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Abstract

Knowledge base completion (KBC) methods aim at inferring missing facts from the
information present in a knowledge base (KB). Such a method thus needs to estimate the
likelihood of candidate facts and ultimately to distinguish between true facts and false
ones to avoid compromising the KB with untrue information. In the prevailing evaluation
paradigm, however, models do not actually decide whether a new fact should be accepted
or not but are solely judged on the position of true facts in a likelihood ranking with
other candidates. We argue that consideration of binary predictions is essential to reflect
the actual KBC quality, and propose a novel evaluation paradigm, designed to provide
more transparent model selection criteria for a realistic scenario. We construct the data set
FB14k-QAQ with an alternative evaluation data structure: instead of single facts, we use KB
queries, i.e., facts where one entity is replaced with a variable, and construct corresponding
sets of entities that are correct answers. We randomly remove some of these correct answers
from the data set, simulating the realistic scenario of real-world entities missing from a
KB. This way, we can explicitly measure a model’s ability to handle queries that have
more correct answers in the real world than in the KB, including the special case of queries
without any valid answer. The latter especially contrasts the ranking setting. We evaluate a
number of state-of-the-art KB embeddings models on our new benchmark. The differences
in relative performance between ranking-based and classification-based evaluation that we
observe in our experiments confirm our hypothesis that good performance on the ranking
task does not necessarily translate to good performance on the actual completion task. Our
results motivate future work on KB embedding models with better prediction separability
and, as a first step in that direction, we propose a simple variant of TransE that encourages
thresholding and achieves a significant improvement in classification F1 score relative to the
original TransE.

1 Introduction

A knowledge base contains relational information about the world in the form of triples.
For instance, the fact “New York is located in the USA” could be represented as the triple
(New York, located in, USA). Given the available information in an incomplete knowledge
base, the task of knowledge base completion (KBC) is to find missing facts by predicting the
most likely missing relation between known entities. Formally, a knowledge base describes a
set of objects - or entities - E , connected to each other via binary relations R, and contains
a collection of supposedly true facts KB+ ⊆ E × R × E . The KBC task is to infer new
true facts consisting of head entity h′, relation r′ and tail entity t′ with (h′, r′, t′) /∈ KB+,
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given the facts in KB+. The quality of KBC is typically measured by removing a triple
(h, r, t) from KB+ and comparing the score assigned by a completion algorithm to the scores
assigned to perturbed triples (h, r, t′) where t′ 6= t.

Evaluation of embedding models on the KBC task intuitively should measure the quality
of facts added by a completion algorithm. Standard metrics for evaluating KBC such as top-k
precision or mean reciprocal rank (MRR), however, measure the quality of ranking possible
knowledge graph triples. These metrics do not necessarily reflect the real performance of
the underlying task since it would be necessary to combine a triple scoring mechanism
(e.g., based on knowledge graph embeddings) with thresholds for obtaining a prediction
mechanism, and the triple scoring mechanism might not be consistently scaled : It could
be the case that the relative ranking of tuples may be satisfactory, when ranked for the
same query tuple (h, r, ?), but that scores are not well-calibrated and finding good global or
per-relation thresholds is difficult for certain embedding-based scoring mechanisms.

In this work, we propose an alternative way of evaluating KBC quality by reporting
classification measures (e.g., F1 scores) on the carefully constructed data set FB14k-QAQ
that balances query tuples for which completion is possible with special query tuples that,
by construction (using type constraints and entity removal), are impossible to complete.
This new evaluation approach motivates research on embedding models that intrinsically
support thresholds for prediction and we propose a simple variant of TransE that improves
on the new evaluation metric relative to the original model.

Previous work [Socher et al., 2013] has attempted to overcome problems of ranking-based
evaluation approaches by artificially creating a fixed amount of negative samples from positive
triples (typically a 1-1 ratio) and measuring accuracy on that data set. Such a setting,
however, does not properly reward models that are able to distinguish between relationships
that should have more positive predictions vs. those that should have less. Wang et al.
[2019] identify problems of previous evaluation paradigms based on entity rankings and they
propose an alternative scheme that looks at all possible entity pairs, ranked for a given
relation. While their proposed evaluation solves some of the problems (comparabilty of
scores between query entities), it is still ranking-based and does not incentivize the scoring
model to support globally optimal prediction thresholds across relationships.

The main contributions of this paper are:

• We construct a data set for extensive classification evaluation that penalizes models
that predict erroneous triples. For this, we construct two types of negative cases: First,
a subset of entities is sampled and removed from an existing knowledge base, so that
corresponding queries can be obtained that, by construction, do not have any correct
answers. Second, we formulate queries that violate type constraints and thus cannot
have any right answers either.

• Experiments with established embedding models show surprising differences when the
new metric is compared to an evaluation based on ranking.

