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Abstract

The current age of increased people mobility calls for a better understanding
of how people move: how many places does an individual commonly visit, what
are the semantics of these places, and how do people get from one place to
another. We show that the number of places visited by each person (Points
of Interest - PoIs) is regulated by some properties that are statistically similar
among individuals. Subsequently, we present a PoIs classification in terms of
their relevance on a per-user basis. In addition to the PoIs relevance, we also
investigate the variables that describe the travel rules among PoIs in particular,
the spatial and temporal distance. As regards the latter, existing works on
mobility are mainly based on spatial distance. Here we argue, rather, that for
human mobility the temporal distance and the PoIs relevance are the major
driving factors. Moreover, we study the semantic of PoIs. This is useful for
deriving statistics on people’s habits without breaking their privacy. With the
support of different datasets, our paper provides an in-depth analysis of PoIs
distribution and semantics; it also shows that our results hold independently
of the nature of the dataset in use. We illustrate that our approach is able to
effectively extract a rich set of features describing human mobility and we argue
that this can be seminal to novel mobility research.
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1. Introduction

In recent years we have witnessed a rapid increase of people mobility as the
world population has become more interconnected and has begun relying on
faster transportation methods, simplified connections and shorter commuting
times. Unveiling and understanding human mobility patterns has become a
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crucial issue in supporting decisions and prediction activities when managing
the complexity of today’s social organization. In this, novel mobile communi-
cations technologies play a fundamental role. With such mobile technologies it
is now possible to collect data about human habits and behavior all day long.
Nowadays, people always carry their mobile phone with them. So, either in the
form of Call Detail Records (CDRs) or with specialized apps [22], [25], people’s
mobility data can be collected from mobile phones. Therefore, in the recent
years, researchers have devoted considerable effort to collecting and studying
human mobility patterns [7] and have applied their understanding to a variety
of critical problems ranging from disease spreading [2], urban planning, smart
and green transportation to network infrastructure [37, 14], economy and mar-
keting [30], and mobile network services [13]. Nonetheless, despite the advances
in communications technologies and other important achievements, human mo-
bility still represents an open and challenging research issue. In practice, the
mobility pattern of each individual consists of the sequence of locations s/he
visited. These locations and their correlations represent the core block of any
modeling research and any activity aimed at understanding human mobility.
Even though visited locations underlie all works in this field, their features
remain largely unknown. This is due mainly to the fact that they have been
considered as points in an area and social aggregation places, without anchoring
spatial features to the behavior of each single user.

This paper, which represents an extension of our previous works [31, 44],
aims to fill the gap by providing a general framework for dealing with modeling
locations from a per-user perspective. Also, it paves the way towards enabling
the semantic interpretation of locations to be overlaid on their spatial distribu-
tion.

First, we introduce the notion of user’s Points of Interest (PoIs) along with
the methodology to extract them from different types of data. Then we provide
both a metric to measure the importance of PoIs for a person and a methodology
to classify them in terms of: (i) Most Visited Points (MVPs), the places that
a person visits most regularly, e.g. home and work locations; (ii) Occasionally
Visited Points (OVPs), locations of interest for the user but visited just occa-
sionally; and (iii) Exceptionally 1 Visited Points (EVPs), which correspond to
seldom visited locations. This classification allows us to define a human mobility
profile where the number of locations per each class and the time spent there
are the characterizing attributes. We further study how people move across
PoIs and PoI classes, enriching the knowledge derived from classification with
the spatial as well as the temporal dimensions of mobility. The proposed clas-
sification and the PoIs and user features provide the basis for understanding
human behavior by extracting the semantics of visited places. In line with simi-
lar works [10, 23, 15, 33], we used a heuristic approach for the semantic analysis
and experimented it on a large dataset containing mobility patterns of hundred
thousands of people in a metropolitan area.

1We use the adverb ’exceptionally’ as a synonym for rarely, seldom.
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The paper supports its findings by extensively validating results on four dif-
ferent datasets. The first two datasets contain Call Detail Records of phone
activities of a large mobile operator. The third dataset is mainly composed of
trajectories (parts of a continuous mobility trace), while the last one consists of
continuously sampled location data. The first two datasets have different char-
acteristics in terms of spatial and temporal distribution of the visited places w.r.t
the other two databases. By showing the validity of our approach throughout
datasets with sometimes antithetical properties, we demonstrate the indepen-
dence of our results w.r.t. a specific setting, and we are able to extract a deeper
understanding of human mobility.

As a result of this work, some interesting properties about human mobility
emerge. In fact, it turns out that people visit many locations in their life,
but they have a very small number of preferred locations (MVPs) which are
visited daily (e.g., home, work place), and a higher, but still limited, number
of locations of interest (OVPs) which are visited with a lower frequency (e.g.,
gym, favorite restaurant, parent’s house). We spend more than 50% of our time
in MVPs. This indicates that those points are the ones that best represent and
characterize our lives. On this basis, we propose an algorithm to identify home
and work places which leverages the relevance of a place for a specific person
and outperforms other algorithms in terms of semantic accuracy.

By analyzing the transition rules between PoIs, we find that, in contrast with
commonly accepted assumptions, the decision to move between two places is not
taken on the basis of the geographical distance, but according to the relevance
individuals ascribe to them and to the travel time between places. Also, we show
that the transition rule based on relevance follows the same distribution law
independently of the mobility scenario.

The key contributions of our mobility framework can be summarized as
follows:

• a novel per-user mobility analysis that highlights the following key prop-
erties:

– people visit regularly just few places where they spend most of their
time;

– people also spend a significant amount of time in places they only
visit once;

– people commute between places based on their temporal distance and
not the spatial distance;

– HOME and WORK places are in the set of few places mostly vis-
ited, and, as such, the relevance R is a fundamental feature for their
semantic identification;

• a classification of visited locations (PoIs) that enables the above mentioned
analysis;

• a classification of users, based on how people move across PoIs and PoIs
classes, derived from our mobility analysis;
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• a semantic understanding of human behavior based on our mobility anal-
ysis;

• a thorough experimental validation on datasets with different properties.

The comprehension and the modeling of human mobility patterns play a key
role in the design of protocols and forwarding strategies in contact-centric net-
work infrastructure. These novel results can change how mobility is analyzed
and modeled. Indeed, we argue that, to produce more realistic mobility traces,
a mobility model needs to consider i) the new classifications introduced herein,
and ii) the new features, their relationships and their different laws. This work
could impact several computer and communications areas such as: localization
[28, 29], where our results indicate that a person’s location can be predicted in
the set of MVPs with a probability higher than 0.7; social interaction studies
and data offloading [32] [16], as people tend to meet more frequently people
with some MVPs in common and the latter characterize the single individual’s
mobility; human mobility modeling [41], as mobility can be described in terms
of regular movement among MVPs and OVPs and extemporarily EVPs; recom-
mendations [26] as people can get recommended places close to their MVP and
not far in time from their current location.

2. Related Work

Nowadays smartphones have an important role in capturing various behav-
ioral aspects of users, ranging from how the device is used across different con-
texts to analyzing the spatial, temporal and social dimensions of everyday life
through sources such as GPS, call and text logs, Internet access and Bluetooth
logs. These data can be used in many areas, from urban planning, predict-
ing and controlling epidemic infection diseases to planning and optimization of
wireless and infrastructure-less communication systems. Fundamentally, these
applications require the comprehension and recognition of predictable mobility
patterns. To gain a better understanding of the dynamics involved in mobility,
many experiments, based on different detecting technologies and performed in
various locations, have been conducted. Most of them have been made avail-
able in the public repository CRAWDAD [1]. Among these datasets we focus
on GPS-based traces as they allow us to precisely determine the geographical
positions of users. In this study we also compare mobility data from cellular
network towers with the GPS positioning. We made this choice to highlight sim-
ilarities and differences among the mobility habits, due to the different detecting
technologies usually adopted to study them. That results in a heterogeneous
set of data which require different pre-processing techniques to get a uniform
representation through which we deal with the analysis. For the above reasons
this work relates to different research topics.

Significant location extraction. Part of our work, which involves GPS
data, has been devoted to detecting the significant locations of a user. Many
authors have suggested different extraction methods [8, 18, 20, 39, 38, 40] based
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on clustering algorithms. Ashbrook et al. [8] have proposed a two-step method
to infer the significant locations. In the first step, the loss of the GPS signal
is used as an indicator of interesting locations because it likely corresponds to
buildings or indoor points. In the second step these points are clustered into
locations using a variant of the k-means algorithm. In the clustering procedure,
round clusters with a given radius are initially placed at k chosen points, and
iteratively they move to a denser area, until no further increases in the point
density is observed. Since the loss of the GPS signal serves as the main clue to
identify significant locations, main buildings are found; however, other types of
interesting locations where the signal is available, such as outdoor places, may be
lost. Furthermore, rather than detecting locations with an arbitrary shape, they
retrieve only circular locations. On the contrary, we apply a clustering method
able to find arbitrary shape clusters, independently of an a-priori number of
places.

