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Newton-Raphson Solution of Nonlinear

Delay-Free Loop Filter Networks

Federico Fontana, Senior Member, IEEE, and Enrico Bozzo

Abstract

For their numerical properties and speed of convergence, Newton methods are frequently used to

compute nonlinear audio electronic circuit models in the digital domain. These methods are traditionally

employed regardless of preliminary considerations about their applicability, primarily because of a lack

of flexible mathematical tools making the convergence analysis an easy task. In this paper we derive a

tool which is specific to the case when the nonlinear circuit can be modeled in terms of a delay-free

loop network. In this case, a distance function can be defined from a known convergence theorem

providing a sufficient condition for quadratic speed of convergence of the method. After substituting the

nonlinear characteristics with equivalent linear filters which compute Newton-Raphson on the existing

network, through this function we figure out constraints guaranteeing quadratic convergence speed in

the diode clipper. Further application to a ring modulator circuit shows proportionality of the same

function with the convergence speed in the resulting filter network. This case study suggests use of

the proposed distance function as a speed predictor, with potential application in the design of virtual

analogue systems for real-time digital audio effects.

Index Terms

Digital delay-free loop, nonlinear filter network, Newton-Raphson method, diode clipper, ring

modulator, virtual analogue.

I. INTRODUCTION

Anonlinear delay-free loop (DFL from now on) is an elementary digital filter network contain-

ing no delay units along a nonlinear loopback [1], [2]. As Fig. 1(a) shows, there is no explicit
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procedure allowing for the computation of the network. In fact, the discrete-time nonlinear block

c(·) propagates the output from the block instantaneously back to itself after summation with

the input u to the network. In this way, at every temporal step n a nonlinear equation in the

unknown v of the type v = c(v) + u[n] must be solved to find out the output v[n] from the

network, in general requiring the use of a numerical method.

The DFL problem eventually appears during the discretization of a nonlinear circuit with

feedback, in spite of the variables that are chosen for its solution: lumped (i.e. Kirchhoff) [3],

wave [4], space-state [5] or transformed [6], [7]. The literature reports use of diverse numerical

methods to compute it, for various applications: bisection for saturation filters [8]; fixed-point for

the Dolby B decoder [9], the EMS VCS3 voltage-controlled filter [10], the ring modulator [11];

table lookups for nonlinear oscillators [12]; other lookup structures avoiding iterative solutions

for vacuum tubes in amplifiers [13] and for sound synthesis of collisions [14]; linearization

[15] or insertion of unit delays when stronger approximations are possible, e.g. in the Moog

voltage-controlled filter [16].

Among such numerical methods, Newton-Raphson (NR from now on) is largely preferred for

its speed of convergence and relatively simple implementation [17]. Application of this solver to

digital audio has been reported in fret-string, mass-spring, friction models for musical instrument

excitation [18], [19], [20], [21], in guitar amplifier, preamp and pedal simulations [22], [23], [24],

[25], [26], [27], in physically-based piano strings [28], stick-membrane collisions [29], and more

in general in lots of digital audio effects [9], [30], [31], [32], [33], [34]. With the continuing

evolution of the modeling approaches toward robustness and efficiency, NR has not lost its

appeal. In particular, recent development of Wave Digital Networks accounting for multiple

nonlinearities [35], [36] has made Newton methods key in the solution of such networks, both

multi-dimensional [37] and also one-dimensional in cases when the nonlinear elements of the

network are scalar and they can be solved one by one in the hybrid Wave-Kirchhoff domain

[38].

NR searches a root of a function f(v) by iterating the scheme

v[k+1] = v[k] −
f(v[k])

f ′(v[k])
. (1)

If applied to the network in Fig. 1(a), then, NR can be conveniently set to look for a zero of

the function

f(v) = v − c(v)− u. (2)
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Fig. 1. Scalar nonlinear delay-free loop (a). Causal equivalent computing the output with NR (b). Linear equivalent at NR

iteration step k (c).

In this case, (1) becomes

v[k+1] = v[k] −
v[k] − c(v[k])− u

1− c′(v[k])
=
c(v[k])− c′(v[k])v[k] + u

1− c′(v[k])
. (3)

Every iteration in this scheme is equivalent to a computation of the network in Fig. 1(b).
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Borrowing terminology from [11], Fig. 1(b) then shows a causal equivalent of the network

in Fig. 1(a) at temporal step n. It is straightforward to check that if NR converges then the

causal equivalent reduces to the network in Fig. 1(a). In fact, if v[k+1] = v[k] = v then the upper

loop in Fig. 1(b) provides

v =
u− vc′(v)

1− c′(v)
, (4)

which, after multiplication of both terms by 1− c′(v), simplifies in v = u. At this point the

upper loop has become uninfluent, hence it can be removed from the network along with the

scaling factor and delay unit across the feed-forward branch.