• Our evaluation suggests that models should focus on optimizing separability of their
predictions. An adapted version of TransE that encourages separability improves by
over 30% F1 score relative to the original model.
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2 Related work

Knowledge graph embedding models. Embedding models assign a latent represen-
tation to every entity and relation of a knowledge base. Within the scope of this paper,
entities h ∈ E are represented as d-dimensional vectors eh ∈ Rd and relations r ∈ R either
as vectors rr ∈ Rd or as matrices Rr ∈ Rd×d. A KBC model is characterized by its scoring
function s(h, r, t) : E ×R× E → R.

Various approaches exploiting such representations of entities and relations have been
proposed for the task of knowledge base completion. One of the most prominent group
among them is that of tensor factorization models: RESCAL [Nickel et al., 2011] with the
scoring function s(h, r, t) = eh

TRret, DistMult [Yang et al., 2014], which sets diagonal
restrictions to the matrix, with s(h, r, t) = eh

T diag(rr)et, and ComplEx [Trouillon et al.,
2016], which uses complex-numbered embeddings with the previous scoring function. The
field of translation models was opened by the TransE [Bordes et al., 2013] scoring approach
s(h, r, t) = −‖eh + rr − et‖p, followed by a number of variants, such as projection on
relation-specific hyperplanes (TransH [Wang et al., 2014]) or transforming entity embeddings
to a relation-specific vector space prior to scoring (TransR [Lin et al., 2015]). TransA [Xiao
et al., 2015] scoring uses an additional matrix Wr per relation, which is derived from the
entity and relation embeddings analytically (rather than learned), and also replaces the
Lp-norm: s(h, r, t) = −(|eh + rr − et|)TWr(|eh + rr − et|), where |eh + rr − et| takes an
absolute value in every vector position. More recently, further improvements were obtained
with neural approaches like ConvE [Dettmers et al., 2017], KG-Bert [Yao et al., 2019] and
Graph Attention Networks [Nathani et al., 2019]. For the purposes of this work, we selected
a cross-group model sample consisting of DistMult, ComplEx, TransE and ConvE.

Alternatives to ranking-based prediction. Socher et al. [2013] first introduced an
evaluation setting based on triple classification. However, the data contains only two
randomly sampled negative triples for every positive triple, which poses an unrealistic ratio
for KBC. Additionally, in case of overlapping negative samples (h, r, t′) for two test triples
(h, r, t1) and (h, r, t2), the evaluation protocol would count the predicted labels of these
negative samples twice into the final classification metric. This redundancy effect would be
even stronger with a higher number of negatives samples due to a higher overlap probability.
Our query-based evaluation, however, eliminates it completely as all (h, r, ?) test triples are
considered at once.

In contrast to KB embedding methods, Godin et al. [2019] approach query answering
with a reinforcement learning model that attempts to find a path through a knowledge graph
from h to the correct t. Their approach allows the model to refrain from giving an answer
rather than giving a wrong one. For evaluation, they suggest to use the precision of the
given answer together with an answer rate metric that measures the rate of empty responses
of the model. However, the used data set contains exactly one correct answer for each given
query, missing other realistic cases, such as multiple answers and unanswerable queries, for
which these metrics would not be applicable.

MRR reviews. Sun et al. [2019] have noticed inconsistencies in model behavior measured
by mean reciprocal rank (MRR) that the authors attribute to the ranking setting itself.
An inappropriate performance measure can become an explanation for the sudden come-
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backs of rather basic models in Kadlec et al. [2017] and Ruffinelli et al. [2020], as well as
strong performance variations. In their recent work, Wang et al. [2019] criticize the current
evaluation protocol with the mean reciprocal rank for being unsuitable for KBC. They
accuse it of overestimating the model performance due to its insensitivity to unrealistic and
nonsensical triples and they propose an improved — but still ranking based — metric for
KB embedding evaluation.

3 Data set FB14k-QAQ

In this section a new evaluation setting is proposed that directly measures the quality of
extracted facts by matching against a ground truth. For this, care must be taken that
evaluation not only accounts for correctly retrieved facts, i.e., true positives, but also rewards
cases where the model correctly refrains from predicting an answer, i.e., produces less
false positives. We argue that a query-driven setup with carefully constructed query and
answer sets is necessary for measuring KBC quality on the triple level. As a foundation
for the FB14k-QAQ data set (measuring Query Answering Quality), we base our work
on the FB15k-237 [Toutanova et al., 2015] data set, a subset of FreeBase, because it is a
well-established benchmark for KBC and has been used in most of the recent publications
on KB embedding methods.