Hariharan and Toyama [18] proposed an approach that uses time information
to distinguish significant places. From the raw traces they identify a contigu-
ous sequence of GPS points within a distance d and for a period t adopting
a variation of an agglomerative clustering algorithm. They called these areas
’stays’. Since their algorithm is computationally expensive (the identification
of a stay requires the distance between all pairs of coordinates within a spec-
ified time window to be computed after every new location measurement) we
choose a more computationally efficient algorithm that neglects the temporal
information since the GPS traces have been recorded with a fixed sample rate.

Kang et al.[20] proposed a method, suitable for resource-limited mobile de-
vices, that computes incrementally significant locations. Their time-based ap-
proach clusters the stream of incoming location coordinates along the time axis
and drops those clusters where little time is spent. In particular, the algorithm
compares each new GPS point with the previous coordinates in the current clus-
ter; if the stream of coordinates is far from the current cluster a new location is
detected. The authors validate their algorithm with localization data inferred
from RF(radio frequency)-emissions of known base stations. Since the main
goal of the method is portability on mobile devices, authors did not investigate
the trajectories of multiple users.

Finally, to overcome the k-means limitations, a series of density-based ap-
proaches have been proposed. Zhou et et al.[40] proposed a density- and join-
based clustering algorithm called DJ-Cluster to infer significant locations. The
dense points are those with at least a certain number of other points lying
within a distance of their neighborhood. Relaxing the DBSCAN conditions
on reachability, the clusters are formed from a set of dense points, which are
density-joinable: i.e. the neighborhood of the dense points shares a common
point. A further preprocessing procedure, which removes GPS points corre-
sponding to limited movements, is introduced to improve the performance of
the algorithm. The experimental results indicate great improvements in terms
of both recall and precision w.r.t. those obtained from the k-means algorithm.
A similar approach has been adopted by Zheng et al.[39], [38]. They applied a
density based clustering algorithm (OPTICS [5]) to extract significant locations
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in order to infer transportation modes and to predict users’ preferred locations.
Our definitions, which inherit preferred locations and the extraction algorithm,
are inspired by the above methods.Nevertheless, in comparison with these works,
we propose a more general definition of stay-location that enables us to consider
temporal reappearances at the same place.

Statistical analysis of mobility. Spatial mobility patterns have been
analyzed in different disciplines, from physics to pervasive computing. Works
from the physicists’ community focus on concepts from statistical mechanics and
thermodynamics. Their main goal is to identify what kind of diffusion process
is able to best reproduce human mobility. For these reasons they analyze the
displacement and the length of movements, searching for evidence of sub- or
super-diffusive processes. On the contrary, works from computer science focus
more on human mobility properties, which can be exploited in the deployment
of different services (from opportunistic networks to link prediction in location-
based social networks).

In their seminal work Brockmann et al.[9] investigated human traveling
statistics by analyzing the circulation of banknotes in the United States. Based
on a huge dataset of over a million individual displacements, they found that
the distribution of the traveling distances decays as a power law, indicating that
trajectories of bank notes are similar to Lévy flights. Secondly, they showed that
the probability of staying in a confined region (pause time distribution) is char-
acterized by a long tail leading to a sub-diffusive process.

Gonzalez et al.[17] also focused on distances covered by people. In particular
they analyzed mobile phone users for a six-month period in a large area. They
found that the distribution of the distance between two consecutive calls is well
approximated by a truncated power-law. Moreover, each individual tends to
return to a few frequented locations with high probability.

Rhee et al.[33] were the first to deal with the statistical properties of human
mobility using GPS traces. By analyzing GPS traces collected on a campus
they reported that bursty hot spot sizes play an important role in causing the
heavy-tail distribution of distances in human walk. They show that visit points
are clustered and that pause time distribution in hot spots follows a truncated
Pareto.

A recent study cast some doubts on the power law distribution of the distance
as a universal feature of human mobility. In fact Noulas et al.[27] focused on
human mobility patterns in a large number of cities. Mobility data have been
retrieved from mobile location-based social services. They first observed that
mobility, when measured as a function of distance, does not exhibit universal
patterns. By contrast, considering another variable, they obtained more general
results for all cities. Precisely, they discovered that the probability of transiting
from one location to another is inversely proportional to a power of their rank,
i.e. the number of intervening opportunities between them.

Other works investigate characteristics other than distance. For instance,
Song et al.[35] studied the predictability of human trajectories derived from
the estimated entropy of the mobile phone data. The predictability is centered
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around 93% over a large population, independently of the size of the area cov-
ered by individuals’ mobility or other demographic factors. Probably, the high
predictability is obtained based on low resolution positioning data since the av-
erage size of a ’location’ is roughly 3 km2. For higher resolution positioning data
such as the GeoLife dataset, Lin and Hsu [23] showed that a high predictability
is still present at fine spatial/temporal resolutions. However, they observed an
invariance between the predictability and spatial resolution. In other words, we
cannot obtain a high prediction accuracy and spatial precision simultaneously.

Kim et al.[21] used Access Point (AP) log data to extract information about
users’ movements and pause times but they did not care about location distances
in computing users’ transition probabilities. They found that pause time and
speed distributions follow a log-normal distribution and that the directions of
movement follow the direction of popular roads and walkways on the campus
showing a symmetry across 180 degrees.

Home/workplace recognition from cellular network data. A great
effort has been devoted to the assessment of the visited locations, trying to
assign a particular meaning to each of them. Among the different problems in
the evaluation of the location semantic, we focus on the detection of home and
work places from cellular network data, based on the frequency of daily visits,
a.k.a. relevance. To solve the aforementioned issue, Isaacman et al.[19] have
proposed a technique based on clustering and regression to identify important
places then assign them a semantic such as home and work. By contrast, Csaji et
al.[12] have combined principal component analysis with clustering to robustly
identify home and work places. Finally, Arai and Shibasaki [6] have proposed
a methodology for the estimation of home and work locations based on time
windows. After recognizing important places according to the length of stay
and frequency of visits, they base the home/work identification on core hours
at home/work. Most of the approaches require knowledge of the tower position
(GPS or place names), but this information is not always available. So the
strategies and methodologies proposed in above literatures are not applicable in
our case.

An identification method not founded on knowledge of the tower positions
has been presented by Alhasoun et al.[4]. In their work they identify the places
where each user is more active (call) by dividing a day into daytime and night.
Home is the most active place during the night window, while work is the
most active location during the day. Apart from being time window dependent,
the method does not consider regularity in visiting places as the main feature
defining home and work. However, it is commonly accepted that most users
regularly visit and commute between home and place of work on workdays.
Thus, solely the number of activities is not a good indicator for home and work,
since users may make a burst of on-phone activities in places which are not
frequently and regularly visited.

In [15] the authors analyzed call and Bluetooth logs of approximately a
hundred users for a duration of nine months in order to identify a structure in
the daily life routine of mobile users. They attempted to quantify the amount
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of predictable structure in an individual’s life using an information entropy
metric. They expected people with low-entropy lives to be more predictable
across all time scales. By using the discovered patterns and contextualized
proximity information extracted from Bluetooth logs, they proposed a model
for identifying location and activities.

3. Datasets

Since smartphones are carried by people, they can capture movement pat-
terns and behavioral aspects of their human carriers [22]. These mobile devices
enable the development of data collection tools to record various behavioral as-
pects of users, ranging from how the device is used across different contexts to
the analysis of spatial, temporal and social dimensions of users’ everyday lives,
through sources such as GPS, call and SMS logs and Internet accesses.

In our paper we exploit all these data in order to highlight mobility fea-
tures common to different scenarios and geographical areas. Specifically, we
performed our studies over four different datasets. The first two datasets are
Call Detail Records of smartphones collected by a mobile operator. The third
dataset is mainly composed of trajectories, while the fourth consists of con-
tinuously sampled location data - with both sets collected by means of GPS
technology. The first two datasets have different characteristics in terms of spa-
tial and temporal distribution of the visited places w.r.t the other two databases.
We will discuss each dataset in greater detail in the next sections. By showing
the validity of our approach in different types of datasets, we demonstrate the
independence of our results from the dataset characteristics. So, the novel fea-
tures and properties we are able to derive in this work are independent of the
analyzed scenario.

