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Abstract. A part of the preliminary aircraft design process is the evaluation of the design 

mission performance. This paper presents a combination of a scripting environment 

(Python) with a point-mass, segment based integration method C++ code (Aircraft 

Performance Program APP). By using the example of a CAS-Mach climb schedule for a 

commercial airliner, the possibilities for rapid parameter analyses are demonstrated and 

the influence of the choice for the top-of-climb condition is highlighted. These 

capabilities of the framework are further shown by computing a complex design mission 

for a small propeller UAV usable for railway inspection. Overall mission profile 

optimization is achieved by a combination of a Python based optimizer and the APP 

built-in optimizer. Furthermore, the Python-APP framework is capable of computing and 

analyzing mission performance for hybrid-electric propulsion aircraft. 

Keywords. Aircraft Performance, Mission Analysis, Electric Propulsion 

1 Introduction 

In preliminary aircraft design, a certain aircraft is sought that fulfills defined requirements. Usually, 

such requirements contain flight performance targets, e.g. payload, range endurance and flight speed. 

After each iteration in the design process that produces a viable design, the flight performance is 

checked against the performance requirements. If the result is not satisfactory, the design is changed 

and re-evaluated. 

 The preliminary aircraft design process comprises multiple engineering disciplines involving e.g. 

aerodynamics, propulsion, structure, loads, stability & control and systems. As the design matures, the 

methods employed change from simple handbook methods (analytic or statistical nature) to more 

complex computer based simulations (e.g. CFD, FEM). Past and current European research efforts 

such as SIMSAC
1
 and AGILE

2
 focus on integrating the tools of the different disciplines and fidelity 

into a common software environment, such as CEASIOM and the Reconfigurable Computing 

Environment (RCE). The need for a common file format to exchange information between tools was 

identified in [1], and an XML schema was proposed (CPACS
3
). More complex methods increase the 

fidelity of the model, and therefore influence the applicability and suitability of methods for the 

computation of aircraft performance. 

 Aircraft performance can be divided into three principal categories: field performance, point-

performance and mission-performance. The first category, field performance, includes take-off, 

rejected take-off, landing and balanced field length computations. These computations are complex, 
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not only due to the kinematics but also due to certification requirements that have to be take into 

account. Field performance can usually be considered separately from other performance evaluations, 

as it makes up a smaller fraction of the overall flight (with respect to time, distance and fuel 

consumption). The second category, point-performance, describes all computations that only depend 

on the state of the aircraft and not the time evolution. Examples of these include maneuvering 

performance (e.g. turn-rate, load factor) or Specific Excess Power (SEP). Point-performance can be 

evaluated in a straight forward manner using flight mechanics equations. The third category of aircraft 

performance, mission-performance, presents the most involved category. Mission performance looks 

at the entire flight and results in the range and endurance capability for a given payload. A mission is 

primarily composed of climb, cruise and descent stages. Due to the large range of possible missions, 

complex mission profiles have to be evaluated. During mission computations, the aircraft undergoes 

constant changes in flight state, therefore requiring an appropriate aircraft model. 

 Mission performance evaluation is used to check if a design fulfills requirements (e.g. payload-

range chart), to obtain operating points to design and size the propulsion system [2], and even as a 

target function (objective function) in Multidisciplinary Design Optimization (MDO), e.g. [3]. 

Computing the mission performance of an aircraft is therefore an integral part of aircraft design and is 

reflected by the definition of a design mission. 

 Design missions for conventional civil subsonic transport aircraft and business jets are relatively 

simple, usually consisting of a taxi&takeoff, climb, cruise, descent, landing and alternate&reserves 

sequence. From an optimization standpoint, such a mission is comparatively simple due to the high 

degree of standardization and the similarity between aircraft performing such missions. Especially the 

dominating role of the cruise segment simplifies the analyses: Optimizing the cruise segment’s 

condition (altitude and Mach number) already provides a good estimate maximum range. However, 

more complex modelling of take-off and climb-out, approach and reserves leads to numerous 

segments and conditions (Figure 1). Implicit definitions of fuel reserves require iterations in order to 

find the maximum range. For example, at the end of the cruise phase, an additional fuel allowance is 

defined as a percentage of the cruise range and for reserve fuel there is a 5% flight fuel allowance. 