From facts to queries. The new evaluation setting relies on queries. A query is an
entity-relation pair where a second entity is missing to form a complete triple: if the tail
position is open for completion, we call such a query q1 = (h, r, ?) an tail query. A query
of the form q2 = (?, r, t) is called head query, respectively. The ◦ operator is defined to
fill the open position of a query with the specified entity i ∈ E , i.e., q1 ◦ i = (h, r, i) and
q2 ◦ i = (i, r, t). For every query q, the set of correct answers AF

q can be defined given a set

of valid facts F ⊆ E ×R× E by setting AF
q := {i | (q ◦ i) ∈ F}.

Figure 1 depicts the data set creation process, which operates on the original training
data and the data from the original development and test splits (further, evaluation data):
(1) A small subset of entities E− ⊂ E from the original data set is selected for removal
(“Select”). We will refer to the remaining entities as E+ := E \ E−. (2) In “Split”, the new
training set is obtained by taking all original training triples that only contain entities from
E+. The evaluation data and the remaining training triples are used to create queries and
determine answer sets, i.e., they form the set of valid facts F mentioned above. (3) The
facts from F are then grouped by head and relation to form tail queries and by tail and
relation for head queries, respectively. The “Group” step results in a set of queries q with
corresponding answer sets A′q. (4) To obtain the final answer sets Aq, the selected entities
E− are removed from the answer sets in “Remove”. With respect to the intermediate answer
sets A′q from “Group” and the final ones Aq from “Remove”, the queries can be divided
into two sets: C, where the answer set remained complete, and I, where entities have been
removed from the answer sets (including the special case of empty answer sets N ⊂ I). The
full formal description of the process is provided in Appendix A.1.

By removing entities from real triples of the original data set, we artificially create a
situation where completion entities exist in the real world but are not present in the data
set, thereby simulating a controlled closed-world problem. It constitutes a challenge to KBC
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Figure 1: Data set transformation scheme as described in Section 3 ”From facts to queries”.
Step (3) only shows the grouping for head queries; tail queries are constructed
analogously. Full circles represent relations and entities from E+; entities from E−,
i.e., those selected for removal, are dashed (e3 and e5). Evaluation data is a union
of the original development and test data. Last column shows set membership: C
if A′q = Aq, I otherwise (edge case N ⊂ I if |Aq| = 0).

models not to complete such a query that not only appears meaningful but actually has a
real-world answer to it outside of the knowledge base.

Queries with type violation. A more relaxed version of queries with empty answer
sets are queries with an inherent contradiction that would immediately be recognized
by a human, such as (Albert Einstein, has capital, ?). The formal contradiction in
this query is expressed in the type system of FreeBase triples. In FreeBase, entities are
labelled with different types, e.g., an entity h = New York City is assigned a type set
Th = {location, art subject, wine region} while for t = Albert Einstein it is Tt =
{person, book author, scientist}. The type system ensures that every relation only
takes entities of a specific type as head and tail argument, respectively. For instance, a
relation r = has capital takes entities of type dom(r) = country for its head position
(relation domain) and entities of type rng(k) = citytown for its tail position (relation
range). Triples in FreeBase follow this scheme and are therefore type-consistent, i.e.,
KB+ ⊆ {(h, r, t) | dom(r) ∈ Th, rng(r) ∈ Tt}. However, a FreeBase triple can be type-
consistent and still false, e.g., (USA, has capital, New York City).

By analogy, type-consistent queries obey domain and range restrictions with respect to
the already filled position and type-inconsistent queries do not. An obviously incorrect query
(Albert Einstein, has capital, ?) in fact violates the types since the domain country of
has capital does not occur in the type set Tt for the entity t = Albert Einstein. Formally,
a set of such type-inconsistent ”fake” queries F can be characterized as follows:

F ⊂ {(h, r, ?) | h ∈ E+ ∧ dom(r) /∈ Th} ∪
{(?, r, t) | t ∈ E+ ∧ rng(r) /∈ Tt}
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Query set Head Tail Total

C 8,778 15,688 24,466
I 10,676 13,144 23,820
N (⊂ I) 6,871 8,850 15,721
F 5,712 11,132 16,844

Table 1: Data set queries breakdown by the type of the query answer set (C - complete
answer set, I - entities have been removed from the answer sets, F - queries with
type violations).

This means, all queries violate at least one of the relation domain or range restrictions1 and
thus cannot have a valid completion due to this type inconsistency. In case of an automated
knowledge base completion setting, e.g., when there is no type information available to check
completion queries for type violations, this can become quite relevant. A perfect model
should distinguish well-typed queries from nonsensical ones. By combining type-consistent
N and type-violating F queries with empty answer sets, we address different aspects of
model behavior.