Filter networks owe their success to the immediacy of access they offer to the signals flowing

across the circuit blocks, not only in the lumped domain. Despite the maturity of the digital filter

theory, they remain a versatile tool every time a processing system can be represented as an

interconnection of scalar (including nonlinear) characteristics. This work continues research we

have recently made on the computation of nonlinear DFL networks using fixed-point methods

[11]. For these networks, in fact, a sufficient condition of convergence was found allowing for a

straightforward solution that does not require to rearrange the network structure. Unfortunately,

fixed-point solvers are known to be relatively slow especially if compared against methods whose

speed of convergence is quadratic. On the other hand, Newton methods possess this property.

Moved by the larger popularity of NR, this work investigates the existence of sufficient conditions

for its fast (i.e., quadratic) convergence in nonlinear DFL networks, provided also the possibility

to apply the method without disrupting the network structure.

In Sec. II it will be shown that NR computes a linear DFL equivalent preserving the structure

of the nonlinear network. This equivalence will be applied to the diode clipper, a system which

is simple and expressive enough to have frequently served as an example in the literature of

nonlinear circuit models [32]—see [39, Sec. 2] for a list of references. Sec. III will propose

a sufficient condition for fast convergence of NR in a nonlinear DFL network. This condition

will be validated again in the diode clipper, along with providing an inequality for the input

signal guaranteeing quadratic speed of convergence in this circuit. Finally, Sec. IV will extend

the convergence analysis to the ring modulator by bringing to surface some practical limits, but

also the potential of the proposed tool as a predictor of convergence speed in circuits containing

multiple nonlinearities. Some remarks are made accordingly, in Sec. V, and conclusions are

drawn in Sec. VI.
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II. LINEAR EQUIVALENT

When multiple scalar DFLs are present, the corresponding network can be computed by first

aggregating all series and pararallel DFL topologies, and then solving at every temporal step

the N -dimensional equation v = c(v) + u, where v,u ∈ RN and c : RN → RN . If the

network has memory meanwhile all nonlinear characteristics in the network are memoryless,

then the output can be algebraically separated in two parts: the former is memoryless, in loop

with the nonlinearities as explained in the beginning; the latter depends only on the memory of

each linear block and hence participates in the previous equation as an additional component

p: v = c(v) + u + p. The state term p can be consequently seen as an offset of the input

u = (u1, . . . ,uN)T and does not bring algebraic complications. For this reason, in the following

we will not denote the state term explicitly whenever it can be aggregated in the input.

Furthermore, the scalar character of the network structure implies that all nonlinear blocks can

be encapsulated in a function vector c = (c1, . . . , cN)T , with ci : RN → R. In fact, ci contributes

to the signal component vi by summing the outputs of the scalar nonlinear blocks ci,j : R→ R,

each processing the respective signal component vj [11]:

vi = ci(v) + ui =
N∑
j=1

ci,j(vj) + ui. (5)

A NR solution of the multiple DFL problem requires to search the zero of the N -dimensional

function

f(v) = v − c(v)− u (6)

by iterating on v[k+1] = v[k] − J−1f (v[k])f(v[k]), in which Jf =
(
∂fi
∂vj

)
is the Jacobian matrix

of the function f . Such two formulas respectively generalize (2) and (1) to N dimensions. In

this case the causal equivalent becomes too complicated, since any signal component in v[k+1]

in general depends on all components in v[k] through the Jacobian matrix.

The following result formulates the causal equivalent at every NR iteration step k in terms

of a delay-free linear equivalent network, which computes v[k+1] by solving a linear equation

system in v[k] and u. By means of this result, the original network is linearized in a structurally

equivalent network that realizes the NR scheme.

At every step we first substitute each nonlinear block ci,j in the original network with a linear

approximation li,j,[k], corresponding to the tangent to the respective function in vj,[k]:

li,j,[k](vj) = ci,j(vj,[k]) + c′i,j(vj,[k])(vj − vj,[k]). (7)
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Then, we compute the array of signals v[k+1] by solving the linear system—see the scalar case

in Fig. 1(c)

v = l[k](v) + u, (8)

in which l[k](v) is the array of block linearizations at NR iteration k: l[k] = (l1,[k], . . . , lN,[k])
T ,

with li,[k](v) =
∑N

j=1 li,j,[k](vj).

It can be easily proved that solving the linear DFL network expressed by (8) corresponds to

compute a new NR iteration. By expanding (7) in (8) we obtain

v = c(v[k]) + J c(v[k])(v − v[k]) + u. (9)

The terms in (9) can be rearranged in the following formula:

v = v[k] −
(
I − J c(v[k])

)−1(
v[k] − c(v[k])− u

)
, (10)

which implies v = v[k+1]. In fact, from (6) it descends Jf = I − J c, hence (10) computes an

NR iteration towards the zeros of the N-dimensional function f .

A. Case study: diode clipper

As a first example we solve the NR filter network representing a diode clipper. This circuit,

shown in Fig. 2(a), contains a resistance R in series with a capacitance C, whose charge is

alternatively leaked by two identical diodes in parallel to it, and in opposite orientation. Each

diode in fact establishes a memoryless voltage-to-current nonlinearity gD, admitting few or (in

the limit) null current when the voltage is negative.

