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ABSTRACT 

 
The discovery and description of patterns in electric energy consumption time series is 

fundamental for timely management of the system. A bicluster describes a subset of observation 

points in a time period in which a consumption pattern occurs as abrupt changes or instabilities 

homogeneously. Nevertheless, the pattern detection complexity increases with the number of 

observation points and samples of the study period. In this context, current bi-clustering 

techniques may not detect significant patterns given the increased search space. This study 

develops a parallel evolutionary computation scheme to find biclusters in electric energy. 

Numerical simulations show the benefits of the proposed approach, discovering significantly 

more electricity consumption patterns compared to a state-of-the-art non-parallel competitive 

algorithm. 
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1. INTRODUCTION 
 
The electricity demand is continuously growing, due to different reasons, e.g., population 

increment, but even lifestyle that demands more energy. For this reason, it is essential to monitor 

the distribution-level consumption to detect abnormal activity, such as a higher than usual 

demand on some systems. Doing that that would allow the system managers to carry out actions 
that can correct such abnormal situations.  

 

Different data analysis techniques are usually used in the processing of these data, such as 
classification [1,2], forecasting [2–8], and clustering [9–12]. To this aim, biclustering can come 

in handy. In fact, in biclustering, it is possible to group data in two dimensions simultaneously; an 

example is a bicluster that can group energy consumption and time.  

 
Biclustering has been mostly applied in bioinformatics, particularly in the context of microarray 

data. The primary purpose is to find subsets of genes presenting similar patterns, in terms of 
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expression values, under a subset of experimental conditions [13]. For instance, in [14], a scatter 
search approach based on linear correlations among genes is used to find biclusters. In [15], the 

authors proposed a multi-objective evolutionary algorithm (MOEA) to detect biclusters 

presenting particular characteristic. Biclustering has also been applied in other fields, such as 

social network datasets [16] or text mining [17]. In [18], a biclustering method identifies the most 
suitable group of user friends in social network datasets. In [19], a multi-objective biclustering 

algorithm was applied for the first time to the time series of the electricity consumption in smart 

buildings.  
 

The energy consumption data can be usefully treated as time series data over a period. These 

time-series data are extensively used in different applications such as science, engineering, 
finance, economics, communications, control, health care, government, among others [22,21]. 

Clustering time series, which can be defined as identifying the homogeneous groups of time-

series data based on their similarity [22], is an important technique that can provide knowledge 

from raw energy data [23]. Traditional clustering techniques are not always enough in all 
applications because these techniques usually only look for similarities in the entire time series. 

In some cases, finding similarities over specific periods is significant.For example, finding 

consumers with shared electricity consumption characteristics at limited periods, like peak 
demand hours, can yield better customer segmentation. Good customer segmentation can 

improve the performance of demand response programs [24]. Biclustering methods could fit to 

study concrete periods on energy consumption time series [22]. Biclustering consists of 
simultaneous partitioning of samples and their attributes (features) into subsets (classes). Samples 

and features classified together are supposed to have high relevance to each other [19]. 

 

Although competitive techniques addressed the bicluster problem, there is a large margin to be 
improved as the solution space grows, as is the case with energy consumption time series. In this 

context, parallel computing has emerged as a promissory alternative. The parallel-evolutionary 

computation finds satisfactory solutions reducing the computation time in high complexity 
problems [26]. Consequently, in this paper, we propose developing a parallel-computing 

architecture extending one of the most competitive state-of-the-art techniques presented by 

Divina et al. [19] to the energy consumption time series. 

 
The paper is organized as follows. Section 2 presents the relate works while Section 3 presents an 

introduction of the electric energy consumption data and some basic notions of biclustering and 

evolutionary computation. Section 4 describes the procedures of the proposed Parallel 
Evolutionary Biclustering, while Section 5 shows the data, the simulation setup, and results. 

Finally, Section 6 gives the main conclusions and future works. 

 

2. RELATED WORKS 
 

Understanding different patterns of energy consumption, or measuring the environmental impact 

of energy production, can help in the development of new strategies to respond to the growing 

energy demand [27] and, therefore, to have a more sustainable energy policy respectively [28]. 