Overview. The number of entities in E− is an essential parameter within this data set
construction strategy. The more entities are removed, the more queries with smaller answer
sets potentially arise. We pursued a specific final distribution of queries: queries with no
answer N make 25% of the evaluation set, queries with at least one answer make 50%; the
remaining 25% are filled with type-violating queries F . For the FB14k-QAQ data set, we
achieved this by removing |E−| = 1000 entities.

The resulting FB14k-QAQ data set has 13,541 entities and 237 relations, with 236,795
triples in the training set.2 Three sets of different query groups C, I, and F are evenly split
between the development D and the test set T , resulting in 32.5k queries each, 50 percent
of which have an empty answer set. The other 50 percent include queries with one or more
correct answers. The ratio of queries with a complete answer set C to those with a removed
answer I is almost 1:1; more detailed statistics about the query distribution between sets
are presented in Table 1.

4 Evaluation

Thresholding. To measure the models’ capability to decide between true and false triples,
a threshold τr is applied to the output scores to obtain binary predictions. We consider two
thresholding settings: (i) The same τr = τglobal value is shared across all relations and (ii) τr
is relation-specific. The global threshold can be easily optimized for a given set of predictions.
The relation-specific thresholds are found using a greedy iterative algorithm (details in
Appendix B.1) that optimizes the micro-averaged F1 score for 474 relations (including the
separately embedded inverse relations).

1. Type information provided by [Wang et al., 2019].
2. The final data set, as well as the source code for data set construction and model evaluation are available

at https://github.com/marina-sp/classification_lp.

https://github.com/marina-sp/classification_lp
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MRR. The query-based format of the FB14k-QAQ is incompatible with the MRR evalua-
tion. To be able to evaluate this data set on ranking, we reconstruct the underlying valid
facts F from the queries in dev D and test T data by completing every query with all entities
from their answer set, resulting in triple sets

Drank = {q ◦ i | q ∈ D ∧ i ∈ Aq}

and Trank analogously. The empty queries N and F are ignored in the ranking evaluation,
as they cannot build a valid fact.

The triples (h, r, t) from Drank and Trank are scored and ranked against all possible
perturbations of entities as follows: The rank rank(h, r, t) of an evaluation triple (h, r, t)
is defined as its index in a sorted array of scores. For perturbed tails, this is {(h, r, t′) /∈
Train | t′ ∈ E+}; for heads, it is {(h′, r, t) /∈ Train | h′ ∈ E+}, i.e., scores for known triples
from the training set are excluded. The mean reciprocal rank for an evaluated set of triples
Xrank (substitute Drank and Trank ) is then

MRRE =
1

|Erank |
∑

(h,r,t)∈Erank

1

rank(h, r, t)

Metric definition. In the classification setting, evaluation is based on a model’s binary
decisions. For an arbitrary query q with a relation r, all entities with a score s above the
tuned threshold τr constitute the positive response set

Rq = {i ∈ E+ | s(q ◦ i) > τr},

i.e., the model retrieved these entities as a valid query completion.
Recall from Section 3 that, for each query q, the evaluation data contain a set Aq of

expected correct (relevant) answers that were not directly seen in the training data. In
order not to punish a model for correctly reproducing the facts from the train data, the
corresponding entities are excluded from the retrieved set:

Rq ← Rq \ {i ∈ E+ | (q ◦ i) ∈ Train}

To assess the retrieval quality of the model on a set of queries X (substitute D or T ),
we define the following sets that describe the correctly retrieved entities (true positives),
erroneously retrieved entities (false positives), and entities missing in the retrieved set (false
negatives) for a query q:

TPq = |Rq ∩Aq| FPq = |Rq \Aq| FN q = |Aq \Rq|

With TP =
∑

q∈X TPq, FP =
∑

q∈X FPq and FN =
∑

q∈X FPq the micro-averaged
precision, recall and F1 score can be easily computed. We use F1 score as the final performance
measure.

5 Results

Experimental setup. The framework for this work was built on top of the publicly
available ConvE implementation.3 We used the provided implementations for ConvE,

3. https://github.com/TimDettmers/ConvE

https://github.com/TimDettmers/ConvE
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F1 global threshold F1 multiple thresholds

Model (d) MRR full C C ∪ F I full C C ∪ F I

ConvE 128 .321 .134 .272 .211 .105 .204 .317 .286 .150
ConvE 64 .263 .157 .307 .261 .108 .189 .312 .280 .135

ComplEx 128 .293 .021 .169 .017 .042 .190 .296 .261 .143
ComplEx 64 .293 .009 .157 .005 .057 .181 .282 .245 .143

TransE 128 .293 .108 .158 .106 .108 .159 .172 .168 .154
TransE 64 .283 .111 .164 .112 .110 .161 .176 .175 .154

DistMult 64 .266 .159 .273 .226 .129 .184 .256 .239 .148
DistMult 128 .221 .133 .275 .188 .088 .163 .206 .194 .138

Table 2: MRR and F1 score on the full FB14k-QAQ test set together with F1 scores on
different query subsets in the two threshold settings. “F1 global threshold” refers
to scores obtained with a single shared threshold for all relations while “F1 multiple
thresholds” refers to the setting with independent thresholds for every relation
(including inverse relations).

