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1.  INTRODUCTION

The design of biomimetic robot is one popular research. To achieve 
this goal, the reproduction of animal locomotion is mandatory. 
Animal locomotion is created by the activities of Central Pattern 
Generator (CPG) that produces alternating bursts [1]. Most rhyth-
mic movements are programmed by CPG networks [2]. CPGs are 
neural networks capable of producing rhythmic patterned outputs 
without sensory input. CPGs in animal locomotion have been stud-
ied such as swimming in salamander [3] or lamprey [4], and heart-
beat system in leech [5,6].

Usually in robotic field, CPGs are designed using simple neuron 
models [7] or simple oscillators [8], which are not biological 
time scales and which are considered as bio-inspired systems 
rather than biomimetic systems. These models provide sinusoi-
dal oscillations and cannot reproduce biomimetic CPGs which 
have variability in performance. As our aim is to replicate bio-
logical behavior, we developed biomimetic CPGs using digital 
neuromorphic system.

2. � BIOMIMETIC CPGS IN DIGITAL  
NEUROMORPHIC SYSTEM

2.1.  CPG Neural Network

The biomimetic CPG is based on the neural network system that 
controls the heartbeat of a leech [6]. This simple network uses eight 
excitatory neurons with 12 inhibitory synapses, making it an ideal 

candidate for our applications. This neural network model has 
been designed by Hill et al. [6] and described in Figure 1.

2.2.  Simplification of the Model

To design this CPG (Figure 1), Hill’s neural network diagram [6] 
was used.

The network designed by Hill uses the Hodgkin–Huxley (HH) model 
[9] and complex equations for synapses. Our first work was to simplify 
this model by applying Izhikevich neurons [10] instead of HH model. 
Using the short-term synaptic plasticity [11] and the Izhikevich 
Regular Spiking neurons, the activity of Hill’s model was reproduced.

Even though the model was simplified, the same behavior and 
characteristics as the biological CPGs was successfully reproduced. 
The important point is to allow a variability in the characteristics  
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A B S T R AC T
The design of biomimetic robot is one popular research. To achieve this goal, the reproduction of animal locomotion is 
mandatory. Animal locomotion is created by the activities of Central Pattern Generator (CPG). CPGs are neural networks 
capable of producing rhythmic patterned outputs without rhythmic sensory or central input. We propose a network of 
several biomimetic CPGs using biomimetic neuron model and synaptic plasticity. This network is implemented on a field 
programmable gate array. We designed one unsupervised snake robot using this network of CPG. It is composed of one head 
wagon followed by seven slave wagons. Infrared sensors are also embedded in the head wagon. This robot can reproduce the 
locomotion of one snake.
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Figure 1 | Diagram of the Segmental Oscillator of the Heartbeat of the Leech. 
The modelling is from Hill et al. [6]. N1–N2 and N3–N4 are two elemental 
oscillators. N1, N3, N5, and N6 are controlling the left part (blue), N2, N4, 
N7, and N8, the right part (orange). The 12 black dots represents inhibitory 
synapses with short-term plasticity. All neurons are excitatory ones.
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of the CPGs. Percentages of variability can be controlled by adjusting  
the parameters of short-term synaptic plasticity.

By changing the parameters of the inhibitory synapses, it is possible 
to obtain different periods and cyclic ratios. This is very import-
ant especially for closed-loop experiments and to reproduce loco-
motion activities for robotics. A single parameter pair manages 
the modification of the period and of the duty cycle. The possible 
period interval in seconds is quite wide [0.3 and 35 s].

2.3. � Implementation in Digital  
Neuromorphic System

Biomimetic CPGs [12–15] are implemented in a digital plat-
form: CMOD A7-A35 Xilinx Artix-7 Field Programmable Gate 
Array (FPGA). The neural network implementation architec-
ture operates on a single computation core. This real-time dig-
ital system requires few resources and low power consumption 
[16–19]. Table 1 summarizes the stated resources and Figure 2 
describes two CPGs with different periods.

As we implemented the biomimetic CPGs in the FPGA board, 
we design the structure of the snake robot which embedded the 
FPGA board.

3.  SNAKE ROBOT

3.1.  Design

The snake robots is composed of seven wagons (like spinal cord) 
and one locomotive (mimics the brain).

Biomimetic CPGs will control the different motors of the wagons. 
As the output of the FPGA board is 3.3 V with low current, a 
power driver for the motors and a VHDL module for converting  
the CPGs to Pulse Width Modulation (PWM) to control motor 
speed needs to be added. The PWM frequency should be between 
100 Hz and 200 kHz. The duty cycle of the PWM controls the 
speed of the motor. Pololu_DRV8835 was used for the power 

Table 1 | Utilization of the resources for the implementation of 
biomimetic CPGs in CMOD A7-A35 board

Kintex-7 Utilization Available Percentage

LUT 7786 20,800 37.43
FF 3299 41,600 7.93
BRAM 50 50 100
DSP 40 90 44.44

driver. Motors are DG01D with a 0.8 kg.cm couple and a no load 
speed of 90 rpm. Figure 3 shows the 3D structure of the wagons.

All the distance between the different wagons and the possible 
movement angle can be tuned with mechanical structure. Figure 4 
shows how the tuning is possible with the orange screws.

The design of electrical connection and components for the loco-
motive and for the wagon is described in Figure 5.

The locomotive system has three IR sensors for detecting the 
different obstacles and then send stimulus to CPGs for modify-
ing duty cycle and period. The tuning of the duty cycle allows 
the movement and the tuning of period allows the speed or the 
stop of the robot.

4.  RESULTS

Height CPGs were implemented (one for the locomotive and seven 
for the wagons). Enable input are connected to each wagon to 
choose which ones are working for simulating a lesion of the spinal 
cord. The CPGs are connected for allowing forward locomotion 

Figure 2 | Two different CPGs with different period (1.8 and 7.8 s). The 
output are from the scope.

Figure 3 | 3D view of the wagon design. 

Figure 4 |  The orange screw allows the tuning of distance of the different 
wagons but also the angle for the movement.
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5.  CONCLUSION

This article describes the design of a snake robot. This robot is con-
trolled by real-time network of biomimetic CPGs. This system can 
be used in robotic applications [21] for a closer behavior to bio-
logical animals. It can also be used in bio-hybrid robotics (biomi-
metic CPGs can be replaced by in vitro cell culture). We previously 
showed that our system can be connected to biological neurons 
[22,23]. Another advantage is that the real-time systems can simu-
late multiple CPG topologies and simulate different hypothesis and 
protocol treatments for biomedical applications such as spinal cord 
injury [24] and neuroprosthetics [25,26].
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