CHAPTER 1

Transition Amplitudes
in Electrodynamics

The goal of this first chapter is to introduce the concept of transition
amplitude, which is essential for the quantum description of interactions
between atoms and photons.

We begin in Section A by recalling that the transition amplitude
associated with a physical process is the evolution-operator matrix element
between the initial and final states of the process under study. The
calculation of these amplitudes frequently uses perturbation theory and is
based on the splitting of the total Hamiltonian H into an unperturbed
part H, and a coupling V.

We then discuss in Section B the basic ideas of auantum mechanics
concerning the time dependence of transition amplitudes. Distinctions are
made among several cases according to whether the initial and final states
of the process under study belong to the discrete or to the continuous
spectrum of H,. The three complements explore this problem in greater
detail. Complement A; assembles several important results concerning the
perturbative calculation of transition amplitudes and physical quantities
that can be deduced from these amplitudes (transition rates, cross-sec-
tions, etc.). Complement B, introduces the concept of effective Hamilto-
nian, which is useful for describing situations where several energy levels
of H, forming a well-isolated manifold are indirectly coupled through
other levels of H,,. Complement C, presents a very simple model of a
discrete state coupled to a continuum, which allows one to exactly calcu-
late the transition amplitudes and to understand the way the discrete state
of H, can be traced in the eigenstates of H.
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6 Transition Amplitudes in Electrodynamics 1

In Section C, we apply these ideas to a system of charged particles
interacting with the electromagnetic field. Starting with the Hamiltonian
H of quantum electrodynamics in the Coulomb gauge, we consider several
possible splittings of this Hamiltonian into an unperturbed part H, and a
coupling V. We emphasize the advantages of the Coulomb gauge, which
allows the Coulomb interaction to be included in the particle Hamiltonian,
and the bound states of charged particles, such as atoms, molecules, or
ions to be considered as “unperturbed”. We also introduce diagrammatic
representations of interaction processes that allow the evolution of the
global system to be simply visualized. These are the interaction processes
(absorption, emission, scattering, etc.) that we will review in Chapter II.
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A—PROBABILITY AMPLITUDE ASSOCIATED
WITH A PHYSICAL PROCESS

The idea of probability amplitude plays a central role in the quantum
description of the time evolution of a physical process. The system under
study is prepared at an instant ¢, in a given state |¢,). The probability
amplitude of finding it, at another instant ¢, in the state |y, ) is given, in
the Schrédinger representation, by

<'1{/f|U(tf,t,‘)|ll/,'>, (Al)

where U(t;,t,) is the evolution operator between f; and ¢;. The main
advantage of these amplitudes (A.1) is that they can be multiplied: the
amplitude for going from [,) to |¢,) between ¢, and ¢,, and then from
[¢,) to |¢5) between ¢, and ¢4 is given by the product

sl U (13, 1) 192y |U (83, 11) ) (A2)

Another interesting property of the amplitudes (A.1) is that they interfere.
If the system is not observed at an intermediate instant ¢,, the amplitudes
associated with all the possible intermediate states must be summea over.
It is in fact well known that

Wl U(t5, 1) 1) = L AWslU(t5,1,) 10, )@, | U(15, 1) 105,)  (A.3)

where the {|¢, >} form an orthonormal basis of states.

The calculation of the amplitude (A.1) assumes, of course, that we
already know how to determine |¢;) and |¢,). Generally the initial state
and the final state are characterized by well-defined values of some
physical variables. Thus we must be able to calculate the eigenvalues and
eigenstates of the observables that represent these physical variables. We
must also know the evolution operator U(tf, t;) which is determined by
diagonalizing the Hamiltonian H of the system. However, in most cases,
and particularly in electrodynamics, we do not know how to exactly
calculate the eigenstates and eigenvalues of H. It is thus necessary to
resort to approximation methods.

The perturbative calculation of amplitudes (A.1) depends in general on
the splitting of the Hamiltonian H into an “unperturbed” part H,, for
which the eigenstates |¢,) and eigenvalues E, are known, and a perturba
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Figure 1. Temporal variation of the parameter A(¢) allowing the perturbation V to
be adiabatically switched on and switched off. This simulates a collision of duration
T.

tion V=H — Hy:
H=H,+V. (A4)

Since any state |¢;) or |¢;) may always be expanded on the basis |¢,) of
eigenstates of H,,, the amplitudes (A.1) can be expressed as a function of
the quantities

(@, 1U(t5, 1) l0,), (A5)

which represent the transition amplitudes induced by the perturbation V
between unperturbed states. In this chapter, we will concern ourselves
with these transition amplitudes and with their calculation in the form of a
perturbative expansion in powers of V.

When the problem under study can be stated in terms of collisions, it is
quite convenient to adiabatically “switch on” and “switch off” the pertur-
bation V' by formally multiplying ¥ by a parameter A(¢), whose time
variations are represented in Figure 1. In this way we can “simulate” the
collision of two wave packets, which initially (¢+ <¢) do not interact
because they are too distant from each other, and then, after the collision
(tfs t), are again separated and no longer interact. The limit of the
expression (A.5), when the duration T of the collision (see Figure 1) tends
to infinity, is simply an element of the scattering matrix S. (The evolution
operator U must then be taken in interaction representation with respect
to H, to eliminate the free evolution exponentials in ¢, and in ¢, due to
H,; see Complement A, §1).
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B—TIME DEPENDENCE OF TRANSITION AMPLITUDES

To give some idea of the type of physical information that may be
extracted [rom the preceding transition amplitudes, we are going to
distinguish among different cases, depending on whether the initial and
final states |¢,> and lcpf> of the process belong to the discrete or to the
continuous spectrum of the unperturbed Hamiltonian H,,. For each of
these cases, we review the time dependence that quantum mechanics
predicts for the matrix elements of the evolution operator, and we show
how it is possible to connect the transition amplitudes to measurable
physical quantities such as level shifts, lifetimes, cross sections, etc. Such
general ideas will be useful for analyzing the physical processes to be
reviewed in Chapter I1.

1. Coupling between Discrete Isolated States

We begin by considering the case in which the unperturbed Hamilto-
nian H, has one or several discrete eigenstates that are well isolated from
all other eigenstates of H,,.

One particularly simple case is that of a single discrete state |¢,) , well
isolated, having unperturbed energy E,. Let us now consider the ampli-
tude

U (T) = e |U(T) ey (B.1.a)

where
U(T) = ethT/2hy(T) e/Hol /24 (B.1.b)
is the evolution operator between ¢, = —T/2 and t,= +7/2 in the

interaction representation with respect to H, (sce Complement A, §1).
U, (T) represents the probability amplitude that the system, prepared in
state |¢,) at ¢,, is still there a time T later. By inserting on the right or on
the left of U(T) = exp(—iHT /2#) the closure relation on the eigenstates
of H, a superposition of exponentials of T appears, one of which has a
clearly preponderant weight (zero order in V' ):

0,(T) = gyl )P emoBT /%, (B.2)

In (B.2), |, ) is the eigenstate of H that approaches |¢,» when V' tends to
zero, and 8E, is the shift of state |¢,) due to the coupling V, given by the
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well-known perturbative expansion:

(e IVIe )@, Vg,

SE, = (¢,IVle)) + Y. +o . (B3)
: ] : n#1 El_En

The study of the amplitude (B.1.a) allows the level shifts to be calculated.
Note that, in the expansion of the amplitude (B.2), it is sufficient to know
the term linear in T to obtain 8E,. We will encounter situations of this
type in the study of the radiative shift of atomic states caused by the
virtual emission and reabsorption of a photon.

Another interesting case is the one in which H, has two discrete states,
l¢,? and |¢,), well isolated from the others, having the same unperturbed
energy £, = E,. Consider the amplitude

UZI(T) = <‘Pz‘U(T)|<P|> (B~4)

which allows us to calculate the probability
Py(T) = 'UZI(T)|2 (B.5)

that the system, initially in the state |¢,), passes after a time T to the state
lg, . It is well known in quantum mechanics (the two-level problem) that
P,(T) has an oscillating character. The frequency of this reversible oscilla-
tion of the system between |@,) and |¢,), called the “Rabi nutation
frequency™, is proportional to the coupling introduced by V' between |¢,)
and |g,), either directly (if (¢,|V|¢,» is nonzero), or indirectly (if
(@,1V g, is zero) via other levels far from |¢,) and |¢,) (see Comple-
ment B,). Such situations occur, for example, when an atomic system
interacts with an intense monochromatic wave (see Complement A,).

If several discrete eigenstates of H,, that are close to each other form a
group sufficiently well isolated from all the other levels of H,, then the
transition amplitudes between two levels of the group are superpositions
of Rabi oscillations with different amplitudes and frequencies. At the limit
where the number of coupled states becomes extremely large, the interfer-
ences between these different Rabi oscillations eventually give an irre-
versible character to the evolution of the system. This is what we will study
now by considering couplings involving a continuum of eigenstates of H,,.

2. Resonant Coupling between a Discrete Level and a Continuum

In this paragraph we assume that a discrete state |¢,», having energy
E, is coupled by V' to a continuum |¢,) of eigenstates of H, (the energy
E, of |¢,) varies continuously).
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The calculation of the transition amplitude <<,of| U(T)Ic,o,-) is well-known
in quantum mechanics. At the lowest order in V, that is, first order, we
find (see Complement A, §2-b)

U(T) = Lo U(T)l@;) =8y — 2midD(E, — E;))V,, + -+ (B.6)

where V; = <<pflV|¢>,-> is the matrix element of V between ((pf»| and |¢;)
and where 8" E; — E;) is a delta function of width #/T that expresses
the conservation of the unperturbed energy to within #/T (uncertainty
related to the interaction duration T). In fact, 5(T)(Ef— E)) is the
Fourier transform of the product of an exponential with frequency
(E; - E})/h and a square function of width 7. To obtain the transition
probability from |¢,) to l¢;), we must take the square of the modulus of
(B.6). Because states |¢,) and Icpf> are assumed to be different, the first
term of (B.6), Bﬁ, is zero. In addition, the square of 8 is proportional to
767 [see Complement A, Equation (49)]. The probability of transition
from |¢,; to l¢,) is thus proportional to the duration of the interaction,
which allows us to define a transition rate equal to

1 . , 2w 2 o0t
wy, = ?lUf,.(T)l = -{|Vf,1 8"(E, - E,). (B.7)

In fact, the final state |¢ f), which belongs to a continuous spectrum, is not
normalizable. The quantity that does have a physical meaning is the
transition rate toward a group of final states. For example, the sum of
(B.7) over all the states I(,of> gives the transition rate I' of the discrete
state |¢;) to any state of the continuum:

2
r= wai = ih' Z |Vﬂ|25(T)(Ef - Ei)
! f

21 )
= T (g = ). (B3)

In the second line of (B.8), it is assumed that IVf,-I2 depends only on E,
and p is the density of final states evaluated at E, = E; (Fermi’s golden
rule).

Another interesting quantity is the probability |U,(T)|* that the system
will remain in the discrete state |g,) after a time interval T. The preceding
perturbative calculation gives (conservation of the norm):

O(T)P=1- CI0(T)P=1-TT. (B.9)
f
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The probability of finding the system in state |¢,) thus decreases propor-
tionally to I'. In fact, a nonperturbative calculation of the amplitude
U,(T), to which we will return in Chapter III, is possible (*). It gives

U,-,-(T) = e IT/2 g —BET/h (B.10)

which shows that the discrete state decays exponentially over time with a
“lifetime”’:

— (B.11)

The probability II]’,»,-(T)IZ decays indeed as exp(—I'T) =exp(—=T/7). A
shift 8E; of the discrete state also appears as a result of its coupling with
the continuum. The expression for 8 E; is

vt
E -E

72

(B.12)

where £ denotes the principal part. Thus it is clear that the study of
transition amplitudes involving a discrete state and a continuum gives
access to important physical quantities, such as lifetimes or level shifts. In
Chapter II we will discuss an important example of this type of situation,
the spontaneous emission: of radiation by a discrete excited atomic state.