ComplEx and DistMult. Similarly to ComplEx and DistMult, we provided the traditional
TransE with an additional top layer, which transforms real-numbered scores to a probability-
like output.4

All models share the following settings: Adam optimizer, binary cross entropy loss,
KvsAll training5, and a maximum number of 200 training epochs. Development loss is used
as the early stopping criterion with patience of 50 epochs.6 The other hyperparameters were
selected from the following value sets: embedding dimension d from {64, 128}7, batch size
from {256, 512, 1024}, learning rate from {0.001, 0.0001}, inverse relations from {yes, no}
(for TransE only). Entity embedding L2-normalization and L1-scoring was used for TransE
as in the original model. Optimal threshold values are provided in Appendix B.2.

Discussion. Table 2 shows the evaluation results of standard embedding models on the
test data according to the classic ranking metric MRR and according to the F1 score as
proposed above. Development results are provided in Appendix C.2. It is evident that MRR
and the suggested classification-based evaluation scheme assess the evaluated model variants
in a strikingly different manner.

A good ranking as measured by MRR is not necessarily a good indicator for a good
performance in the KBC settings: The ComplEx models have a relatively high MRR but
show the weakest performance in the globally thresholded prediction (F1 global threshold

4. ComplEx and DistMult have a sigmoid prediction layer. Since the TransE distances are non-negative, a
hyperbolic tangent function is more appropriate choice than a sigmoid and exploits the whole interval
[0,1].

5. Terminology borrowed from [Ruffinelli et al., 2020].
6. Positive training examples are excluded from the development loss calculation to encourage better link

predictions rather than reproducing the known facts.
7. ConvE embeddings are reshaped to (8,8) and (16,8) prior to convolution.
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full). Similarly, the TransE (128 dimensions) model performs very well in terms of MRR
but is the worst performing model with a global threshold and the second weakest (after
ComplEx) in the KBC setting with multiple thresholds. The comparison of the model
within the same type reveals, that models with a higher number of embedding dimensions
perform better in MRR than models with a lower dimensionality, whereas model with less
dimenstions are mostly better in the classification setting with a global threshold. The
DistMult model pair constitutes an exception with DistMult (64) performing the best in all
settings, however, the gap in MRR performance is significantly bigger than that in F1 score.

We also provide an analysis in terms of the sets C (queries with exhaustive answers),
F (queries with type violations), and I (queries with at least one removed answer due to
entity removal). C corresponds roughly to the traditional setting, directly turned into a
classification problem. Here, the queries always contain at least one answer and the amount
of positives is unrealistically high. Adding8 queries with type violations, i.e., F , makes
the problem more challenging and thresholding is more important in order to detect cases
where no answer should be returned. However, the queries in F might still be too easy for
approaches that are good at type modeling. I contains the most realistic (and most difficult
to judge) empty queries and provides the most challenging scenario.

The full query set (full = C ∪ F ∪ I) combines moderately challenging and hard cases,
and measures progress at type modeling while at the same time containing realistic empty
queries. For characterizing models in a nuanced evaluation, we suggest to report metrics for
all of these three settings: full, C ∪ F , and I.

Table 2 shows that C queries always have the highest score, which makes sense as
they can be considered the easiest setting. C ∪ F queries cause a strong drop in model
performances compared to C when a global threshold is used but this difference largely
disappears with threshold tuning. ConvE and ComplEx however still show a considerable
drop for C ∪ F queries, which may indicate potential room for improvements through better
type modeling. The I query set, in average, produces the lowest scores (except for ComplEx
global threshold), which is in line with the intuition that this setting can be considered more
difficult than C ∪ F . TransE shows the least difference between I and C ∪ F (and C), and
has the highest score for I in both threshold settings — a remarkably stable performance
across query sets.

Qualitative analysis. Table 3 sheds light on the exact model behavior in the two threshold
settings by showing predictions for three sample queries from different sets. The highest-
scored answers are generally thematically related to the correct answers. Relation-specific
thresholds can improve the classification performance by including correct answers missed
in the global setting (as is the case for the first query) but the opposite is also possible
(second query). For the type-violating query9, highest scores are obtained by entities with a
semantic connection to the relation. ComplEx exploits the extreme threshold value of 1.0 to
entirely disallow predictions for this relation.

8. Since F only contains queries without answers, it needs to be combined with, e.g., C for a meaningful
computation of F1.