 Design mission for military aircraft are generally more complex due to different mission 

requirements (e.g. interception, time-on-station, low-level high speed), return journeys instead of 

point-to-point flights (radius of action instead of range), more than one engine operating mode (dry 

and reheat) and potential large mass changes (air-drop cargo, droppable fuel tanks, external store 

releases). Optimization of such design mission under operational constrains can be challenging. 

 

 

Figure 1: Typical civil mission profile [4] 



 

Figure 2: Exemplary BVLOS UAV railway inspection mission profile 

 Mission profiles of civil Unmanned Aerial Vehicles (UAVs) resemble more the military type of 

mission profile than the traditional civil missions. This stems from the wide range of applications of 

UAVs, such as imaging, mapping, inspection, remote sensing, wildlife tracking, Search and Rescue 

(SAR) and meteorology. To illustrate, Figure 2 shows an exemplary mission profile for a hypothetical 

Beyond Visual Line of Sight (BVLOS) railway inspection mission. The inspection part of the mission 

is flown along a railway line at low altitude (segment F) and at a certain distance (radius of action) 

from the launch and recovery point. Prior to the inspection, a holding might be needed, in order to wait 

for the railway segment to be clear of trains. After the mapping, a second holding might be necessary, 

if the flight back passes through controlled airspace and a clearance has to be obtained. Together with 

the two altitudes for the cruise segments (C and J), the two holding times (E and G) and the reserves 

(L), the goal is to maximize inspection distance for a specified radius of action or vice versa. 

 Different methods exist to evaluate flight performance. In early stages of the design and sizing 

process, where only few data points of the design are known, simple analytic equations such as the 

Breguet range equation can give a first quick mission performance evaluation [5]. However, for 

complex design missions, such as the one specified in Figure 2, it can be easily recognized both that 

using only the range equation can quickly become an involved task, and that the mission cannot be 

fully represented. In contrast, a complete 6-DOF trajectory simulation could be conducted. Such a 

simulation provides full detail about each point in a mission. However, besides the higher 

computational cost, a 6-DOF simulation requires a high fidelity aircraft model. The model has to 

include moments of inertia, aerodynamic derivatives and implement control-laws. Such information is 

usually not available during conceptual design, and the method is therefore unsuitable. A 

simplification of the trajectory simulation is the integration method. The equations of motion are 

simplified to two dimensions and the rotational equations are neglected (point mass). These 2D point-

mass based equations of motions are integrated over time for different segments of a mission. This 

provides a suitable complexity for the mission definition [6] and is applicable for a wide range of 

model fidelities. 

 Existing software tools to calculate aircraft performance are NASA’s Flight Optimization System 

(FLOPS) [7], Boeing’s Mission Analysis Program (BMAP), Lissys’s Piano, PACE’s Pacelab APD, 

DLR’s Simple Mission Simulator (SMS) [8] and ALR’s Aircraft Performance Program (APP) [9]. 

 Recent developments in electric and hybrid-electric propulsion have shown the need for modern 

performance computation tools to aid the design and sizing process [10]. In addition, advances in 

UAV technology together with new propulsion types lead to novel applications of aircraft use. These 

can lead to the rise of new design requirements. For example, the low level segments could be flown 

with electric power only to reduce noise emissions. Therefore, not only the sizing of a hybrid 

propulsion system (fuel mass, battery mass, generator power, electric motor power) becomes non-

trivial, but also the evaluation of the design mission, should it serve as an objective function for the 

optimization. This requires great flexibility of the performance computation tool. 