Remark

The exponential decay of |U,(T)|? is a simple example of irreversible evolution
resulting from the superposition of an extremely large number of Rabi oscilla-
tions having different frequencies (see end of preceding subsection). It is
important, however, to note that such a result holds only if the continuum to
which the discrete state |¢;) is coupled is extremely flat, more precisely, if the
quantity |V}, p(Ef) varies extremely slowly with E,. If the continuum has
structures responsxble for rapid variations in 1V/,| p(E ), damped oscillations
may persist in |U,(T)|® (see Complement C ).

3. Couplings inside a Continuum or between Continua

»
and the final state |¢,) of the physical process being studied belong to the
same continuum or to two different continua of eigenstates of H,,. Situa-

(*) A simple model of a discrete state coupled to a continuum is also analyzed in
Complement C,. It allows the exponential decay described by expression (B.10) to be simply
obtained.
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tions of this type are frequently encountered in the study of the scattering
of photons by atoms. In this case, the state |¢;) (l¢,)) represents the atom
in a given energy level in the presence of an incident (scattered) photon.
Because the energy of incident and scattered photons may vary in a
continuous fashion, |¢,) and I(pf> do indeed belong to a continuum.

For sufficiently large 7, the transition amplitude U,(T) is just an
element of the S matrix. The quantum calculation of (:/f,-(T) gives (see
Complements A and B,;):

U(T) =8, — 2mis"(E, — E,) 7, (B.13)

where 6 is a delta function of width #/T, and where T is the
transition matrix which can be expanded in powers of V' (Born expansion)
as

1
T = Vie,y + VooV, +
fi <(P]| l(P,> <‘P(| = H() I l’ﬂ I(P,>
(o dV : v Vie,» B.14
+ (g, DEREE :
Y E “H,+in E-Hy+in © (B.14)

n being an infinitely small and positive quantity.

Remark

If the Born expansion does not converge, then expression (B.14) becomes
meaningless. This occurs, for instance, when H,, has a discrete cigenstate o, )
whose energy E; coincides with that of the initial |¢;) and final |¢;) states
(“‘resonant scattering” case). However, a compact expression of the transition
matrix 7;; can be determined (see complement By, §1.b):

T = |V + AV
fi <‘P/| f‘P,> <¢‘f| El T H 11

— Vg, (B.15)
n

where it is H instead of H, that appears in the denominator of the second
term. We can verify that the formal expansion of the expression (B.15) actually
results in the expansion (B.14). Indeed, the identity

11 1
— = —+ —(B-A)— B.16
il L )7 (B.16)



14 Transition Amplitudes in Electrodynamics I.B3

appliedto 4 = E, ~ H +in, B=E, — Hy + in gives

1 1 1 1
— = — + — V— —. (B.17)
E,—H+in E,—H,+in E,—-H,+in E, —-—H+in

The iteration of (B.17), when substituted into the second term of (B.15), gives
(B.14).

As in subsection B.2, if |¢;) # |¢,?, the calculation of the transition
probability |¢;) — l(pf> causes the square of the 87 function, which is
proportional to 787, to appear. It is thus possible to define a transition
rate

W= 210D = TP T(E < E). (BS)
fi T ' h fi ! 1) )

Since the final state icpf-> is not normalizable, only the sum of Wy Over a
group of final states has a physical meaning. This summation causes the
density of final states p(E; = E,) to appear. Finally, the initial state |¢,) is
also nonnormalizable because it belongs to a continuum. However, an
incident flux can be associated with such a state |¢;, and it is well known
that the ratio of the transition rate from state |¢,) toward a group of final
states and the incident flux associated with |¢,) is simply a scattering
cross-section. We can thus see how it is possible to derive a measurable
physical quantity, such as a cross-section, from the transition amplitudes
Ufi(T) between two states belonging to two continua. In the following, we
will give several examples of scattering processes (Rayleigh, Raman, and
Compton scattering, photoionization, bremsstrahlung, etc.).

Remark

Expression (B.18) appears as a generalized Fermi golden rule, where the
coupling 7, between |¢;) and [¢,) contains all the orders in V. However, it
should be emphasized that expression (B.13), and expression (B.18), which
results from it, are valid at all orders in V only if ¢, and 7<pf~> both belong to a
continuum. In addition, the exact expression (B.15) for 7y must be used if
intermediate resonant states exist. In the case where either one of the two
states |¢,) or I(,o%> is discrete, the difference betwcen U,»,(T) and & is
proportional to 8¢ )(Ef — E;) only at the lowest order in V.
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C—APPLICATION TO ELECTRODYNAMICS

1. Coulomb Gauge Hamiltonian

We will now consider the electrodynamics case. The system under study
consists of an ensemble of charged particles «, having charge g, and mass
m,, interacting with an electromagnetic field. Let r, and p,, = (%/i)V, be
the position and momentum of the particle «, and A(r) be the potential
vector of the field which, in the Coulomb gauge, is transverse (A = A ).
The Hamiltonian that describes the dynamics of this system is written, in
the Coulomb gauge (see Appendix, §3),

1 2 Sala
H = gﬁ[pu - quA(ra)] - Z 2m

ed (43 24

Sa ) B(r(x) + V(:oul + HR'
(C.1)

The first term of (C.1) represents the kinetic energies of the particles,
since the velocity ¥, of the particle « is

oH

1 1
f = —[r, H] = — = —[p, — q,A(r,)]. c2
ra ih [r{y ] ap" m [pu Au (rﬂ)] ( )

«

The second term of (C.1) represents the interaction of the spin magnetic
moments of the particles (S, is the spin of the particle «; g, is its Landé
factor) with the magnetic field B of the radiation field evaluated at the
points where the particles are located. The third term, Vi, is the
Coulomb energy of the system of particles. It is the sum of the Coulomb
interaction energies between pairs of particles (a, 8) and of the Coulomb
self-energies ¢, of each particle

VC()ul = Z

[CE ]

4.4 L
Qe — t Zgg‘oul' (CS)
ey Ir, — rﬁf -

e&ou 18 a constant given by formula (43) in the Appendix. Finally, the
last term H), is the energy of the transverse field (electric E, and mag-
netic B):

Hy = %[d»‘r[mr) + ¢?BY(r)] (C.4.a)

which can also be expressed simply as function of the annihilation and



16 Transition Amplitudes in Electrodynamics L.C3

creation operators a; and a; of a photon in the normal vibrational
“mode” j of the field (identified by the wave vector k , the polarization ¢,
and the frequency w; = ck;)

Hp = Ehwj(afaj +

J

™
N

(C4Db)

Each mode j is thus associated with a one-dimensional harmonic oscilla-
tor. The eigenstate |n;) of such an oscillator (with n, = 0,1,2...) repre-
sents a state in which the mode j contains n; photons having energy fiw,,
momentum #k; and polarization e;. Finally, recall that the different
transverse fields E, and B, as well as A, can be expressed as a linear
combination of operators a; and a;" (see expressions (29), (30), and (28) in
the Appendix).

For what follows, it is useful to rewrite the Hamiltonian H in the form

2
p. ‘
H=Y > + Hy + Voo + Hyy + Hyy + H, (C5.a)
a llX
with
4,
Hy = — Z Tn‘“Pa * A(r,) (C.5.b)
H)y=-Y¢g I g - B(r,) (C5.)
" azma [+ 4 a
2
Hp= ¥ - [Ar)] (C.5.d)
2m «

o o

The splitting of H into H, + V may be achieved in several ways. We
will now discuss two that lead to different types of perturbative expansions
for the transition amplitudes.

2. Expansion in Powers of the Charges ¢,

A first possibility consists of gathering in H,, all the terms independent
of q,:

+ Hp. (C.6.2)
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The charges g, thus appear as coupling parameters characterizing the
strength of the perturbation:

V= Veou + Hy + Hjy + Hp,. (C.6.b)

The eigenstates of H, thus simply represent the free particles (eigen-
states of p2/2m,) in the presence of transverse photons (eigenstates of
Hg). No bound state of the particles can appear in H,, because no
coupling, either direct or indirect, can exist between the particles.

All terms contained in V—the Coulomb interaction as well as the
interaction between the particles and the transverse field—will then be
treated in a perturbative fashion. The physics problems that can be
studied simply with such an approach are thus essentially particle-particle
or particle-photon scattering problems (Coulomb scattering, Compton
scattering, bremsstrahlung emission, etc.).

3. Expansion in Powers of the Interaction with the Transverse Field

The second splitting of H that we will consider here consists of
collecting in H,, all the terms that depend either on the dynamical
variables of the particles, or on the dynamical variables of the transverse
field, but not on both at the same time:

H,=H, + Hyg (C.7.2)
where
P;
Hp = Za: 2m, + Veou (C.7.0)

is a particle Hamiltonian. The perturbation V' thus contains all terms
containing both the particle operators and transverse field operators:

V=H, +H+H,. (C.7.¢)

The perturbative expansion in powers of 1 is thus an expansion in powers
of the interaction between the particles and the transverse field.

Since the Coulomb interaction V., is included in the particle Hamilto-
nian, such a Hamiltonian can now describe bound states. In fact, the
eigenstates of H, are characterized by two types of quantum numbers: on
the one hand, the external quantum numbers, describing the motion of the
center of mass of the group of particles, and on the other hand, the
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internal quantum numbers, describing the excitation state of the system of
particles in the center-of-mass reference frame. For example, if the
particles under study form an atom or a molecule, the internal quantum
numbers indicate the energy levels of this atom or this molecule. The
eigenstates of H thus describe situations in which systems of particles,
such as atoms, molecules, ions, etc. in well-defined internal states and with
a well-defined global momentum, are in the presence of a certain number
of transverse photons characterized by well-defined energy, momentum,
and polarization.

The perturbative treatment of V' then allows us to describe the pro-
cesses of absorption or emission of photons by such systems of particles.
Further on we will give a diagrammatic representation of the transition
amplitudes induced by V' that allow these different processes to be
visualized.

Remark

When the system of particles consists of several distinct systems A, B,...
(atoms, molecules, ions, electrons, etc.) well separated from each other, it may
be advantageous to retain in H, only the Coulomb energies inside each system,
Va4, VBB, and to include in the interaction Hamiltonian V' the Coulomb
interaction energy between different systems, VC’:,‘:, ... . The eigenstates of H,
thus represent situations in which the different systems A, B,... are in well-
defined external and internal states, without mutual interactions, and in the
presence of a certain number of photons.

4. Advantages of Including the Coulomb Interaction
in the Particle Hamiltonian

The first advantage of the splitting (C.7) as compared to (C.6) is that it
allows us to consider states where charged particles are bound by the
Coulomb interaction (atoms, molecules, ions, etc.) as unperturbed states.
Such states can indeed exist before the switching on and survive after the
switching off of V. (See Figure 1.) With the other splitting (C.6), no bound
state could exist in the absence of V (*). Atoms, molecules, ions, etc.
would dissociate into nuclei and electrons before the switching on and
after the switching off of 1/, and it would be much more difficult to
describe the emission, absorption, or scattering of photons by such sys-
tems.

(*) Of course, we ignore here any interactions other than electromagnetic ones, such as,
for example, strong interactions responsible for the cohesion of nuclei.
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The second advantage of the splitting (C.7) is that V., is, in the
nonrelativistic domain, much more important than the interaction with the
transverse field. It is thus natural to start with the eigenstates of H,, and
deal with the effect of interactions with the transverse field as a perturba-

tion.

Remarks

(i) The elimination of the scalar potential and the longitudinal vector potential
causes the Coulomb interaction to appear as a purely particle term in the
Coulomb gauge representation. In another gauge, for example, in the Lorentz
gauge, the Coulomb interaction appears only in a second-order treatment of the
interaction between particles and scalar and longitudinal potentials (*). The
advantages of the splitting (C.7) that we just discussed are thus closely con-
nected to the choice of the Coulomb gauge.