Many papers have been published recently aiming at improving power consumption prediction 
and pattern discovery. To this end, machine learning (ML) approaches emerge as the most 

important [29-31]. 

 
As example, the work presented by Liu et al. [32], where the authors presented a support vector 

machine (SVM) method to forecasting and diagnose public buildings energy consumption based 

on different input parameters, such as historical energy consumption data, climatic factors and 
time-cycle factors. The work was carried out on a dataset from city of Wuhan (China), and their 
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results showed that they were able to detect that air conditioning energy consumption was 
abnormal for four days in September. 

 

In a recent work presented in [33], the authors proposed a model predictive control system with 

adaptive machine-learning-based building models for building automation and control 
applications. The results show that the proposed model reduces 58.5% cooling thermal energy 

consumption in the office and 36.7% cooling electricity consumption in the lecture theatre, when 

it is compared against their respective original control. 
 

Artificial neural networks (ANNs) stand out as one of the most important approach among the 

different ML-based techniques for analysis and prediction of short-term energy consumption 
patterns [34-36]. As representative work, the early one presented by Nizami and Ai-Garni [37], 

which proposed a two-layer forward-fed ANN to study how weather-related characteristics can 

affect the prediction of monthly electricity consumption.  

 
Recently, new ensemble methods are also gaining interest due to their improved results by 

combining several techniques. As example, the work by Divina et al. [12], where the authors 

proposed a new strategy based on ensemble learning in order to tackle the short-term load 
forecasting problem. The approach was based on the predictions produced by three base learning 

methods. 

 
While clustering techniques have been less used in the literature for the analysis of energy data 

than others ML approaches, it is worth noting that there are several relevant works in this field. 

For example, the work by Diao et al. [38], where the authors proposed to identify and classify 

behaviour of occupants with direct energy consumption outcomes and energy time use data 
through unsupervised clustering. The results showed that the model was able to automatically 

estimating energy consumption on even larger geographic scale. Another example is presented by 

Perez-Chacon et al. [39], where clustering techniques was also used to identify energy 
consumption pattern in smart cities in a big data context. The authors proposed a parallelized 

method, based on the study of four clustering validity indices, to extract electric energy 

consumption patterns in big data time series. The method was tested using electricity 

consumption for the years 2011–2017 for eight buildings of a public university. Finally, in a 
recent work by Divina et al. [16], the authors proposed the first application of a biclustering 

algorithm to detect anomalies in the energy consumption patter. The algorithm was applied on 

data from smart buildings of a Spanish university campus. The results achieved showed that the 
proposed approach can help policy makers in detecting irregular situations. 

 

3. BACKGROUND 

 

This section introduces the electric energy consumption data and provides the basic concepts of 
biclustering and evolutionary computation. 

 

3.1. Electric Energy Consumption Dataset  
 

Electric energy consumption data are usually modeled as a time series since it consists of a 

discrete sequence of data points measured at equal time intervals [19]. Let 𝑌 = {𝑌𝑖}𝑖=1
𝑁  be a 

sample of N univariate time series where 𝑌𝑖 = {𝑌𝑖,𝑡}𝑡=1
𝑇  is a univariate time series characterized 

by T real values. Then, the sample 𝑌 can be represented through a matrix 𝑀𝑁×𝑇. On the other 

hand, let us define a bicluster b as a submatrix 𝑆𝐼×𝐽, with |I| ≤ N and |J| ≤ T. In the context of time 



126 Computer Science & Information Technology (CS & IT) 

series,𝑆𝐼×𝐽 is subject to the additional condition that columns are consecutive, i.e., 𝐽 = {𝑗𝑘 , 𝑗𝑘 +

1, 𝑗𝑘 + 2, … , 𝑗𝑘 + |𝐽| − 1}. Given a function 𝑓(𝑏)that measures the quality of a bicluster b, the 

objective is to find the best B biclusters {𝑏𝑘}𝑘=1
𝐵  according to 𝑓(. ). 

In our context, each time series represents a sequence of sensor data collected over time. 