3.1. Call Detail Records datasets

In our research we used two smartphone datasets collected in the metropoli-
tan area of Milan, Italy. This type of dataset, known as Call Detail Records, is
collected automatically by the cellular network operators for billing purposes.
The first dataset includes 17 sampling days (May 1st to 17th, 2013) and covers
the whole metropolitan area, i.e. the city of Milan and surrounding districts;
the second includes 67 days (March 26th to May 31st, 2012) and is limited to
the city proper. When a user makes a call, sends a text message or accesses
the Internet, the user id, the cell id of the handling towers, and also the date
and time of established contacts are all recorded. In Figure 1 we report a small
sample for each kind of recorded activity accompanied by a mobility trace that
comes from combining the CDR entries. One of the advantages of this dataset
with respect to other datasets [17, 10, 19, 3, 12] is the chance to leverage the
Internet access data for purposes of mobility pattern analysis [4]. Although
CDRs are rich sources for studying and analyzing human activities in different
fields, they have two significant drawbacks as to providing location information.
Both the spatial and the temporal granularities of CDR data are quite coarse.
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Figure 1: The format and a small sample of the call, SMS and Internet records. The last
sample reports a mobility trace that combines the locations given by call, SMS and Internet
records associated to a random user. Bold and green entries highlight the problems related to
the temporal sparsity of CDR traces.
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Figure 2: On the top a sample of a GPS trace. The records in (a) capture a movement between
two PoIs not registered by the GPS device maybe due to the loss of signal (metro stops are
close to PoIs). The map (a) shows the two locations. The path from 1 to 2 followed by the
user is missing due the loss of the signal. In (b) we report a temporal gap concerning a user
located at the same PoI. The user stays in position 1 for 9 minutes, then, after 9 minutes,
s/he reappears in the close position 2.

Spatially, CDRs are accurate only up to the granularity of cell towers spacing,
which varies from a few hundred meters in urban areas to several kilometers
in rural areas. Moreover, in our datasets the cell position is not available (see
Figure 1). Temporally, CDRs are generated only when phones are actively in-
volved in a voice call, text message or Internet access. For instance, in Figure 1
we report a temporal gap on the same day (first green lines) and a 4-day long
period (last green lines). From here on in, we denote the 17-day dataset as
CDR-17 and the 67-day one as CDR-67.

3.2. Trajectories Dataset

We used the trajectories dataset collected in the GeoLife project and released
by Microsoft Research Asia [38]. The dataset consists of a collection of GPS
coordinates related to the movements of 178 people in a period of over 4 years. In
the Microsoft experiment, people are equipped with GPS loggers or GPS-phones.
Overall the dataset provides 17,621 trajectories with a total distance of 1,251,654
kilometers and a total duration of 48,203 hours. For purposes of our analysis,
which is centered on the PoIs visited by the users during their daily lives, the
most interesting characteristic of this dataset is its temporal and spatial fine
granularity: namely, 91% of the GPS trajectory are recorded with a dense
representation, every 1∼5 seconds or every 5∼10 meters per location sample.
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Figure 3: The format and a sample taken from the continuous mobility dataset. Besides
the position we have information about the accuracy of the measurement and the technology
leveraged to measure the position (Android Location Provider). In the map we visualize the
first five lines of the sample.

However, the dataset has been built for the transportation prediction task,
and thus does not directly characterize places. For this reason we developed a
methodology to extract the places visited during the day, as briefly introduced
in paragraph 3.4 and explained more in detail in Appendix A.2. In Figure
2 we report and visualize on the map two small samples taken from a user’s
trajectory. They illustrate two typical issues which will be further discussed in
the next section.

3.3. Continuous Mobility Dataset

Although GeoLife represents the most reliable dataset publicly available,
even after pre-processing its nature remains trajectory centered, and it differs
from a continuously sampled dataset. The main difference between the trajec-
tories and the continuous datasets consists of the fact that the first one contains
only location samples related to movements among PoIs, while the second one
also includes location data collected while visiting PoIs. For a clearer idea of the
difference between the two types of dataset, we can think about how the mobile
device collects the data: while collecting traces for a trajectory dataset, the user
starts the location sampling as soon as he/she starts traveling on a path to a
certain destination, and he/she stops the sampling as soon as he/she reaches
the desired location; by contrast, while collecting continuous location data, af-
ter starting the sampling application on the mobile phone (in our continuous
mobility dataset the sampling-start is automatic, performed by a background
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process at the phone bootstrap), it never stops unless the phone gets switched
off. As opposed to the Microsoft one, which is a large dataset collected in a
metropolitan area, we collected a dataset of continuously sampled coordinates
locally in a small city environment during users’ daily routine. We performed
an experiment to collect traces over a time period of 20 days, from a group
of 12 users [29]. The data collection system has been installed on the primary
mobile phone of the users, to ensure they continuously carry it with them. The
mobile phone sampling service performs a location reading every 60 seconds.
The location information is provided by the Android OS Localization Manager,
which queries both GPS and Network (WiFi or UMTS) Providers, so ensuring
a continuous localization both outdoors and indoors. A sample of the result-
ing mobility trace is shown in Figure 3, where, in addition to the geographic
position, we report other information such as the speed, the bearing and the
accuracy of the measurement. The service runs continuously, collecting data
24/7 in the best of cases, for the whole duration of the experiment. For reasons
of privacy , we gave the users the option of pausing the service manually. Thus,
the collected data may present some holes rather than running non-stop 24/7.

3.4. PoI Extraction

In Appendix A we describe how we prepared our data to obtain a homo-
geneous description of people mobility. For a variety of reasons, each dataset
needed to be pre-processed firstly in order to get the useful information and to
make the users’ traces fit for our purposes and analyses, and secondly to re-
conduct all the datasets to a unique representation, i.e. a sequence of temporal
annotated Points of Interest (PoIs).

Given the different nature of the employed datasets, the characteristics of a
PoI change slightly with respect to the analyzed data. Yet, its main meaning
remains the same: namely, it is a place or area which is visited by a user. For
the CDR datasets, a PoI is identified by a cell where a user is performing an
on-phone activity (e.g., call, SMS, Internet access). However, for the Trajectory
dataset, a PoI is identified by a place where the user is either standing still (data
gap between consecutive trajectories) or an area within which the user is moving
very slowly. Similarly, for the Continuous dataset, a PoI is identified by a high
density of sampled location data. This corresponds to a standstill activity on
the part of the user or to slow movements within a limited area. More details
about the PoIs extraction methodology are presented in Appendix A.

The characteristics of the four datasets after the different pre-processing
phases have been summarized in Table 1. The following analysis of the mobility
behaviors is going to be based on the pre-processed datasets.

4. Relevance

We adopt a single user viewpoint to measure the importance of a PoI for a
specific user. In particular, we are interested in evaluating the relevance of a
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Table 1: Summary about the four datasets: cardinality of the datasets before and after the
pre-processing, the number of days each trace spans at least and the number of visited PoIs.

Datasets
Number of Users

Number of Days Number of POIs
Before Preprocessing After Preprocessing

CDR-17 1,291,416 543,085 17 12,898
CDR-67 734,149 17,400 67 5,398
Trajectories 178 21 20 3120
Continuous 12 7 14 115

place in the user’s daily mobility. The relevance R of a PoI P for a user u is
defined as:

R(P, u) =
dvisit(P, u)

dtotal
(1)

where dvisit(P ) is the number of days a given PoI P has been visited (one or
more times) by the user u and dtotal is the total number of sampling days, i.e. it
is the fraction of days the user has visited this PoI. Thus, R(P, u) represents the
probability that the user u visits the PoI P on any one day. We choose the day as
temporal metric as it represents the fundamental time window when considering
life routine of individuals. By means of the relevance we can capture how likely
it is that an individual will move towards a place or return to it according to
his/her tracking history.

Relevance R
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Figure 4: Cumulative Distribution Function (CDF) of the relevance. In (a) the relevance
distributions in the CDR datasets. In (b) the relevance distributions in the Trajectories and
Continuous Mobility datasets.

The relevance distributions obtained from all traces are shown in Figure 4.
CDR-17 and CDR-67 datasets, shown in Figure 4a, exhibit the same behavior,
where a huge number of PoIs are visited only a few times, while some other
PoIs are visited quite frequently (almost daily) and have a very high value of
relevance. The median values are approximately 0.65 across datasets accounting
for a highly regular pattern of PoI visits. A more pronounced trend characterizes
the relevance distributions in the GPS traces, as reported in Figure 4b. Here we
measure a lower value of the medians, which implies a higher number of places
scarcely visited. Despite the fact that datasets are very different in nature, these
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results are very similar, thus confirming the generalizability of the relevance
metric.

5. Relevance classes

People visit several PoIs per day, but different places play different roles in
their lives. We propose the following PoI taxonomy organized in three classes,
where each class accounts for places with different importance and semantic
values in the user’s daily life. As the importance of a place for a user is revealed
by the frequency with which s/he happens to visit it, we resort to using relevance
to measure it.

• Mostly Visited PoIs (MVP): locations most frequently visited by the
user. We can easily infer their semantic meaning, and associate them to
home location and work place.

• Occasionally Visited PoIs (OVP): locations of interest for the user,
but visited just occasionally, such as the favourite place locally for hanging
out with friends.

• Exceptionally Visited PoIs (EVP): rarely visited PoIs.