(i1) Such advantages also exist in other formulations of quantum electrodynam-
ics equivalent to Coulomb gauge electrodynamics, such as, for example, the one
leading to the electric dipole Hamiltonian (see Appendix, §5). The new Hamil-
tonian H’', which is the unitary transform of H = H,, + V/, may also be written
in the form H' = H, + V', where H,, has the same expression as in (C.7) and
contains in particular the Coulomb interaction.

5. Diagrammatic Representation of Transition Amplitudes

Let us use, for example, the splitting (C.7). The perturbative expansion
of the evolution operator causes the transition amplitudes to appear as
products of matrix elements of I/ between eigenstates of H, and of free
evolution exponentials between two interactions, these products being
summed over all times and over all intermediate states (see Complement
Ay, §2.a):

CoU(t), 1) g,y =By e BRI/ 4

n

* (1
+ X_:l(:f;) fd*r,, ---drydr, X

n Lz, TyE T 2L
% Z eiEf(I,—T,,)/fl<(Pf| Vt(Pn7l>e—iE,,_|(T,,—T,,,|)/h ..
Pyt E
- <(P2|VI(P]>e_iEI(T2_Tl)/h<(P]1V‘(Pi>e"iEi(Tl_Il)/h' (C.8)

In what follows, it will be convenient to use diagrammatic representations

(*) See, for example. Complement By, of Photons and Atoms—Introduction to Quantum
Electrodynamics.
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of these products, because such representations allow one to visualize the
physical processes involved in the transition amplitude.

The free propagation of particles will be represented by straight lines,
while that of photons will be represented by wavy lines. Next to each line
will be quantum numbers indicating the corresponding free state (a, b, ...
for the state of particles, wave vector k, and polarization € for photons).
Each of these lines has associated with it exponential factors of the type
expl —iE(7, — 7,)/h], describing the free evolution of the state of energy
E between times 7, and 7, associated with the ends of the line (these
times are not explicitly shown on the diagram to keep it as simple as
possible). Each diagram is read going from bottom to top (following the
time course of the process). The lines for particles and for photons coming
from the bottom correspond to the free state in the ket |¢;) of the matrix
element; the lines for particles and for photons going toward the top
correspond to the free state in the bra (¢ fl. The matrix elements of V are
represented by the points at which these lines intersect (vertex), with the
matrix element being taken between the state described by the lines which
arrive at the vertex and that described by those which leave from it. A
photon line arriving and disappearing at this point (Figure 2a) corre-
sponds to the annihilation of a photon (a term of H,, and H}’). A photon
line leaving from this point (Figure 2b) corresponds to the creation of a
photon (a* term of H,, and H}}). The two-photon terms of H,, corre-

a ke a
(@) (b)
ke \ ‘IF
b xe
b ('I:’Je’ ;
a ke
a
(&) (e)

Figure 2. Different types of vertex corresponding to different matrix eclements
of V. .
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Figure 3. Diagrammatic representation of transition amplitude
(C.9).

spond to the three Figures 2¢ (a? term annihilating two photons), 2d (a2
term creating two photons), and 2e (aa™ or a*a terms creating one
photon while annihilating another).

In many processes, there is more than one interaction between atoms
and fields. The corresponding diagram thus contains several vertices and
several lines associated with the free propagation between interactions. It
symbolizes the product of all the quantities (matrix elements of V, free
evolution exponentials) represented in this way. For example, the diagram
in Figure 3 symbolizes the quantity

exp[—i( E .+ hao')(t; - 72)/h]<C;k'£'1V|b;0> X
X exp[ —iEy(7, — 7,) /h]{b;0IV]a; ke) X (C.9)
X exp[ —i(E, + hw)(7, = t;) /h]

and represents the amplitude that the system of particles, initially in state
a, absorbs at instant 7, an incident photon ke and passes into state b,
then finishes at instant 7, in state ¢ by emitting a photon k’¢’. Other types
of diagrams will be introduced later on in this book.

Remark

In other formulations of quantum electrodynamics equivalent to Coulomb
gauge clectrodynamics, the interaction Hamiltonian V' may have matrix ele-
ments that are more simple than V. For example, in the electric dipole point of
view (see Appendix, §5), the interaction Hamiltonian (of the form —gE, -r)
contains only one-photon terms that are linear in a and a*. There are no more
two-photon terms such as those coming from A? and resulting in matrix
elements of the same type as those represented in Figures 2¢, 2d, and 2e. This
results in a great simplification in the higher order terms of the perturbative
expansion of the transition amplitudes.
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GENERAL REFERENCES

For the importance of transition amplitudes, see Feynman, Volume I1I,
Chapters 3 and 7, Cohen-Tannoud;ji, Diu, and Laloé, Chapter I, Section
E; Levv-Leblond and Balibar, Chapters 4 and 5.

The perturbative calculation of transition amplitudes may be found in
many quantum mechanics books. See, for example, Messiah, Chapter
XVII; Cohen-Tannoudji, Diu, and Laloé, Chapter XIII; Merzbacher,
Chapter XVIII; Schiff, Chapters 8 and 9; Feynman and Hibbs, Chapter
VI. References concerning transition amplitudes between two continua
(collision problems) will be given in Chapter II1.

For Coulomb gauge electrodynamics, see the Appendix and the refer-
ences therein.
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COMPLEMENT A,

PERTURBATIVE CALCULATION OF TRANSITION
AMPLITUDES—SOME USEFUL RELATIONS

In Chapter 1, without presenting any formal proofs, we used several
results concerning transition amplitudes. The goal of this complement is to
sketch a brief derivation of these results and to gather several useful
relations to which we will continue to refer throughout this book.

We will begin (§1) by introducing the interaction representation and by
emphasizing its advantages. We will then (§2) proceed to the perturbative
calculation of tranmsition amplitudes and to the determination of the
lowest-order terms (order 0, 1,2) in the expansion of these amplitudes in
powers of the coupling V. Finally, we will study (§3) the transition
probability from an initial state toward a final state by distinguishing
several cases according to the discrete or continuous nature of the energy
spectrum.

1. Interaction Representation

As in Chapter I, the Hamiltonian H of the system under study is split
into

H=H,+V. (1)

The unperturbed Hamiltonian H, is assumed to be time independent.
The coupling ¥V may or may not depend on time [for example, if V is
multiplied by the parameter A(z), whose temporal variations are shown in
Figure 1 of the chapter].

Going from the usual Schrodinger representation to the interaction
representation with respect to H,, is achieved by applying the unitary
transformation

T([) = eiH(;(f—’())/ﬁ (2)

to the vectors |(¢)) and operators 4 of the Schrodinger representation,
t, being a reference instant that we take as the origin of time (¢, = 0). If
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ly(1)) and A(t) represent the vectors and operators in the new represen-
tation, then we have

(1)) = e/ (1)) (3.2)

A(t) = eiflor/t geiHut/h (3.b)

If V were zero, the interaction representation would be identical to the
Heisenberg representation, and Id;(t)) would remain_fixed over time. It
follows that, in the general case where V' is nonzero, |§(¢)) evolves only as
a result of the presence of the coupling V. To see this more precisely, let
us determine the evolution equation of |4(¢)) by applying i#d/d¢ to (3.a)
and by using the Schrédinger equation for iad|y(¢)) /dt. We get

d, _ - .
i |0 (0) = —Hld (1)) + /M (Hy + V) (1)

V(o) |é(1) (4)
where
V(t) - eiH(,t/h VC—iH“r/h. (5)

Equation (4) clearly shows that the rate of variation of ll,[l~(t)> is at least
first order in V. In particular, in the study of a collision process, where the
coupling V can be switched off in the remote past and the far future (see
Figure 1 in Chapter I), the state vector does not evolve in the interaction
representation before the collision begins and after it ends. This allows us
to understand how the matrix elements of the evolution operator U(z, ;)
in interaction representation have a well-defined limit when ¢, and ¢,
tend, respectively, to +o and — (scattering matrix). It is useful also for
what follows to determine the relation that exists between U(t;, t;) and the
evolution operator U(tf, t;) in the Schrodinger representation. The equa-
tion

() = Uty 1) w(2) (6)

gives, taking in account (3.a)

[5(2)) = U 1) (1) (7
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with

U(ty, ;) = Mo/ " Uty 1)e ot /A, (8)

2. Perturbative Expansieon of Transition Amplitudes
a) PERTURBATIVE ExPANSION OF THE EvoLuTiON OPERATOR

The evolution operator U(tf, t;) of the Schrodinger representation is
defined by (6), and satisfies the initial condition

Ut,1) = 1. (9)
Taking into account the Schrodinger equation satisfied by |¢(z,)), Equa-
tion (6) is equivalent to the integral equation

, 1
U(ty, ;) = Uplty, ;) + ZflldtUo(’n’)VU(”‘z) (10)
’ ’ mJ;, ’

where
Unlty,1;) = e~/ b=/ (11)

is the unperturbed evolution operator associated with H,. To prove this
equivalence, it is sufficient to verify that the operator U defined by (10)
actually satisfies (9) and the evolution equation

d
ihat_,U(tf’t') = (Hy + V)U(t. 1,). (12)

By successive iterations, Equation (10) thus leads to the well-known
perturbative expansion of the evolution operator

Uty ;) = Up(ty, 1) + 1 U(er,1,) (13.2)

n=1

with

l n
U(")(tf,ti) = (E) fd'r,, - dry,dr X

12T, - Ta2T 2l
X e HH =T/ L e miHWTm T/ R Ve tHori—t)/h
(13.b)
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The structure of the term (13.b) is that of a product of (n + 1) unper-
turbed evolution operators separated by n interaction operators V. By
taking the matrix elements of (13.b) between the eigenstates ((pf| and l¢,)
of H, and by inserting (n — 1) times the closure relation on the eigen-
states of H,,, between two successive V' operators, formula (C.8) of the
chapter is obtained.

Equation (8) finally allows us to obtain the perturbative expansion of
the evolution operator in the interaction representation

Uty ) =1+ ¥ U™ (i, 1) (14.a)

n=1

- 1\" - - -
Uu™(e,t) = (Tf;) fd*r,, coodrydr V(1) o V(m)V(7,). (14.b)

21, Tr2T 2
Comparison of (14.b) and (13.b) demonstrates that using the interaction

representation eliminates the free evolution exponentials exp(—iHt,/h)
and exp(iHyt;/h) relative to the initial and final times. Let ., be the

matrix element of U(tf, t;) between the eigenstates <<pr and |¢;) of H,,

Fpi = o U(t5, 1)@ (15)

The perturbative expansion (14) thus yields

i =085+ Zl‘yf(i") (16.a)
e
S = (e U1, 1)@, (16.b)

We will now calculate the first- and second-order terms in V' of this
perturbative expansion of the transition amplitude Fi-

b) FIRsT-ORDER TRANSITION AMPLITUDE

Using (16.b), (14.b), and (5), we get
P = lftfd*r V. eUEf~EdTi/h (17)
fi ih B 1Y fi

where we have set V}; = (¢/Vip;). We assume here that V is time
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independent and select the origin of time such that
t;=-T/2 t;=+T/2 (18)

where T is the duration of the interaction. The integral over 7, of (17) can
thus be calculated and it yields

A = =27V, 8TNE, - E,) (19)

where

Il

1 d
8T(E, — E,) _[*T/z T i Er=Fmi /1
2w/-1s2 h

1 sin(E; — E,)T/2h

(20)

According to the first equality in (20), B(T’(Ef — E)) tends to 8(E; — E))
when T — . In fact, according to the second equality in (20), 6(7)(Ef - E)
is a diffraction functicn, represented in Figure 1. Its maximal amplitude
T/2mh is obtained for £, — E, = 0, and its width is on the order of
47h/T (distance between the first two zeros on either side of the

4 5(1)(51 - E;)
- _Tr
2 wh
/N / N\ __ E-E
7 X
\ U
L o4mm |
| T I
lt—~—— --»:

Figure 1. Variations of the function §(E, — E,) versus (E, — E,).
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maximum). Its integral equals 1. Hence this function is an approximate
delta function expressing the conservation of energy with an uncertainty
t/T due to ihe finite duration of the interaction.