Therefore, the data can be viewed as N × T energy consumption data matrix EM. EM is a real 

matrix, where each element eij represents the electric energy consumption (expressed in kWh) as 
measured by sensor i on sample j. We can then see a bicluster as the measurements registered by 

a subset of sensors over a subset of consecutive days. For example, let us look at Figure 1 a five-

sensor array for 40 sample days at the left side, while three biclusters are at the right side. The 

bicluster arrows correspond to sensors while the columns the consecutive days where a pattern 

was observed. 

 

 
 

Figure 1: A five-time series with 40 electric energy consumption samples. 

 

3.2.  Bicluster quality measure 

 
This work aims to identify a subset of sensors that present a similar behaviour during a time 
period. Particularly, we are interested in detecting unusual peaks of consumption [19]. From the 

biclustering perspective, the goal is to find large high quality biclusters that represent an 

interesting pattern found in the data. In this work, we use as a bicluster quality measure, the 
Transposed Virtual Error or simply Virtual Error (VE) from here [40].  VE computes the general 

tendency within the bicluster along the columns. In order to define VE, we first introduce the 

concept of virtual pattern. Given a bicluster b, the virtual pattern p is defined as the set 𝑝 =

{𝑝𝑗}𝑗=1
|𝐽|

, so that pj is given by the expression: 

 

𝑝𝑗 =
1

|𝐼|
∑ 𝑏𝑖𝑗

|𝐼|
𝑖=1 , (1) 

 

Where bij the elements of the bicluster b, pj represents the average value of all sensors for a 

specific sample. For the bicluster 𝑏1 given in Figure 1, the average value of the three sensors is 

provided in the last row p. 

 

The VE of bicluster b is defined as: 
 

𝑉𝐸(𝑏) =
1

|𝐼|∙|𝐽|
∑ ∑ |𝑏̂𝑖𝑗 − 𝑝̂𝑗||𝐽|

𝑗=1
|𝐼|
𝑖=1 , (2) 

 

where 𝑏̂𝑖𝑗  and 𝑝̂𝑗  refer to standardized value of the elements of the bicluster b and virtual 

condition j as follows: 
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𝑏̂𝑖𝑗 =
𝑏𝑖𝑗−𝜇(𝐸𝑀𝑖)

𝜎(𝐸𝑀𝑖)
, 1 ≤ 𝑖 ≤ |𝐼|, 1 ≤ 𝑗 ≤ |𝐽|, (3) 

𝑝̂𝑗 =
𝑝𝑗−𝜇(𝑝)

𝜎(𝑝)
, 1 ≤ 𝑗 ≤ |𝐽| (4) 

 

With bij the elements of b, and 𝜇(. )   and 𝜎(. )   refer to the mean and standard deviation, 

𝐸𝑀𝑖 refers to all elements of sensor i that belong to b. The standardization of the values is 
introduced to be able to capture the consumption pattern of a sensor regardless of the real values 

registered. 

 
The measure VE is a measure of coherent tendency. Lower values refer to a more robust pattern 

in the bicluster. A value of zero means that the bicluster contains perfectly coherent patterns. 

Nevertheless, the use of VE may yield to find biclusters characterized by flat patterns. Such flat 
biclusters are not interesting since we aim at finding abnormal activities, which are often related 

to peaks in consumption patterns. To overcome this issue, and favors fluctuating and coherent 

patterns, the row variance (var(b)) of a bicluster b can be used and defined as: 

 

𝑣𝑎𝑟(𝑏) =
∑ (𝑏𝑖𝑗−(𝑏𝑖) )2

𝑖∈𝐼,𝑗∈𝐽

|𝐼|∙|𝐽|
, (5) 

 

Finally, to find large biclusters, we introduce, as another objective function, the volume of a 

bicluster V(b), which measures the number of elements 𝑏𝑖𝑗 ∈ 𝑏. So, we aim at finding biclusters 

characterized by low values of virtual error VE, with high row variance var(b) and volume V(b). 
As an example of these values, at the right side of Figure 1, we can see VE(b), var(b), and V(b) of 

biclusters.   