 The current work aims to explore the possibilities presented by combining an existing mission 

simulation software based on the computationally efficient integration method with a powerful and 

flexible scripting environment. Additionally, the choice of the interface of the performance software 

and the suitability of integration into a CPACS based environment is discussed. 

 Chapter 2 describes the performance model, solution strategy and software tools. Chapter 3 

presents results generated with the performance simulation environment, followed by a discussion and 

outlook in Chapter 4. 

2 Methodology 

This section describes the methodology used to computed and evaluate mission performance. 

 To compute mission performance, the integration method is used. This method uses numerical 

integration of the two-dimensional equations of motion split into different mission segments. The mass 

of the aircraft is modelled as a 2D point mass (no rotational dynamics). This places the method 

between the simple handbook methods (analytic integrals, i.e Breguet range equation) and full 6DOF 

simulations. 

2.1 Performance Equations 

 

Figure 3: Forces acting on the point mass in the vertical plane 

The derived performance equations are based on Newton’s second law, which states that the rate of 

change of momentum is proportional to the applied forces 

𝑑𝒑

𝑑𝑡
= ∑ 𝑭𝑒𝑥𝑡   (1) 

where p is the momentum defined as 𝑝 = 𝑚𝑣 and 𝐹𝑒𝑥𝑡 the external forces. By neglecting the rotational 

dynamics (point mass assumption), the quasi-stationary performance equations can be derived. Using 

the assumption that the rate of change of the external forces is small (e.g. 
𝑑(𝑚𝑔)

𝑑𝑡
≪ 1) and the motion 

is restricted to the vertical plane, the equations of motion can be formulated in the flight-path angle 

and radial direction (airplane fixed coordinate system) as 

𝑚�̇� + 𝐷 − 𝑇 cos(𝛼 + 𝜎) + 𝑚𝑔 sin(𝛾) = 0    (2) 

and 

−𝑚𝑣�̇� + 𝐿 + 𝑇 sin(𝛼 + 𝜎) − 𝑚𝑔 cos(𝛾) = 0   (3) 

respectively, where T is the thrust force, D the drag force and L the lift force (Figure 3). The mass of a 

conventionally propelled airplane only changes by the fuel flow �̇�𝑓  

�̇� = −�̇�𝑓.   (4) 

 For electric airplanes, instead of Eq. 4 an energy equation for the battery is required, 

𝐸𝑒𝑙
̇ = −𝑃𝑟𝑒𝑞𝜂𝐷  (5) 



where 𝐸𝑒𝑙
̇  is the rate of change of the electric energy stored in the battery, 𝑃𝑟𝑒𝑞 the net power required 

by the airplane (propulsion, systems, etc.) and 𝜂𝐷 the discharge efficiency of the battery. 𝜂𝐷 is usually 

not a constant but a function of multiple parameters (efficiency map). This simplified model for 

electric propulsion can easily be extended to model hybrid-electric propulsion by including an 

electricity generating term in Eq. 5. and use Eq. 4 to model the generator fuel flow. 

 Together with the kinematic equations 

�̇� = 𝑣 𝑐𝑜𝑠(𝛾) (5) 

and 

𝑧 = −𝑣 sin(𝛾), (6) 

the resulting set of (first- and second order) ordinary differential equations (ODEs) can be readily 

solved by any modern numerical mathematics package. A formal derivation can be found e.g. in 

[11],[12],[13]. 

2.2 Airplane Model 

The equations of motion (Eq. 2-3), the mass equation (Eq. 4) and the electric energy equation (Eq. 5) 

all contain airplane parameters that have to be modelled. These usually depend on the state of the 

aircraft (e.g. velocity, flight altitude and throttle setting). 