Remark

If V' is multiplied by the function A(¢) shown in Figure 1 of Chapter I, relation
(19) remains valid but 87’ is then the Fourier transform of a square function
with a width on the order of T, with smooth edges. The function 7 is in this
case an apadized diffraction function for which the integral is always equal to 1
and which can still be considered as a delta function of width #/T.

¢) SECOND-ORDER TRANSITION AMPLITUDE

For second order, Equations (16.b), (14.b), and (5) yield

1 2
FP = (—) f dr, dr, X
ih +T/227,271,2~T/2

X EV}ka,»ei(Ef_E")TZ/h ei(Ek—E,)Tl/h. (21)
k

The sum over the intermediate states |, ) represents a sum over the

eigenstates of H,. To eliminate the restriction 7, > 7|, the integrand in

(21) is multiplied by the Heaviside function 8(7, — 7,), which is equal to 1
for 7, > 7, and equal to 0 for 7, < 7. We then use the identity

1 o e—iE(-rz—-rI)/h

e BT/ hg(r, — 1) = lim — — -

n-0, 2miJ_» E+in—-E,

dE (22)

which can be easily checked by calculating the integral of (22) by the
method of residues. Equation (21) may thus be rewritten

1V -1 +T/2 +T/2
5”(,-2)=(T—) (—) dr dr, X
4 ih ]\ 2wi /_-7‘,2 2f—T/z :

+ . .
x [TTAE ME B e Em By (B (23)

where

ViV
Wi(E) = lim ¥ —L~

—_—. 24
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From subsection 2-b above, the integrals over r, and 7, give, respectively,
2wh8"E, — E) and 2wh8"(E; — E). These two functions are practi-
cally zero as soon as E differs from E, for the former and from E; for the
latter by more than #/T. Their product is thus a function of E which is
nonzero if £, and E; are equal within #/T, and if E also coincides with
this common value of E; and E, within #/T.

To carry out the latter integral over E which remains to be done in
(23), we must now compare the width in E of 8"(E; — E)§"XE, - E)
which is on the order of /T about E; = E,, to the width of the other
function W,,(E) which appears in (23). In many cases, which we will
describe further on, W,,(E) is a function of E that varies only slightly with
E over an interval of width /7. It is thus possible to replace W,(E) by
W,(E,) in (23) and to take W, (E,) out of the integral, which gives

222
D - __1__ 4mh lim ___ﬁ’i/i‘i__
fi PN .
2 (ih)" | n—0. % E,—E, +in

+ % :
xf dEST(E - E)6T(E - E;). (25)

The integral over E of (25) can be easily calculated from the integral form
(20) of &(T)

[ TAEST(E - E)sT(E - Ey)=

1 +x 7,2 T/2 . . ,
—_ . dE d dr+’ e:(E—E]ﬁ/h el(E—E,)T /h. 26
47%h* f——x f—r/z Tf—T/z T (26)

(Note that there is no restriction on the temporal order of 7 and 7'.) The
integral over E of (26) gives 2mh&(r + 7'), so that (26) reduces to

+x
[ dEST(E - E)8T(E - E;)=

—x

1

- [(TT? L KE~Epr/h _ s F
s fﬁm dr e’ EEy 87(E, - E;). (27)

Finally, by substituting (27) into (25), we obtain

STE, - E;).  (28)

VeVii
S = —2mi| lim ¥ LR
n-o0, 7 E,—E, +in
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Let us now specify the cases for which W, (E ) may be indeed considered
to be a function of £ varying slowly on the scale of #/T. Essentially, there
must not be any discrete eigenstates |¢, » of H, for which the energy E, is
extremely close to E; and E/. In such a case, the function (E — E, + in)~!
would vary quite rapidly with E near E = E,, because it diverges for
E = [,. By contrast, note that H, may have a continuous spectrum E,
near E; = E£,. In this case, the sum over k in (24) becomes actually an
integral over E,. The fraction 1/(E + in — E,) is then expressed as a
function of 8(E — E,) and #[1/(E — E,)] and yields, after integration
over E,, functions of £ which have no reason to diverge near E, = E,.
For sufficiently large T, these functions may thus be considered as varying
slowly on the scale of 2/T.

Finally, summarizing the results obtained in this paragraph, we may
write

VeVis
- . . f&" ki
Fpi = b = 2mid D(Ep — E)| Vi + lim )

— |+ 0(V?).

(29)

Remarks

(i) If either the initial state |¢;) or the final state |p,) or both states are
discrete, the intermediate state |, > may be the same as this discrete state in
the sum (24), which leads to a divergence of Wf,-(E) near E; or E,. This may,
however, occur only if the diagonal element of V in the discrete state, V;; (or
Vf,-), is nonzero. Wec can always put these diagonal elements back into H,,
(which amounts to replacing E; by E; + V;). It is then possible to use expres-
sion (28) for .,7";,»2). Nevertheless, for orders higher than 2, it is, in general,
impossible to prevent [g;) (or |<,o,~)) from appearing as an intermediate state.

(ii) In Chapter III, we will introduce methods for calculating transition ampli-
tudes that are more powerful than those discussed in this complement. These
methods allow us to sum up all the terms of the perturbation expansion in
which one or more discrete states, which appear as intermediate states, might
lead to divergences of the transition amplitudes because their energy is ex-
trcmely close to that of the initial and final states. We will thus obtain
nonperturbative expressions for these transition amplitudes that are valid under
conditions for which expression (29) is not. The same approach allows us to
generalize expression (29) of #y; for higher orders in the case of a scattering
problem where |¢;> and |¢;) both belong to the continuous spectrum of H,,.
We obtain in this case

Fyy =8y~ 2mis(E; — E) T, (30)
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where the transition matrix 7, is given by expression (B.15) in Chapter I.
When it is valid, the expansion in powers of V' of .7}, is the Born expansion,
the first two terms of which appear inside the brackets in (29).

3. Transition Probability

a) CALCULATION OF THE TRANSITION PROBABILITY TO A FINAL STATE
DIFFERENT FROM THE INITIAL STATE

Assume that |¢,) is different from [¢;>. The first term, &, of (29) is
thus zero. The transition probability £,(T) from |¢;) to ¢, at the end of
time T is ‘

2
P(T) = \F° = am?[8T(E, — E;)]” %

VoV, z

. fk” ki
X |V + lim E——— + -0 (31
fi n-l»0+kE,-—Ek+in (1)

From (20), the function

, 1 sin?(E,— E,)T/2h
[6T(E - E)} = — (E—E)
o

(32)

is the square of a diffraction function. For E;=E, [67(E, - EDP
reaches its maximum value, T2 /4m%h%. The distance between the first two
zeros of this function on either side of its maximum is, as for 67, equal to
47h/T and gives some idea of its width. Later on, we will need the
integral over E, of this function, which is on the order of (I'?/4m*#%) X
(47h/T), that is, on the order of T/mh. In fact, from (27), we obtain

. T
[; dE[8T(E, ~ E)]" = 5. (33)

b) TRANSITION PROBABILITY BETWEEN TwoO DiSCRETE STATES.
LowEsT-ORDER CALCULATION

Let us begin by assuming that |¢;) and |¢,) are two discrete eigen-
states of H\,, having energies E; and E, that are close to each other and
far from all other eigenstates of H,,. To lowest order in V, the transition
probability from |¢;) to l¢,) is written, using (31) and (32)

AVt
Py(T) = ———— sin’(E; — E;)T/2h. (34)

(E; - E)
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This relation is, of course, valid only if T is sufficiently small so that the
perturbative treatment of V is justified. It is interesting to compare it with
the exact formula obtained in the simple case where |¢;) and |¢,) are the
only eigenstates of H,,, and where as a consequence the exact diagonaliza-
tion of H, + V is possible (*):

41v,,1*
(E; = E) + 4V

T
P(T) = 5 sinz[ﬁ \/(Ef - E,-)2 + 4V, 2] (35)

Expressions (34) and (35) are identical to lowest order in V},. In particular,
for E; = E;, Equation (34) gives

g’ﬂ(T) = IVfiIZTz/hz (36)

which is the first term in the expansion in powers of V; of the function
sinZ[IVﬁIT/h] describing the resonant Rabi nutation between |¢;) and

|(Pf>~

¢) Case WHERE THE FinaL STATE BELONGS TO AN ENERGY CONTINUUM.
DENSITY OF STATES

When the final state belongs to an energy continuum, @fi(T) iS no
longer a transition probability, but rather a transition probability density.
The quantity which has a physical meaning is thus the probability that the
system will reach a group of final states characterized by eigenvalues
falling within a certain domain D;. To be specific, let us first consider two
concrete examples which will allow us to introduce the concept of density
of states.

a) Density of States for a Free Massive Particle

We consider a free particle with mass M. The final states |¢,) are
momentum states |p) satisfying the classical orthonormalization relation

(plp") =8(p—p'). (37)

The final state |p,) has no physical meaning (its norm is infinite). By
contrast, we can consider the probability that in the final state, the
momentum of the particle points into the solid angle 6.(2, about the
direction of p, and its energy is within the interval §E, about E, = pfz/ZM.

(*) See, for example, Cohen-Tannoudji, Diu, and Lalo€, Chapter IV, §C-3. We also
assume here that V; =V, = 0.
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These conditions define a domain D, in momentum space and the
corresponding probability equals

3 ~ 2
620 T) = [ a'p®@IU()le)]. (38)

Instead of using p,, p,, p, to characterize the final state ipY, it is also
possible to use other variables such as the energy E and the polar angles
and ¢ characterizing the direction of p. If df2 is the solid angle corre-
sponding to d@ and d¢, one has

d’p =p?dpd = p(E)dEdN (39)

where d{2 = sin # d6 d¢ and where

p(E) = p*— =p°’— = MV2ME (40)

dp 2M
dE p

is by definition the density of final states. Expression (38) is thus written

620, T) = [ 0 dE p(E)|<plU(T) 1o |- (41)
f

E€dE,

Remark

It is possible to discretize the continuum and to obtain final states of norm 1 by
enclosing the particles in a cubic box with sides of length L and by imposing
periodic boundary conditions to obtain final states having the same spatial
dependence as the states {p). The sum over the final states included in a
domain D, is thus a true discrete sum. When L tends to infinity, it is
convenient to replace this discrete sum by an integral. The density of states
p(E) is thus defined such that p(E)dE d2 is the number of discretized states
contained in the domain associated with d E and d{2. As a result of the periodic
boundary conditions, the possible values of the wave vector k (which is equal to
p/#) form a regular lattice of points in k space with one point per elementary
volume (27 /L)*. The number of states in d*k is thus (L /27)3k? dk d£2, which
for p(E) gives the value

3

o(E) 2ME . (42)

- — =M
@2m)*
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The final result for the transition amplitude (41) certainly does not depend on
L. To see this, it is sufficient to note that the presence of {p| in the matrix
element of the evolution operator implies that the square of the modulus of this
matrix clement contains a factor 1/L° which compensates for the factor L°
appearing in the density of states (42).

B) Density of States for a Photon

Another important example of energy continuum is that of one-photon
states |ke) satisfying the orthonormalization relation

(Ke'lke) = 5,,.8(k — K). (43)

Recall that the states |ke) result from the action of creation operators
a; (k) on the vacuum. It is thus possible to write an equation analogous to

(38) where it is also nccessary to sum over the polarizations and to replace
d’p by

d3k=k2dkd.(2=p(E)dEd.() (44)
with

E kzd' —-Ez : —Ez 45

p(E) = ﬁ—hzcz%‘fr}cy (45)

To determine (45), we have used the relation E = fiw = hick between the
photon energy E and the modulus k of its wave vector (instead of
E =p?/2M).