Equating the current coming from the resistor to the currents going to the capacitor and the

diodes, we get—see Fig. 2(a)

u− v
R

= C
dv

dt
+ gD(v)− gD(−v), (11)

in which u is the input voltage and v is the voltage at the capacitor. Rearranging the terms and

then integrating:

v =
1

C

∫
1

R
u− 1

R
v − gD(v) + gD(−v) dt. (12)

Discretizing (12) through backward Euler with temporal step T , i.e., y[n] = y[n− 1] +Tx[n],

leads to the filter network in Fig. 2(b):

v[n] =
T

C

{u[n]− v[n]

R
− gD(v[n]) + gD(−v[n])

}
+ v[n− 1].

(13)
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Fig. 2. Diode clipper: electronic circuit (a). Digital filter network using backward Euler discretization (b).

In this network the nonlinearities can be summed to form a single nonlinearity gD(−v)−gD(v),

reflecting the parallelism in the original circuit. Hence, the diode clipper gives rise to a scalar

DFL network.

The linear equivalent is straightforwardly figured out for each v[k], by substituting gD(v) with

its linearization (7) in v[k]: gD(v[k]) + g′D(v[k])(v − v[k]). From here, at each temporal step n the
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Fig. 3. Diode clipper. Responses to a 10 V sinusoid at 100 Hz (dashed line) using exponential (grey line) or polynomial (black

line) diode characteristics.

kth NR iteration is found which computes v[k+1]:

v[k+1] =
v[n−1] + T

RC
u[n] + T

C
{g′D(v[k]) + g′D(−v[k])}v[k]

1 + T
RC

+ T
C
g′D(v[k]) + T

C
g′D(−v[k])

−
T
C
{gD(v[k])− gD(−v[k])}

1 + T
RC

+ T
C
g′D(v[k]) + T

C
g′D(−v[k])

.

Fig. 3 (above) shows two responses of the diode clipper to a 10 V sinusoid oscillating at

100 Hz, shown in dashed line. The response in grey color results by using an exponential diode

characteristic [32] i = gD(v) = ID(ev/2VE−1) with ID = 2.52 nA and VE = 23 mV, whereas the

response in black color results by using a polynomial characteristic [40] i = gD(v) = VPv
41(v),

in which 1(v) is the unit step function in v = 0 and VP = 0.17 A/V4. Furthemore, FS = 1/T =

44100 Hz, C = 100 nF and R = 1 kΩ. In both cases the iteration stops when |v[k+1]−v[k]| < 0.1

mV.
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Fig. 4. Diode clipper. Number of NR iterations necessary to compute the responses of Fig. 3 when using exponential (grey

circles) or polynomial (black crosses) diode characteristics. Corresponding basin delimiter in the exponential (grey curve) or

polynomial (black curve) case.

III. CONVERGENCE OF THE NETWORK

Fig. 4 shows corresponding numbers of iterations needed by NR to reach the stop condition,

respectively using the exponential (grey circles) or polynomial (black crosses) characteristic.

Predicting such numbers, or at least estimating their magnitude before the digital simulation of

a nonlinear electronic audio device would be highly desirable. To this regard, a bound on NR

iterations has been recently found for a class of collision models applicable to contact sounds

synthesis [19]. The convergence speed of (also modified) Newton methods has been studied

in Wave Digital Networks containing multiple nonlinearities, too [41]. Unfortunately, there is

no general rule for counting in advance the iterations a NR solver will perform to find a root

of (6). Even if some theoretical results have been obtained in the case when a function is

polynomial [42], already cubic polynomials have been shown to have open sets of initial points

whose boundaries are complicated fractals; NR does not lead to any root if starting from these
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points, conversely it goes to an attracting cycle of period greater than one [43]. On the other

hand, theorems exist providing sufficient conditions for convergence and fast convergence of the

method [17]. The latter, in particular, define multidimensional basins inside which the solver

converges quadratically to the solution v in infinite norm:

M‖v − v[k]‖∞ ≤
(
M‖v − v[0]‖∞

)2k
. (14)

We will study these basins of fast convergence by adapting a known theorem [17] to our

network models. In such models, in fact, (5) and (6) guarantee that each component fi forming

f(v) is a superposition of scalar functions fi,j(vj), j = 1, . . . , N . Hence, the partial derivatives

in the Jacobian Jf reduce to ordinary derivatives and the same is true for the matrix Hf of

second derivatives of f(v):

Jf (v) = (f ′i,j(vj)) and Hf (v) = (f ′′i,j(vj)) , (15)

i, j = 1, . . . , N .

Now, let us assume that ε is such that fi,j , f ′i,j and f ′′i,j are continuous in every interval

ξj ∈ [vj − ε,vj + ε]; furthermore, that Jf has inverse in the hyper-rectangle I = {ξ ∈ RN :

‖v− ξ‖∞ < ε}. We form the set U of matrices X = (ξi,j) whose rows belong to I , and define

M =
1

2
max

ξ∈I,X∈U
‖Jf (ξ)−1Hf (X)‖∞, (16)

where Hf (X) = (f ′′i,j(ξi,j)). If v[0] ∈ I and

M‖v − v[0]‖∞ < 1, (17)

then a NR iteration starting from v[0] generates a sequence that converges to v with quadratic

speed given by (14).

