤ n−1) such that zk−i = zk+1+i (0 ≤ i ≤ n−1) and zk+1, zk+2, . . . , zk+n

are all different, where the subscripts of the zi are calculated modulo 2n, we call
Z a mirror sequence. Then define P (Z) as a path in Kn (zk+1, zk+2, . . . , zk+n) or
(zk+n+1, zk+n+2, . . . , zn, z1, z2, . . . , zk). Note that (zk+1, zk+2, . . . , zk+n) and (zk+n+1,
zk+n+2, . . . , zn, z1, z2, . . . , zk) are in reverse order, hence they are the same path.
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4.1 Proof of (1)

It is trivial that there exists a D(Kn, Pn, 1) design when n = 3. Then we assume
that n ≥ 5 is an odd integer. Let H be a Hamilton decomposition of Kn, and let
H = (a1, a2, . . . , an) be a Hamilton cycle in H. Consider (a1, a2, . . . , an) as a sequence
of length n, then we have

H × sjHrev = (a1, aj , a2, aj−1, a3, aj−2, . . . , an, aj+1), (0 ≤ j ≤ n− 1).

Put H × sjHrev = (c1, c2, . . . , c2n), then we have ck = ck+1 and ck+n = ck+n+1 for
some k (1 ≤ k ≤ n) (the subscripts of the ci are calculated modulo 2n). We see that
H × sjHrev is a mirror sequence, and we have the Hamilton path

P (H × sjHrev) = (ck+1, ck+2, . . . , ck+n)
= (ck+n+1, ck+n+2, . . . , c2n, c1, c2, . . . , ck).

Put
P(H) = {P (H × sjHrev) | 0 ≤ j ≤ n− 1},

then P(H) is a set of n Hamilton paths in Kn. The set P(H) is uniquely determined,
i.e., it doesn’t depend on the represetations of H.

Put
P1 =

∪
H∈H

P(H),

then P1 is a set of n(n− 1)/2 Hamilton paths in Kn.

Lemma 4.1 P1 has each 2-path in Kn exactly once.

Proof. Let (a, b, c) be any 2-path in Kn. The edge {a, c} is contained in some
Hamilton cycle H in H, then we have H = (a, c, . . .). There is an integer j with
0 ≤ j ≤ n− 1 such that

H × sjHrev = (a, b, c, . . . , c, b, a),

that is, the Hamilton path P (H×sjHrev) has the 2-path (a, b, c). Therefore the 2-path
(a, b, c) belongs to P1 at least once.

Since the number of 2-paths in Kn is n(n− 1)(n− 2)/2 and the number of 2-paths
in a Hamilton path in Kn is n− 2, P1 has each 2-path in Kn exactly once. 2

From Lemma 4.1, P1 is a D(Kn, Pn, 1) design. This completes the proof of (1) of
Theorem 1.2.
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4.2 Proof of (3)

Let n ≥ 4 be even and H a Hamilton cycle double cover of Kn. The proof of (3) is
similar to that of (1), so it is omitted. We obtain a D(Kn, Pn, 2) design P2 and we
complete the proof of (3) of Theorem 1.2. Note that the assumption n ≡ 2 (mod 4) is
not required in the proof.

4.3 Proof of (2)

Let n ≥ 4 be even with n ≡ 0 (mod 4) and put m = n/2 and l = n/4. We use the
same notation in 3.3. Kn,n = (V,E) is the complete bipartite graph with V = V1 ∪ V2.
KV1 = (V1, E1) and KV2 = (V2, E2) are the complete graphs on the vertex sets

V1 = {∞, 0, 1, 2, . . . , n− 2} and
V2 = {∞′, 0′, 1′, 2′, . . . , (n− 2)′},

respectively.
We will construct a D(Kn, Pn, 1) design on the complete graph KV1 . Define a

sequence of vertices in KV1 as follows:

[F0,m × (F ′
0,m)rev]KV1

= (∞,∞, 0,−(m− 1), 1,m− 1,−1,−(m− 2), 2,m− 2,

. . . ,−l, l, l,−l,

. . . ,m− 2, 2,−(m− 2),−1,m− 1, 1,−(m− 1), 0).

This is the sequence obtained from F0,m × (F ′
0,m)rev by deleting the prime symbol ( ′

). It is a mirror sequence and we have the Hamilton path in KV1 ,

P ([F0,m × (F ′
0,m)rev]KV1

) = (∞, 0,−(m− 1), 1,m− 1,−1,−(m− 2), 2,m− 2,

. . . ,−l, l).