 

3.3.  Evolutionary Computation 

 
An evolutionary algorithm (EA) [41–43] is based on the biological concepts of evolution, for 
example, the survival of the fittest. Such concepts are used to evolve candidate solutions toward 

much better solutions. In fact, an EA is a population-based stochastic iterative strategy, where an 

initial population of candidate solutions is evolved to improve the quality of the solutions. 
Usually, the initial population consists of random solutions. Genetic operators, such as selection, 

crossover, and mutation, are then used in order to simulate generations to obtain a new 

evolutionary population. These operators distinguish them from other nature inspirations like 

swarm artificial and physical algorithms [19]. Each evolutionary generation consists of two main 
processes: (a) create new candidate solutions and (b) competition for survival.  

 

EA generates new individuals by selecting a subset of individuals from the population, performs 
crossover on the subset, and then injects new genetic material by mutation. Selected individuals, 

called parents, will then be used to generate new solutions called offspring. The descendants 

inherit attributes of the ancestor via the crossover and not present via mutation. This dual 
approach is the main strength of EA as a search algorithm, a concept called knowledge 

exploitation vs. exploration.  

 

Another fundamental concept is that EA encodes solutions to be represented in individuals by 
chromosome. EA refers to a solution as to the phenotype and to an individual encoding it as a 

genotype. The literature reports many proposals to this aim, with binary string encoding being the 

most widely used for the easy implementation of binary crossover and mutation [44]. In this 
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encoding, a binary string is used, where the meaning is assigned to each bit. In this way, a 
solution can be encoded, and an individual can be decoded. 

 

As previously mentioned, in each generation, some individuals are selected to generate new 

solutions. The selection is usually based on the quality of the solutions encoded by individuals. 
This means that a quality measure should be assigned to each individual. This measure is called a 

fitness function. The selection mechanisms usually tend to assign more probabilities of being 

selected to the fittest individuals. Fitness is the point of connection between EAs and the 
optimization problem. The fitness function design depends on the objective function of the 

problem. In consequence, it performs at the phenotypic level. 

 
Once individuals have been selected, crossover and/or mutation are used to produce offspring. A 

crossover is used to swap genetic material between two parents, while mutation is used to 

introduce small random changes that can help escape local optima. These operators are applied at 

the genotype level. 
 

After that offspring are generated, they compete with older individuals for surviving to the next 

generation. A common strategy, called elitism, is also to let the fittest individual of a generation 
survive to the next generation. 

 

EAs have shown good performance in exploring huge search spaces, which is the space of all 
possible solutions to a problem. This capacity is due to the intrinsic parallelism achieved by the 

population search and the stochastic nature of EAs, which allow them to efficiently search for a 

solution and with the capability of escaping local optima. Initialization, selection, crossover, and 

mutation are stochastic procedures. In this way, EAs represent a strong alternative to greedy 
heuristic and competitive metaheuristic [19]. 

 

EAs have been successfully used in various problems, such as planning [44], parameter settings 
[45], design [46,47], knowledge extraction [48], feature selection [49], planification [50,51], 

simulation and identification [52], control [53] and classification [44–57]. 

 

The problem of finding a set of biclusters with some desirable features on a given matrix can be 
addressed as a search problem. In this case, the solution space contains all possible biclusters that 

can be obtained from the matrix. 
 

4. PARALLEL BICLUSTER SEARCH 
 
In this section, we will describe our proposed parallel version of the algorithm Sequential 

Covering (SC) [13], called PSC (Parallel SC), aimed at reducing the computational time required 

by the algorithm. In order to implement our proposal, we decided to employ a master/slave 
model. First, we describe the original version of the SC algorithm, and then we will provide 

details on its parallelization. 