This result is proved in Appendix A. It is important to point out that the product M‖v−v[0]‖∞
cannot be computed prior to iterating the solver, since both its factors depend on the output v.

However, we will make convenient use of this tool by restricting the domain where M is evaluated

to the trajectory v[n] of the solution:

M(v) =
1

2
‖Jf (v)−1Hf (v)‖∞, (18)

in which the maximum search across ξ ∈ I,X ∈ U appearing in (16) has been removed. The

consequently modified product S(v) = M(v)‖v − v[0]‖∞ will be called basin delimiter from

here on. We will use it by assuming v[0] = v[n− 1], since the NR solution at step n is typically

(but not necessarily [41]) searched by starting the iteration at the previous solution point.
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A. Case study: diode clipper

For instance in the diode clipper, Eq. (6) is in particular equal to (2):

f(v) = v − c(v)− u

= v − ρ
(
gD(−v)− gD(v)− FSC v[n− 1] +

1

R
u[n]

)
.

(19)

with ρ = R/(1 +RCFS). From here S(v) is immediately figured out by computing (18) in the

scalar case:

M(v) =
1

2

∣∣∣f ′′(v)

f ′(v)

∣∣∣ =
1

2

∣∣∣ ρ
(
g′′D(v)− g′′D(−v)

)
1 + ρ

(
g′D(v) + g′D(−v)

)∣∣∣. (20)

Fig. 4 shows the basin delimiter for the diode clipper simulation seen in Sec. II-A. As

hypothesized, it follows the number of NR iterations with good accuracy across simulation

time. Moreover its magnitude is always smaller than one, suggesting quadratic convergence

everywhere including more critical regions, e.g. when the steepness of the output signal changes

faster.

A closer look to (20) reveals that M(v) is limited. In fact, when v > 0 the part of f(v) which

is free from the constant offset u depending on the input and state, namely

fu(v) = f(v) + u = v − c(v)

= v + ρ
(
gD(v)− gD(−v)

)
,

(21)

is accurately approximated by f̃u(v) = v+ ρgD(v), which is still always positive in this voltage

range. Hence, continuing with this approximation, f ′(v) = f̃u
′
(v) and finally

M ′(v) =
1

2

f̃u
′′′

(v)f̃u
′
(v)−

(
f̃u
′′
(v)
)2(

f̃u
′
(v)
)2 , v > 0. (22)

From here, a look at where f̃u
′′′

(v)f̃u
′
(v) =

(
f̃u
′′
(v)
)2 shows that M(v) has two symmetric

maxima equal to

M(∞) =
1

4VE
and

M
(

3

√
1

2ρVP

)
= 3
√

2ρVP ,

(23)

respectively if the diode characteristic is exponential or polynomial.

Limitation of M(v) is especially desirable under the hypothesis of global convergence of

the scheme to a bounded-energy solution v. This hypothesis implies that |v − v[0]| is in its

turn limited. Hence, quadratic speed of convergence can be guaranteed by increasing FS until
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Fig. 5. Diode clipper. Global NR convergence with exponential (grey curve) or polynomial (black curve) diode characteristics.

Diagonal function in dashed line given for reference.

S(v) satisfies inequality (17). In fact, proportionally downscaling the temporal step reduces the

distance |v−v[0]| and, by (23) in the case of polynomial diode characteristic, also M(v). Now, the

energy in the diode clipper is finite [32], furthermore global convergence of the NR solution is

guaranteed [43] by checking that fu(v) lies in absolute terms above the diagonal and furthermore

has increasing derivative [41]. This fact is shown in Fig. 5. In conclusion, there exist a value

FS beyond which the NR solver convergences globally with quadratic speed.

Exceptionally in the case of the diode clipper we have been able to derive an inequality that

limits the output within known values of the input:∣∣v[n+ 1]− v[n]
∣∣ ≤ max

1<k<n

∣∣u[k + 1]− u[k]
∣∣

+
(
ρCFS

)n{∣∣v[1]− v[0]
∣∣− max

1<k<n

∣∣u[k + 1]− u[k]
∣∣}. (24)

The derivation is shown in Appendix B. By guaranteeing that after an initial transient, which
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is represented by the exponentially decaying term in (24), subsequent output values are always

closer than the largest subsequent pair of input values so far, in practice this inequality can be

used to bound the output and, hence, to ensure quadratic convergence.

All the results discussed so far generalize to polynomial functions g(v) =
∑P

i=1Kiv
i1(v)

in which Ki ≥ 0. More in general, the assumption g′(v) ≥ 0 implies f ′(v) ≥ 1. Under this

condition NR is at least locally convergent and (24) continues to hold. On the other hand it is

simple to note that the function g(v) = ev
2
1(v) is such that M(v) is not bounded anymore. Once

again it is recalled that (17) provides a sufficient condition of fast convergence: failing to hit it

does not imply that the NR solution will converge slowly.