The evaluation of the PoIs’ relevance allows us a straightforward per-user
identification of these three classes, as will be described in the following section.
But simply by examining the aggregated relevance distribution shown in Figure
4 we can assign most of the probability distribution to the multitude of EVPs
with very low relevance. Meanwhile, the first set of points expresses the few
albeit highly relevant MVPs. The central part of the distribution contains
OVPs.

5.1. Relevance class detection algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PoIs Relevance

Figure 5: Three classes of relevance in a sampled user

Although the described classes of PoIs and their meanings are shared among
all users, the relevance class bounds we use to identify them could be different
on a per-user basis and cannot be fixed a priori. This argument advocates a
clustering algorithm that adaptively adjusts according to the single user’s mo-
bility pattern. In particular, we adopt an unsupervised approach which groups
the PoIs of a single user based on the PoI relevance and maximizes their separa-
bility. To this end we have chosen the k-means algorithm. To avoid the problem
related to the initial choice of the centroids, we run 10 replicas of k-means with
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Figure 6: Probability density function estimated through KDE (kernel density estimation) of
the relevance in each class. The ordinates of EVP and MVP functions have been rescaled by
a factor of 8 and 4, respectively, for a better visualization. In (a) and (b) the distributions for
the trajectories and the continuous mobility datasets, respectively.

different initial seeds and choose the partition that minimizes the within-cluster
sums of point-to-centroid distances, thus maximizing the separability. We run
k-means with k = 1, 2, 3, then we assign to the user the number of relevance
classes corresponding to the value of k with the best clustering performance, by
choosing the value k which maximizes the silhouette separability. In Figure 5,
as an example we show the result of the k-means, with k = 3, clustering on a
sampled user. The EVP class (first box on the left) covers the range from 0.01
to 0.12, the OVP (central box) spans the range from 0.16 to 0.46 and the MVP
class (first box on the right) contains only one PoI with relevance 0.82. In GPS
datasets the best separability is achieved by k = 3 for nearly all users; however,
the mobility captured by the CDR datasets is more varied and not every user
satisfies the above classification.

In this section, we apply the class detection algorithm described above on
the PoIs derived from the different datasets and analyze the obtained classes to
extract their features.

5.1.1. Trajectories and continuous mobility datasets

For each user, we apply the k-means algorithm (as explained in paragraph
5.1 for nearly all users the best separability is achieved by k = 3 ) to classify
the related PoIs in three main classes of relevance (4) and over these classes
we study three main features: (i) the number of PoIs which reside within each
class of relevance, (ii) the percentage of time spent in each class and (iii) the
average time of the visits to the PoIs of the classes.

The adoption of a clustering algorithm for detecting the three relevance
classes allows us to adaptively select their bounds and avoid the choice of fixed
thresholds. In fact, the application of a clustering algorithm best suits the
diverse human mobility patterns and mitigates the spatio-temporal heterogene-
ity which characterizes the trajectories dataset. However the clustering of the
relevance for each single user could generate overlappings among the classes of
different users. For instance, relevance values which belong to the OVP class for
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Figure 7: In (a) and (b) the number of PoIs per class of relevance, for each user. (a) reports
the users in the trajectories dataset, while (b) the users in the continuous mobility dataset.
In both figures y-axis is in logarithmic scale.

a user could correspond to the MVP class for another user. To verify whether
that marginally happens, in Figure 6 we report the probability density function
of the relevance for each class, obtained by kernel density estimation (KDE). We
note that the three distributions are separable in both datasets. This suggests
that the classes boundaries are similar among the users.

In Figure 7 we represent the per-user number of PoIs associated to each class
of relevance. In Figure 7a we can observe the pronounced difference between the
number of EVPs and the PoIs belonging to the other two classes of relevance
(OVPs and MVPs) in the trajectories dataset: this is evidence of the fact that
a user has the habit of visiting many new locations, but visits very few of them
on a regular basis. By focusing on the classes OVPs and MVPs it turns out that
the number of OVPs is limited and its average value is 4.19; also for the MVPs
the number per user is limited, and its average value is 1.76. As expected,
each user has a very small number of preferred locations (MVPs) which are
visited daily (e.g., home, work place), and a higher yet still limited number of
locations of interest (OVPs) which are visited with a lower frequency (e.g., gym,
favorite restaurant, parent’s house). As we note in Figure 7b the same behavior
has been observed, with a few exceptions, in the continuous mobility dataset.
In this dataset the average number of MVPs is similar (1.8) to the trajectories
dataset, while the average number of OVPs is lower, due to a shorter observation
period.

Figure 8 shows the average visiting times in the PoIs, grouped according to
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their class of relevance, and extracted from the trajectories and the continuous
mobility datasets. From the figures we observe that for all users the average
EVP visiting time is very limited and on average lower than one hour in both
datasets. As for the OVP and MVP visiting times, the scenario is more faceted
since the average visiting time for these classes depends on the mobility behavior
of the user. In the trajectories dataset (see Figure 8a) some of the users tend
to spend a long time in their MVPs, while other users have very long visit
times in OVPs. Otherwise, in the continuous mobility dataset the behaviors
are more pronounced as users usually spend more time in the MVPs. However,
by considering the PoIs classification, we can see that MVPs and OVPs are
equally relevant to the user, even if MVPs are visited more frequently than
OVPs. Instead, EVPs are locations that are not really important to the user;
they are where (according to the figure) s/he spends on average a shorter span
of time.
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Figure 8: Average visiting time per class of relevance in the trajectories and in the continuous
mobility datasets.

In Figure 9 we represent a cumulative measure of the percentage of the total
time each user spends visiting PoIs belonging to the three different classes of
relevance. According to this figure, a user tends to spend half or more than
half of the total time in the MVPs and the rest of the time is almost equally
distributed between the EVPs and the OVPs.

5.1.2. CDR datasets

Smartphone traces differ from GPS datasets in many respects, as discussed
in Section 3, both meaning and characteristics of PoIs extracted from these
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Figure 9: Percentage of the visiting time, per class of relevance, in both GPS datasets.

datasets are radically different, especially with reference to the relevance classes.
First of all, the spatial granularity of PoIs is wider in smartphone data than
in GPS data. In the former case, an urban PoI coincides with a cell tower
and approximates a hexagon with a few hundred meters side. When a PoI is
extracted from the GPS trajectory (see Section Appendix A) it approximates a
circle with a radius of 60m. Consequently, a PoI extracted from a CDR dataset
could actually aggregate other PoIs. This would require the finer grain of the
GPS to emerge. For instance, a cell-based PoI could aggregate workplace and
coffee shop or home and nearby stores. Moreover, the CDR datasets only record
the cell where the user is performing a phone activity. As a result, the number
of visited PoIs that can be extracted from a phone call dataset is smaller than
the one obtained from trajectory datasets.

Users with fewer than 3 PoIs have been discarded: nevertheless, they rep-
resent only 1.53% and 0.01% of the users in the 67- and 17-day CDR traces,
respectively. For all of the other users, we apply the k-means algorithm, as
explained in paragraph 5.1. While in the GPS datasets for nearly all users the
best separability was achieved by k = 3, in the CDR datasets the aggregation of
PoIs in broader cells led to different results. For many users, PoIs clusterization
according to their relevance achieves better performance when two (k-means
with k = 2) or one (k-means with k = 1) classes are considered. Thus we con-
sider three groups of users, each characterized by the number of relevance classes
achieving the best performance in PoIs k-means clustering. The distribution of
users among these groups is reported in Table 2. Only for about one third of
users, those belonging to group 3, it is possible to identify all three classes of
PoIs: MVP, OVP, EVP.

As mentioned above, the difference of k-mean algorithm output is due mainly
to the spatio-temporal nature of CDR traces. For this reason, we limit our
discussion to the 3-relevance class group.

In Figures 10a and 10b we show the distributions of the relevance charac-
terizing MVPs, OVPs and EVPs in CDR-17 and CDR-67, respectively. In both
CDR datasets, the relevance distributions reveal the high level of separability of
the relevance classes. Besides, MVPs relevance is much higher than EVP and
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Table 2: Users’ distribution among groups identified by the number of mined relevance classes.

Group
Percentage of Users Distinct visited cells
CDR-17 CDR-67 CDR-17 CDR-67

1 25.16% 18.42% 11,534 2,509
2 46.37% 47.6% 11,689 2,845
3 26.94% 33.97% 11,425 2,643

OVP ones, accounting for places actually visited very frequently and regularly,
versus the two other classes which are visited occasionally and exceptionally.
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Figure 10: Probability density function estimated through KDE (kernel density estimation)
of the relevance in each class. EVP and MVP functions have been resized for a better visual-
ization. Classes are separable.
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Figure 11: Distributions of number of distinct visited cells in group 3 in the different relevance
classes.