In the case where the radiation is confined in a box of volume L?, (45)
must be replaced by

(46)

v) General Case

In the general case, we assume that the final state |(p’~>, belonging to an
energy continuum, is characterized by its energy £ and a group of other
physical variables designated by B, and we get

sP(Ep B T) = [ AEABp(E.BCEBIUT) o) (47)

BEap;
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for the probability that, starting from the normalized state |¢,), the system
will arrive after time 7 in one of the final states of the domain Dy
characterized by 8E, and 88;. In (47), p(E, B) is the density of final states
which, in the general case, depends on both E and .

d) TRANSITION RATE TOWARD A CONTINUUM OF FINAL STATES

In expression (47), |{E, B!U(T)lcp,) I%, is simply the square of the
modulus of the transition amplitude .%}; given in (29) with &, = 0. At the
lowest order in V' we obtain, by writing t(E, B; ¢,), the matrix element V),

8F(Ep, By, T) =

[ dEdBp(E,B)am?|e(E, B59) [[87(E - E)|. (48)

EedL,
BEBy

In general, p(E, B)|v(E, B; ng-)]z is a function of E varying with £ much
more slowly than [8"(E — E)]* which, for sufficiently large T, has an
extremely small width, on the order of #/T. If this is the case, we can then
replace [67(E — E)]* by a “delta function” centered on E,. Because the
integral over E of [8"(E — E)]* is, according to (33), equal to T/2mh,
we are justified to write (with regard to slowly varying functions of E)

[67(E - E)]* = —LB‘T’(E - E). (49)
! 2mh !

The substitution of (49) into (48) then shows that 6.7 is proportional to
the duration T of the interaction, which allows us to define a transition
probability per unit time dw(E,, B,)

|
Sw(E;. By) = —8P(Ey. B;.T) =

2

Tr - - -3 25(T)
| dEdBp(E.B)e(E.Bie) '8 (E — E)).
h eesk,

BEdBy

(50)

Assume that the interval §E, contains E; and that 8 E, is greater than the
width #/T of 8(E — E,). The integral over E is thus straightforward. If,
in addition, 88, is sufficiently small so that the integral over B becomes
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unnecessary, we finally get

Sw(E 2
M = —W‘U(Ef=E,-,B,J‘Pi)‘zP(Ef=Ei’ﬁf) (51)
8B, h

which is simply the Fermi golden rule for the transition probability per
unit time and per unit interval 8.

Remark: Sum over Polarizations

Let us return to the photon example. Frequently the squared matrix element of
(50) has the form |e - X|%, where X is a vectorial quantity and where ¢ is the
polarization vector of the photon. If we do not observe the polarization of the
emitted photon, then we must, for a given emission direction k, sum over
the two states of polarization € and €' orthogonal to k and orthogonal to each
other; that is, calculate

Yole-X|? = | Y ( ¥ E,-sj)X,-X)-*. (52)

elk i, j=x,y,z ‘elk

To evaluate the sum between parentheses in (52), it is sufficient to notc that €,
£, and k = k/x form an orthonormal basis for which the closure relation is
written

g _
g6+ g8; + KK, = 0y (53)
from which we deduce
kok.
~ -— ’ p— — ! J
Zb,ej—8,51-+6,-£}—5,-j—x,i<j—5,-j— e (54)
elk

and consequently

(k- X)(k - X*)

Y le X=X X* - px

elk

(55)

¢) Case WHERE BOTH THE INITIAL AND FIinaL STATES BELONG
TO A CONTINUUM

In this case, the initial state is itself also not physical (becausc it has an
infinite norm). It is nevertheless possible to derive from it a quantity
having a physical meaning, such as a particle flux, if |¢;) represents an
incident free particle having a well-defined momentum.
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Let us calculate such an incident flux for a particle having mass M and
for a photon. It is thus particularly convenient to use discretized states in a
cube having sides of length L. In the discretized state |p,) or {k;), having
norm 1, the particle density is 1/L? (one particle in a volume L?) and the
velocity equals p,/M = hk,/M for the particle of mass M, or ck; for the
photon (where k; = k,/k;). From that we deduce that the incident flux ®,
equals

p;, 1 hk; 1
TMDT T M (36)
for the free particle with mass M and
c
P, = FK' (57)

for the photon. Dividing by |d,! the transition probability per unit time
and per unit solid angle yields the differential scattering cross-section from
k; toward k.

Remark

If both |¢;» and |¢;) belong to a continuum, two factors 1/L? appear in the
squared matrix element of (51). One factor 1/L* is compensated for by the
factor L? that appears in the final-state density (sce Remark in paragraph 3-c
above). The other factor 1/L* compensates for the one appearing in expression
(56) or (57) of the flux, when 8w /842 is divided by this flux. It is therefore clear
that the scattering cross-section does not depend on L.

GENERAL REFERENCES

Same bibliography as for Chapter 1.
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COMPLEMENT B,

DESCRIPTION OF THE EFFECT OF A PERTURBATION
BY AN EFFECTIVE HAMILTONIAN

1. Introduction—Motivation

For many systems, the eigenstates of the Hamiltonian H cannot be
exactly determined. In contrast, those of an approximate Hamiltonian H|,
are sometimes known. Thus, in the case of electrodynamics, we saw in
Section C of the chapter that the Hamiltonian is diagonalizable in the
absence of coupling between the particles and the field. In this case,
perturbation theory can be used to determine the eigenstates of H, by
taking as a perturbation the difference between H and H,.

In this complement, we will consider the case of a Hamiltonian H,
having energy levels E,, which are grouped into manifolds &, &y, ...
that are well separated from each other. The subscript i denotes the
different levels |i, @) of the same manifold, and P, is the projector over
the manifold &°:

Hyli,a) = E,li,a) (1)
P, = Lli,e)i,al. (2)

To say that the manifolds are well separated signifies that the spectrum of
H,, has the shape indicated in Figure 1. More precisely, we assume

|E,, — E;,| <|E, —Ejl with a # B. (3)
6’0
Figure 1. Manifolds &7, &g,... of the 0
Hamiltonian H,. €s
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In physical terms, the quantum number / characterizes the degrees of
freedom for which the Bohr frequencies (E,, — E;,)/# (intervals between
levels of a same manifold) are small. In contrast, the index « is a quantum
number relative to quantities for which the Bohr frequencies (E,, — E;) /A
(intervals between two different manifolds) are much larger. Thus, the
existence of well-separated manifolds reveals the presence within the
system of two types of degrees of freedom: fast degrees of freedom
characterized by Greek indices such as «, and slow degrees of freedom
characterized by Roman subscripts such as .

Situations of this type are encountered in many physics problems,
especially in the study of interactions between matter and radiation. Let us
consider, for example, the system made up, on the one hand, of an
electron in a external static potential and, on the other hand, of a mode
ke of the radiation field with frequency w. In the absence of interaction
between the electron and the radiation, the energy levels of the overall
system are designated by the quantum numbers i of the electron in the
external potential and the number « = N of photons in the mode. If the
frequency @ of the mode under consideration is extremely large as
compared to the frequencies (£; — E;)/h characterizing the movement of
the electron in the external potential, the situation is analogous to that in
Figure 1. The manifold & = &) thus consists of the energy levels of the
electron in the external potential in the presence of N photons and the
other manifolds corresponding to a number N’ # N of photons are at a
distance (N’ — N)hw.

To obtain the total Hamiltonian H, let us now add to H, the perturba-
tion or the coupling which we write in the form AV, where A is a
dimensionless parameter:

H=H,+\V. (4)

The operator V' has matrix elements inside a manifold as well as between
two different manifolds. For example, for the system mentioned above, the
interaction between the electron and the mode ke couples the manifold
&Y to manifolds &), , (and &Y_,), the corresponding physical processes
being the emission (and absorption) of a photon ke by the electron. If A is
sufficiently small, more precisely, if

|<ly a‘)\VIJ’,B>{ < IE,'a - EjBI (B ia) (5)

the energy levels of the Hamiltonian H are clustered, as are those of H,
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in manifolds &,, &;,... well separated from each other, the levels of &,
tending to those of &’ when A — 0.

The physical effects of the coupling AV are of two types. On the one
hand, the wave functions are modified. In particular, the wave functions of
the manifold &° are “contaminated” by the wave functions of other
manifolds gé’ with 8 # a. On the other hand, the energies are modified.
In particular, the slow Bohr frequencies (within one manifold) are changed.
Let us now study in more detail these two types of effect in the case of the
physical example introduced above. As a result of the contamination of
the states of &3 by those of X,Si,, N is no longer a good quantum
number, and the electron observables, which commute with the photon
number operator, may thus have nonzero matrix elements between per-
turbed states of &, and perturbed states of &), ,,. Physically, rapid
components at frequency w appear in the electron motion, which, in fact,
correspond to the vibration of the electron in the electric field of mode ke.
In addition, the nonresonant coupling between &y and &Y, shifts the
states of &) to second order in AV. Physically, the virtual emission and
reabsorption (or virtual absorption and reemission) of one photon by the
electron changes the slow electron motion in the external potential.

In this complement, we are essentially interested in the modification
made to the slow motion by the coupling AV and not to the contamination
of wave functions. Our goal is to attempt to construct a Hamiltonian
acting only within each manifold & such that its eigenvalues in &° are
identical to those of H in &,. Such a Hamiltonian, called the effective
Hamiltonian, acts only on the slow degrees of freedom because its matrix
elements between (i, a| and |j, B) are zero if a # B. Because it correctly
describes the slow motion, it incorporates the effect on the slow degrees of
freedom of the coupling of the latter with the fast degrees of freedom. In
the case of the physical system described above, the effective Hamiltonian
is a purely electronic Hamiltonian which describes the perturbed slow
motion of the electron by means of corrective electron terms: correction to
the kinetic energy of the electron (due to the fact that its inertia is
modified by the virtual photon cloud which surrounds it) and correction to
the potential energy (due to the fact that the electron vibrating in the field
of the mode w averages the static external potential over the extent of its
vibrational mode) (*). Other important physical examples may be given,
e.g., the effective magnetic interaction between two electrons associated
with the virtual emission of a transverse photon by an electron and the

(*) Such an effective Hamiltonian is derived in P. Avan, C. Cohen-Tannoudji, J. Dupont-
Roc, and C. Fabre, J. Physique, 37, 993 (1976).
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reabsorption of this photon by the other electron (see Chapter II, Sec-
tion F).

We will show in this complement how an effective Hamiltonian can be
constructed by means of a unitary transformation applied to the total
Hamiltonian H (*). The principle of the method is described in Section 2.
We will then determine (§3) the unitary transformation and the expression
of the effective Hamiltonian. Finally, we will examine (§4) the case in
which the system under study is an ensemble of two subsystems whose
interaction is described by the coupling AV. We will demonstrate in
particular how it is possible to obtain an operator expression for the
effective Hamiltonian which involves only observables of the system that
evolve with slow frequencies.

2. Principle of the Method

Thus we are seecking an effective Hamiltonian H'’ having the following
properties:

a) H' is Hermitian
b) H' has the same eigenvalues as H, with the same degeneracy

¢) H' has no matrix elements between wunperturbed manifolds
&0, &) ...