9. The relation labels are simplified for readability. The original relation
for this query is /location/statistical region/gni per capita in ppp dollars.

/measurement unit/dated money value/currency, which expects a location as its head.
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The evaluation of these three queries also highlights the difference in ranking-based vs.
classification-based evaluation approaches: despite the fact that ConvE ranks the candidates
in a perfect order, the classification results still suffer from false positives and false negatives.

6 The Region model

To highlight the development potential of the existing models with respect to the new
evaluation, we introduce a TransE variant which supports thresholds intrinsically. Relation-
specific regions in the translation vector space — defined by up to d ∗ |R| extra parameters

— allow the model to better separate positive and negative predictions.

6.1 Definition

The distance function of Region maps to R0+, with 0 being the score for a perfect triple:

δ(h, r, t) = (eh + rr − et)
TAr(eh + rr − et)

where Ar is a relation-specific positive semi-definite matrix that (together with a threshold)
describes an elliptic region. A vector will be classified as positive if and only it is located inside
this region. In order to limit the number of additional parameters in Ar, we restrict Ar to be
diagonal: Ar = diag(ar) (allowing only positive values to ensure positive semi-definiteness).10

With a diagonal matrix Ar, the computation can be simplified to (operand � stands for
element-wise multiplication,

√
x for element-wise square root):

δ(h, r, t) = ‖
√

ar � (eh + rr − et)‖22

The transformation mentioned above is applied to the Region distances in the same
manner to obtain a probability score:

s(h, r, t) = 1− tanh(δ(h, r, t))

TransE with L2 scoring is therefore a special case of Region with all ar weights set to 1.
Specifically, the original TransE model can be seen as a Region model with a fixed region
radius shared across all relations.

6.2 Performance

Table 4 provides the evaluation results for the enriched model. The Region model achieves a
noticeable improvement in terms of MRR and F1 compared to TransE. While the Region
model also improves in terms of the ranking metric MRR (16.5% relative increase), improve-
ments for classification are particularly strong (32.4% and 36.8% relative improvements
in terms of F1 scores). With respect to different query sets, the biggest improvement is
achieved in the complete and fake queries.

10. We also experimented with a spherical ar ∈ {ar}d, which gave slightly worse results.
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global threshold multiple thresholds

Query & Gold ComplEx 128 ConvE 128 ComplEx 128 ConvE 128

actor actor
screenwriter screenwriter

Thomas Lennon – actor film producer actor film producer
has profession – ? — th = 0.7 — tv producer tv producer tv producer

tv producer film director film director film director
∈ I film director — th = 0.5 — screenwriter comedian

screenwriter comedian film producer musician
comedian film producer musician — th = 0.1 — — th = 0.3 —
screenwriter comedian writer comedian writer
film producer writer author writer author

musician artist musician artist

Pacific Pacific
Marion County – Eastern Eastern
in time zones – ? — th = 0.7 — — th = 0.5 — Mountain

Eastern Mountain Eastern Central
∈ C Pacific Central — th = 0.1 — — th = 0.3 —

Central Eastern European Pacific Eastern European
Pacific Mountain time in China Central time in China

East Africa Mountain East Africa

USA USA
? – UK — th = 1.0 — UK
has currency – US dollar France US dollar — th = 0.9 —
Meryl Streep euro Ireland euro France

— th = 0.7 — Spain pound sterling Ireland
∈ F pound sterling Canada UK Spain

UK — th = 0.5 — Sweden Canada
Sweden Italy Italy

New Zealand New Zealand
Denmark Denmark

Table 3: Exemplary predictions of Complex 128 and ConvE 128 models on the test queries
with global and multiple thresholds. The first column presents the query, the
corresponding query set and the gold answers in bold. Further columns show the
top scored entities in the order of decreasing scores. Threshold values separate
positive predictions (above the line) from negative predictions (below the line).
Gold answers are also marked bold, correct answers contained in the train set are
grayed out and italic (these answers are excluded from metric computation).
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Model (k) MRR F1 global threshold F1 multiple thresholds

full C C ∪ F I full C C ∪ F I

TransE 64 .283 .111 .164 .112 .110 .161 .176 .175 .154
Region ellipse 64 .330 .146 .266 .207 .123 .220 .317 .311 .162

Table 4: Performance of the Region model and the original TransE on the FB14k-QAQ test
set.

7 Conclusion

This work points out the insufficiency of the current ranking-based evaluation paradigm for
knowledge base completion and provides an alternative that directly measures the quality of
predicted facts. We describe a process for constructing test collections that can measure KBC
prediction quality and evaluate established KBC models on the new, carefully constructed
FB14k-QAQ data set. Our experiments provide evidence that ranking-based estimation
can be a misleading evaluation criterion for the actual completion task. With a simple but
effective extension to the traditional TransE model, we encourage the research community
to reconsider existing models in light of our more realistic evaluation setting and to conduct
further research on factors that are crucial for classification performance. The new setup
also allows to examine models with respect to how consistently scores are scaled across
relationships and it motivates research on more universal and robust embedding models that
reduce the performance gap between the global and multiple threshold settings.
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Appendix A

A.1 A formal description of the query-based data set construction.