Since limited to the scalar case, this result is valid for circuits containing P diodes in parallel.

In particular it cannot be extended to diode- or transistor-based ladder circuits such as the Moog

or VCS3 voltage-controlled filter, whose equivalent DFL network contains hyperbolic tangent

characteristics [10], [15]. For such characteristics in fact the resulting function fu(v) does not

lie above the diagonal as in Fig. 5, and for this reason convergence of the NR solution cannot

be guaranteed. On the other hand the same result completes the proof of convergence that has

been given in a recent work on Wave Digital Networks, whose nonlinear characteristics were

systematically computed one by one through NR by splitting the multidimensional nonlinerity

(6) in a set of scalar functions (2) [38].

In the same work the Wave Digital model was successfully tested on a ring modulator circuit

[40]. Similarly to the diode clipper, the ring modulator has been often considered in the literature

of virtual analog—some examples of its use are listed in [38, Sec. 1]. With slower performance,

this circuit had been previously computed also by implementing a fixed-point method on its

equivalent DFL network, as part of a general proof of convergence of this solver on such

networks [11]. It seems logical, at this point, to continue our investigation on the ring modulator

in an aim to generalize the properties we have found for the diode clipper.

IV. CONVERGENCE IN THE RING MODULATOR

Thanks to the closed-loop connection of four diodes, the ring modulator analogue model

shown in Fig. 6 generates an output v2(t) by multiplying (in an analogue sense) two inputs

m(t) and c(t), respectively a modulator and a carrier voltage signal. This model was obtained

by loading the output point of the original circuit with a resistance Ra, and then by putting a

carrier source resistance Ri in parallel with a regularizing capacitance Cp [40]. As a result, it
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Fig. 6. Ring modulator analogue model [40].

leads to a system of two current and seven voltage ordinary differential equations in which the

voltages v1, v2 at the transformers and v3 in series with the carrier signal are instantaneously fed

back to the equations computing the currents i1, i2 at the transformers and the voltages v4, v5,

v6, v7 at the diodes. Turning such equations to the discrete-time domain using backward Euler

at temporal step n leads to the following implicit system of nine difference equations in nine



TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. ?, NO. ?, MONTH 20?? 15

unknown variables:

v1 = ρm
( m
Rm

+ i1 −
g(v4)

2
+
g(v5)

2
− g(v6)

2
+
g(v7)

2

)
+ ρmCFsv1[n− 1]

v2 = ρa
(
i2 +

g(v4)

2
− g(v5)

2
− g(v6)

2
+
g(v7)

2

)
+ ρaCFsv2[n− 1]

v3 = ρi
(
g(v4) + g(v5)− g(v6)− g(v7)

)
+ ρiCpFsv3[n− 1]

v4 =
v1
2
− v2

2
− v3 − c

v5 =− v1
2

+
v2
2
− v3 − c

v6 =
v1
2

+
v2
2

+ v3 + c

v7 =− v1
2
− v2

2
+ v3 + c

i1 =− 1

LFs
v1 + i1[n− 1]

i2 =− 1

LFs
v2 + i2[n− 1]

(25)

in which

ρm =
Rm

1 +RmCFs
, ρa =

Ra

1 +RaCFs
, ρi =

Ri

1 +RiCpFs
.

Perhaps interestingly, the ring modulator is equivalent to the diode clipper of Sec. II-A in presence

of constant inputs. In fact, dc voltages short-circuit all inductors and open the capacitors in ways

that m is isolated within a mesh containing only the resistance Rm, and c flows along resistance

Ri and, in series with it, diodes D4 and D5 oriented in one direction as well as diodes D6 and

D7 oriented in the opposite direction. Hence, the voltage v across the diodes obeys to the same

equation as (11), with null capacitances and double diode currents:

v + 2Ri

(
gD(v)− gD(−v)

)
− c = 0. (26)

Basin delimiters needs to calculate M(v). Recalling (18) and holding (25), the Jacobian

Jf (v) = I − J c(v) turns out to be equal to (27). Its block-based structure of the type Jf =
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Jf (v) =



1 0 0 ρm
2
g′D(v4) −ρm

2
g′D(v5)

ρm
2
g′D(v6) −ρm

2
g′D(v7) −ρm 0

0 1 0 −ρa
2
g′D(v4)

ρa
2
g′D(v5)

ρa
2
g′D(v6) −ρa

2
g′D(v7) 0 −ρa

0 0 1 −ρlg′D(v4) −ρlg′D(v5) ρlg
′
D(v6) ρlg

′
D(v7) 0 0

−1
2

1
2

1 1 0 0 0 0 0

1
2
−1

2
1 0 1 0 0 0 0

−1
2
−1

2
−1 0 0 1 0 0 0

1
2

1
2
−1 0 0 0 1 0 0

1
LFs

0 0 0 0 0 0 1 0

0 1
LFs

0 0 0 0 0 0 1


(27)