Properties a) and b) result in the fact that there is a unitary transforma-
tion

T=¢ (6)
§=s8" (7)
which allows us to go from H to H’
H' = THT™. (8)
Property ¢) is expressed by the equation

P.H'Py, =0 for a # B. 9)

(*) A review of the different ways of formally constructing effective Hamiltonians may be
found in D. J. Klein, J. Chem. Phys., 61, 786 (1974). A more recent reference explicitly gives
the terms of the effective Hamiltonian up to the fifth order: 1. Shavitt and L. T. Redmon,
J. Chem. Phys., 73, 5711 (1980).
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The matrix representing H' in the unperturbed initial basis |/, a) is block
diagonal. Each block is relative to a manifold &” and represents an
effective Hamiltonian HJ; which describes the perturbed levels of this
manifold

H' = 3 P,Hg. (10)

«a

Equations (8) and (9) are not sufficient to entirely determine the transfor-
mation 7. In fact, if T is a solution, we can construct an infinite number of
other solutions of the form UT, where U is an arbitrary unitary transfor-
mation acting only inside manifolds gf. One way to remove this uncer-
tainty is to impose on S the condition that it does not have matrix
elements inside each manifold:

PSP, =0 for any «. (11)

To explicitly calculate S, it is convenient to write it in the form of an
expansion in powers of A

S=A8,+ XS, + - + XS, + -, (12)
It is obvious that the zero-order term is zero, because H,, is itself diagonal
in the basis {]i, «)}. Equation (8) can then be expanded in the form
1 1
H =H+[iS,H] + E'—[iS,[iS,H]] + —37[1'3,[:‘5,[[‘8,11]]] + e
(13)

By substituting § from expression (12), we obtain an expansion of the
effective Hamiltonian.

H =H,+ AH{ + NH)+ - + AH, + - (14)

Each term H can be expressed as a function of S,, of H, and of V.
Conditions (9) and (11), applied step by step, determine S, and conse-
quently H'.

It is helpful to write the effective Hamiltonian H’ thus determined in
the form

H =H,+ W (15)
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where
W=AH{ + NHj+ - + APH, + . (16)

W is called the “level-shift” operator. According to Property b) of H', W
produces exactly the same effect over the enecrgy levels of H, as the
perturbation AV. In contrast, according to Property c), it has the advan-
tage of acting only inside manifolds. If we seek only new energies in the
manifold &_, it is much simpler to use W than to use AV, which couples
&9 to all other manifolds.

3. Determination of the Effective Hamiltonian
a) ITERATIVE CALCULATION OF S

Let us order the expression (13) for H' in increasing powers of A, after
having replaced S by its expansion (12) and H by its expression (4). Thus

H' = H,+ [iAS,, H)] + AV +

1
+ [iA%S,, Hy| + [iAS,, AV] + E[i,\Sl,[i)\S,,H(,]] +

+[iNS,, Hol + [i071S, ., AV ] +
1

+E[i/\n_lsry"l’[i)\sl’HO]] +
1

+5[i)\S1,[i)\”715n—1’H0” toon

1
+ n—![i)\Sl, [iAS,, - [iAS, Hy] -+ ] +

(17)
The last term of (17) contains #n stacked commutators.
Let us first consider first-order terms in A:
AH| = [iAS,, H)] + AV (18)

and write that the matrix element of H| between two different manifolds
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is zero. We obtain the equation
(i, alirS|lj, BXE;3 — E) + (i, alAV]j, B) =0 (19)

which determines the matrix elements of §, between two different mani-
folds, since the other elements are zero according to (11).

(i, alAVlj, B)

E ‘Ejﬁ ’

G, alirS)lj, B) = for a # B (20.a)

(i, alirS,lj,a) = 0. (20.b)

Let us now consider the nth-order term, A"H,. It involves all the operators
S,, p ranging from 1 to n. The fact that all matrix elements of A"H,
between two different manifolds & and B are zero allows us to express the
matrix elements of A"S, between these same manifolds as a function of
those of the operators S, of lower order than n. Indeed, A"S, appears
only in a single term, that of the commutator with H,,. We thus obtain an
equation of the type

(i, aliX'S,lj, B E;z — E, )=
F(AVAS, ... 718, ) fora+p (21.a)
additionally with
(i, aliX's,|j,a) =0 (21.b)
Step by step, S is thus entirely determined.

b) ExpressioN OF THE SECOND-ORDER EFFECcTIVE HAMILTONIAN

Note first of all that the expression for the nth-order effective Hamilto-
nian does not involve A"S,. In fact, we have previously seen that, in the
expression for the nth-order term of (17), S, is involved only in the simple
commutator with H,. Because H,, is diagonal with regard to « and since
S, is nondiagonal, such a commutator is nondiagonal and thus does not
contribute to the expression of H’ within each manifold. Hence, to
determine the effective Hamiltonian up to order 2, it is thus sufficient to
know AS,, which is given by (20.a). The matrix elements of H' within the
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manifold « are written

CGIHS ) =<, alH' j, a)=
= (i, alHy + AV + [iAS,, AV] + L[iAS,, [iAS,, H,] + - 1. a).
(22)

Let us show that the last term of (22) is identical, except for one factor, to
the next to last term. In fact, [iAS,, H,] is purely nondiagonal, and
according to (19), its matrix elements are opposite to those of AV between
different manifolds. Let us call AV ™ the nondiagonal part (which con-
nects the different manifolds) of AV. Hence we have

[iAS,, H)l + AaV™ =0 (23)

and the last term of (22) is reduced to —[iAS,, AV "*]/2. The next-to-last
term also involves only the nondiagonal part of AV, so that the product by
AS, yields a diagonal term. Hence, up to second order, Hg; is reduced to

H& = H P, + PAVP, + 1P [iAS,,AV]P, + ---. (24)

Similar simplifications occur in all orders.
Let us now explicitly calculate the matrix elements of the last term of
(24) by using the matrix elements (20.a) of AS;:

It

(Lal[iaS, AV 1), a) Y L aliaS 1k, y)X kylAV]j, a) —

k.y+a
— i, alAVik, y )k, yliAS,lj, a)
Y i alAVik, y )<k, yIAV]j, a) X

k,y#a«a

Il

1 1
+
—Eyy L, — Ey,

X

. (25)

E

We finally get, for (i|HZlj) up to second order in A:

CGilHG ) = E; 8, + (i, aldV]j, a) +

faif

1
+3 Y i, al AWk, vk, yAVE ), a) X

k,y+#a«

X

E;, - Ek'y Ei(v - Eky

ta

1 1
+ }+ (26)
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The first term of (26) represents the unperturbed energy of levels of &,
the second term represents the direct coupling between the levels i and j
of &' and the third term represents the indirect coupling between these
two levels through all the levels ky of other manifolds &). This last term
has the structure of a second-order perturbation term, that is, a product of
two matrix elements of A} divided by an unperturbed energy denominator
(the two energies E,, and E,, of the two levels of &, appearing symmetri-
cally if they are different).

¢) HiGHER-ORDER TERMS

We have seen how, step by step, the higher-order terms may be
explicitly calculated. In fact, at least from a formal point of view, the
expression for the effective Hamiltonian may also be given in compact
algebraic forms. These two types of expressions may be found in the
references quoted at the beginning of this complement.

4. Case of Two Interacting Systems

We will now consider the case of two systems . and %, with respective
Hamiltonians H, and Hyg, that interact by means of a Hamiltonian AV.
The spacings between energy levels of # are assumed to be large as
compared to those of /. This is shown by the following equations:

Hy=H, + Hy (27)
H,li) = Ei) (28)
Hpla) = E_la) (29)

|E, - El <|E, —Egl, a+B. (30)

We assume that the coupling between the two systems is written in the
form

AV =AY AR, (31)

I

where the operators A, (resp. R“) are relative to the subsystem .o (resp.
). Finally, we assume 4, and R, to be purely nondiagonal in the bases
{1i>} and {la)}.

To determine HJ;, let us replace E; by E; + E_, in (26), and AV by its
expression (31). Because R, is nondiagonal in a, the second term of (26)
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is zero. Hence we get
(ilH%j)=E, + E;§; +
1
t3 L ) Y (CalAR, Iy ) yIAR e )(CilA, 1k <k, 1Y) X
up K, y#a

1 1
X + — .
E,~E,+E-E  E,—E +E —E

(32)

By using the inequality (30), we can expand the fractions appearing in (32)

1 1 E, - E,
= - 5+ (33)
E.-E +E-E, E,-E, (E, - E))

and the equivalent by replacing / by j. The second order term becomes

1
2( )y <a!AR“|7>Ea — E;<~/|/\R,;|a> X

pu \y+ta

x(Z(ilA,Jk)(klA,;lj)) +
k

CaldR 1y ) yIAR /Ja>
+2 | X - =
“#/(y;ta (Ea _Ey)‘-

E, - E +E, —E,
x(Z(i\A#|k><k|A“r|j>( : '2 : ’)) (34)
k

Note that the sum over y may be extended to the case y = «, because the
corresponding terms (alR}Ja} are zero. The closure relations over states
|y) on one hand, and over k) on the other hand thus allow us to rewrite
these two terms in operator forms. Actually

Y CilA, kKA Y(E, — E, + E, — E,)
k

= Gil[ A, H| Ay — A Ay HLLDD. (35)
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Finally, the effective Hamiltonian may be written in operator form:

1
Hy=EJl, +H, + Y <a[)\RHﬁAR#|a>AﬂAM +
R

wp a

1
+ 3 L @R AR ([ A Hal Ay = Au[ A H,)

+ o (36)

Hence it does indeed appear as a sum of operators relative to &/, with
coeflicients that are the average value in the state |a) of operators relative
to #. The first two terms represent the free evolution in the manifold
&0, The third term describes the effect of virtual transitions to other
manifolds. The last term of (36) is a correction to the third term which
takes into account the fact that a virtual transition to the manifold B
is not infinitely short but rather lasts a time which is on the order of
h/ |E, — Egl. The operators A, and A, have the time to evolve when
acted upon by H, during this period. This is expressed by the last term of
(36).
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COMPLEMENT C,

DISCRETE LEVEL COUPLED TO A BROAD CONTINUUM:
A SIMPLE MODEL

Many interaction processes between atoms and photons may be ana-
lyzed in terms of a discrete level coupled to a continuum. Such an analysis
can provide good insights into these processes, but it often requires a
detailed knowledge of the essential characteristics of the new eigenstates
resulting from the coupling between the discrete state and the continuum.
Hence we consider it important to devote a complement to the analysis of
this problem. The results obtained will allow us to clarify several of the
discussions in Chapter I1.

Rather than considering the most general situation, we prefer to limit
ourselves in the majority of this complement to a sufficiently simple model
so that formalism will not be a major obstacle. This model cannot, of
course, include all the details of the phenomena, but it will allow us to
point out and to explain their essential features.

We begin (§1) by describing the model and the simplifying assumptions,
which consist of taking a continuum extending from —o to + on the
energy axis and a coupling with the discrete state independent of the
energy. “Seen” from the discrete state, the continuum appears in this
case to be completely “flat” and structureless. It is then possible, after
“discretization” of the continuum, to perform an exact calculation of the
eigenstates and eigenvalues of the total Hamiltonian. The essential result
is that the contamination of the new eigenstates by the discrete state is
significant only in an interval centered on the energy of the discrete state,
the width of this interval being on the order of AI', where I' is the
transition rate of the discrete state to the continuum calculated by using
the Fermi golden rule (§2). We then demonstrate (§3) how this “dissolu-
tion” of the discrete state, over an interval of width A in the new
continuum, allows us to quantitatively understand several important physi-
cal phenomena, such as the exponential decay of the discrete state, the
excitation of this discrete state starting from another state of the system,
the resonant scattering through this discrete state, and Fano profiles. The
last subsection (§4) provides some indications concerning the way eigen-
states of the new continuum may be calculated in more general situations
(nonflat continuum) and without discretization of the continuum.
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1. Description of the Model (*)
a) THE DISCRETE STATE AND THE CONTINUUM

Let us consider a Hamiltonian H,, which has as eigenstates a discrete
state |{¢) and a continuum of states |E,B). For the state |E,B), E
denotes the eigenvalue associated with H,, (unperturbed energy) and B
denotes other quantum numbers allowing one to distinguish |E, 8) among
orthogonal states having the same energy E.

