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These are the proceedings of the Second Workshop on Large-Grained Parallelism held October 11-14,
1987, in Hidden Valley, Pennsylvania. The workshop was organized by the Software Engineering Institute
and the Department of Computer Science, Carnegie Mellon University, with the cooperation of the IEEE
Computer Society.

The purpose of the workshop was to bring together peopie whose interests lie in the areas of operating
systems, programming languages, and formal models for parallel and distributed computing. The
emphasis of the workshop was on large-grained parallelism or parallelism between concurrent programs
running on networks of possibly heterogeneous computers rather than parallelism within a single process
or thread of control. Aspects of large-grained parallelism that were common to most participants’ interests
were fault-tolerance, heterogeneity, and real-time applications.

Ninety abstracts were submitted for review by the program committee and the authors of thirtyeight of
these abstracts were sent acceptance letters and invitations to attend the workshop. To provide more
time for discussion and audience participation, only sixteen authors were asked to give twenty-five minute
talks based on their abstracts. The rest of the abstracts were summarized by discussion leaders. The
workshop was divided into five sessions of talks and two paralle! sessions of discussion. The five general
areas covered by the talks were: scheduling, distributed languages, real-time languages and models.
operating system support, and applications. There were parallel discussions on scheduling and
distributed languages. and on real-time and operating system support.

There was a reasonable balance among the participants with regard to efficiency concerns on the one
hand, e.g., by the software and hardware systems and application builders, and correctness concerns on
the other, e.g.. by the real-time modelers and language designers. We identified a number of key
challenges:

¢ Distributed systems, languages, environments
» Make transactions efficient. Integrate them into the operating system.

* Implement applications that demonstrate how to use transactions at both the
programming language and operating system levels.

+Identify applications other than databases to motivate the need for multi-site
transaction-based systems.

» Real-time systems, models, scheduling

» Devise and test analytical models for distributed scheduling of tasks that range in
degrees of computational complexity.

» Show the correspondence between physical time and iogical tme using a formal
modeling approach.

+ Identify a set of programming and specificaton language primitives that capture and
abstract from reai-time events of interest.

In the year that elapsed since the first workshop on large-grained paralleism that took place in
Providence, Rhode Island, a number of the issues related to large-grained parallelism became more
focused. as evidenced by the topics and the quality of the abstracts submitted. Considering the wide
range of interests and background of the participants, the success of this workshop s a good omen for
future meetings.

Jeannette M. Wing Maurice P. Herlihy Mario R. Barbacc
Program Chair General Charr Arrangements Chair
Department of Department of Software Engineering
Computer Science Computer Science Institute
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Final Program

Sunday, October 11

Registration desk opens
Dinner followed by informal discussions

Monday, October 12

Breakfas!

Session 1 -- Scheduling

Talks by Jack Stankovic and Jean-Luc Gaudiot

Break

Session 2 -- Distributed Languages and Environments
Talks by David Notkin, William Weihl, and Maurice Herlihy
Lunch

Parallel Discussions: Scheduling

Paralle! Discussions: Distributed Languages

Break

Session 3 -- Real-Time Languages and Models

Talks by Janice Glasgow, Debra Lane, and Mario Barbacci
Break

Dinner followed by informal discussions

Tuesday, October 13

Breakfast

Session 4 -- Operating System Support

Talks by Mark Sullivan and Rick Bubenick

Break

Parallel Discussions: Real-Time Languages and Models
Parallel Discussions: Operating System Suppon

Lunch

Free afternoon (unstructured meetings)

Binner foliowed by informal discussions

Wednesday, October 14

Breakfast

Session 5 -- Applications

Talks by Martin McKendry, Sid Ahuja. and Carl Diegert
Break

Session 5 (Continuation)

Talks by Liuba Shrira, Richard LeBlanc, and Hanno Wuppert
Lunch

Moderator

Barbacci
Wing
Stankovic

Weihl

Herlihy

Satya

Bryan
Satya

Stankovic

Wing
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USING A NETWORK OF COMPUTER WORKSTATIONS AS A
LOOSELY-COUPLED MULTIPROCESSOR

RAKESH AGRAWAL

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(201) 582-2250
rakesh%allegra att.com@ csnet-relay

ABSTRACT

A major tend in computing in recent times has been the creation of large networks of computer
workstations. It has been speculated that the number of computing cycles installed in computer
workstatons is an order of magnitude greater than the number installed in mainframes. However, most
of these cycles are idle most of the time. There are many applications amenable to large grain parallel
processing that can profitably use these idle computing cycles by treating these networks as loosely-
coupled muluprocessors. There seem to be two essential requirements for this approach to become
feasible:

- We must provide simple to use system facilities to access computing cycles from an idle
workstation.

- We must develop tools for parutioning the problem into pieces that may be executed in parallel.

In NEST, we have extended System V Unix with a remote execution faciity that allows creation of
transparent remote processes [1,3]. Developing applicatons that run in parallel on multiple machines is
particularly simple using this remote execution facility. If there is a program involving multple
processes written in C that runs on a uniprocessor, it can be made to run on multiple machines by
simply changing the exec system call to rexec.

We also have developed a model for opumally partitioning a class of problems in the workstatons
envuonment (2]. Our model recognizes that workstations are usually connected with a rather slow
commurncation medium, and explicily takes into account the communication costs in addiuon to the
computation costs. The opumal parhuon can be determined for a given number of processors and, if
required, the optimal number of processors to use can also be derived We also have performed
expenments that verify and demonstrate the effectiveness of our model using matrix multiplication as an
example.

REFERENCES

I.  R. Agrawal and A. K. Ezzat, Processor Sharing in NEST: A Network of Computer Workstatons,
Proc. IEEE Ist Int'l| Conf. Computer Workstations, San Jose, Califomia, Nov. 1985, 198-208.

2. R. Agrawal and H. V. Jagadish, Parallel Computauon on Loosely-Coupled Workstations,
Technical Memorandum, AT&T Bell Laboratories, Murray Hill, New Jersey, 1986,

3. R. Agrawal and A. K. Ezzat, Locanon Independent Remote Execution in NEST. /EEE Trans
Software Eng. 13, 8 (Aug. 1987), 905-912
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Parallelism in the Rapport Multimedia Conferencing System

S R. Ahuja
J R. Ensor
D. N Horn

AT& T Bell Laboratories
Holmdel, New Jersey 07733

Rapport is a multimedia conferencing system which executes on a collection of network-
connected workstations. This system provides communication protocols and user interfaces
that effect a natural conferencing environment in which users conduct remote, interactive
conferences by talking with each other and producing and editing common displays on their
workstations. Rapport coordinates the transmission and use of shared information in several
media, including voice, graphics, images, and text. Thus Rapport is a distributed system with a
collection of simultaneously active agents accessing shared data and producing new data which
must be broadcast in real time. Underlying mechanisms for global name service, data storage.
and window management are used by Rapport to produce its conferencing aids.