A(v) =



−ρm
2
g′D(v4)

ρm
2
g′D(v5) −ρm

2
g′D(v6)

ρm
2
g′D(v7) ρm 0

ρa
2
g′D(v4) −ρa

2
g′D(v5) −ρa

2
g′D(v6)

ρa
2
g′D(v7) 0 ρa

ρlg
′
D(v4) ρlg

′
D(v5) −ρlg′D(v6) −ρlg′D(v7) 0 0


(28)

 I −A

−B I

 allows for the following decomposition:

Jf =

 I O

−B I

I O

O I −BA

I −A

O I

 , (29)
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with A as in (28), and

B =



1/2 −1/2 −1

−1/2 1/2 −1

1/2 1/2 1

−1/2 −1/2 1

− 1
LFs

0 0

0 − 1
LFs

0


. (30)

Hence, Jf has an inverse if and only if I−BA ∈ R3×3 has an inverse. Moreover, the inversion

of Jf is reduced to the problem of calculating (I −BA)−1:

J−1f =

I +A(I −BA)−1B −A(I −BA)−1

−(I −BA)−1B (I −BA)−1

 . (31)

The Sherman-Morrison-Woodbury formula [44] yields

(I −BA)−1 = I +B(I −AB)−1A.

It follows that

(I −BA)−1B = B +B(I −AB)−1AB

= B(I + (I −AB)−1AB) = B(I −AB)−1

and, considering also to swap A and B in such two equations,

J−1f =

 (I −AB)−1 (I −AB)−1A

B(I −AB)−1 I +B(I −AB)−1A

 . (32)

If we define

Dρ = diag
(
ρm, ρa, ρl

)
Dg′D

= diag
(
g′D(v4), g

′
D(v5), g

′
D(v6), g

′
D(v7)

)

W =


−1/2 1/2 1

1/2 −1/2 1

−1/2 −1/2 −1

1/2 1/2 −1



E =


1 0

0 1

0 0

 such that EET =


1 0 0

0 1 0

0 0 0



, (33)
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then

A = Dρ

[
W TDg′D

E
]

B = −

 W

1
LFs
ET

 . (34)

Hence,

I −AB = I +Dρ(W
TDg′D

W +
1

LFs
EET )

contains the symmetric positive semidefinite matrix W TDg′D
W + EET/(LFs), for Dg′D

has

always nonnegative diagonal entries. This implies that its eigenvalues are real and nonnegative.

Now, the similar matrix

D−1/2ρ (I −AB)D1/2
ρ =

I +D1/2
ρ (W TDg′D

W +
1

LFs
EET )D1/2

ρ

(35)

has obviously the same eigenvalues as I −AB, furthermore it is the sum of an identity matrix

plus a matrix that is in its turn symmetric positive semidefinite. From the similarity (35) it can be

concluded that I −AB has eigenvalues that are greater than or equal to one. As an immediate

consequence such a matrix has always an inverse.

This conclusion extends the property we showed in Sec. III-A for the diode clipper, where

g′(v) ≥ 0 implied f ′(v) ≥ 1 and, hence, computability of the NR scheme.

Concerning inversion, from (35) it descends

(I −AB)−1 = D1/2
ρ

(
D−1/2ρ (I −AB)D1/2

ρ

)−1
D−1/2ρ =

D1/2
ρ

(
I +D1/2

ρ (W TDg′D
W +

1

LFs
EET )D1/2

ρ

)−1
D−1/2ρ .

The norm of the inverse, hence, can be split in three factors with the norm of (35) in the middle.

Since the eigenvalues are smaller than or equal to one, the 2-norm of (35) is smaller than or

equal to one in its turn. In fact, for symmetric matrices this norm is equal to the spectral radius

[45]. If the mid factor is removed from the norm of the inverse, then

‖(I−AB)−1‖2 ≤ ‖D1/2
ρ ‖2‖D−1/2ρ ‖2 =

=
√
‖Dρ‖2

√
‖D−1ρ ‖2 =

√
max{ρm, ρa, ρl}
min{ρm, ρa, ρl}

.
(36)
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C(v) =



−ρm
2
g′′D(v4)

ρm
2
g′′D(v5) −ρm

2
g′′D(v6)

ρm
2
g′′D(v7) 0 0

ρa
2
g′′D(v4) −ρa

2
g′′D(v5) −ρa

2
g′′D(v6)

ρa
2
g′′D(v7) 0 0

ρlg
′′
D(v4) ρlg

′′
D(v5) −ρlg′′D(v6) −ρlg′′D(v7) 0 0


(38)

Furthermore, if M ∈ RN×N then inequality ‖M‖∞ ≤
√
N ‖M‖2 holds for the∞-norm, which

is equal to the largest sum chosen among the entries’ absolute values forming each row [46]:

‖M‖∞ = maxi
∑

j |Mi,j|. From here,

‖(I −AB)−1‖∞ ≤

√
3

max{ρm, ρa, ρl}
min{ρm, ρa, ρl}

. (37)