Assume that the discrete state |¢) is coupled to the continuum |E, 8)
by a coupling Hamiltonian V. It is always possible to change the basis
within each subspace of energy E of the continuum in order to single out
the linear combination of states |E, 8) which is coupled to |¢), and which
is denoted by |E), among all other orthogonal linear combinations which
are not coupled to |¢). We use v to denote the matrix element (E|V]g).
Knowing eigenvalues and eigenvectors of the total Hamiltonian allows us
to determine the dynamics of the system. It is thus appropriate to
diagonalize the total Hamiltonian in the base {|¢), |[E) ---} (**). We
begin by introducing some simplifications which will allow us to reduce the
calculations as much as possible while retaining the essential physical
results.

b) DiscrRETIZATION OF THE CONTINUUM

First we discretize the continuum. Such a step was presented for the
electromagnetic field in the chapter, with the introduction of a fictitious
box with periodic boundary conditions. If the dimension L of the box is
large compared to all other characteristic lengths of the problem, the
physical results will not depend on the volume L? and will be obtained at
the limit 1/L% — 0.

We thus proceed similarly and replace the states of the continuum |E)
by discrete states |k) spaced by 8 in energy. The density of states is thus
1/8. The matrix element (k[V|¢) is designated v,. The physical results
are obtained at the limit & — 0.

(*) Such a model was introduced by U. Fano, Nuovo Cimento, 12, 156 (1935).

(**) We assume that V' has no matrix elements within the continuum. Then the linear
combinations of states |E, 8), of the same energy E, which are not coupled to the discrete
state |p) remain eigenstates of the total Hamiltonian, with the eigenvalue E. If
(E,BIVI|E', B') was different from zero, a prediagonalization of the Hamiltonian inside the
continuum would result in the previous situation.
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The application of Fermi’s golden rule for a system initially in state |@)
leads to a transition rate I' to the continuum equal to

2

1
r=2"",22 1
nls (1)

where ¢ is the matrix element (assumed to be real) of V' between [p) and
the state |k) of the same energy as |¢). Relation (1) clearly implies that,
at the limit 8 > 0, ©?/8 must remain constant and equal to A /2.

¢) SIMPLIFYING ASSUMPTIONS

First we assume that the discretized continuum extends from —o to
+oo with equidistant levels separated by the quantity 6. The unperturbed
energy of the level |k) is thus

(k|Hy\k) = E, = k& (2.a)

where k is any integer (positive, negative, or zero). In what follows, the
energy E, of the discrete level is taken as the origin of energies (E,=0)
and thus coincides with the energy of the level k = 0 of the quasi-con-
tinuum.

(¢lHylg) = E, = 0. (2.b)

For the coupling, we assume that all the matrix elements of IV between
the level |¢) and the states |k) are equal and real

v, = (kVlg) = CelVlk) = 0. (2-¢)
Finally, all the other matrix elements of }” are assumed to be zero.
{plVip) = (kIVIK') = 0. (2.d)

2. Stationary States of the System. Traces of the Discrete State

in the New Continuum
a) THE EIGENVALUE EQUATION

Let E, and |z/1#) be the eigenvalues and eigenvectors of the total
Hamiltonian H = H, + V.

Hiy,) =E,ly,). (3)
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Let us project Equation (3) respectively onto (k| and (¢|. Using the
assumptions made concerning H, and V [see relations (2)], we get

E k) + vleld,) = ELkly,) (4.a)
Yokl = ELold, ). (4.b)
k

Equation (4.a) gives (*):

Lely

<kwj“>=bE#—-Ek. (5)

This expression, when substituted into (4.b), yields the eigenvalue equation

v?

%EL——_‘E =Eu' (6)

In addition, by using (5) and the normalization condition

Y <kl + <ol )] =1 (7)
k

we find for the components of [4,) on o) and |k) (with an appropriate
choice of phase):

1
<<P|l//#> = 172 (8.2)
v
1+ | ———
{ « E#—Ek,)
/(E, — E
(kly,) = v/(E, ~ E) - (8.b)

2
I3
1+ ' R ——
I' Zk(EudEk')

Let us return to the eigenvalue equation (6). It involves a series of the
form £,(z — k)™! with z = E, /8. Similarly, the sum ¥,(z — k)~ ap-
pears in the components (8.a2) and (8.b) of the eigenvectors. It is possible

(*) We will see further on that E, — E; is always nonzero.
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to show that (*)

2

ks
-k)?= . 9
; (z ) sin? 7z ©)
By integration, we obtain
T
-k)™ "= : 10
; (z ) tan 7z (10)
It follows that the eigenvalue equation (6) takes the simpler form
e E 11
dtan(wE,/8) * (a1
that we will transform, by using (1), into
1 2FE
= -2, (12)
tan(wE, /5) hr
Finally, we introduce the angle defined by
. hr
¢, = tan E—E— (133)
m
which allows us to write the solution of (12) in the form
E
AN (13.b)
d T

where m is an integer (= 0 or < 0). Since ¢, is (by definition of the tan™!
function) between — /2 and /2, ¢,/ is the difference between E, /&
and the integer closest to E, /5. We will use this angle ¢, later on.

b) GrapHiCc DETERMINATION OF THE NEW EIGENVALUES

To determine the eigenvalues of the total Hamiltonian, we must solve
Equation (12); that is, find the intersections of the line y = ax with the
curve y = 1/tan bx (a and b being respectively equal to 2/A1T" and 7 /8).
This may be done graphically (see Figure 1).

(*) See, for example, Cartan (Chapter V).
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Figure 1. Graphic determination of the eigenvalues of H. The abscissa of each
point of intersection between the line y = 2x /A1 and the curve y = 1 /tan(mrx/8)
is an eigenvalue of the total Hamiltonian. Let M, be the point of intersection
whose abscissa is between k8 and (k + 1)8 (the abscissa of M _, being between
—(k + 1)6 and —k$). The associated eigenvalue is denoted E, (Greek index
corresponding to the Roman index k).

An eigenvalue E ,, is associated with each intersection M, between
the line y = ax and the curve y = 1/tan bx (the unperturbed levels are
indicated by a Roman index and the perturbed levels by corresponding
Greek index). It is clear from Figure 1 that the new eigenvalues E ,, are
interspersed between the old ones (E, <E, <E,,, and E_,,, <
E_. < E_,). The eigenstates of H thus form a quasi-continuum for which
the density of states is extremely close to 1/8 (there is one eigenstate per
interval of energy §).

We also note in Figure 1 that, for sufficiently large values of k, the
abscissa of point M, differs very little from k8, so that, to a first
approximation, we have E, = E,. This relation is satisfied when, at the
point of intersection, the curve is sufficiently close to its asymptote.
According to (12), this occurs when

E > #r. (14)
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The presence of the discrete level thus significantly modifies the eigenval-
ues and eigenvectors of the quasi-continuum only over an energy interval
on the order of A" around the energy of the discrete level.

¢) ProBaBiLITY DENSITY OF THE DISCRETE STATE IN THE NEwW CONTINUUM

In the presence of the coupling V, the discrete state |¢) is found
diluted in the different states {|¢“} of the quasi-continuum of H, the
component of |¢) in the state [¢,) being given by the square of the
expression (8.a). To transform the denominator of this expression, we use
(9). We get

1+

It
S|
[S]
<
[ )
——
o
+
—
-
[
=
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N ——
I
~
e
—_—
P
V)]
N

that is, using (11) and (1)

2
1 w2t E? 1 hI\?

1+ 02— =1+ — + =4 = |02+ ———) + E2

‘ ;(E#—Ek) 52 1)2[L 2 g
(16)

which finally yields
L‘ .
<‘P|¢“> = nr > 12" (17)
v+ (—) + E2]
2 123

Let us consider an interval [E, E + d E] with dE large compared to §, but
small compared to AI'. The probability d N, of finding the discrete state
l¢) in this interval equals

dE
aN,= B el = [ elu)l (18)
E<E,<E+dE
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which yieids, taking into account (17) and (1),

dN, v2/8 hl' /2%
= = . (19

dE nl\? hI\?

vz+(~— + E? u2+(—) + E?
2 2
At the limit 8 — 0, ¢ tends to 0 and expression (19) becomes
dN, wl /2w ‘
= 2 (20)
dE hll
(—2—) + Ez

which is a Lorentzian curve of width #I', centered on E = E, = 0 and
having an integral over FE equal to 1.

Such a result demonstrates that, after coupling, the discrete level |¢) is
spread over an interval of width A" in the new continuum. In other words,
only the levels of the new continuum located in an interval on the order of
#I" about E, retain the memory of the level |¢) in their wave function.

3. A Few Applications of This Simple Model

The results obtained above concerning the new continuum of states
{ly,>} and the density dN,/dE characterizing the traces of the discrete
state |¢) in this new continuum are helpful for a quantitative treatment of
several problems. We review now some of them.

a) Decay oF THE DiscreTe LEveL (*)

Let us first attempt to calculate the probability that the system, initially
prepared (at t = 0) in the discrete state ]¢), still remains in the same state
an instant ¢ later. Let us use the relation (17) and expand |¢) on the basis
of eigenstates |y, ) of the Hamiltonian. We get

l(0)) = lo> = X

m

— v, (21)

(*) This problem may also be treated by using the Weisskopf-Wigner method. See, for
example Cohen-Tannoudji, Diu, and Lalo€, Complement Dy ;.
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At time ¢, this state |¢(¢)) becomes

Ue_'E“’/h
@ nr
v+ (7) +E3

and the probability amplitude of finding the system in the state |¢) is,
according to (21) and (22), equal to

p2e iEu/h
t)) = 23
ve+ —2‘ + E#
which we may rewrite by replacing v? by (hI'/2)6:
(hT/27)e Eut/t
(elu(t)) =8 (24)
I

F 2
v? + (—2—) +E3

At the limit § — 0, the sum 8%, f(E,) tends to an integral [dE f(E), so
that

ol e iEt/h
Col(1)) =j_w e (25)
(—— +E?

2

This integral is calculated by the method of residues and reduces to

(olu(1)) = e7M1172, (26)

The probability of finding the system at the instant ¢ in the level |¢) is
thus

<ol (e))]* = =" (27)

It decays exponentially with a time constant I'~'.
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Figure 2. Energy-level scheme considered in this paragraph. The arrows represent
the coupling between the levels.

b) EXCITATION OF THE SYSTEM IN THE DISCRETE LEVEL FROM ANOTHER
STATE

Let us now assume that the system under study has another discrete
level |x), with unperturbed energy E, , orthogonal to the discrete state
l¢> and to the quasi-continuum of states {|k)}. This level |x) is coupled
directly only to the state [¢) by a coupling Hamiltonian W.

(pIWlx>

CkiWix)

Il
3

(28.a)

I
e

(28.b)

All the other matrix elements of W are assumed to be zero.

We show in this section that, if w is sufficiently small, the system,
initially in state |y), leaves this state with a well-defined rate. In other
words, as a consequence of its coupling with a discrete level |¢), which is
itself coupled to a continuum, the level |y ) acquires a finite lifetime.

We have shown previously (§2) that the coupling of j¢) with the states
|k) gives rise to a new quasi-continuum of states [, ). Let us now

"
calculate (¢, |W|x). Because W couples |x) only to |¢), we have

P Wix) = (U leX el Wix) = (Y, ledw. (29)

It thus appears that W couples the level |[y) to the quasi-continuum of
states {|y,)}. If the coupling w remains small, the probability per unit
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time that the system leaves the state |y) is given by Fermi’s golden rule:
2 21
FX=7|<KIJuIW|X>|E- (30)

(The density of states {|y,}, for E, = E,, is equal to 1/5.) By using (29)
and (17), we find at the limit 6 — O:

FX:WZhF—Z' (31)
5) =

In the particular case where [y) and |¢) have the same energy (EX =
E, = 0), expression (31) becomes

r,=——. (32)

Hence, a discrete state |y) coupled to another discrete state |¢) which is
unstable will itself decay irreversibly, with a rate I', given by (32).