The ◦ operator is defined to fill the open position of a query with the specified entity, i.e.,
q1 ◦ i = (h, r, i) and q2 ◦ i = (i, r, t). For every query, a set of answers AF

q can be extracted
from a given set of facts F ⊆ E ×R× E , that contains the completions to valid facts, i.e.
AF

q = {i | (q ◦ i) ∈ F}.
Specifically, the following steps were taken during the construction of FB14k-QAQ:

1. Let KB ⊂ E ×R× E be the underlying data set.

2. Let Train ∪Valid ∪ Test = KB ,Train ∩Valid ∩ Test = ∅ the original partition of the
KB . Unify the development and test data into single held-out set H = Valid ∪ Test .

3. Randomly select a subset of entities E− ⊂ E that are to be removed. The rest of the
entities E+ = E \ E− are the basis for the new data set.

4. Drop the triples from Train and H where both head and tail entity were selected for
removal, as they do not have any valid entities and do not suffice either for training or
for query construction purposes:

Train ← Train \ {(h, r, t) ∈ Train | h, t ∈ E−}
H ← H \ {(h, r, t) ∈ H | h, t ∈ E−}

5. Move the triples with either one position selected for removal from Train to H to be
used for query construction, since the training process does not change and is still
based on full triples.

temp ← {(h, r, t) ∈ Train | h ∈ E−} ∪ {(h, r, t) ∈ Train | t ∈ E−}
H ← H ∪ temp

Train ← Train \ temp

6. Transform the held-out set H from triple form to query form. First, obtain the set of
answerable queries that only include entities E+ and for which answers are contained
in H:

Q ← {(h, r, ?) | h ∈ E+, ∃t : (h, r, t) ∈ H} ∪
{(?, r, t) | t ∈ E+, ∃h : (h, r, t) ∈ H}

Second, extract the answer sets AH
q from the held-out triples H for every query ∀q ∈ Q.

Note, that since the answers are retrieved from the held-out set only, and H∩Train = ∅,
these answer sets do not include any entities that complete a query to a triple from
the train set, i.e. {q ◦ i | i ∈ Aq ∧ q ∈ Q} ∩ Train = ∅.
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7. Finally, the selected entities E− are removed from the answer sets as well (the source
of the answers H is further omitted for readability reasons):

∀q ∈ Q : Aq ← AH
q \ E−

Starting from this point, there are two types of queries regarding the completeness of
their answer sets in the evaluation data of FB14k-QAQ:

Queries with exhaustive answers (complete): C ={q ∈ Q | Aq = AH
q }

Queries with at least one removed answer (incomplete): I ={q ∈ Q | Aq 6= AH
q }

Specifically, queries from C always contain at least one entity in their answer set, while
queries from I can have empty answer sets. We will refer to these empty queries with
no answer as N = {q ∈ I | |Aq| = 0}.
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Appendix B

B.1 Threshold tuning algorithm. We used two tuning iterations over the relations (N=2).

for r ∈ R do:
τr ← 0.5

end for
f1 ← 0.0
i ← 0
while i < N do:

for r ∈ R do: . in order of decreasing frequency of r in the dev set
for τ ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} do:

f̂1← evaluate(r, τ)
if f̂1 > f1 then:

f1 ← f̂1
τr ← τ

end if
end for

end for
i ← i+1

end while

B.2 Tuned threshold statistics. The exact value is presented for the global threshold,
aggregate statistics for multiple thresholds.

multiple thresholds

Model (d) global threshold mean min max

ConvE 128 0.5 0.81 0.1 1
ConvE 64 0.5 0.56 0.1 1

ComplEx 128 0.7 0.63 0.1 1
ComplEx 64 0.5 0.72 0.1 1

TransE 128 0.1 0.26 0.1 0.9
TransE 64 0.1 0.23 0.1 0.9

DistMult 64 0.4 0.38 0.1 1
DistMult 128 0.3 0.24 0.1 1

Region 64 0.2 0.36 0.1 1
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Appendix C

C.1 Comparison of model performances on mean reciprocal rank and the F1 score for the
FB14k test (dev) set. The “F1 global threshold” refers to scores obtained with a single
shared threshold for all relations, while “F1 multiple thresholds” refers to a setting with
independent thresholds for every relation (including the inverse ones).