Our current implementation of Rapport executes on a collection of Sun workstations which
are connected by an Ethernet. A specialized processor we have built to handle voice (and
eventually video) transmissions is attached to each Sun through its VME bus. The NFS file
service provides common names and storage for programs and data used in conferences. The X
window system is used to provide a common means of producing displavs on the various
workstations. Rapport provides each conferee with protocols for controlling a conference. Our
system also allows user-level application programs to be associated with a conference. These
programs manipulate shared data and produce common displays on the screens of the conferees’
workstations

Coordinating the input and output of application programs is a principal responsibility of
Rapport. We are presently comparing the behavior of two approaches to the execution of
application programs. In the first approach, a single workstation executes an application
program and broadcasts its output commands to the other conferees’ workstations. The major
advantage of this approach is that it allows the various conferees to see resuits of programs
without executing them. The corresponding disadvantage is that broadcasting all the window
level commands and arguments for display generation usually generates significant network
traffic. In the second approach, each workstation executes all application programs of a
conference under some constraints of synchronization and input control. This technique tends
to generate less network traffic since only the application program input commands are
transmitted among the conference workstations. The major drawback of this technique is that
each conferee must execute the same software in a consistent environment. Some programs are
written to utilize local state and are not suitable for this technique. For exampie, a bitblit
program might receive as an argument a pointer into its local machine's memory. Giving this
command and its argument to each conferee would not preserve the consistency of the
conference.

Though the basic tradeoffs between the two approaches are readily identified, the
importance of these tradeoffs are not obvious. The first Rapport implementation requires that
each workstation execute each application program locally. We are now building a version in
which each application program is executed by only one workstation. The two versions of
Rapport give us the opportunity to examine some parallel execution issues. We can determine
the amount of network traffic generated by each approach, and hence determine whether the
differences in network load are significant in various situations. We can also investigate
whether synchronization amon<~ the application programs at program command input is notably
different from synchronization both at command input and program output. The single site
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execution of each application program allows different conferees to work on different displays
simultaneously. We are going to investigate the usefulness of this parallelism between the
synchronization points imposed by the conference management.

After performing these imitial experiments with Rapport, we plan to create a modified
system in which conferences can take place over wide area networks. This extension poses
major difficulties. In the local area network environment we are using standard tools, NF'S and
X, to reduce the apparent heterogeneity of the workstations. Further, conferencing inherently
involves the sharing and multicasting of information, which require a naming mechanism and
efficiency of transmission. NFS gives us a global name service and a convenient storage for
common programs and data. X allows us to conveniently coordinate the displays on the
conferees’ workstations. In the wide area environment these tools are not available, so we will
be required to provide their services for ourselves. The implications for the real time
characteristics of the system are even more dramatic. The delays in producing displays on
remote workstations must be kept under control in spite of the larger transmission delays.
Furthermore, we must limit the skews among the transmission of the different media
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PROCESS SCHEDULING IN LOOSELY-COUPLED :
i COMPUTER NETWORKS |
» Rafael Alonso
’, Luis Cova

£
.

Kriton Kyrimis

n Department of Computer Science
e Princeton University
Princeton, N.J. 08544
:: (609) 452-3869
3 ABSTRACT
>
,
;:5 A computational environment in widespread use is that of a loosely-coupled local
area network (typically an Ethernet) of high performance workstations (such as SUN¥
.. workstations). It has been observed that such networks have the potental for becoming
‘ inexpensive parailel engines, especially for users whose applications show a coarse paral-
’ lelism (i.e., large grained parallelism). Furthermore, it seems that such systems are usu-
ally underutilized, i.e., many of the machines on the network are not in use at any one
i time. Our current research aims at helping users with applications displaying large
grained parallelism to schedule their tasks and make efficient use of these idle processors.
“ Our work has proceeded along a number of lines. The first involves the exploration

)
.

of load sharing policies. As a user starts up several parallel tasks, it is desirable for those
jobs to be scheduled automatically, and in such a manner that each of themn can obtain as
many processing cycles as possible. A load sharing mechanism can ensure that idle
workstations across the network can be used by a parallel application in a user-
transparent manner. We have built such a mechanism [ALON86] and have used it to
experiment with a variety of load balancing strategies. This work has concerned itself

2

g with load balancing (i.e., making sure that the available work is evenly spread throughout
the network). This may not be appropriate for an environment where users own their
';.«'; individual machines; in that situation some users might be willing to share cycles, but not
b at the expense of slowing down their private computations. We are now studying tech-
. niques for scheduling in such networks [ALONS§7a).
:})' We have recently started on a related topic, that of the placement of parallel tasks in
st . . . . . .
networks of multiprocessing workstations (i.c., workstations such as the DEC Firefly or
o the Xerox Parc Dragon). In such environments, the scheduling decision is a two-level
- one, especially if there are different costs to communicate on the same machine than
’ across the network. For some applications that require a large amount of inter-task com-
. munication it might be best to cluster all the computational threads on the same machine,
! ;.' even if excess processing cycles are available elsewhere, while in other instances the
| ~ t SUN is a trade mark of SUN Microsysicms, INC.
¥




computational component is the main processing bottleneck.

Our work in this area consists of a joint project with researchers at Bell Communi-
cations Research. For this project, DUNE [PUCC1987], a multiple processor system, is
being used. Dune supports transparent process migration, both within a multiprocessor
and across the network. We are currently exploring a variety of scheduling algorithms
that take advantage of the process migration capability of the system to allocate several
parallel threads automatically on behalf of a user.

Lastly, we have also studied the issues involved in process migration. For many
applications, it will be true that, during some phases of the computation, there will be a
large number of parallel tasks, which will then dwindle in number to very few. In this
situation, it is desirable to spread initially all the tasks across the available machines and,
when there are only a few left, migrate those tasks away from each other (if they happen
to be on the same processor) or towards the more powerful machines. We have designed
and implemented a process migration mechanism for a network of SUN workstations
[ALONS87b]. We are presently building tools that utilize the process migration func-
tionality of our system. For example, we are building a mechanism that will perniodically
scan the machines on the network and ensure that processes that have used many CPU
cycles in a short time do not run in the same processor if at all possible.
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Durra: Language Support for
Large-Grained Parallelism

Mario R. Barbacci,
Charles B. Weinstock, and
Jeannette M. Wing

Software Engineering Institute and
Department of Computer Science
Carnegie Mellon University,
Pittsburgh, PA 15213

We are interested in a class of real-time, embedded applications in which a number of
concurrent, large-grained tasks cooperate to process data obtained from physical
sensors, to make decisions based on these data, and to send commands to control
motors and other physical devices. Since the speed of, and the resources required by
each task may vary, these applications can best exploit a computing environment
consisting of multiple special- and general-purpose, loosely connected processors. We
call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly
separate processors and communicate with each other by sending messages. Since
the patterns of communication can vary over time, and, since the speed of the individual
processors can vary over a wide range, additional hardware resources in the form of
switching networks and data buffers are also required in the heterogeneous machine.
The application developer is responsible for prescribing a way to manage all of these
resources. We call this prescription a task-level application description. It describes the
tasks to be executed and the intermediate queues required to store the data as it moves
from producer to consumer processes. A task-level description language is a notation
for writing these application descriptions.