In Figure 11 we represent the distribution of the number of distinct visited
cells per user for each relevance class. In both cases, EVP and OVP distributions
exhibit a heavy-tail behavior, while the MVP class covers a larger interval of
relevance values. This result matches the location preference property in human
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mobility observed in [17, 36]. Moreover, we observe that the per-user number
of distinct visited places increases when moving from 17- to 67-day CDR traces,
with the consequence that the number of visited PoIs grows over time.

Finally, we enhance the generalizability of the feature of relevance class
throughout different datasets by analyzing the percentage of PoIs lying in the 3
classes, as reported in Figure 12. The behavior is quite similar for all datasets.
Most points belong to the EVP class; there are very few MVPs, while OVPs
account for a number of places similar to the MVPs class.

We can therefore conclude that the classification we identified in terms of
relevance at the beginning of this section (MVPs, OVPs, EVPs) is generally sig-
nificant, since the distribution of the per-user number of PoIs associated to each
class of relevance is similar across datasets with very different characteristics.
We have shown that, independently of the dataset characteristics, the points
visited by people fall mainly in the EVP class. However, most of the people
spend most of their time in MVPs or OVPs; many of them can be found more
than half of the time in MVPs.

EVP OVP MVP
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0.8
Trajectories Dataset
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CDR-17

CDR-67

Figure 12: Percentage of PoIs in the relevance classes.

6. Time Distance versus Spatial Distance

All mobility studies and models in literature are based on the geographic
distance between places: they assume that this is what underlies people’s rea-
soning when moving. On the other hand, all services supporting human mobility
- Google Maps, for instance - recognize that to a great extent people give prior-
ity to saving time. In fact, beyond the geographic distance, they compute the
distance timewise between places for different modes of transportation. This is
all the truer in cities where many different transportation systems offer people
the opportunity to a minimum amount of time they need to get around town.
Urban transportation systems per se are designed to minimize travel time by
leveraging time-based and isochrone maps.

We aim to fill the gap between research studies and real-world mobility
by analyzing the spatial and temporal distances between PoIs and the degree
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of correlation between them. This analysis is preliminary to the studying of
the PoIs transition rules, since geographic distances, commuting time and PoIs
relevance classes come into play in the decision process of the next PoI to be
visited by individuals. The spatio-temporal features correlation requires a high
level of accuracy. That’s why we limit our analysis to GPS-based datasets. They
provide a very high level of precision about the position, while the CDR-based
data have coarse granularity and, in our case, the location of the cellular towers
is unavailable.
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Figure 13: (a) Complementary cumulative distribution function of the distance between con-
secutive PoIs for both datasets.(b) Complementary cumulative distribution function of the
transfer time between consecutive PoIs for both datasets.

6.1. Geographic Distance

We measure the geographic distance between the departure PoI D and the
arrival PoI A by considering their centroids and adopting the haversine formula
to incorporate the Earth curvature. Some works in the literature [33], [17] have
shown that the distance traveled and the radius of gyration follow a Pareto dis-
tribution with an exponential cut-off due to the spatial limits of human mobility
and suggest that human movements can be modeled by a Levy-walk process.
As evident in Figure 13a, we qualitatively observe the same kind of distribution
in both datasets up to different geographic limits (longer tail in the GeoLife
Project dataset). Consequently, these results are a further validation of previ-
ous works where only the spatial distance is considered for describing mobility
of human beings [17].

6.2. Transfer Time

Taking inspiration from real life and from studies in urban planning, we do
not limit our analysis to geographic distance. Rather, we observe that distance
can also be expressed in terms of transfer time, i.e. the time needed to move
from departure PoI D to arrival PoI A. The transfer time distribution of the
dataset, as shown in Figure 13b, is also a power-law with a cut-off but it smooths
the long tail of the geographic distance distributions. Specifically, whereas in
the spatial case both distributions have the same trend except in the tail, if we
consider the transfer time, we see that people behave differently. In fact the
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Dataset ρ
Continuous Mobility Dataset 0.4
Trajectories Dataset 0.1

Table 3: Pearson Correlation Coefficient (ρ) between geographical distances and transfer times
on the Trajectories and Continuous Mobility Datasets

cut-off values are totally different; one and a half hours circa in the continuous
dataset, and 4-5 hours in the GeoLife dataset.

The impact of this observation is fundamental as it suggests that time and
space do not always match and are not always proportional. In particular, they
do not match whenever long geographic distances are considered. We argue that
the shorter tail in the time distribution is due to the fact that, in contrast to
geographic distance distribution, in the time transfer analysis there are fewer
occurrences of events far from the mean. It is unusual to spend more than a
few hours in commuting between PoIs, while it is not unusual for the PoIs to
be far from one another yet connected by fast transportation media.

6.3. Time Transfer and Geographical Distance Correlation

In our daily lives, we decide to move towards a particular place if we have
enough time; by contrast, the current mobility analysis is driven only by the
geographic distance. This dichotomy derives from the implicit assumption that
time and distance are strictly related. Although this is roughly true on small
scales, we find that the same does not hold in full when the mobility extends
to, for instance, metropolitan or regional areas. To shed light on this aspect of
human mobility we have computed the Pearson correlation coefficient between
geographic distances and transfer times on both datasets, defined as:

ρ(tt,∆r) =
σ(tt,∆r)

σtt ∗ σ∆r
(2)

where σ(tt,∆r) is the covariance between the temporal and the geographic
distances respectively, σtt and σ∆r indicate their standard deviations.

As shown by Table 3, when applied to the continuous mobility dataset, the
Pearson coefficient is equal to 0.4. This indicates a small/medium degree of cor-
relation; however, if we consider the GeoLife dataset it is equal to 0.1, meaning
that the two quantities are not correlated. The above results indicate that in
wider areas the adoption of different commuting strategies decreases the pro-
portionality between the transfer time and the distance, typical of movement
in small regions. Moreover they strengthen the difference between time and
the geographic gap when measuring the distance among PoIs. To highlight this
difference we show in Figure 14 the relation between geographic distance and
transfer time. Considering a displacement typical of the urban/metropolitan
area, we observe that the average transfer time has a sub-linear trend that ac-
counts for the increasing speed of the different forms of transportation adopted
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to contract the geographic distances. This observation corroborates the intu-
ition that temporal and spatial metrics capture different distances as the latter
contracts the former. In particular these two factors should be considered sep-
arately whenever we study their impact on the human decisions involving the
choice of the next destination.
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Figure 14: Relation between the traveled distance and the transfer time. Red dots denote the
sample extracted from the GeoLife dataset and the blue line represents the mean trend (error
bars correspond to the standard deviation).

Once the features characterizing the PoIs and the movement among them are
illustrated, we aim to understand how they affect people’s commuting between
PoIs; in particular we want to measure the impact of the aforementioned features
on the choice of the arrival PoI. Let us consider the transfers between the two
PoIsD and A. Each transfer is characterized by the geographic distance between
the two PoIs, the transfer time, the class of relevance of departure PoI D and
the class of relevance of arrival PoI A. Given the relevance class of a destination,
first we study the geographic distance or the transfer time a user is willing to
spend. Second, we characterize the mobility among relevance classes exploring
the probability of passing from class to class.

7. Transition rules

The human decision to move from one point to another emerges from a
complex decision making process that is influenced by a variety of human and
contextual behaviors. To improve the understanding of this process, we want
to measure the impact of relevance, distance and time on the chance to get to
a given arrival PoI A.

We start by investigating the impact of the geographic distance on the desti-
nation’s selection process. To this end, we specifically analyze human behavior
for the three relevance classes, EVP, OVP and MVP and we group the distance
values in 500 m bins. As shown in Figure 15a and 15c where the joint proba-
bility of distances and classes is depicted, the behavior is very similar in both
trajectories and continuous datasets. In all three relevance classes of destination
we note a non monotone decrease of the visiting probability with a non negligi-
ble probability that people move also toward more distant PoIs, as predicted by

23



a Levy-walk process and indicated by some peaks of brighter color in the right
part of Figures 15a and 15c.

A different behavior can be observed when we consider the transfer time
instead of the geographic distance. The visiting probability in the OVP and
MVP is monotonically decreasing (color blurs from white to dark brown) with
the temporal distance and reaches values close to zero according to different
cut-off values, as shown in Figures 15b and 15d. This demonstrates that the
transfer decision process of individuals is driven by the time they need to get to
a place, as people are prone to focus on saving time. This observation advocates
the paradigm shift in the analysis of human mobility we observed in Section 6:
the amount of time, not the distance, is the main parameter governing human
decisions about movements. Furthermore, although non monotone, the trans-
fer time trend in the EVP is much smoother than in the geographic case. In
particular, we can say that people who want to visit EVPs are willing to spend
more time to reach these places, as the highest probabilities shift to 2-3 hours.
This is due to the fact that a technological component affects human mobility,
too, as people use different transportation means for different scales of distance.
When people move in small areas, as in the continuous mobility dataset and
in the right part of Figure 14, the commutation times do not differ much w.r.t
different types of transportation. By contrast, when we consider a large dataset,
the commutation times are highly affected by the means of transport.