 Lift and drag forces (L, D in Eq. 3 and 4) are commonly modelled in non-dimensional form: 

𝐿 = 𝐶𝐿
1

2
𝜌𝑣2𝑆𝑟𝑒𝑓   (7) 

𝐷 = 𝐶𝐷
1

2
𝜌𝑣2𝑆𝑟𝑒𝑓  (8) 

with 
1

2
𝜌𝑣2 being the dynamic pressure, 𝑆𝑟𝑒𝑓 the wing reference area and 𝐶𝐿 and 𝐶𝐷 the lift- and drag 

coefficients, respectively. The lift coefficient can be written as a function of angle-of-attack 𝛼 and the 

Mach number  

𝐶𝐿 = 𝑓(𝛼, 𝑀)  (9) 

and the drag coefficient can be split into a lift-independent and lift dependent part 

𝐶𝐷 = 𝐶𝐷0(𝑀, ℎ) + 𝐶𝐷𝑖(𝐶𝐿, 𝑀),  (10) 

with dependencies on Mach number M and altitude h. 

 The modelling of the thrust force T depends on the propulsion type. For jet propulsion, thrust can 

be represented as a function of Mach number, altitude and power setting. For propeller propulsion, 

thrust can be written in non-dimensional form as 

𝑇 = 𝐶𝑇𝜌𝑛2𝐷𝑃
4 (11) 

where 𝐶𝑇 is the propeller thrust coefficient, n is the propeller speed (revolutions) and 𝐷𝑃 the propeller 

diameter. Analogously, the power required by the propeller can be written in non-dimensional form 

𝑃 = 𝐶𝑃𝜌𝑛3𝐷𝑃
5. (12) 

 The fuel flow �̇�𝑓 (Eq. 4) is expressed as a function of thrust (for jet engines) or power required 

(propeller). 

2.3 Aircraft Performance Program APP 

The Aircraft Performance Program (APP) [9] implements the point-mass based performance equations 

(Section 2.1) and the airplane model (Section 2.2). The parameters of the airplane model are directly 

entered in tabulated form. The tabulated form allows arbitrary curves (e.g. for the drag polar or thrust 

characteristic) and makes the airplane model independent of the airplane type. The data tables are 

interpolated by the software during computations. Interpolation is performed either linearly or by a 



cubic spline interpolation. Details on the implemented equations and interpolation methods are found 

in [14]. 

 APP provides a layer-based atmospheric model defined by a custom temperature profile. The 

profiles of density and pressure are determined through the hydrostatic equations and the gas laws. 

The International Standard Atmosphere (ISA) is used by default. The unit system of APP is based on 

SI-units, with the option to use British units. 

 The mission performance mode of APP uses a fourth-order Runge-Kutta method to integrate the 

equations of motion and the kinematic equations. This presents an initial value problem: APP starts 

with the initial conditions of the aircraft (velocity, altitude, fuel mass) and integrates each segment of 

the mission. The state of the aircraft at the start of a segment is equal to the state at the end of the 

previous segment. The integration of a segment is terminated when a defined end-condition is reached, 

and the computation switches to the next segment. The mission is completed when all segments have 

been successfully evaluated. APP provides segments to change the state of the aircraft, such as 

climb/descent segments and acceleration/deceleration segments. Climb/descent can be computed at 

various speeds, such as at constant CAS, Mach or at the velocity for best climb rate. Cruising flight is 

evaluated at the flight speed defined by the previous segment or at the velocity for optimum specific 

range or fuel consumption. The optimum speed is found using Brent’s algorithm [15]. In addition, 

each segment allows for the selection of a different power setting, propulsion and aerodynamic 

configuration and the choice of crediting the distance. Loitering flight is therefore simply a cruise 

segment with no distance credit. The full list of supported segments is detailed in [9]. 

 In order to maximize the range/endurance of a mission, APP computes the end-condition of a 

cruise or loiter segment in a way that will result in a desired reserve fuel at the end of the mission. 

Additionally, the radius of action can be computed by APP. This is achieved by finding the end-

conditions of two cruise segments in a way that will result in equal distances. This mission optimizer 

mode uses an adapted Newton method. 