 

4.1.  Sequential Covering 

 
In brief, SC implements a sequential covering strategy, which consists of calling several times an 
evolutionary biclustering algorithm (EBI) until a stopping criterion is reached. SC finds biclusters 

with maximum volume while minimizing the effect of overlapping among biclusters. The general 

scheme of SC is shown in Figure 2. 
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Procedure SC 

begin 

1:Initialize L to ∅; 

2: wp(eij) ← ∅ 

3:while (Stopping Criterion) 
4: b ← EBI; 

5: if b ≠ ∅ then 

6: Add b to L; 

7: Update wp (eij); 

8: else b = ∅ 
9: stop; 

10:   end while 

end 

 Procedure EBI 

begin 

1:   Initialize population; 

2:    Evaluate population; 

3:while (Stopping Criterion) 
4: Select parents; 

5: Cross parents; 

6: Mutate offspring; 

7: Evaluate offspring; 
8: Update population; 

9:  end while 

10:returnb 

end 

(a) Pseudocode of the SC procedure  (b) Pseudocode of the EBI procedure 

 

Figure 2: General scheme of the original EBI procedure. 

 

Given a threshold, EBI returns either a bicluster or nothing depending on whether the virtual 

error of the bicluster is lower than  or not. The biclusters found are stored in a list L and the 

stopping criterion is reached after running the procedure a maximum number of times. In order to 

avoid overlapping among biclusters as much as possible, each element of the input energy matrix 
eij is given a weight wij whose value depends on the number of biclusters to which eij belongs. In 

particular, the weights are defined as in equation 5. 

 

𝑤𝑝(𝑒𝑖𝑗) = {

0 𝑖𝑓 |𝐶𝑜𝑣(𝑒𝑖𝑗 )| = 0

∑ 𝑒|𝐶𝑜𝑣(𝑒𝑚𝑛)|
𝑛∈𝑁,𝑚∈𝑀

𝑒|𝐶𝑜𝑣(𝑒𝑖𝑗)| 𝑖𝑓 |𝐶𝑜𝑣(𝑒𝑖𝑗 )| > 0
 (6) 

In the above equation, N is the number of rows, M the number of columns, |𝐶𝑜𝑣(𝑒𝑖𝑗)|the number 

of biclusters to which eij belongs to. As shown, higher values of the weight correspond to a larger 

number of biclusters containing an element. 
 

Figure 2b outlines the pseudocode of the EBI. It initializes the initial population with biclusters 

containing a single element and then, such population evolves employing recombination of 
selected pairs of parents and crossover and mutation operators. Parents are selected using a 

tournament approach. The crossover and mutation operators have a probability associated of pc = 

0.85 and pm = 0.2. EBI is an elitist algorithm where the best individual survives to the next 
generation. The evolution stops after a maximum number of generations (gmax). Finally, elitism is 

also applied with a probability of pe = 0.9, the best individual replaces the worst in the new 

population. The best individual is returned if it is a -bicluster. 

 

Individuals encode a single bicluster using an array of N + T bits. The first N bits are associated 
to each sensor while the other T bits to each electrical energy consumption sample. Figure 3 

shows an example of individual encoding a bicluster for a matrix of dataset of N = 5 sensors and 
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T = 40 electrical energy consumption samples. The encoded bicluster contains |I| = 3 rows and |J| 
= 11continuous columns, i.e., b = [011010000000000011111111111000000000000000000]. 

 

 

Figure 3: Example of an individual encoding a bicluster containing three rows and eleven continuous 
columns. 

 

The fitness function of an individual b, in EBI, is defined as follows: 

𝑓(𝑏) =
𝑉𝐸(𝑏)

𝛿
+

1

𝑣𝑎𝑟(𝑏)
+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑤_𝑑, (7) 

where VE(b) is the virtual error of the bicluster b and var (b) is the variance associated with the 

sensors in the bicluster. penalty is computed as: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  ∑ 𝑤𝑝(𝑒𝑖𝑗)

𝑖∈𝐼,𝑗∈𝐽

 
(8) 

with I and J corresponding to the sensors and continuous days belonging to the bicluster b. 
penalty measures the sum of the weights of each element that belongs to b and its purpose is to 

avoid overlapping among biclusters. wp(eij) is calculated using the expression (5). Finally, w_d is 

given by the expression: 

𝑤_𝑑 = 𝑤𝑉 ∙ (𝑤𝑟 ∙
𝛿

𝑟𝑜𝑤𝑏
+ 𝑤𝑐 ∙

𝛿

𝑐𝑜𝑙𝑏
) 

(9) 

 

where wV is a weight associated with the volume of the bicluster, rowb and colb refer to the 

number of sensors and continuous days of a bicluster, respectively, and wr and wc correspond to 
the weights assigned to the number of sensors and continuous days, respectively. The search bias 

can vary by changing the values of the weights. The final goal of EBI is to minimize the fitness 

function. Following the recommendations of [38], the values were set to wV = 1, wr = 1 and wc = 

10. 
 