To support this large-grained parallelism, we have designed and implementated Durra
[1]. a task-level description language. We are using the term “description language™
rather than “programming language” to emphasize that a task-level application
description is not translated into object code in some kind of executable “machine
language” but rather into commands for a run-time scheduler. We assume therefore
that each of the processors in a heterogeneous machine has languages, compilers,
libraries of (reusable) programs, and other software development tools that cater to the

Arpanet addresses: barbacci@sei.cmu.edu, weinstock@sei.cmu.edu, wing@k.cs.cmu.edu
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special properties of a processor's architecture. Durra’s support environment is
responsible for coordinating the use and interaction of the separate software
environments of the individual processors.

There are three distinct phases in the software development process for a
heterogeneous machine: (1) the creation of a library of tasks, (2) the creation of an
application description, and finally (3) the execution of the application. During the first
phase, the developer breaks the application into specific tasks (e.g., sensor processing,
feature recognition, map database management, and route planning) and writes code
implementing the tasks. For each implementation of a task, the developer writes a
Durra task description and enters it into the litrary. Developing programs for some of
the more exotic processors involves selecting algorithms appropriate to a processor’s
architecture, and then painstakingly testing and tuning the code to take advantage of
any special features of the processor. For example, an application might use a matrix
multiplication task written in assembly for a systolic array processor while
simultaneously accessing a database of three-dimensional images maintained by a
program written in C running on a workstation. Developing these programs is a slow
and difficult process and Durra facilitates their reuse in multiple applications.

During the second phase, the user writes a Durra application description.
Syntactically, an application description is identical to a compound or structured task
description and can be stored in the library and used later as a component task in a
larger application description. When the application description is compiled, the
compiler generates a set of resource allocation and scheduling commands. During the
last phase, the scheduler executes a set of commands which are produced by the
compiter. These commands instruct the scheduler to download the task
implementations, (i.e., code corresponding to the component tasks) to the processors
and issue the appropriate commands to execute the code.

in our presentation, we will illustrate the main features of Durra through examples, the
existing implementation of tool support for Durra, followed by preliminary conclusions
and directions for future work. Further details on the language can be found in the
Durra reference manual [1] and an overview paper [2].

[1] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language”,
Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, and Technical
Report CMU-CS-86-176, Department of Computer Science, Carnegie Mellon University,
December 1986.

e

[2] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language”, in :‘32
Proceedings of the 16th International Conference on Parallel Processing, Pheasant Run T
Resort, St. Charles, lllinois, August 1987. -
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Agora:
Heterogeneous and Multilanguage
Parallel Programming

Roberto Bisiani and Alessandro Forin

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsyloania 15213

Extended Abstract

The solution of many real-life problems encountered in
science and industry requires the integration of parallel
programs written in different languages and running on
heterogeneous machines. We call the development of
such systems heterogeneous parallel programming. For ex-
ample, sensc- data acquisition and signal processing
might have to be integrated with planning, or electrical
circuit simulation might have to be integrated with ex-
pert system technology. The goal of the Agora project is
to facilitate heterogeneous parallel programming
Agora’s support is both in terms of operating system level
mechanisms that can be wused to implement
heterogeneous parallelism and in terms of programming
environment functionalities that facilitate the manage-
ment of parallel programs. This paper describes the
former, see [3] for a description of the latter.

We call the operating system level mechanisms Agora
Shared Memory, since they are based on a shared
memory model of parallelism. In order to simplify the
explanation of the Agora Shared Memory we will use
an example abstracted from a speech recognition system
that has been successfully programmed in Agora [1).

The structure of the fragment of speech recognition
system that is used as example is sketched in Figure 1.
This subsystem receives phonetic hypotheses and
generates sentence hypotheses. Two components, Word
Matcher and Sentence Parser, are best implemented in C
and the other two in Lisp. The aggregate computation
power required by the four comgonems to achieve real
time execution is about 2 * 10° instructions for each
second of speech [2]. with half of the computing power

Thus research s sponsored by the Defense Advanced Research Projecs
Agency, DoD, througr ARPA Order 5167, and morutored by the Space
and Naval Warfare Systems Comunand under contract N0OO39 85
C-0163. Views and conclusions contained in this document are those of
the suthors and should not be interpreted as represenung offical
poliaes, ether expressed or implied, of the Defense Advanced Research
Projects Agency or of the United States Government

T T T LN JR S ~
_;J- \J' R A A A A

being used in the Word Matcher. Each of the com-
ponents can be decomposed into parallel computations
in many different ways and both large and small
granularity decompositions are necessary.

Prones

Word
Verifier

Sentence
Parser

>

Control transfer

.........

=P Dcta transter

Figure 1: Example of a Parallel, Heterogeneous
System: Speech Recognition.

A satisfactory implementation requires a multiproces-
sor that can execute programs with both C and Lisp
components. The Word Matcher requires a tightly
coupled architecture while the Word Display can be run
on a single processor that is loosely coupled with the
rest of the system. The Word Matcher communicates
with the other components using a data-flow style of
communication; the Sentence Parser and Word Verifier
communicate as server and client.

There are a number of tools that could provide support
for the implementation of the example, but none of
them has all the necessary characteristics. The tools used
by the Al community (possibly with the exception of
ABE [7]) are centered on a single computational mode]




INNENE AAARAAIN" Y r-".’.ﬁ"i

? o 4
pd

:
E

'en 8§ VY WN b _an g gy gy gon a4

T RYIIE

(e.g. production system languages), are based on a
single language (e.g. Loops [5]), or have no suppont for
parallel processing (e.g. SRL {8]).

One common way to tackle multilanguage applica-
tions with these tools is to implement a Lisp module
that calls all the modules that are programmed in dif-
ferent languages. This solution has a number of draw-
backs that make it unsuitable to our purposes:

e the structure of each module depends
heavily on the other modules, e.g. the sen-
tence parser would have to be explicitly
programmed to activate the word display;

o the access of complex data structures from
different languages must be handled by the
user code.

o there is no easy way to parallelize the system
to increase performance.

The tools used by the operating system community to
link  heterogeneous  parallel programs  (e.g.
Matchmaker {9}, Sun RPCI11]) have a different
shortcoming: some of them support multilanguage
parallel processing on heterogeneous architectures (e g.
Mach/Matchmaker), but they are geared only towards
applications that can be efficiently cast into a client-
server relationship between modules.

As in the sequential solution, the structure of each
module depends heavily on the others since each
module must be programmed to be able to explicitly
deal with the requests of the other modules. Debugging
is difficult since there are no tools to conveniently ex-
amine the data flowing between modules or to deal
with more than one process at a time. Moreover, in
current implementations on general purpose systems,
communication 1s rather expensive since there is a mes-
sage passing overhead even on shared memory ar-
chitectures (currently about 2ms for a general purpose 1
MIPS machine).

Agora’s Approach

Agora takes a different approach: first, concurrent
modules share data structures independently of the
computer architecture they are executed on and of the
language they use; second, concurrent modules ex-
change control information by using a pattern-directed
technique. Our hypothesis is that these two characteris-
tics facilitate heterogeneous parallel programming. The
only way to verify it is by implementing real systems
and evaluating the effort required and the quality of the
result.