Finally, the impact of the class of relevance of the departure PoI is indepen-
dent of the scale of the scenario when we analyze the conditional probability to
move from a PoI in a class c1 to a PoI in a class c2. As we can note in comparing
Figure 16a and Figure 16b, both GPS-based datasets present the same charac-
teristic despite the different geographic areas they span. Even if the conditional
probabilities are heavily affected by the great number of EVPs, people commute
to/from OVPs from/to MVPs, i.e. occasionally visited locations such as pub or
free time spaces are related to home/work places (most visited PoIs). Clearly,
even if people have to cover longer distances, they keep on moving between the
places they frequent the most (MVPs: home and work), and some other OVPs
(e.g. gym), and distance affects only the transitions to EVPs.

CDR traces present contrasting results. In Figures 16c and 16d the con-
ditional probabilities of moving among the relevance classes in CDR-17 and
CDR-67, respectively, are depicted. As shown in Figure 16c, we observe that
the most probable movements occur between the same classes, i.e. the relevance
class of the destination will likely be the same class as the departure location.
Otherwise, movements among different classes are less probable. The scenario
and the mobility habits change in the CDR-67 dataset. In this case (see Figure
16d), as in the GPS datasets, people mainly commute to/from MVPs from/to
OVPs.

8. Semantic Analysis

We have established that the locations visited by people can be classified
in terms of their relevance as well as the rules that characterize the mobility
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Figure 15: 15a) and 15c): joint probability distribution of the distance between consecutive
PoIs and the relevance classes, P (x ≤ ∆r < x + δ, class = C). According to the heat bar,
yellow and white squares represent higher probability. As regards distance we adopt 500
meter bins from 0 to 20 km (δ = 500m). 15b and 15d: joint probability distribution of the
transfer time between consecutive PoIs and the relevance classes P (x ≤ tt < x+δ, class = C).
According to the heat bar, yellow and white squares represent higher probability. In this case,
we adopt 20 min bins from 0 to 4 hours (δ = 20min).

between them. However, it is also important to understand the semantic value
of such locations so as to better define human mobility. In particular, Home
and Work are the most meaningful locations in human life. They are both
characterized by a set of features, not shared with other places visited by a
user. First of all they are the places people visit more frequently and regularly
than others. This characteristic is fully measured by the relevance R described
in the previous sections.

Therefore we decide to exploit R to identify home and work among all visited
places. Specifically, places belonging to the class of most visited places (MVP)
are the natural candidates for work and home identification as they have the
highest relevance, as shown in Figures 10a and 10b. Beyond this main measure, a
set of other features can help identifying home and work. Considering that these
are the places where people spend the bulk of their lives, it is also reasonable
to assume that they are the places where people perform the highest number of
contact activities. Thus, we introduce a feature to quantify this aspect. Finally,
to distinguish between home and work, we argue that, on average, people rarely
spend most of the night at their workplace; therefore, we take into account the
initial time of on-phone activities. The overview of the recognition strategy is
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Figure 16: 16a and 16b: transition probability among relevance classes. Each square represents
the conditional probability to move from a PoI in a class c1 to a PoI in a class c2, i.e.
P (Cnew = c2|Cold = c1). On the x-axis the conditioning variable Cold and the on the y-axis
the conditioned variable Cnew.

presented in Figure 17, and it is mainly based on the relevance of a location. In
the figure we represent only the values of the relevance which identify the MVP
class for a given user.

We then apply this strategy to the two CDR datasets, as the two other
datasets present a smaller number of users (which is statistically less significant).
Furthermore, CDR traces are more demanding for such an analysis. In fact, as
already mentioned, the CDR traces do not ensure a continuous tracking. So, it
happens that some locations are not recorded regularly. Also, the position of a
cell is not always a correct match w.r.t. the real user location, e.g. in the case of
a ping-pong effect between two very close cells [34]. For this reason, CDR traces
are perfect for illustrating that only the relevance is not sufficient to identify a
location, and that we need to add some further features for assigning a meaning
to the visited places.
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Data: L = list of the locations visited by the user u
H,W = null;
H = heapify(L);
while H.size > 0 do

L← H.extract max();
switch R(L, u) do

case R(L, u) ≥ HighRR
if H = null then H ← L;

end
case R(L, u) ∈ [MediumRR,HighRR)

if Start time of contact activities during the NIGHT then
if H = null then H ← L;

else
if W = null then W ← L;

end

end
case R(L, u) ∈ [LowRR,MediumRR)

if Start time of contact activities during the DAY then
if W = null then W ← L;

end

end

endsw

end

Algorithm 1: Home/Work Place Recognition

As evident in Figure 17, we identify three relevance intervals where we can
look for home and work candidate locations. If a location belongs to the red
interval (High RR- on the right), it becomes the HOME. If more than one
place have the same highest relevance due to the ping-pong effect, we recognize
as HOME the place where most of the user’s activities occur, discarding the
other locations in High RR from the candidates set for work recognition. But
as aforementioned, CDR traces are not punctual, so potentially the HOME
location may not appear in the High RR interval. In this case, we can have a
situation where HOME and WORK both have medium relevance (Medium RR-
orange middle interval). Consequently, we need to introduce a further feature:
the starting time of contact activities. We distinguish between night and day
time. With this new feature, identifying contacts starting at nighttime, we again
classify the highly ranked location as the HOME location. Otherwise, if it starts
during day, we identify it as the WORK location. For low relevance (Low RR
- on the left) home identification becomes less stringent since these users are
very likely to live outside the city and come into town only for work purposes,
so we identify only the WORK location. This is further detailed in algorithm
1. The algorithm receives a list of locations and builds the heap H. In the
heap, locations are primarily ordered by their relevance and by the number of
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Dataset HOME WORK
CDR-17 37093/80143 ≈ 46.28% 62258/80143 ≈ 77.68%
CDR-67 2577/4578 ≈ 56.3% 3383/4578 ≈ 73.9%

Table 4: Percentage of recognized home/work locations.

activities on the part of user u in case of relevance equality. At each iteration
the algorithm extracts and removes from the heap the maximum element and
assigns it to the right relevance interval depicted in Figure 17. In the end the
variables H and W contain the home and work whereas they are detectable.

The CDR traces we analyze are related to the urban area of Milan, which
is why we consider the time interval 8 A.M. to 8 P.M. as day time. Similarly,
from the relevance distribution, we can classify a point of interest as a location
with high relevance when RR >= 0.9, i.e. being at home for at least 90% of
the days. Medium relevance corresponds to 0.8 <= RR <= 0.9, which means
visiting a location at least 5 − 6 days per week. We classify the relevance of a
location as low if 0.65 <= RR <= 0.8, which corresponds to 5 working days and
also possible holidays. Otherwise the information is not significant. Also, the
start time of the activities provides a semantic for distinguishing between home
and work in the case of medium relevance: home if it is between 8 P.M. and 8
A.M. (when people are expected to be at home), work in all other instances.

Figure 17: Home/Work place recognition process

In Table 4 we report the number of users for whom the algorithm is able to
recognize the home and work locations. Overall we analyze 80,143 and 4,578
users belonging, respectively, to CDR-17 and CDR-67. Our methodology as-
signs a home location to 37,093 (46.28 %) and 2,577 (56.3 %) users, a work
location to 62,258 (77.68%) and 3,383 (73.9%) ones, respectively. For users
with low relevance in visiting MVP places, it is not possible to recognize their
home/work places. Since a ground truth for the home/work detection does not
exist, the goodness of the recognition algorithm is only partially verifiable. As
already mentioned in Section 3, we exploit the billing mechanism to get an ap-
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proximation of the ground truth. In particular the billing system records an
Internet CDR every day at midnight indicating the position of the user. The
most visited location on weekdays at midnight can be reasonably expected to
correspond to the home location. Since the billing system is operator-dependent
and undocumented in most cases, we have decided not to include this heuristic
in the detection algorithm. Rather, we employ it in the evaluation. Keeping
this setting, we measure a true positive rate equal to 0.83 in CDR-67, which is
a good performance for the home detection task.