4.2.  Parallel Sequential Covering 

 
The algorithms have problems finding global optimal when the search space is huge, as in the 

case of bicluster search. This is due to the unavoidable convergence in regions of good 
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performance that not necessarily contain the global optima. To overcome this drawback, it is 
necessary to perform several independent runs. Each independent run has a different initial 

population and a different convergence region. 

 

The simulation runs an EA sequentially or parallelly. The latter reduces the computational time 
by using the available computational resources.  

 

In this context, parallelization of evolutionary algorithms emerges as a critical strategy in high-
performance computing [57, 58]. Among the different parallelization strategies, we initially 

applied the master-slave parallelization. In this approach, a central computer, the master, 

distributes the tasks to the different worker computers, the slaves, to perform the tasks 
independently. The workers return the results to the master, who collects and processes the result. 

As mentioned above, Parallel Sequential Covering (PSC) is the proposed adaptation of SEBI to a 

master-slave architecture. Basically, PSC increases the explored search space size by running, in 

parallel, the SC procedure. The details about the adaptation are given in Figure 4. First, the 
master receives, as input, the data and runs the SC procedure on each slave. The input data 

contains energy matrix and evolutionary parameters. Since each SC returns a maximum number 

of B biclusters, the master will receive, at the end of the executions, a total of at most SL · B 
biclusters, with SL the number of slaves. Finally, the set of biclusters L will be composed of the 

union of each Li returned. 

 

 
 

Figure 4: Workflow of the master-slave architecture of the PSC approach. 

 

5. RESULTS AND DISCUSSION 
 

In this section, we assess the quality of the PSC method for finding biclusters on the electric 

energy consumption data. This dataset contains 744 samples of electric energy consumption for 
184 sensors gathered in December of 2013. 
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When the search space size is large, the choice of a correct set of parameter values is critical and 
might need many trials. Though what is essential is the description of a precise fitness function, 

as the parameter values will only help reach the goal defined by that function, i.e., the 

evolutionary algorithm might need much more time to converge. The results might not be good. 

Additionally, if we have limited time but enough computer resources, it is possible to perform 
parallel tests. We have run various preliminary resultsfor set the parameters of the algorithms. 

Table 1 shows the parameters setting. It is important to note that every time that PS calls EBI, it 

runs PSgmax evaluations of potential biclusters, and the size of the search space is about 2n+m, 

with n samples and m sensors. Thus, the number of candidate biclusters evaluated by EBI could 
be too small compared to the number of potential biclusters when n and m are large. Therefore, 

the role of genetic operators and the fitness function is a key factor in correctly guiding the search 

toward reasonable solutions. 
 

Table 1. Parameter settings of PSC. 

 

Parameter Symbol Value 

Population Size PS 200 

Number of generations gmax 30 

Crossover probability pc 0.85 

Mutation probability pm 0.20 

Elitism Probability pe 0.9 

Weight for volume wV 1 

Weight for sensors wr 1 

Weight for samples day wc 10 

Tournament Size ts 4 

Biclusters to find B 10 

Delta Biclusters  10 

Number of workers SL 2 to 10 

Number of independent runs NR 30 

 

The executions have performed a computer with Intel(R) Core (TM) i5-2520M CPU @ 2.50GHz, 

4Gb RAM as the master node, and a computer with AMD A8-7410 APU processor with 8Gb 

RAM as worker nodes, both with Linux operating systems. The simulation was performed on a 
local area network. The automatization of PSC was via Apache Hadoop and Apache Spark 

version spark-2.3.0-bin-hadoop2.7. One core per computer worker was configured to perform the 

SC algorithm. All algorithms were implemented in Java language using the javac 1.8.0_201 
version. Each parallel run consumed an average of 30 minutes, totaling a computation time of 

150 hours (NR x 30 min x SL), including the SC run.  