 APP provides a user interface to access, create and modify aircraft data, create mission profiles, 

and conduct mission and point performance computations. In addition, a Windows command line 

interface (CLI) using file-based communication is provided to interface programmatically with APP. 

The APP executable is called through the CLI with a flag specifying the type of computation (point 

performance or mission performance) and the location of the input file. The input file holds the 

location of the aircraft data file, the atmospheric conditions and specifies the desired results. The 

results are written to a text file at a specified path. 

2.4 Scripting Environment 

A CLI/file-based interface is highly flexible. The main advantage lies in its tool-agnostic nature. The 

only requirements to a tool to interface with a CLI/file based interface is to read and write the input 

files and to call an executable. 

 For APP, this functionality is implemented in the Python [16] module pyAPP6
4
. pyAPP6 uses the 

numpy [17] package. The pyAPP6 module can read and write the APP native files (ASCII), as well as 

execute the APP.exe using a system call. By reading the result file (ASCII format) after the 

computation has finished, a closed-loop can be established. Graphical output is provided by the 

matplotlib [18] charting package. The APP/Python interface is depicted in Figure 4a. An analogous 

implementation for other scripting environments (e.g. MATLAB) or programming languages is 

therefore straightforward. 
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Figure 4: Interoperability of APP using a) the native file format of APP together with python scripting and b) 

using the CPACS format within the RCE environment 

 An example of a different interface is shown in Figure 4b. Instead of using the APP native files, 

the CPACS file format is used. For the execution environment, RCE is used. Since CPACS also 

presents a file based communication, and RCE has a built-in Python scripting, there is virtually no 

difference between the APP-Python (Fig. 4a) and the APP-RCE (Fig. 4b) environment. Since this 

paper focuses on the performance evaluation part rather than the complete design and sizing cycle, no 

coupling to other tools is needed and the APP-Python environment is used. 

3 Results 

The method described in Section 2 is applied to two cases: optimization of a climb schedule for a 

medium-range narrow body commercial twin-engine jet (Airbus A320 class) and a hypothetical design 

mission of a railway inspection UAV. 

3.1 CAS-Mach Climb Schedule 

A possible climb schedule for a commercial airliner is a CAS-Mach climb [19]. This schedule 

composes of five main phases. Below 10’000 ft, the speed is limited by air traffic control to 250 

KCAS, therefore the first climb is executed at 250 KCAS. When reaching 10’000 ft, the aircraft 

accelerates to a higher climb speed, followed by a climb at constant CAS. At the crossover altitude, 

the climb is continued with a constant Mach number until the initial cruise altitude (top of climb, 

TOC) is reached. A final acceleration (deceleration) at cruise altitude is added if the climb Mach 

number speed is below (above) the cruise Mach number. An exemplary climb schedule to 36’090 ft 

and Mach 0.78 is shown in Figure 5 for a 250 KCAS / 300 KCAS / M 0.74 climb. 

 



 

Figure 5 CAS-Mach Climb Schedule 

A parameter study over the two variables (CAS and Mach) was conducted, over a range for 250 

KCAS to 300 KCAS and Mach 0.6 to Mach 0.78. The parameter study was scripted in python and the 

missions were executed in parallel on one CPU with 4 cores (2014 Intel i7). Acceleration segments 

were computed with a 1 second timestep and climb segments with a 5 second timestep. Overall 

computing time for 1’000 missions was only 5 minutes. 

 For the first parameter study, the top of climb is defined as the altitude when the climb speed 

decreases to a speed lower than 100 ft/min (SEP < 100 ft/min). The initial altitude is 0 ft and the initial 

mass of the aircraft is 73’000 kg. The result of the parameter study is shown in Figure 6 for the time-

to-climb, fuel-to-climb and distance-to-climb. 