Figure 2 shows how the example can be implemented
with Agora.
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Sentence
Words
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—— mb
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Figure 2: Agora’s Implementation of the Exampie

Shared Data

The ovals indicate shared data structures. These stru.-
tures are allocated in Agora’s shared memory and thair
structure is known by Agora’s system code Agora
provides standard functions to create, destroy, read and
write data structures as procedural extensions of each o!
the supported languages. Depending on the language,
these functions can be more or less merged with the
language syntax and semantics. For example, object-
oriented languages like C++ [10] and Portable Common
Loops [6] give the opportunity of blending Agora’s
functions more than their non-object-oriented counter-
parts (see (4] for an example). Users can also define
custom access functions that are translated by Agora into
each language and are available to all the modules that
need them.

The description of data structures and access functions
is processed by Agora and stored in its database where
it is visible by all the tools in the environment, e.g. a
debugger can interpret it to access data in the same way
a user module does. Agora also generates a description
of the data structures and a translation of the access
functions for each language The programming en-
vironment automatically includes the translated
descriptions and access functions at compilation and
link time.

Control

The boxes in Figure 2 represent concurrent computa-
tions. Each computation (agent) has a queue where
Agora stores requests for activation of the agent. The
agent is free to dequeue an activation whenever it wants
and branch to different parts of its code depending on
the kind of activation dequeued. In the example of
Figure 2, the arrival of a new element in the Words data
structure generates an activation for both the Word Ds-
play and the Sentence Parser agents. Activation pat-
terns can be set by agents at ar\ time, or by the user via
the user interface. In the lattcr case, none of the agents
involved need to be aware ot it This is a major feature
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of Agora’s handling of control information, since it
maintains as much independence as possible between
the modules of a system.

Multiple styles of computation, including control-
driven, can be programmed using the basic Agora
mechanism. For example, a context can be used to pass
parameters back and forth between agents. In the ex-
ample of Figure 1, the Sentence Parser uses this remote
procedure call mechanism to communicate with the
Word Verifier.

Current Status

The Agora Shared Memory has been operational since
September 1986 and is used daily in the development of
a large speech recognition system (about 100,000 lines of
code and developed by 15 researchers). Agora currently
runs on DEC Vax, IBM RT PC, Sun, Encore Multimax

4. Bisiani,R, et.al. Heterogeneous Parallel Processing,
The Agora Shared Memory. Tech. Report CMU-
CS-87-112, Carnegie-Mellon University, Comp. Science
Dept., March, 1987,

S. Bobrow,D.G. and Stefik, M.]. A Virtual Machine for
Experiments in Knowledge Representation. Xerox Palo
Alto Research Center, April, 1962.

6. Bobrow D.G,, et al. CommonLoops: Merging Lisp
and Object-Oriented Programming. Proceedings of
OOPSLA'86, Sigplan Notices Vol.21 Nov 86, Portland,
Oregon, September, 1986, pp. 17-30.

7. Erman, L. et.al. ABE, Architectural Overview. In
Distributed Artificial Intelligence, Research Notes in Artifi-
cial Intelligence, Pitman Publishing Ltd., 1987.

8. Fox, M.S,, McDermott, . The Role of Databases in

F and all possible combinations of these machines. The Knowledge-Based Systems. Robotics Institute,
v languages currently supported are C, C++ and Com- Carnegie-Mellon University, 1986.
monLisp 9. Rashid, R.F. An Interprocess Communication
> . Facility for Unix. Report, Carnegie-Mellon University,
“ Conclusions Comp. Science Dept., June, 1980.

Here are some of the hypotheses that we are exploring ‘
in Agora: 10. Stroustrup, B.. The C++ Programming Language

o the same model can be used for both small and Addison-Wesley Publishing Co., 198
large grained parallelism; 11. Sun Microsystems. Sun Remote Procedure Call

o shared ry is a vible communication Specification. Tech. Rept., Sun Microsystems inc., 1984

' al..-actior  2ven between modules imple-
. mented in different languages;

e a structured shared memory can be implemented
with reasonable efficiency on non-shared
memory architectures and across
heterogeneous machines;

o
e

® pattern directed invocation is a convenient con-
. trol mechanism for a shared memory model.

o multiple styles of computation, including
control-driven, can be programmed using

. the basic Agora mechanisms.
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Simulation and performance evaluation
of heterogeneous parallel robotic systems

Francois Bitz and Jon A. Webb
16 September 1987

Robotic systems are growing increasingly complex, in response to a desire for
e Increasing computer power.

e Increased flexibility of human interaction.

« Increased variety of sensors and motor control devices.

In response to this, the designer of such a system has had to construct heterogeneous networks of
computers, which may incorporate simple real-time processors for motor and sensor control, poweri!
computers for image and signal processing, and general-purpose workstations for user interaction The
machines may be connected by a variety of communications media, including dedicated buses for close'y
coupled computers, and local area networks for computers that are less tightly coupled. Not only can the
performance of each node vary, but also such important features as their operating systems, ¢
throughtput and interfacing can be very diverse.

Achieving good real-time performance in such a system is difficult. The complexity of the system and tha
desire to make it usetul for research makes it difficult to impose hard real-time constraints on the
performance of individual modules, in order to apply tracitional real-time systems methods to optimizing
performance

Instead, the designer of such a system may first construct it, then try to determine the constraints on
performance. In doing so, he immediately discovers that:

» Bottlenecks in system performance, such as /O bottlenecks, may not be discovered until the
system 1s actually constructed. Moreover, these systems represent some of the most
complex and critical applications of computers.

» Discovering the source of bottlenecks is difficult, since the interaction of different modules
within the system cannot be observed without changing performance. Non invasive tracing
techniques are usually not possible to implement.

* Answering questions such as the eftects of improved hardware or ditferent placement of
modules on parallel computers is difficult, since the interaction of different modules can lead
to significant second order effects in system performance.

It is therefore essential 10 use appropriate tools as early as possible in the design phase of such a
system Such tools should allow the designer to evaluate performance as well as give him the tlexibility of
changing the placement and characteristics of each component. For example a task might be able to run
on any of the nodes by itself, but where it is eventually placed will affect the performance of the overall

system
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The most appropriate tool is a simulator that can address these design issues. The object of performance
evaluation and simulation is to determine the parameters which maximize the effectiveness of the system
resources through improved throughput, resources utilization and response time.

We have implemented such a simulator in a high level language, namely C++, an extension of C with
concurrent task facilities. The simulator allows multiple machines to be simulated concurrently. Each
machine can run muttiple tasks concurrently as well have its own operating system and scheduling
scheme, such as FIFQ, prioritized, or round-robin. The simulator can simulate such complex real time
constructs as interrupts, semaphores and rendezvous. Tasks and machine communications can be
implemented through queues (a basic object in C++) which simulate the communication media of the real
system (e.g ethernet, mailboxes, or shared memory). Efforts are also under way to facilitate the user
interface to the simulator through the use of a code generator. This becomes more crucial as the number
of nodes increases since generating code is a very repetitive and error prone operation.