Dataset
HOME WORK

Cell Level Area Level Cell Level Area Level
CDR-17 83% 91.2% 69.73% 76.6%
CDR-67 83% 91% 56.5% 77.74%

Table 5: Conformity percentage of recognized Home/Work Places between Alhanson and
Relevance based approaches

In addition we want to show that the relevance is of paramount importance
and that our approach, where the main criteria is relevance, has some advan-
tages compared to similar approaches that use different criteria. For that reason,
we compare our algorithm to the one proposed in Alhansoun et al.[4] which uses
only the highest number of total contact activities in day and night windows,
to recognize home and work locations. The true positive rate of Alhansoun’s
algorithm for the home detection task is 0.63 in CDR-67, lower than the rate
obtained by our algorithm. In Table 5 we observe that there is 83% match
of recognized home places between the two approaches. For work places, the
percentage drops to 69.73% and 56.5%, respectively, in CDR-17 and CDR-67
traces. If we consider the spatial granularity of a tracking area (which cov-
ers several nearby cell towers) instead of a single cell tower, the percentage of
conformity between home places increases to 91.2 and 91, and the percentage
between work places increases to 76.6 and 77.74 in CDR-17 and CDR-67. The
differences in the recognized home and work places between our approach and
the one presented by Alhasoun et al.[4] are due to the poor correlation between
number of contact activities in a place and its relevance.

Figure 18 depicts the distributions of relevance of places recognized as work
places by Alhasoun’s approach [4], which are different from the places we recog-
nize as work places. We observe that the majority of the work places recognized

Approach Dataset
Relevance Range Number of recognized

Home Places Work Places Home Places Work Places

Relevance Based
CDR-17 0.80-1 0.65-0.90 37093 62258
CDR-67 0.80-1 0.65-0.90 2577 3383

Alhasoun
CDR-17 0.42-0.88 0.27-0.93 80143 80143
CDR-67 0.47-0.97 0.31-1 4578 4578

Table 6: Differences in the results among relevance-based and Alhanson approaches
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by the approach described in [4] have low relevance, as shown in Table 6, al-
though they have the highest total number of contact activities (since they get
recognized). This means that most of these work places are not visited regularly
by users; they do have, however, the highest number of on-the-phone activities.
Also, places that have relevance higher than 0.9 can rarely be work places, since
it is very unlikely that people went to work almost every day throughout the du-
ration of the collected datasets. Therefore, we can conclude that our approach
based on relevance allows to reduce the number of errors induced by the nature
of CDR traces. Table 6 indicates the differences among the results obtained
by the two approaches and highlights the relevance bounds which characterize
home and work places extracted by Alhasoun’s approach.

In the case of using GPS or WiFi datasets (high temporal continuity) the
approach would be similar to what is discussed above; all the same, pause time
duration would be used instead of the number of contact activities.

Relevance R
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Figure 18: The CCDF distributions of the relevance of the places recognized as work places
by Alhasoun’s approach but not identified as work places in our approach.

9. Conclusion and Future Work

In this work we have taken a fresh look at the concept of location. We have
proposed a general framework for extracting, characterizing, and classifying the
points of interest of each individual according to their relevance for her/him.
We have also proposed suitable metrics and algorithms to describe the semantic
values of locations and the commuting rules among them.

Our key observations are as follows:

• individuals are regularly drawn to a limited set of locations where they
spend most of their time;

• they also spend a significant amount of time in locations they only visit
once;

• people commute between places based on temporal distance - not spatial
distance - factors;
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• HOME and WORK are among the most frequently visited locations, and,
as such, the relevance R is a fundamental feature for their semantic iden-
tification.

These observations hold true across different datasets with completely dif-
ferent properties.

Based on above observations, we have derived a mobility framework where
we are able to classify PoIs, the users and the way they move along PoIs, as
well as the semantic meaning of PoIs. We have validated our framework with
extensive experimental work.

These novel methods and results can change the way mobility is analyzed
and modeled: we argue that, to produce more realistic mobility traces, a mobil-
ity model needs to consider (i) the new classifications of PoIs introduced, and
(ii) the new features, their relationships and their different laws. Similarly, in
localization activity, such laws can enormously simplify the prediction of the
next location. In [29], the use of PoIs classification allows us to enhance the
prediction (transition predictability) by a factor of 49% after fewer than 3 weeks
of learning, while considerably reducing the costs. Finally, our framework suc-
cessfully and powerfully combines social and physical characteristics, so it can
serve as a basis for social analysis of mobile complex networks. This can be
used, for example, in Recommendation Systems for Location Based Social Net-
works [26], where the next location can be recommended based on the class of
locations that a user has already visited as well as on his/her own social history.
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Appendix A. Pre-processing and general statistics

In this appendix we describe the filtering process and characterize the datasets
specifying their most important properties. In particular we present some meth-
ods which allows us to reduce the different mobility traces to a sole representa-
tion, i.e. a sequence of temporal annotated Points of Interest (PoIs).

Appendix A.1. CDR datasets

To extract mobility characteristics of individuals we need to have enough
CDR samples to study the movement of users. Therefore we select users with
at least one activity per day in each trace and we restrict our analysis to this
subset of users. Also, we combine call/SMS and Internet traffic records to get
more data about users’ positions. An Internet traffic record has the same format
as an SMS one. Specifically, it reports the position of the user every 10 Mb of
traffic and at midnight. This way, we can consider as Points of Interest for a
user, the cells he/she visits, i.e. where he/she performs an on-the-phone activity.
The number of users and the number of visited cells covered by each dataset
have been indicated in Table A.7. The results indicate the portion of active
users w.r.t. the total number of users by increasing the geographic area.

Figure A.19a reports the cumulative distribution function (CDF) of the ag-
gregated number of activities (SMS or call). To fit the empirical distributions,
we compare different distributions, whose parameters have been estimated by
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Table A.7: The number of users and network cells in the CDR datasets. The last column
reports the number of users that our analysis is based on.

Dataset Users Cells Users with at
least one activ-
ity per day

CDR-17 1,291,416 12,898 543,085
CDR-67 734,149 5,398 17,400
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Figure A.19: (a) Distribution of the number of activities per user. (b) Distribution of the
averaged number of activities per user per day.

MLE; and from those that pass the Kolmogorov-Smirnov (KS) goodness-of-
fit test2, we select the model which gets the lowest KS statistic. The evalu-
ated distributions are Log-Logistic (3P), Log-Logistic, Pearson, Log-Pearson,
Log-Normal, Log-Normal (3P), Weibull (3P), Weibull, Gamma, Log-Gamma,
Exponential, Pareto, Levy, Chi-Squared. According to the above method the
Log-Logistic (3P) distribution with parameters α = 2.4575, β = 1978.8 and
γ = 83.932 (p-value ≈ 0.2632) obtained the best result for CDR-67 traces. For
CDR-17, none of the mentioned distributions passed the test. The average and
standard deviation of the number of activities per user in CDR-17 traces are
circa 532 and 412 contacts; in CDR-67 traces these values are higher, 2,722 and
2,578 respectively, as the observation period is much longer.

Figure A.19b shows the CDF of the number of activities per user, averaged
over the span of a day. We observe that the distribution related to CDR-17 is
located above the one related to CDR-67. We applied the average over the day
in order to have comparable values: the measured average corresponds to 25
(σ = 20) in CDR-17 and 40 (σ = 38) in CDR-67. In general, by combining the
information of the above distributions, the set of users captured by the CDR
datasets are quite active and some of them are very active. That represents a
good advantage since active users result in more mobility data.

2’Data follow the distribution X ’ is the null hypothesis. A p-value greater than 0.05 usually
indicates that the null hypothesis has not been rejected.
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Figure A.20: (a) Distribution of number of distinct visited cells per user. (b) Distribution of
averaged number of distinct visited cells per user per day.

In Figure A.20a we report the distributions of the number of distinct visited
cells per user for each dataset. First of all, almost 90 percent of users have visited
fewer than 100 and 260 distinct cells, respectively in CDR-17 and CDR-67 traces.
This implies that most of the people visit a limited number of cells (places),
while only a few of them visit a huge number of cells [36]. The CDF of CDR-67
lies under the 17-day CDR trace, implying that over a longer period people are
more likely to discover and visit new places [17]. The best fitted distributions
(from those on the already mentioned list) of the number of distinct visited
cells are Log-Normal (3P) with parameters σ = 0.6108, µ = 4.125 ,γ = −14.693
and p-value ≈ 0.646 for CDR-17, and Log-Logistic (3P) with parameters α =
3.6538, β = 183.1 and γ = −57.57 (p-value ≈ 0.6455) for the CDR-67 dataset.
In broader terms, the number of distinct visited cells follows a heavy-tailed
distribution.

Figure A.20b reports the CDF of the number of distinct visited cells per
day and per user. Most people visit on a daily basis a very low number of
cells, median values are 1 in CDR-67 and 2 in CDR-17; but there is a long tail
accounting for people who visit many cells every day. As the considered mobility
area is larger in the 17-day CDR dataset, this dataset captures a higher number
of locations visited per day by users.

Although our CDR traces have a higher number of users than the other
two GPS datasets, we should note that CDR traces are more sporadic in the
temporal dimension and coarse in the spatial one w.r.t GPS dataset. However,
we are able to extract the distribution of the pause time in CDR-67 as reported
in Figure A.21. We note that cells visited for periods shorter than an hour are
very frequent, while locations where people spend more than 7 hours exist and
are limited in number (25% of visits).