 

Figure 6 Climb parameter study for a SEP=100 ft/min ceiling and M=0.78 cruise speed 

All fields show minima at Mach numbers equal to the cruise Mach number. At that Mach number, an 

optimal CAS speed at around 300 kts is visible for the fuel and distance. For the time, the optimum 

speed is higher and lies outside the chart. Maximal values are found for intermediate Mach numbers 

and the fields show a saddle-like shape. In order to investigate this behavior, an additional 

computation was performed. Instead of a climb-rate limited altitude, a climb to a fixed altitude of 

36’090 ft was defined. The resulting fields are presented in Figure 7. All fields show similar locations 

for the minima, however the saddle type field is not visible anymore. Instead, a clear vertical gradient 

to higher values with lower Mach numbers is apparent. This can be explained when comparing two 

climb schedules for CAS = 300 kts and Mach 0.65 and Mach 0.78 (Figure 8). In the first schedule, the 



climb Mach number is lower than the cruise Mach number and an acceleration is performed at 36’090 

ft (segment 5). In the second schedule, no acceleration is needed, since the acceleration is performed 

during the CAS climb segment (segment 3), which makes the CAS segment slightly longer than for 

the first schedule. Since the acceleration performance is lower at higher altitudes, due to the lower 

available thrust (lower SEP), the acceleration (segment 5) therefore takes considerable more time, and 

therefore fuel and distance.  

 

 

Figure 7 Climb parameter study to h=36’090 ft and M=0.78 cruise speed. The red dots mark the minima. 

 

 

Figure 8 Contribution per segment to the overall time, fuel and distance to climb for a 300KCAS/M0.65 (left 

bars) and a 300KCAS/M0.78 (right bars) climb schedule to h=36’090 ft and M0.78 

Even if the acceleration/deceleration to the cruise Mach number is neglected completely, the overall 

climb performance is still worse for the low Mach number climb, due to the inefficient climb of the 

segment 4. The results for the entire field without the acceleration (segment 5) is presented in Figure 

9. 



 

Figure 9 Climb parameter study to h = 11’000 ft without acceleration or deceleration to cruise speed (without 

aircraft speed limits). The red dots mark the minima. 

A clear minimum is visible. For the time-to-climb, a faster CAS and Mach result in the shortest time, 

whereas for lowest fuel burn and lowest distance, a slower CAS and Mach speed are desired. The 

optima are relatively flat. Note that no aircraft speed limits (maximum CAS or Mach number) were 

imposed for this chart. 

3.2 Radius of Action Optimization 

The second example computes the mission performance of the UAV railway inspection mission 

described in Figure 2 (Section 1) using a generic piston engine UAV model. The UAV has a wingspan 

of 5.7 m, a length of 4.6 m and a wing area of 3.4 m
2
. The takeoff mass with 42 kg of fuel and 45 kg of 

payload is 275 kg. The two-stroke engine has a maximum power of 30.8 kW at sea level and a fixed 

pitch propeller with a diameter of 0.9 m. 

 The mission parameters are chosen as follows: The inspection part of the mission is conducted at 

500 ft and 70 KCAS over a fixed distance of 108 nm (200 km). At the beginning and the end of the 

inspection segment, a loiter of 15 minutes is included. Fuel reserves are considered by a 20 min loiter 

at sea level at the end of the mission and 5% of the total fuel mass. The cruise flight to and back from 

the inspection (S1 and S2 in Figure 10a) is performed at 8000 ft and at optimal speed. 

 The procedure shown in Figure 11 was used to compute the optimum mission. The two flight 

speeds V1 and V2 of the cruise segments S1 and S2 were computed using the Nelder-Mead simplex-

downhill optimizer included in the scipy [20] python package. For each optimization step APP is 

called to compute the flight performance. The APP internal optimizer adjusts the distance of the two 

cruise segments S1 and S2 to compute the maximum radius-of-action in such a way that 5% fuel is left 

at the end of the mission.  