-

The simulator has been used to simulate the real-time control system of the Martin Marietta Autonomous
Land Vehicle system in a component that used a Sun 3/160, the Carnegie Mellon Warp machine, and
three standalone MC68020 processors to detect obstacles in laser scanner data. Simulation results
suggested performance improvements by moving modules from the Sun to the standalone processors,
therefore achieving greater paralielism.

We intend to model a demonstration of CMU's Autonomous Land Vehicle (Naviab) from which we have
been able to gather real measurements (including task times, Vo throughput, and communication traftic;
The simulator will be run in order 1o compare how well the model corresponds to the real system The
simulator will then be used to predict the performance of a Navlab demonstration which includes a
sophisticated road following algonthm and obstacle avoidance. This demonstration will use some of the
modules of the first demonstration with major hardware and software upgrades. The simulator will also
predict how such a vision system will perform on other computer architectures. In this first version of the
simulator module placement will be tirst done by the user. However one of the goals of the simulator and
performance evaluator is to maximize performance given a set of constraints such as number of
machines and communication medium. Therefore it is desirable to describe the different modules in a
higher level language. We intend to benefit from some of the work done in the Software Engineering
Institute’s Durra project in the way tasks and modules are described. Another potential utilization of our
simulator can be found in Camegie Mellon's HET project in which a large number of heterogenous
machines are connected together through fiber optic links and 16 by 16 optical crossbars.

We intend to use the simulator to address questions of

* Module placement, where modules can be placed on different computer nodes. Of great
impontance are the effects of translating a routine running in a general purpose computerto a
specialized machine such as the Warp array.

« Communications network changes, especially including performance improvements resulting
from the use of a rehable, dedicated real-time network in place o« the unreliable Ethernet

e Computer changes, especially including the division of parallel computers into multiple

-12-
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parallel machines of smaller size. Preliminary results indicate that such a bifurcation could .
lead to an improvement in performance of up to two.

+ Assessment of how much prior information is needed about each of the real components of
the system in order to get reasonable good match between simulated and real performance.
in general it is possible to reduce the complexity of routines so that it is not necessary to
write the routines as they would appear in the real code. Sometimes it is even acceptable to
reduce a single routine to a delay() or run() statement which will give acceptable estimation
of the performance of the overall system.

o Simulation speed and computer requirements for simulation of a large number of machines.
Of panticular interest is the possibility to distribute the simulation over and array of processors
(distibuted simulation).
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Run-Time Monitoring of Tasking Behavior Using a
Specification Language

- Douglas L. Bryan
- Computer Systems Laboratory
A Stanford University
~
A
T 1 The Specification Language ?P accepts ?C at Finish Pumping =>
?P.calls Operator at Clang-
‘::“ TSL (Task Sequencing Language) is a language for before Operator calls 7P at Activat:
-—

specifving sequences of tasking events occurring in
the execution of distributed Ada' programs  Such
‘- specifications are intended primarily for testing and
R- debugging of Ada tasking programs. although they
o can also be applied in designing programs. TSL spec- 2
. ifications are included in an Ada program as formal
comments They express constraints to be satisfied
by the sequences of actual tasking events

This specification places constraints en the astions of
pump tashs

Implementation Issues

~
.-

The following are the goals of the TSL run-tine -

. : . itor umplementation
The general form of a specification 1s as {ollsws. P

. when activator-compound-c1ent ) . ) i
v r 1. automatically momitar for conpminn ko i
then body-compound-cvent d

problems such as deadness errors

before terminator-compound-event .
. ‘ P 2. allow the observation of events at a prograndn.: 2
~ Informaliy. a specification has the meaning. or specification language level. ratter than at ar
S . ' architecture level
- Whenever the events specified by activator- 3 detect and report the violation of spesificarnio-
b compound-eventoccur, then the events spec- 4. report problems as soon as possiide after the s
.t tfied by body-compound-crent must occur actual occurrence
3 :
< before the events specified by fermunator- 5 provide useful diagnostic informars
g compound-event. 6. mimmize the effects on the underiying comymts
SN . . tion being observed
v A compound event is an expression constructed from
P basic events. A basic event can be thought of as an
L, atomic action performed by a task. For example, “A .
calls B at E” is a basic event. The operations avail- 3 AN Implementation
able for forming compound events include sequenc-
S ing, conjunction, disjunction, and iteration. There are two major tools which comprise the Star.
v The following is an example specification taken from f‘?’d prototype |mpAlcmentat‘non of the TSI the com
a simulation of an automated gas station- piler and the run-time monitor T'he compiler trans
‘. forms TSL source code into Ada code wihish con
g ) > .
5 << Pump_Protocol >> structs data structures and interfaces the underlving
when 7P accepts Operator at Activate computation to the TSL run time monitar (See fig
2P 20 . ) 1 —_ . .
N then 7P accepts 7C at Start Pumping => ure 1) During execution, the monitor s called Usiny
-
: \j TAda is a registered trademark of the 1S Government these methods, the TSL systen s partatide and can
¥ {Ada Joint Program Office) be used in conjunction watly other Ada tocnls
D .
,"{ S PV
l" l-' l-' >~ . 1.‘ l-A - A‘. - . -“ --‘ - -.
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4 Current Status

A token graph representation of TSL specifications is
computed during compilation, and constructed dur-
ing execution. These token graphs form the inter-
nal representation of the constraints placed on the
computation. One token graph is built for each
compound event. The graphs include a labeled arc
for each basic event. At run-time, the monitor
matches the observed behavior of the distributed sys-
tem against these graphs, and determines when speci-
fications are violated. Matchingis performed by mov-
ing tokens from node to node, across arcs. Whenever
a token reaches the finish node of the body-compound-
event or the ferminator-compound-event, the monitor
determines if the specification has been violated.

The prototype implementation of the TSL compiler
and run-time monitor has been completed. This im-
plementation has shown the feasibility and utility
of specifica.ion level debugging of multi-tasking pro-
grams.

The interactive user interface of the monitor pre-
serves the name space of the underlving computa
tion. Events are reported, and the user requests 11
formation, using the names given in the Ada and TS1L
program. The violation of TSL specifications are re.
ported during the execution of the final event causing
the violation. That is, violations are reported as soon
as they occur. At that time the user can interact with,
the monitor to determine the complete sequence of
events leading up to the violation

Ada + TSL In the current implementation of the monitor. the

specification checking code forms a critical region
which is executed by the tasks of the underlying con-
] putation; the implementation relies on the fact that
events are reported in a synchronous manner. Dur-
ing any user interaction, the tasks of the underlyving
] computation are suspended. Thus, the menitor forms

a bottle-neck, often causing tasks in the underlving
computation to block.

| TSL Compiler

TSL Rur-Time

Monitor

Ada
r Ada Compiler
Compiled Ada

L Linker J

5 The Event Reporting Prob-
lem

Self-Checking Tasking Program

:
L P S W
)

Figure 1. TSL Front-End. The fourth and sixth goals above are the main factars
used to determine the architecture of the run-time
monitor. It is desirable to report specification viola-
tions when they occur, and preserve program state
while the user determines the cause of the violation

The simplest way to preserve state is to suspend the

Pl
:.'-
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The monitor also includes a user interface which al-

lows one to interactively query the state of a run-time
data base and the token graphs themselves. At any
time during the computation, the user may examine
the state of the graphs. The tokens on the graphs
provide the user with a complete history of the com-
putation, as it relates to the specifications. Similarly,
when a specification has been violated, the state of
the graphs provide the user with the chronology of
events causing the violation. In this way, the TSL
run-time monitor provides the capabilities of both a
monitor and an interactive, specification level debug-

ger.

underlying computation. However, any such suspen-
sion has a drastic eflect with respect to the minimal
interference goal

The problem is, are events to be reported to the mon.
itor in an synchronous or an asynchronous manner”
If asynchronous communication is selected, how does
this effect the correctness of the specification cheching
code?