Model (d) MRR F1 global threshold F1 multiple thresholds

ConvE 128 .3212 (.3279) .134 (.135) .204 (.218)
ConvE 64 .2633 (.2717) .157 (.155) .189 (.215)

ComplEx 128 .2931 (.3009) .021 (.022) .190 (.200)
ComplEx 64 .2931 (.3007) .009 (.010) .181 (.188)

TransE 128 .2931 (.2988) .108 (.103) .159 (.160)
TransE 64 .2834 (.2902) .111 (.106) .161 (.159)

DistMult 64 .2663 (.2732) .159 (.153) .184 (.210)
DistMult 128 .2214 (.2310) .133 (.146) .163 (.189)

C.2: Overall performance records of precision, recall and F1 (s. next page).
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global threshold multiple thresholds

Model (d) C C ∪ F I full C C ∪ F I full

ConvE 128
prec .232 (.228) .155 (.160) .061 (.063) .083 (.084) .312 (.317) .258 (.269) .116 (.129) .167 (.176)
rec .329 (.325) .329 (.325) .370 (.371) .351 (.351) .322 (.331) .322 (.331) .211 (.253) .261 (.288)
F1 .272 (.268) .211 (.214) .105 (.107) .134 (.135) .317 (.317) .286 (.297) .150 (.171) .204 (.218)

ConvE 64
prec .399 (.396) .274 (.264) .076 (.078) .123 (.119) .370 (.371) .291 (.311) .107 (.140) .165 (.193)
rec .250 (.245) .250 (.245) .184 (.203) .214 (.222) .270 (.276) .270 (.276) .182 (.219) .222 (.244)
F1 .307 (.303) .261 (.254) .108 (.113) .157 (.155) .312 (.316) .280 (.292) .135 (.170) .189 (.215)

ComplEx 128
prec .384 (.370) .009 (.010) .038 (.034) .012 (.013) .282 (.284) .225 (.242) .107 (.113) .150 (.154)
rec .108 (.104) .108 (.104) .048 (.040) .075 (.068) .311 (.323) .311 (.323) .215 (.256) .259 (.286)
F1 .169 (.163) .017 (.019) .042 (.037) .021 (.022) .296 (.302) .261 (.277) .143 (.157) .190 (.200)

ComplEx 64
prec .202 (.200) .002 (.002) .037 (.038) .005 (.005) .298 (.296) .227 (.248) .105 (.109) .143 (.151)
rec .128 (.126) .128 (.126) .124 (.128) .126 (.127) .275 (.267) .267 (.275) .224 (.227) .244 (.249)
F1 .157 (.155) .005 (.005) .057 (.058) .009 (.010) .282 (.285) .245 (.261) .143 (.148) .181 (.188)

TransE 128
prec .140 (.146) .075 (.087) .063 (.057) .066 (.064) .199 (.200) .190 (.193) .106 (.114) .123 (.132)
rec .181 (.183) .181 (.183) .407 (.334) .304 (.267) .151 (.156) .151 (.156) .282 (.241) .222 (.203)
F1 .158 (.162) .106 (.118) .108 (.098) .108 (.103) .172 (.175) .168 (.172) .154 (.154) .158 (.160)

TransE 64
prec .143 (.146) .079 (.088) .063 (.059) .067 (.066) .195 (.196) .194 (.195) .106 (.112) .124 (.131)
rec .192 (.191) .192 (.191) .424 (.340) .319 (.274) .160 (.159) .160 (.159) .282 (.235) .226 (.201)
F1 .164 (.166) .112 (.120) .110 (.100) .111 (.106) .176 (.175) .175 (.175) .154 (.151) .160 (.158)

DistMult 64
prec .362 (.389) .233 (.266) .089 (.082) .121 (.117) .254 (.377) .222 (.320) .116 (.133) .153 (.188)
rec .219 (.214) .219 (.214) .238 (.219) .229 (.217) .258 (.268) .258 (.268) .204 (.211) .229 (.237)
F1 .273 (.276) .226 (.237) .129 (.119) .159 (.152) .256 (.314) .239 (.292) .148 (.163) .184 (.208)

DistMult 128
prec .317 (.410) .165 (.263) .076 (.075) .116 (.140) .181 (.376) .163 (.302) .113 (.129) .135 (.195)
rec .218 (.223) .218 (.223) .105 (.095) .156 (.152) .239 (.246) .239 (.246) .179 (.134) .206 (.184)
F1 .275 (.289) .188 (.242) .088 (.083) .133 (.146) .206 (.298) .194 (.271) .138 (.131) .163 (.189)

Table 5: Precision, recall and F1 scores on different query sets for the FB14k test set. “global threshold” refers to scores obtained
with a single shared threshold for all relations, while “multiple thresholds” refers to a setting with independent thresholds
for every relation. (Dev set scores in parentheses.)
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