 The resulting flight profile is shown in Figure 10a and the time evolution of the fuel mass in 

Figure 10b. The optimum speeds for the two cruise segments were evaluated by the python script as 

74.1 KCAS and 72.1 KCAS, respectively. This results in an overall maximum radius-of-action of 198 

nm (366 km). 

 



 

Figure 10 Railway inspection mission showing a) the flight profile and b) the time evolution of the fuel mass 

 

 

Figure 11 Simulation flow chart for the UAV mission optimization 

 Adding a trade- and parameter study to the performance analyses is now straight forward. 

Additional loops for each parameter are added around the python optimization loop depicted in Figure 

11. The result is shown in Figure 12. The figure shows that the radius-of-action and the inspection 

distance trades almost 1:2. This is expected, since the specific range of the cruise and the inspection 

segments is similar (the slope of the curve in Figure 10b, kg/km, is the inverse of the specific range). 

The parameter study for the loiter time of each loiter segment results only in a vertical shift of the 

curve and is mostly independent (slope does not change). 



 

 

Figure 12 Trade study between radius-of-action and inspection distance, for three different loiter times. 

 Hybrid electric propulsion opens new possibilities, but also creates additional requirements for a 

performance tool and presents the aircraft designer with a larger design space. The following 

performance analyses example is a feasibility study for the small UAV retrofitted with a parallel 

hybrid electric propulsion. The goal is to minimize noise emissions by flying the inspection part of the 

mission using only electric propulsion. For the rest of the mission, the internal combustion engine 

(ICE) is used. The payload is reduced from 45 kg to 15 kg (assuming a more modern sensor package). 

An initial battery energy density of 200 Wh/kg was selected. The result of interest is the trade between 

radius-of-action (ICE part) and the inspection distance (electric part). The battery mass is varied 

between 30 kg and 52 kg and the fuel mass between 20 kg and 42 kg. The sum of the fuel mass and 

battery mass is always 72 kg. The result is presented in Figure 13a. 

 

 

Figure 13 Trade study between battery mass and fuel mass showing a) the radius-of-action (RoA) and the 

distance of the inspection and with b) loiter time parameter study. 



The slope of the energy curves clearly show the effect of the high energy density of the fuel. The 

radius-of-action increases by 15.5 km per kg fuel mass, and the inspection range by 2.5 km per kg 

battery mass. This is a ratio of around 6.2. If the ratio for the RoA is counted twice, this results in a 

12.4 times better performance per kilogram for the combustion engine. This is not as high as expected 

when comparing the energy densities (200 Wh/kg for the battery vs ~12’000 Wh/kg for gasoline) and 

is due to the high efficiency of the electric motor in comparison to the ICE. Figure 13b shows the same 

loiter time parameter study as conducted in Figure 12, but with the trade between battery- and fuel 

mass. The chart shows, that only the radius-of-action is influenced by the loiter time, as the loitering is 

flown with the ICE. The inspection range is therefore independent. Note that this chart changes when a 

different hybridization strategy is used. 

 

 

Figure 14 Parameter study for the battery energy density 

 In addition to the choice of mission parameter or the battery mass, an additional design parameter 

is the battery energy density. The scripting environment can also change airplane parameters, and 

therefore also vary the energy density. The result is presented in Figure 14, showing the flight time 

and range with increasing energy density for the same trade of battery mass vs. fuel mass. The known 

and significant influence of this parameter is immediately apparent. 

4 Discussion and Outlook 

This work demonstrated some of the possibilities when combining a point-mass, segment based 

mission performance simulation (APP) with a scripting environment (Python). The scripting 

environment is used to create, launch and post-process mission simulations. The mission simulation is 

performed by a computationally efficient and proven C++ code, by using a command line interface. 

This approach allows to conduct parameter studies and overall mission optimizations. 