In a distributed system, certain events will alwass
happen in a predeterpuned order
task must call another task before the second tash

For example sonie
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can accept the call. We refer to these event pairs as
connected events. (Most events in a distributed com-
putation are not connected. For example, if two tasks
each call a third task, the order in which the calls
occur is usually insignificant.) The means in which
events are reported to the specification checking code
must preserve the connectedness of events. The cur-
rent implementation preserves connectedness simply
by blocking tasks while an event is being processed.

6 Solutions Under Develop-

ment

A number of monitor implementations are currently
being studied or developed which provided alterna-
tive solutions to the report/interference trade-off.
One alternative is to dedicate one or more proces-
sors to the monitor and make event reporting asyn-
chronous By doing so, we can reduce the processing
overhead associated with the processors executing the
underlying program as well as minimizing the block-
ing of tasks when events are reported.

Another alternative involves the distribution of the
monitor itself. By executing the monitor on each
available processor, the monitor on a given processor
need only be concerned with a subset of tasks com-
prising the total computation. This approach reduces
the processing requirements of a given execution of
the monttor.

A new approach to monitoring TSL specifications is
also being studied. In this approach, each specifi-
cation 1s transformed into an Ada task. Each task
would then be concerned with the monitoring of a
single specification. In this way, the run-time moni-
tor itself can be reduced to a common user interface
called by these tasks. This approach relies on the
Ada run-time system to perform load balancing and
scheduling of monitor tasks

Preserving connectedness is also being studies at the
language, rather then implementation, level It may
be desirable to extend TSL and allow the user to spec-
ify connected event pairs. Then, under asynchronous
event reporting, the monitor can shuflle the event
stream to preserve connectedness Such an approach
would both extend the capabilities of the language
and mimmize the assumptions made by the monitor

implementation.
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Eager Evaluation in a
Program Development Environment

Rick Bubenik
Willy Zwaenepoel

Department of Computef Science
Rice University
Houston, Texas

We define eager evaluation as the execution of computations prior to the time they are required.
with their results being stored in a temporary location. When at some later point those compu-
tations become necessary, we check if the eagerly computed results are still valid and if so. return
them immediately without additional computation. Eager evaluation has the potential of providing
very fast response time at relatively low cost in an environment where:

1. There are frequently idle computational resources so that speculative computations can be
carried out without interference with other tasks.

2. There is a high likelihood of being able to predict the computations that will be necessary.

We believe these requirements are often met in a workstation environment where the program
development procedures are described by some declarative description such as a makefile. Typically,
in a workstation environment, most of the time the majority of machines are relatively idle. Con-
sider what happens when a user is modifying several program files that compose some application.
Typically, the user will edit the files, save the new versions, then rebuild the executable by issuing
the make command. The rebuilding process usually involves generating object modules from each
of the program source files, then linking these into a final executable file. When eager evaluation
is applied to this environment, the evaluator anticipates the need to recompile each of the source
files as new versions are saved and also anticipates the need to regenerate the final executable from
the new objects. Then, when the user types make, the results can be returned as soon as possible.

More generally, we assume that the overall computation consists of a number of subcompu-
tations whose relative order of execution is specified by an erecution dependency graph. The
individual subcomputations are carried out by one or more processes with no shared memory be-
tween subcomputations. These processes can perform arbitrary side eflects by sending messages to
server processes. The order in which side effects occur determines a side effect dependency graph.
There is no communication between subcomputations other than indirectly, through side effects.

In order for the eager evaluation to be correct, we require that

1. No side effects become visible before the computation is mandated (requested by the user).

This research was supported in part by the National Science Foundation under grant DCR-8511436 and by an IBM
Faculty Development Award.
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2. After the computation is mandated, the side effects become visible as if the computation
was executed normally at the time that the computation was mandated. In other words,
the side eflfects should become visible in a serial order that is consistent with the side effect
dependency graph, with the input set of the computation as of the time the computation was
mandated.

We propose encapsulations as a mechanism for supporting eager evaluation. All processes
carrying out part of a particular eager evaluation belong to the same encapsulation. Side effects
remain invisible until the encapsulation is mandated. Subencapsulations can be used for grouping
related activities. For example, the command(s) used to bring each targe! in a makefile up to date
can be placed in a separate subencapsulation. When a subencapsulation is mandated, the effects
concealed within it become visible to the external world. This facility is useful when only a portion
of the eager computation is requested by the user.

An encapsulation coordinator monitors whether the various make dependencies remain satisfied.
starts computations in encapsulated processes when dependencies are no longer satisfied, and logs
the server-encapsulated process interactions in the order they occur.! If during eager evaluation the
coordinator notices that one of its computations was performed in error, it undoes the corresponding
log records, and {potentially) restarts the computation.

When an eager computation is mandated, the coordinator executes in two phases: a consistency
check phase and a writing phase. In the consistency check phase, all read interactions are checked
to determine whether the information on which eager evaluation was based is still valid. If a check
fails (because the item read has since been modified), some parts of the computation need to be
redone. If all checks succeed, the write phase begins. During the write phase, the side effects are
made visible in the order in which they were logged. Since these effects were logged in the order
thev occurred, and since incorrect computations have been undone, the order in which side effects
appear is correct in the sense we described above.

Unlike client processes, for which encapsulations are totally transparent and require no mod-
ifications, server processes have to be modified to participate in encapsulations. Essentially, they
must log relevant interactions with the coordinator, and record output in a temporary location. As
an example, consider how the file server can be modified. The file server handles encapsulations
by checking all incoming requests. A request from a nonencapsulated process is handled normally,
requiring no additional overhead. Requests from encapsulated processes are either handled nor-
mally or forwarded to an associated encapsulation manager, depending upon the nature of the
request. The encapsulation manager then takes the responsibility of concealing side effects. When
new files and directories are created. the desired name is mapped into a temporary name. All
subsequent accesses to these files are redirected to the temporary versions. When a file is opened.
the encapsulation manager sends a request to the file server to open the appropriate version. The
file server returns a fileid, which the encapsulation manager then passes back to the requesting
computation. All future read and write requests specifying this fileid do not have to be forwarded
to the encapsulation manager, but rather can be handled directly by the file server. Consequently,
encapsulations do not impose (significant) overhead on what we conjecture to be the vast majority
of file server operations—reads and writes. Other operations requiring special attention include
deletions, renames, and certain query operations.