In order to formulate the basin delimiter for the ring modulator we also need to compute

Hf (v), which has the following block structure:

Hf =

O C

O O

 , (39)

with O a null matrix and C as in (38). Hence, immediately from (31),

Jf (v)−1Hf (v) =

O (I −AB)−1C

O −B(I −AB)−1C

 . (40)

Since ‖B‖∞ ≤ max{2, 1/(LFS)}, then M(v) is figured out by the lower row in (40):

‖Jf (v)−1Hf (v)‖∞ = ‖B‖∞‖(I −AB)−1‖∞‖C‖∞ (41)

Unfortunately though, ‖C‖∞ depends on g′′D(v). In fact, from (38):

‖C‖∞ ≤ 4 max{ρm, ρa, ρl} max
i=4,5,6,7

{g′′D(vi)}

= 4 max{ρm, ρa, ρl} g′′D( max
i=4,5,6,7

{vi}),
(42)

in which the latter equality descends from the monotonicity of g′′. Contrarily to the diode clipper,

for which M(v) was shown to be bounded by (23) for both the exponential and polynomial

characteristics, in the case of the ring modulator inequality (42) in principle does not set a limit

for M(v). Nor efforts aimed at maintaining the magnitude of g′D inside ‖(I −AB)−1‖∞ so far
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Fig. 7. Ring modulator. Responses to a 10 V modulating sinusoid at 1000 Hz (dashed black line) and 5 V carrier sinusoid at

100 Hz (dashed grey line) using exponential (grey solid line) or polynomial (black solid line) diode characteristics.

led us to a formulation of the basin delimiter preserving, in the case of the ring modulator, the

counterbalancing role such first derivatives instead had in the scalar case—see Eq. (20).

The simulations in the next section will show that (41), although probably overestimating

M(v) in the case of the ring modulator, nevertheless warns about potential drifts from quadratic

convergence that, in practice, manifest if the exponential diode characteristic is chosen.

A. Simulations

Fig. 7 shows the responses to a 10 V modulating sinusoid at 1000 Hz, in presence of a 5

V carrier oscillating at 100 Hz with C = Cp = 10−9 F, L = 0.8 H, Ra = 600 Ω, Ri = 50 Ω,

Rm = 80 Ω. The simulation runs at 44.1 kHz.

Fig. 8 shows that with the above parameters the basin delimiter S(v) is always greater than

one, using either diode characteristic. Though, in the exponential case S(v) is clearly larger—
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Fig. 8. Ring modulator. Number of NR iterations necessary to compute the responses of Fig. 7 when using exponential (grey

circles) or polynomial (black crosses) diode characteristics. Corresponding basin delimiter in the exponential (grey curve) or

polynomial (black curve) case.

compare the functions in grey and black line. This difference suggests that the NR solver may

converge more slowly in this case, possibly with occasional vacancies from quadratic speed. Such

vacancies do happen in correspondence of temporal steps whose iterations, otherwise normally

less than ten, suddently jump up to fifteen and more.

A deeper look to Fig. 8 shows that these drifts occur immediately after caracteristic notches,

affecting an otherwise oscillatory evolution of the basin delimiter. This evidence may bring

interesting implications to such systems design when the real-time constraint holds, as abrupt

drops from a regular trajectory of the basin delimiter may signal possible slowdown of the NR

solver at the next temporal step. Possible explanations of this evidence are left to future research.
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V. FINAL REMARKS

DFL networks provide direct access to the (lumped) variables that circulate in the nonlinear

model. For what we have seen in Sec. II, they admit a straightforward NR solution of the circuit

which can be easily turned in an automatic computer procedure, for instance by organizing the

linearly equivalent DFL topology and its blocks in proper matrix representations [47]. Another

advantage they offer is the independence of the discretization method: as far as the nonlinearities

are memoryless, the analog-to-digital transformation affects only the memory of the linear blocks,

with minimal or no changes in the NR solver.

On the other hand, the lumped-variable approach is known to suffer from energy issues even

if the network contains only passive elements. These issues can cause numerical instability as

opposed to Wave Digital Networks, which are passive-guaranteed instead [4]. The proposed DFL

networks are not exempt from energy issues, however it should be noted that they are general

enough to model also passive-guaranteed networks.

An inherent limitation of DFL networks consists of the dimension of each nonlinear charac-

teristics, which must be scalar as any other block in the network. Even a geometric nonlinearity

c(v) = v1v2, which is two-dimensional, cannot find place on them and must be substituted by a

composition of polynomials: 2v1v2 = (v1 + v2)
2− v21 − v22 . Kolmogorov’s superposition theorem

allows for substituting any multivariate function with a sum and composition of monovariate

functions [48]. Clearly, substitutions of this kind are not computationally convenient.

VI. CONCLUSIONS

We have carried on research about the fast computability of nonlinear DFL networks, by

investigating properties of the NR scheme which for its quadratic speed of convergence is

frequently used in the simulation of electronic circuits containing nonlinear characteristics.