 An exemplary A320 CAS-Mach climb schedule parameter study was performed. Even though the 

problem definition is relatively simple and well known, a complex interplay between the definition of 

the top of climb and the climb parameters was revealed. The resulting fields for the time-to-climb, 

fuel-to-climb and distance-to-climb showed differing shape depending on the definition of the top-of-

climb. Especially the definition for a 100 ft/min climb ceiling (Figure 6) showed unexpected results 

when compared with a fixed altitude ceiling (Figure 7). The distinct saddle shape in Figure 6 is 

therefore presumed due to the definition of the top-of-climb. Since the available SEP depends on the 



speed, slower climb Mach climb speeds reach a lower TOC altitude, making the climb shorter (and 

therefore faster and with less fuel consumed). 

 The same computations were performed using an optimizer (Nelder-Mead simplex-downhill) and 

the same minima were found. Instead of the approximately 1000 computations for the parameter 

study, only about 30 optimization steps were performed. The time-gain for this example was not found 

to be very significant, since each step could only be executed in series. More importantly however, a 

single optimized computation does not reveal the influence of the choice of end condition for the 

climb schedule or shows the off-optimum behavior. Especially the field visualizations give the aircraft 

designer useful insights and help to interpret and understand the overall performance characteristics. 

 The second example shows the computation of a complex design mission for a propeller driven 

small UAV. The performance simulation code APP is capable of computing the radius of action, in 

order to match a defined reserve fuel and can handle very complex mission definitions. It was 

demonstrated that when using a scripting environment as an outer loop, an optimizer package can be 

used to optimize any desired value, in this case the two cruise speeds that optimize the overall radius 

of action were evaluated. On top of this, a parameter study can be conducted, to vary any parameter of 

the mission or the aircraft. This was shown for the loiter time and the battery energy density. This 

example demonstrates how a powerful scripting environment can be used efficiently and the actual 

performance simulation can be performed by a fast and established code. All examples were 

conduction on an actual complex design mission, instead of a simplified, more academic example (e.g 

cruise only). 

 The limitations of the chosen coupling between Python and APP (the CLI interface) can be best 

shown using the climb schedule example. We have demonstrated, that a predefined CAS-Mach 

schedule can easily be optimized by varying the CAS and Mach speeds. The overall climb schedule is 

however constraint by the choice of segments made prior to executing the mission computation. 

Previous work (e.g. [21], [22]) showed the limitations of simplified climb schedules and proposed an 

overall optimization. Since the scripting environment can’t access the mission computation during its 

execution, it can’t influence the segments (e.g. number of segments, or the velocity target during a 

segment). Two solutions can be proposed: integrating the desired functionality into the performance 

code itself, or implement a “plugin”-segment, that provides a callback function for the scripting 

environment. The callback function is executed at each timestep of the mission simulation, providing 

the scripting environment with the state of the aircraft and hooks to update the flight parameters (e.g. 

power setting, AoA, climb angle). This enables a feedback-loop not only over entire mission 

segments, but also for each timestep. The downsides of such an approach is that the execution 

performance is likely to suffer and the complexity to set up a computation increases, reducing the 

potential by the synergies between the high speed performance routines and the flexible but slower 

scripting. Given the relatively flat minima (e.g. Figure 9), and the difficulties of flying such speed 

profiles in reality, the benefit of this for commercial jets is questionable. Plugins do however provide 

an advanced user with the option to analyze very specific, but uncommon scenarios. 

 When integrating performance evaluations into MDO environments, such as RCE, the results in 

this paper have shown that even simpler missions can lead to complex and sometimes unintuitive 

results. This should be considered when adding an integration based mission evaluation tool into such 

an environment. Providing enough visual feedback for performance evaluations should also be take 

into account when working with novel propulsion types (e.g. hybrid electric) and uncommon design 

missions & requirements. The present definition of the CPACS schema (version 2.3) offers only some 

fields suitable for mission definition and performance evaluation and could be extended towards 

including a design mission definition, and additional input fields for electric and hybrid electric 

propulsion. 
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