Remarks

(i) The treatment presented above is valid only for sufficiently small w. More
precisely the coupling w must be smaller than the width AT of the interval over
which |<1/;”|W|)()l2 is significant, or equivalently, the width of the interval of
the new continuum {[y,)} in which the probability that |¢) is present is
important. Such a result may also be understood by comparing the period of the
Rabi oscillation between |y) and |¢), which is on the order of #/w, and the
lifetime of the system in the level |¢), which is on the order of I'"'. If this
lifetime is shorter than the period of the Rabi oscillation, a system initially in
the state |y will evolve irreversibly to the continuum because, once it has
passed through [¢), it will immediately decay in the continuum {|k)} and will
have an extremely low probability of returning to [y ). Note that the condition
w < hI' implies that I, < TI'. The lifetime associated with the level [x) is
much longer than that associated with the level |@).

(ii) The level |y) introduced above may itself be part of the continuum
{1k >} (this is in particular the case for the absorption of a photon between the
ground state ¢ and a discrete excited state b of an atom, a problem that we will
consider in subsection B-4 of Chapter II). To apply the preceding treatment, we
must remove the state |y) from the continuum. Clearly, if & is sufficiently
small, the new continuum resulting from the coupling between the discrete
state |¢) and the continuum of states {|k )} from which we have subtracted [y )
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will be sufficiently close to the continuum {}i,)} studied above, so that all the
preceding results remain valid.

¢) RESONANT SCATTERING THROUGH A DiSCRETE LEVEL

Let us now consider two levels |x;> and |x,) having the same energy
E,. For example, in the problem of the resonant scattering of a photon
by an atom, |x,) and |x,) are states which represent the atom in the
ground state in the presence of the incident or scattered photon, respec-
tively (see §C-3 of Chapter II). These two levels |x;» and |x;) are coupled
to |¢) by a coupling term W ((e|Wlx,> = w; and (¢ |WI|x;> = w)). On the
other hand, we assume that [x;) and |y;) are neither coupled to each
other ({(x;/Wlx;> = 0) nor to the levels of the quasi-continuum {1k>}
((kIWlx;>» = 0). We will study the scattering from |x;) to |x;> and show
that, even if E =E, the scattering amplitude does not diverge. This
result is, of course, related to the fact that the discrete level |¢) is spread
by the coupling V in the quasi-continuum of states {|y,)}.

First, we recall how the scattering amplitude diverges when the cou-
pling between the discrete state |¢) and the continuum {|k )} is not taken
into consideration. To lowest order in I/, the transition matrix element is
written

Ty = lim (x;|W

- Wiy
00, E, — H, + in 2 (33)

that is, again

xIWleX el Wix,)
Iy = lim — - (34)
n—0_ EX - E‘P +1in

an expression that diverges if £, = E,_.

The coupling between |¢) and |k> appears only to higher orders in V.
In fact it is possible to write the transition matrix element to all orders in
V. It is sufficient to replace H, by H = H, + V' in (33) [see expression
(B.15) in this chapter]. Because W couples |y;) and IX]-> only to |¢), we
get

g = nlin(} (xIWled<el leX<elWix,). (35)

E, —H+in
Let us now introduce the closure relation over the eigenstates |4, ) of H

in the central matrix element of (35). The density of the state |¢) in the
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new continuum then appears explicitly, and expression (35) becomes,
taking (17) and (1) into consideration,

w2
T = lim wrw;8), > (36)
=0,
7 2 (EX—Eu+in)(E,f+(7) +L'2)
In the limit 3 — 0, this sum tends to the following integral:
o wl /2
T =wiw, lim dE 5 (37)
10,7 % nr
(EX - F +i7‘]) E? + (—2-)
which may be calculated by the residue method and gives
T * ————————1 (38)
Ti=w'w, - .
! TYE, + ih(T/2)

The scattering amplitude thus does not diverge any more when E, =
E, = 0. Note that everything happens as if, in the lowest-order expression,
the energy of the discrete level @) had been replaced by a complex
energy E, —ihl'/2 = —ihI'/2. While remaining finite, the transition
matrix element thus varies in a resonant fashion when E, is swept over an
interval of width A" about E_, = 0.

d) Fano PROFILES

We come back to the case where the system has another state |y )
coupled to |¢) by a coupling term W({¢|W|x)» = w), but we now assume
that |y) is also directly coupled by W to the states {|k)} of the quasi-
continuum. We also make a simplifying assumption concerning the
matrix elements (k|W|y) which are assumed to be independent of |k)
({k|Wlx) = w'). What is the probability that a level [¢,) will be excited
from |y)? This probability is proportional to the square of the matrix
element <¢/“\W|X> which may be calculated from (17) and (5):

(oIWlx)v + L kIWIx)0?/(E, — Ey)
- e (3)

W W) = 2
hlr
v? + (7) +Ez
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an expression which is written, taking (6) into consideration,

wr + w’E#

2 hrz 2
U+(_2— +E“

(i, IWlx) = (40)

1/2°

When the energy of the state E, varies, the two terms of the numerator of
the right-hand side of (40) add up or subtract depending on the respective
signs of E, and of vw/w'. Hence the lineshape (probability of excitation
as a function of E#) is generally asymmetric.

Relation (40) is frequently rewritten as a function of the reduced

variables

E
£, = -t (41)
Y %)
s w
= —— 42
a Ty W (42)

€, is the energy in units of AI'/2. The parameter g defined in (42)
characterizes the ratio between the coupling to the discrete state |¢) and
the coupling to the quasi-continuum {|k)}. Let us also introduce the

parameter ¢

4v° 2 9

CTWr T A )

¢~ 1 represents the number of levels of the discretized continuum within
the natural width (¢ - 0 when 8 — 0). By using these definitions, we
obtain from (40)

e WO g + 6,12
w'? - 1+e2+ ¢ (44)

In Figure 3 we have represented several possible excitation profiles
obtained for different values of g. They are called Fano profiles (*). Note

(*) Such profiles are encountered in several physical situations, for example in photoion-
ization near an autoionizing state.
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q=0 q>1 q~2

Figure 3. Fano profiles obtained for different values of . The
intensity of the transitions to the states |%> of the quasi-con-
tinuum is represented by solid lines. The dashed line corre-
sponding to the envelope of these intensities allows us to
visualize the profile of excitation at the continuous limit
(8 — 0). Note that except for the limiting situations g = 0 and
q>> 1, the profiles are asymmetric.

that the situation g > 1 (case where the coupling between |y) and |¢) is
much larger than the coupling between |y) and |k)) corresponds to the
situation considered in subsection 3-b of this complement.

Remark

In all the situations considered previously, the limit 8§ — 0 did not pose any
problem. This is not always the case, and certain precautions must be taken
when the problem under study (*) involves quantities such as (k|¢,) [relation
(8.b)] in which the factor 1/(E, — E,) appears. Actually, in the discrete case
(E, - E,) never vanishes (see Figure 1), and thus division by (E, — E,)
presents no difficulties. This is what we did, for example, to deduce (5) from
(4.a). By contrast, more precautions must be taken in determining the limit of
1/(E, — E,). In order to determine such a limit considered as a distribution,
we reexpress (E, — E,)"! as a function of the angle ¢, defined by Equation
(13.a) and of the integer m closest to E, /& (see Figure 1). By using Equation
(13.b) and the fact that E, = k8, we obtain

- . (45)

(*) This is the case, for example, when one studies the energy distribution of the final
states resulting from the disintegration of the discrete state.
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Let us rewrite (45) as the sum of an odd function of (m — k) and an even
function.

1 B (m—k)d B @0/
E,~E  (m- k)262 - (cpﬂéﬁ/ﬂn')2 (m - k)?s2 - ((p#5/7r)2.

(46)

Since ¢, /7 is, in modulus, less than 1 ¢,0/m tends to zero when 4 tends to
zero. The first term of the right-hand side of (46) is odd in (m — k)&, and hence
tends, when 6 — 0, to 2(1/(E’ — E)), where E’ and E are associated, respec-
tively, with E, and E, and & denotes the principal part. Let us now analyze
the second term. It has significant values only for m close to k. In particular,
for E, = E,, its value is equal to 7/(¢,8) and thus tends to infinity when
& — 0. When E,, # E,, this term has the opposite sign but its value remains on
the order of 1/8 for small (m — k). Its width in E, is of the order of 8. The
second term of (46) thus tends to a distribution localized in E,, = E, when
8 — 0. Let us now calculate the sum.

P 0/m _ ®,/T
x (m—k)82 - (¢,8/m)° 7 (e./m)° P

(47)

The sum of this series is known (*) to be m/tan ¢,,; that is, again according to
(13.a),

27rE 48
hr " ( )
It follows that the limit & — 0 of the second term of (46) is
(2m/hTYES(E ~ E').

Finally,

li ! P ! 2WE5 E-F 49

= + — - E).
550 E, — E, (E’~E) Yt ) (49)

4. Generalization to More Realistic Continua. Diagonalization
of the Hamiltonian without Discretization

We return in this last subsection to the problem of a discrete state |¢)
coupled to a continuum of states {|E )}, to directly study (without discretiz-
ing the continuum) the eigenstates |(E)) of the total Hamiltonian. In
contrast to the situation in subsections 2 and 3, we will not make any

(*) See for example, Cartan, corrected exercise 25, p. 226.
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restrictive assumptions on the continuum and on its coupling with the
state |@). In particular, the matrix element {(E|V]e) = v(F) is now an
arbitrary function of E. The orthonormalization relation between states of
the continuum is

(E'|E) = 8(E — E') (50)

and the matrix elements of the Hamiltonian H, and of the coupling V' are

(elHyle) = E, (51.a)
(E|HyE'Y = ES(E — E') (51.b)

(ElVig) = v(E) (51.c)
(E'WVIE) = {¢lVIp) =0 (51.d)

Let [#(E')) be an eigenstate of H, with eigenvalue FE’
HIG(E')) = E'lY(E")). (52)

To find the expansion of |(E’)) over the unperturbed states |¢) and |E),
we proceed as in subsection 2-a and first project (52) onto |¢}, then onto
|E>. We thus obtain the equations

ELely(E)) + [dEC(EYCEIW(E)) = EXgl¥(E)) (53.2)
ECEIW(E')) + v(E)@lU(E")) = EXEIW(E')). (53.b)

Equation (53.b) is transformed to
(E' = EXCEIG(E)) = v(E){el¥(E)). (54)

Distribution, theory allows the general solution of (54) to be written in the
form

CEWY(E)) = [.0}’ + 2(E')YS(E — E")|v(E) el¥(E")) (55

E' - E
where z(E’) is an arbitrary function of E’. To determine this function

z(E"), we substitute (55) into (53.a), and we obtain

2

lo(E)|
E-E

E‘p+37’de + z(ENo(E) | = E (56)
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that is
1 I'(E")
E,+hA(E") + —h 5 z(E)y =F (57)
ke
with
, 27 2
I"(E)=—h—|v(E)1 (58.a)
1 lL(EYF 1 I'(E)
A(E"Y = -2 | dE = —%| dE . 58.b
(E) h f E' - F 2 [ E' - F ( )
From this we deduce
E' - E, — hA(E")
Z(E') =27 (59)

hI(E')

Equations (55) and (59) allow us to find the new eigenvectors to within a
normalization coefficient, which is determined by the equation

W(E)Y(E)) =8(E — E). (60)

We do not give here the calculation of this normalization coefficient, but
we will simply quote the result (*):

1
l$(E")) = . 1,2
<[E’ ~ E, - ha(EN]" + [hF(E’)/z]z}
x{l-(E’) @) +2 [ dE ;(_E)E |E>]
+[E' - E, - hA(E")] IE’)}. (61)

No restrictive assumption having been made on the variation of the
coupling v(E) with E, the vectors thus obtained may be applied to the
study of many problems.

(*) See U. Fano, Phys. Ret., 124, 1866 (1961).