Specifically, we have first shown that NR can be directly applied to the network through a

linearization of its nonlinear blocks. Then, we have found sufficient conditions for quadratic

convergence in such networks depending on the magnitude of the basin delimiter, a distance

function we have derived from a known theorem of scalar NR convergence. Even though it

cannot be readily employed as a predictive tool, in this paper the basin delimiter has been used

to figure out conditions guaranteeing quadratic convergence in the diode clipper. Furthermore, its

application to the ring modulator has confirmed proportionality of its magnitude with the speed
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of NR convergence, and possible predictive behavior depending on magnitude discontinuities

which will be object of future research.
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APPENDIX A

PROOF OF QUADRATIC CONVERGENCE (14)

If v[0] = (v1,[0], . . . ,vN,[0]) ∈ I then we can write the Taylor series of each function component

fi,j around the solution up to the quadratic term:

fi,j(vj) = fi,j(vj,[0]) + f ′i,j(vj,[0])(vj − vj,[0])

+
1

2
f ′′i,j(ξi,j,[0])(vj − vj,[0])2,

(43)

where ξi,j,[0] lies between vj and vj,[0]. By summing over j we obtain

N∑
j=1

fi,j(vj) =
N∑
j=1

fi,j(vj,[0]) +
N∑
j=1

f ′i,j(vj,[0])(vj − vj,[0])

+
1

2

N∑
j=1

f ′′i,j(ξi,j,[0])(vj − vj,[0])2.

Since
∑N

j=1 fi,j(vj) = 0 for all i, then

f(v[0]) + Jf (v[0])(v − v[0]) +
1

2
Hf (ξ[0])(v − v[0])2 = 0,

in which 0 is a null vector and (v − v[0])2 contains the squares of each entry forming v − v[0].

Recalling (10), the previous formula can be rewritten as

‖v − v[1]‖∞ ≤
1

2
‖Jf (v[0])−1Hf (ξ[0])‖∞‖v − v[0]‖2∞

≤M‖v − v[0]‖2∞,

hence M‖v − v[1]‖∞ ≤ (M‖v − v[0]‖∞)2 < 1. From here, by induction we obtain that all

following iterates lie within I , furthermore (14) is straightforwardly derived. This guarantees

quadratic convergence to the solution v of the initial iteration starting in v[0] under the hypotheses

given in Sec. III.
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APPENDIX B

DIODE CLIPPER: INPUT CONSTRAINT FOR QUADRATIC CONVERGENCE

The distance
∣∣v−v[0]∣∣ =

∣∣v[n+1]−v[n]
∣∣ is shown to depend on the input by initially noticing

that (21) can be used to define a recursion of the type fu[n+1](v) = fu[n](v) + φ[n+ 1], with

φ[n+ 1] = ρCFS(v[n− 1]− v[n])

+
ρ

R
(u[n]− u[n+ 1]).

(44)

By the Lagrange theorem, if ξ is such that v[n+ 1] ≤ ξ ≤ v[n]:

fu[n+1](v[n+ 1])

= fu[n+1](v[n]) + f ′u[n+1](ξ)
(
v[n+ 1]− v[n]

)
= fu[n](v[n]) + φ[n+ 1] + f ′u[n+1](ξ)

(
v[n+ 1]− v[n]

)
,

and, since fu[n+1](v[n+ 1]) = fu[n](v[n]) = 0,∣∣v[n+ 1]− v[n]
∣∣ =

∣∣∣ φ[n+ 1]

f ′u[n+1](ξ)

∣∣∣. (45)

In the diode clipper inequality f ′u(v) > 1 holds for each v, hence substituting (44) in (45):∣∣v[n+ 1]− v[n]
∣∣ ≤ ρCFS∣∣v[n]− v[n− 1]

∣∣
+

ρ

R

∣∣u[n+ 1]− u[n]
∣∣. (46)

Now, unfolding this inequality along n steps,∣∣v[n+ 1]− v[n]
∣∣ ≤ (ρCFS)n∣∣v[1]− v[0]

∣∣
+
ρ

R

n∑
k=1

(
ρCFS

)k−1∣∣u[k + 1]− u[k]
∣∣, (47)

and by choosing k where |u[k + 1]− u[k]| is maximum,∣∣v[n+ 1]− v[n]
∣∣ ≤ (ρCFS)n∣∣v[1]− v[0]

∣∣
+
ρ

R
max
1<k<n

∣∣u[k + 1]− u[k]
∣∣ n∑
k=1

(
ρCFS

)k−1
.

(48)

It is straightforward to check that

ρ

R

n∑
k=1

(
ρCFS

)k−1
= 1−

(
ρCFS

)n
, (49)

implying that the previous inequality can be expressed as∣∣v[n+ 1]− v[n]
∣∣ ≤ (ρCFS)n∣∣v[1]− v[0]

∣∣
+
{

1−
(
ρCFS

)n}
max
1<k<n

∣∣u[k + 1]− u[k]
∣∣. (50)
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Finally, since the term (ρCFS)n goes to zero for increasing n, it is convenient to rewrite the

inequality as in (24).
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