We believe that encapsulations are a more appropriate abstraction to support eager evaluation
than atomic transactions. Although atomic transactions provide another mechanism for hiding
side effects and ordering them appropriately, we believe that if an atomic transaction were used

'In fact, it only needs to record a limited subset of the interactions.
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. to encapsulate an eager evaluation, with the transaction committing (and hence making its side
. effects visible) when the computation is mandated, several problems would ensue:

1. If only a portion of a large eager computation is requested by the user, it would be impossible
“ to commit only a subset of a transaction in order to return just the requested results. Alter-
natively, if separate transactions are used for each portion, results computed in one portion
would not be accessible in another (i.e. an output file, such as an object file, would not be
)] accessible as an input file to some later stage of the computation).

f.f
(%]

. If some of the subcomputations require terminal input, subsequent to terminal output, it
would be necessary to make some of the side effects visible before commit time, in contrast

- with the requirement that side effects be made visible atomically. We anticipate that the eager
hd evaluator will block the computation in the case of terminal input (until mandate time), then
make all previously computed side effects visible and continue executing normally.

Yo 3. More generally, there seems to be a fundamental contradiction, between the atomic commit
w* of transactions. and our desire to make side effects visible in an order that is consistent with
. the side effect dependency graph. In particular, we feel that it should be possible for the user
:::’ to abort the computation after observing some partial output. This would not be possible if
- the transaction had committed by virtue of the computation being mandated.

. 4. We believe that the cost of atomic commitment, especially in the case of a distributed two-
- phase commit. far exceeds what is needed for encapsulations. Much of the savings comes
from reduced 10 and protocol overhead since individual side effects can be made visible in

isolation.

.,
'y

Noue of this precludes taking advantage of transactions to support non-idempotent operations or
to improve reliability,

Previous work on eager evaluation has largely concentrated on applicative environments. Our
work is different in that we explicitly deal with side effects, and in that the grain of computation
considered for eager evaluation is much larger. We believe that with a large grain of computation,
the potential for eager evaluation increases significantly, since the overhead involved in dealing with
the evaluations and masking side effects becomes relatively less important. Eager evaluation has
also been incorporated in some other programming environments. However, the type of environment

v %

A

3

o considered has typically been of the tightly coupled variety, where the environment has tight controls

> over the commands executed and the files accessed. These environments appear to have an easier job
supporting eager evaluation due to the tighter controls. However, they do not appear to generalize

L. easily to support eager evaluation of arbitrary computations.

o In summary, we have described our concept of eager evaluation and its application in a pro-
gramming environment. We have proposed encapsulations as a mechanism for supporting eager

N evaluation and outlined why we believe it would be superior to atomic transactions for this purpose.

t}: We are currently implementing eager evaluation for make running under the V-System to get some
experimental evidence about the cost and the potential of eager evaluation in this environment.

[
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An Object-Oriented Approach to
Remote Procedure Call Stub Generation
for Heterogeneous Environments

Eric C. Cooper
Michael B. Jones

Computer Science Department
Carnegie Mellon University

Extended Abstract

Construction of stub generators is currently a time-consuming, error-prone task: the state of the art is analogous
to that of compiler construction before the advent of parser generators and retargetable code generators. We are
engaged in research 1o advance the technology of stub gencrauion, by approaching the problem with two new idcas
Although both have been explored in other arcas of computer science and software engineering, we belicve their
application to the design and construction of stub gencrators is novel.

The first concept is parameterization. A particular stub generator can be classified according to vanous attnbutes.

including
e the dawa definition language (DDL) it accepts,
o the extermal representation it uses,
e the internal form it uses,
e the target language it produces, and
e thc marshaling conventions il expects.

We believe that these attributes should be viewed as parameters to the stub generauon process, just as BNF grammar..
intcrmediate languages, and machine descriptions have come to be viewed as parameters to the compilauon process
Foliowing the analogy further, we are led to the idca of a stub generator generator, like a compiler compiler s
higher-order tool that one uses o produce stub generators with particular choices for the above parameters.

The second concept is object-oriented design. The parameters we propose are complex structures; il is not
immediately clear how 10 represent them. Table-driven schemes have been used in previous work for some of these
parameters, but the approach appears limited and difficult o extend to the other auributes.

We plan to use the ideas of type inheritance and polymorphism present in object-oricnted languages such as
Simula, Smalltalk, and C++. The inheritance structures that can be expressed tn object-oncnted languages provide
another way of representing the knowledge needed by a program, in additon to conventional modularizaton

techniques such as abstract data types, modulces, or packages. We propose 1o use type inhenance in stub generator
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construction to encode choices of DDL, external representation, target language, intemal form, and marshaling

convenuons.

The advantage of this approach is that it allows the design decisions for a particular parameter choice to be
implemented at a high level in the type inheritance hierarchy, while factoring out the details implied by the choices of
the other parameters. For example, one can implement code that defines some aspect of the marshaling conventions
(the argument passing scheme, say) in terms of generic target language operations. The particular marshaling
routines can then be generated by inheriting both these marshaling conventions and a particular choice of target
language. If a different target language is mixed in, the code for the marshaling conventions need not change, and
vice versa. This separation appears difficult o achieve in stub generators programmed in convenuonal languages
We believe it will yield an order of magnitude simplification in the constructon of stub generators for hetcrogeneous

environments, in which muliiple DDLs, target languages, target machines, and external representations are the norm

Abstract Object Abstract Type Abstract Record Type
C Object C Type C struct Type
Ada Object Ada Type Ada record Type
Lisp Object Lisp Type Lisp defstruct Type

Figure 1: Class refinements for data type representation

Abstract Object Code Template Counted Loop Temptate
C Object C Code Template C tor Loop
Ada Object Ada Code Template Ada for Loop
Lisp Object Lisp Code Template Lisp do Loop

Figure 2: Class refinements for code representation
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Research Plan

‘ The first phase of our research project is to construct a prototype of a type transformation system, using an
. object-oriented approach. This will be a general-purpose tool for transforming typed data from one representation 0
E’_:'. into another, with applications to remote procedure call marshaling and foreign function call interfaces. Type .
representations will be described in a language-independent fashion; code for type transformations will then be 4
F generated using language-specific code generators.
* The second phase is to build a prototype multi-language code representation and generation system for use
C:: with the above type transformation system. This will provide a method of representing code templaies in a
o language-independent fashion. Constructs such as assignments, type transformations, blocks, loops, condiuonals, 3
and procedure calls will be representable. Code generation will again be done by language-specific code generators.
Fr This will initially be used to represent and generate code for RPC interfaces of various kinds. :
. Our intent is o use an object-orented approach for building both prototypes. Refinements of the class hierarchy
E_‘; will be used w represent refinements of specifications. For instance, a language-specific representation for a data !
type is a refinement of the language-independent declaration for that type; an Ada for loop is a refinement of an
2 abstract counted loop. Figures 1 and 2 illustrate possible class refinements for fype and code representauon. We 4

intend 10 implement the prototypes in C++, for several reasons: C++ s portable, commonly available, and produces

efficient code. More importandy, it allows a fine grain of control over the ¢2~"ired ¢'./2cts and operators, including u

overloading of built-in operators.
A number of open problems must be solved during the course of this research in order to build reusable stub

generators. We must find a way to describe type representations and remote procedure call formats independently

¥ sk T _W_ v ¥

of specific DDLs such as Mawchmaker, Sun RPC, or Councr. We must also investigate how to specify type
tansformatuons 10 a way that is flexible enough for an environment of heterogenecous applicauon programs,
programmng languages, and machine types.