Put
P = {P ([F0,m × sj(F ′

0,m)rev]KV1
) | 0 ≤ j ≤ m− 1},

and rotate them, then we obtain a set of Hamilton paths

P3 = Σ1P

in KV1 , where Σ1 denotes the group generated by the vertex permutation (∞)(0 1 2
· · · n− 2).

We will show that P3 is a D(Kn, Pn, 1) design. Note that a 2-path (x, y, z) belongs
to P3 if and only if 2-paths (x, y′, z) and/or (x′, y, z′) belong to D3 defined in 3.3, where
x, y, z ∈ V1, x

′, y′, z′ ∈ V2, and x, y, z are all different.

Lemma 4.2 P3 has each 2-path in KV1 exactly once.
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Proof. Let (x, y, z) be any 2-path in KV1 . From Lemma 3.3, the 2-path (x, y′, z)
with x, z ∈ V1 and y′ ∈ V2 lies in a cycle in D3. So the 2-path (x, y, z) lies in a path in
P3.

The number of 2-paths in KV1 is n(n− 1)(n− 2)/2 and the number of 2-paths in a
Hamilton path in KV1 is n− 2. Since the cardinality of P3 is n(n− 1)/2, any 2-path in
KV1 lies in exactly one cycle in P3. 2

From Lemma 4.2, P3 is a D(Kn, Pn, 1) design. This completes the proof of (2) of
Theorem 1.2. This also completes the proof of Theorem 1.2.

5 Remarks

Let n ≥ 3 be an integer. We obtain a D(Kn, Pn, λ) design by deleting a vertex of a
D(Kn+1, Cn+1, λ) design. Therefore Theorem 1.2 (1) and (3) follow from Theorem A;
however, in this paper, we proved Theorem 1.2 (1) and (3) without Theorem A. In fact,
the proof of Theorem A is long and complicated so a proof not using Theorem A would
be desirable.

Theorem 1.1 (1) and (3) also follow from Theorem A since we have the following
proposition.

Proposition 5.1 Let n ≥ 2 be an integer. If there exists a D(Kn+1, Cn+1, λ) design,
then there exists a D(Kn,n, C2n, λ) design.

Proof. Let V1 ∪ V2 be the vertex set of Kn,n, where V1 = {1, 2, . . . , n}, V2 =
{1′, 2′, . . . , n′}, and let V = {∞} ∪ V1 be the vertex set of Kn+1. Assume that there
exists a D(Kn+1, Cn+1, λ) design D.

For a Hamilton cycle H = (∞, a1, a2, . . . , an) in D, define a Hamilton cycle f(H)
in Kn,n as follows:

f(H) =

{
(a1, a

′
2, . . . , an−1, a

′
n, an, a

′
n−1, . . . , a2, a

′
1) (n is even)

(a1, a
′
2, . . . , a

′
n−1, an, a

′
n, an−1, . . . , a2, a

′
1) (n is odd).

Note that f(H) is well-defined, i.e., f((∞, a1, a2, . . . , an)) = f((∞, an, an−1, . . . , a1)).
Put

D∗ = {f(H) | H ∈ D},

and we show that D∗ is a D(Kn,n, C2n, λ) design.
For any 2-paths (a, b′, c) and (a′, b, c′) in Kn,n such that a, b, c are all different, there

exist λ Hamilton cycles Hi (1 ≤ i ≤ λ) in D which have a 2-path (a, b, c). Then each
f(Hi) contains the 2-paths (a, b′, c) and (a′, b, c′) (1 ≤ i ≤ λ).

For any 2-paths (a, a′, b) and (a′, a, b′) in Kn,n with a ̸= b, there exist λ Hamilton
cycles Hi (1 ≤ i ≤ λ) in D which have a 2-path (∞, a, b). Then we have f(Hi) =
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(a, b′, . . . , b, a′), so each f(Hi) contains the 2-paths (a, a′, b) and (a′, a, b′) (1 ≤ i ≤ λ).
Hence D∗ contains each 2-path in Kn,n at least λ times.

The set D∗ contains λn(n − 1)/2 Hamilton cycles, and a Hamilton cycle contains
2n 2-paths. The number of 2-paths in Kn,n is n2(n − 1), so we see that D∗ contains
each 2-path in Kn,n exactly λ times. Therefore D∗ is a D(Kn,n, C2n, λ) design. 2

As stated in Section 1, the problem of constructing D(Kn, Cn, 1) designs for all n,
i.e., Dudeney’s round table problem, is still open. If the problem is solved, then the
problems of constructing D(Kn,n, C2n, 1) designs and D(Kn, Pn, 1) designs are solved.
In this sense, the problem of constructing D(Kn, Cn, 1) designs for all n would be an
interesting open problem.
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