 
Algorithms Workers Fitness VE var V 

SC 1 1.86E-03 1.40E-01 1.15E+03 4.45E+02 

PSC 

2 1.40E-03 1.35E-01 1.12E+03 4.71E+02 

3 1.26E-03 1.53E-01 9.43E+02 6.18E+02 

4 1.19E-03 1.56E-01 1.20E+03 5.14E+02 

5 1.19E-03 1.62E-01 1.14E+03 6.31E+02 

6 1.05E-03 1.70E-01 1.29E+03 5.27E+02 

7 1.11E-03 1.86E-01 1.24E+03 5.82E+02 

8 1.08E-03 1.99E-01 9.54E+02 7.14E+02 

9 1.06E-03 1.78E-01 1.07E+03 7.04E+02 

10 9.94E-04 2.23E-01 1.03E+03 8.06E+02 

 
(a) Table of PSC and SC experimental results 
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(b) Relative performance of PSC over SC 

 
Figure 5. Experimental result of PSC and SC 

 

Table 2 shows the average values of the different metrics. The fitness score is highly correlated 
with virtual error (-0.71) and volume (-0.69), while to a lesser degree with a row variation (0.06). 

In general, when the bicluster fitness decreases, the volume and row variance tend to increase. On 

the other hand, the row variance does not show a definite pattern about fitness. With these results, 
we can note that the algorithm finds biclusters with high-quality in volume at the cost of slightly 

increasing some virtual error.Figure 5 presents a graphical representation of these explanations. 

This figure shows the relative and normalized values of the fitness, virtual error, row variance, 

and volume metrics. The relative fitness with k workers is calculated as 𝑓𝑘 =
(𝑓1 − 𝑓𝑘)

𝑓1
⁄ , 

likewise the other metrics. 

 
The virtual error measure has a low correlation with row variation (-0.25) and a high correlation 

with volume (0.86). The above implies that virtual error and volume are in a trade-off 

relationship. With the worsening of the virtual error, the volume improves and vice versa. This 
result depends on the input parameters that define the algorithm's course towards some sub-

region of the efficient frontier. The row variation and volume have a medium correlation of -0.59. 

The row variation influences the volume moderately. 

 
Another critical aspect observed is the impact of parallelization. As the number of worker nodes 

increases, then the fitness score also improves. This improvement is a consequence of further 

exploration of the search space with the same computational time.  
 

Figure 6 presents two examples of bicluster calculated using the PSC algorithm. In these 

biclusters, we can see patterns of electric energy consumption. The sensors 58, 73, and 112 and 
samples block 656 to 685 constitute Bicluster A, while sensors 13, 47, and 52 and samples block 

557 to 585 for Bicluster B. In the figure also we can see the virtual error, row variance, and 

volume of biclusters. The patterns show abrupt changes of sensor groups at different times of the 

month. Such descriptions of electricity consumption are crucial to energy policy or decision-
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making. In this context, the developed tool is promising as a pattern description system for the 
electricity sector. 

 

 
 

Figure 6: Examples of two biclusters calculated by PSC algorithm. 
  

6. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have proposed, implemented, and validated a parallel alternative to an 

evolutionary biclustering algorithm. The proposed parallel architecture is based on the master-

worker scheme to discover biclusters called Parallel Sequential Covering (PSC). The PSC was 
tested to locate and describe hidden patterns in a set of time series of an electrical system. 

Experimental results indicate that the PSC approach is promising for the study scenario, 

outperforming the state-of-the-art non-parallel evolutionary algorithm. A key aspect is that the 
quality of the solutions improves with the increasing number of workers. The algorithm 

converges to bicluster regions with high volume and vector variation as well as low virtual errors. 

These characteristics are the ones desired in the problem in question. Experiments also indicate 

that volume and virtual error are objective functions that conflict with each other. Therefore, we 
consider approaching a Parallel Pareto multi-objective optimization scheme as the next step in 

this research line. 
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