Appendix A.2. Trajectories dataset

Although GeoLife represents the most reliable dataset publicly available, it
was not collected to find visited locations. So, for our purposes, we had to
pre-process trajectories in order to determine the most meaningful locations.
The need for a pre-processing phase is dictated by the dataset bias which favors
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Figure A.21: Probability Distribution Function (PDF) of the pause-time in the CDR-67
dataset. Each bin is one hour size.
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Figure A.22: CCDF of the aggregated pause times in the stay-locations.

movements, while we are interested in the activity of visiting PoIs. In particular
we aim to densify trajectory points corresponding to the pause phase by a filling
heuristic. Meanwhile, we remove the points belonging to users’ movements.

Indoor filling. Mobility data collected by GPS devices present gaps

because GPS signals are often disrupted inside buildings. This represents a
big problem, especially if we are interested in detecting the PoIs of a user. In
fact, in many cases most of the PoIs visited by a person during the day are
buildings or other indoor locations. This situation has been depicted in Figure
2b, where a user reappears after about 20 minutes at a position close to the
previous one. To overcome the problem given by missing records [23], and to
avoid an underestimation of the number of PoIs, we apply the following simple
rule. When the ending and beginning GPS points of a gap are within a distance
of 35 meters and the gap duration is greater than 5 min, the user is taken as
residing at the same location during that time. This rule also works in the
situation where the individual enters a building, or where the individual turns
off the GPS devices in an indoor place. Practically, we add as many GPS points
equal to the entry point as the duration in sec of the gap. After the trajectory
reconstruction phase, we noticed a big increment of points, anyway limited by
the threshold imposed on the gap duration.
Movement phase reduction. We apply a filter with the goal of leaving

out data which describe the movements among the PoIs that a user visits, thus
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reducing the number of points to analyze. This way we consider the periods in
which a user stands still in a place, assuming that users manifest their interests
by spending a certain amount of time in such places. In order to extract the
pause periods and their related GPS points from the whole individual trace, we
apply the heuristic proposed in [43, 42], where a similar but smaller dataset has
been analyzed. If two points pi and pi + 1, with timestamps indicated by t(p.),
do not satisfy

‖pi+1 − pi‖
t(pi+1)− t(pi)

≤ ∆ (A.1)

then we delete pi+1 from the original trace, since it belongs to the movement
phase. Analyzing walking mobility data, we set the threshold to the very low
value of ∆ = 1.3m/s, according to the fact that we observe that human walking
speed is about 4-5 km/h (1.1-1.4 m/s). It seems a reasonable value as generally,
in a location, people do not reach the maximum speed. This way, we capture
points where a person is standing still or is moving very slowly inside a small
area. The result of the speed filtering process is a sequence of points that forms
the trajectory S = ((p1, t1), ..., (pn, tn)), where ti is a timestamp and pi ∈ R2, on
which we apply the PoIs extraction methodology proposed in Section Appendix
A.4. In Figure A.23b we show the results of the movement phase reduction
applied to the raw trace reported in Figure A.23a.

Users’ selection. The point reduction also has effects on the number
of users and the number of days, per user, from which we can extract places
of interest. The reduction is mainly due to the fact that the GeoLife dataset
has been built for the transportation prediction task, and, as a consequence, it
favors movements.

To overcome these limitations we classify the users by considering two prop-
erties: the period (in hours) a single day trace spans and the number of days the
single user traces cover. In particular, for each user, we only consider the daily
traces that record more than h hours. On these tracks we count the number
of users that have more than d days of data. In particular, for all the users
of the dataset we filter out all the days of sampling (data collected within 24
hours, from 00:00 A.M. until 11:59 P.M.) which have h ≤ 3 hours of sampling.
All the remaining days are considered relevant days. After this first processing,
we filter out all the users which collected fewer than 20 relevant days of data
(d = 20): the resulting number of users is 21, out the total number of 178
users. The above thresholds have been chosen to optimize the trade-off among
the importance of having a large number of users, the chance to generalize our
analysis and the need to deal with sampled data which does not only correspond
to trajectories. For example, only by increasing the threshold h by one hour we
obtain a number of users insufficient for purposes of our goal (10 users). Note
that the resulting dataset, even with a reduced number of users, still almost
fully spans the original GeoLife as to time period.
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(a) User 3 GPS points

 

(b) Pre-processing results

 

(c) Sub-PoIs issue

 

(d) Compact representation

Figure A.23: PoIs extraction applied to the user 3’s trajectories. In (a) we plot all the
recorded points (raw data). In (b) we show the points resulting from the application of the
pre-processing phase. In (c) we depict the sub-PoIs that have to be grouped in the real PoI
(yellow circle) while (d) is a compact representation of user 3’s mobility during a single day.

Appendix A.3. Continuous Mobility Dataset

Even if the tracking service runs continuously, for privacy reasons we allowed
the users to manually pause it. Thus, the collected data is not always a 24 hour
continuous data flow, but may present some holes. Also from this dataset we
select a subset of significant users which have collected at least 14 relevant days
of data (two weeks), where a relevant day includes at least 6 hours of location
sampling. The resulting number of relevant users we are considering for our
study is 7. To identify the user’s relevant PoIs, in this case, we only act on the
algorithm tuning [29]).

With respect to the number of detected places visited by users, we observe
that on average the number of distinct visited PoIs is 16, while the median
amounts to 1, like the previous datasets.

Appendix A.4. From GPS traces to Points of Interest

GPS datasets, like the ones we are analyzing, present many difficulties con-
cerning the PoIs extraction task as to the mobility data inferred from geo-coded
or geo-tagged social networks [11] ( e.g. Foursquare, Facebook Places,. . . ). In
our context we do not have any information about the interest expressed by the
user, but we must rely only on the periods when a user is standing still.
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If we assume a constant sampling rate, as in our case, the pause periods and
the places visited by users translate into a higher concentration of recorded
points. Thus, the PoIs extraction corresponds to the unsupervised task of
density-based clustering. In particular, we are extending the methodology pro-
posed in [43], adopting a two-level density-based clustering combined with a
thresholding mechanism based on pause in the regions extracted by the first
clustering phase.

All the points of a trajectory belong to the pause phase and are the starting
points for extracting the PoIs. To reach this goal, we first find the possible
regions of interest via a clustering algorithm and then we detect the real PoIs
considering the pause time feature.

Formally, we capture the possible regions by introducing the concept of stay-
location L.

Definition 1. Let S be a trajectory and L = {L1, . . . , Lk} a partition of
{p1, . . . , pn} s. t. for each Li ∈ L, Li is maximal w.r.t. the property that
for each pu, pv ∈ Li exists a sequence (pu = pw, ..., pw+j = pv) of points in Li,
s.t. ‖pw+k − pw+k+1‖ ≤ δ, k = 0, ..., j − 1 for a fixed δ. A stay-location is an
element of L.

Informally, a stay-location is an area where a person stops, independently of
how long s/he stays there. Let us consider individual traces in order to extract
stay-locations and analyze their properties. To find stay-locations we apply the
density-based clustering algorithm DBSCAN [24]. As DBSCAN parameters we
use δ = 10 mt and ε = 2 neighbors (δ represents the maximum distance such
that two points are considered neighbors, while ε is the minimum number of
neighbors that a node must have to be considered in a cluster).

We observe that in daily movements there are many stay-locations where an
individual stays for a short amount of time. These stay-locations are meaningless
as they represent small pauses in the movement towards the real destinations
that we call Points of Interest.

Definition 2. Let S be a trajectory and Li ∈ L a stay-location. Li is a Point
of Interest (PoI) if in S there exists a subsequence ((pi, ti), . . . , (pi+k, ti+k)) such
that pi+j ∈ Li for j = 0, . . . , k and ti+k − ti ≥ φ.

In the analysis of the dataset performed in this paper, we set the threshold
φ = 5 min, which corresponds to the average of the pause distribution in stay-
locations, shown in Figure A.22. We must underline that we do not consider
the sum of the pause times in a stay-location; rather, we consider the single
values. The thresholding results in the meaningful PoIs, although we observe
situations, like those presented in Figure A.23c, where we have many sub-PoIs
of the same general PoI. To overcome this impasse we run DBSCAN with a
larger ε on the centroids of the sub-PoIs detecting the real points of interest.
This way we obtain two important results: we drastically reduce the number of
stay-locations and we can infer which are the main destinations, i.e. the PoIs.
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In addition to finding PoIs, the above methodology has the ability to express
human mobility as a compact trace that summarizes the transitions between
PoIs and the users’ pause time in them as shown in Figure A.23d.

The detection of the PoIs allows us to compare the mobility habits in terms
of visited places with the CDR datasets. In fact we obtain an average number
of PoIs per user comparable to CDR-67 datasets, i.e. 148, and the same median
of the number of places visited per day.
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