. ’

[ |

¥ Background

Ly :

e The authors have designed and implemented a number of stub generators and remote procedure call systems,

[

including Cournter, Matchmaker, and Flume (the DEC SRC stub generator). In the area of programming language

5 design and implementauon, we have worked on parallchism (C threads, Ada tasks) and exception handling 1n C++. ¥
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Coupling a Network Computing Resource
to a VLSI Placement Problem
0 Carl Diegert
) Sandia National Laboratories, Albuquerque NM 87185
> We describe a problem and its successful assault by a single user exploiting many
- computers, focusing on the strengths and weaknesses of (to borrow Apollo’s term) the
::‘_ network computing environment in which we worked. Our solution was the best entered
in a recent IEEE/ACM place-off competition, beating contestants using timeshared
g\: computers (many users sharing single computer) and contestants using workstations
(comiputer allocated to single user). The aggregate compute power of the network
allowed us more experimentation and search that workstation contestants. Mainframe
contestants, however, had more compute power available to them than the compute
power we applied from our network. The strength of our network computing is identificd
a8 as its convenience in carrying out our ideas, experiments, and analyses. Efficiency in
. coupling the network compute cycles to the problem is ranked as relatively unimportant.
The competition problem was to give physical locations on a two-dimensional in- 1‘
tegrated circuit chip for about 3000 predesigned pieces (standard cells) of a given ‘
! microprocessor design. The contest administrator then (ran the computer code that) I
) interconnected these pieces, completing the physical design of the microprocessor chip. {
- Our winning placement solution produced a microprocessor design with both the small- w
est chip area and the least amount of interconnect wire.
. With a bit more abstraction than we actually used, the problem is to search through |
::5 3000' ways to assign the predesigned cells to grid locations on the chip, looking for ‘
an assignment (numbering) that will produce a small chip. This enormous discrete |
.': optimization problem is nasty in that attempts at greedy search quickly get stuck in ‘
local minima. The problem is challenging because the real objective of chip size is
E ’l far too difficult to compute frequently during the search: statistical abstractions must
: ~ be used for guidance. Stochastic search techniques addressed both the nasty and the
: r, challenging aspects of the problem. ’
b ?\ The power of the network computing environment was in its convenience in setting
. up. executing, and analyzing experiments over variations in search technique, objective
- i
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e function, etc. Designed experiments were necessary because the search techniques were
1 1y

' stochastic: a desirable change in a parameter, say, is not apparent from comparing a
< single new run with an old run. Instead, trying a new idea comprised a sequence:

-

*.::

o ¢ design an experiment;

~T e

P

v e set up a computer run for each experimental sample point;

w

e e execute the independent runs, usually in parallel;

'_’.}j

f.:{ e analyze results.

.,- The Apollo network single-level store and the network’s remote process facilities

~ . .

o were adequate for our pioneering effort. Madhat, the code that searched for placement

.

::\' solutions, includes an flexible input parser. Madhat can digest problem setup com-
o .

» mands that other tools generate from a sample space of parameters. Execution of the
._ parallel runs was tedious and wasteful, but workable. With each Madhat run leaving
oy . . . . .

o results in the same subdirectory, we quickly and easily wrote codes for analysis of each
N .
o~ experiment.
e
W

We accepted great inefficiency in coupling network computer cycles to our problems,

e

as the network resource was entirely justified by the capabilities and productivity it

s
'.': offered its daytime interactive users. We didn’t have, and didn’t stop to develop a
g , .

N clever location broker. Instead, we resorted to using only network nodes that could
P

-':‘_- complete a run overnight (or, on Fridays, over a weekend), and scheduled only a single

D) run for a particular node on a particular evening (or weekend). The quantity and mix

‘}: of nodes to be available on a given evening did influence the design of the experiment

“'F-.' . . . . .

e conducted that evening. We did this mostly by asking around, and with face-to-face
N negotiations and verbal agreements with other (human) users of the network resource.
~

Adaptation of the allocation occurred by our collective human experience, and at most

V. .

s resulted in changes from one evening to the next.

B .

J.«. Synchronization of parallel Madhat runs occurred at most a few times each day.

-:; Synchronization in this broad sense ranged from
.' . . . . .

o a. judge which of several runs stopped with a numbering likely to lead to a good
::: chip, and use this numbering as the starting numbering for more parallel runs,
_:'.- to
.. . . -

N b. note a high-level problem in subsequent completion of physical designs from a

.'.l

s batch of solutions (a problem with feed-through cell management), introduce a

-.:‘

-

",
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. new nonlinear term in Madhat’s objective function, set up an experiment with
. variations on the new term, and execute the experimental runs.
< Synchronizing once a day was effective, but more frequent synchronization might
> \/ ’ q y
. .
v produce a better solution, or might get to an equally good solution quicker. If the
! computing network offered better support, we might try a type a synchronization a
s couple of times an hour. The human thought needed at most synchronization points
would still be limited by the single user’s ability to understand what the computers
\‘-.. . . .
:‘j had done, to develop a new idea, and to express execution of a new experiment to the
computers. For the most part, these human interactions set the pace of our progress.
g We would have welcomed an intelligent location broker, and other network computing
te. niceties, but we doubt that they would have gotten us to our solution much sooner, or
- that they would have gotten us to a better solution.
P
) To couple yet more power to the same problem perhaps we need to move to a
fourth environment, an environment with one problem, many computers, and many
o users. The computing network would still allocate its computing resource to execute
experiments, now given by its several users. The network would now facilitate the users
i building on each other’s methods and results. Steps forward, then, accidental or clever,
might be more frequent. Borrowing from a Minsky title, this new height in integration
N could be called societal computing.
[~ (Abstract unclassified, presentation unclassified.)
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Transaction Processing in Heterogeneous Distributed Databases.

Ahmed K. Elmagamid
Computer Engineening Program
121 Electrical Engineening East Building
.’ The Pennsylvania State University
- University Park, PA 16802
ahmed@psuecl.bitnet
(814) 863-1047

r A heterogeneous distributed database is a system of interconnected DBMSs that
usc different strategies for data and transaction management. Though issues such as
universal query languages, and global view and schema integration have been

investigated, transaction management issues introduced by the integration of
scparate database management systems into one global database have not been widely
addressed in the literature.

Probably most disturbing to me is the general misunderstanding in the dawbasc
communily as to what a heterogeneous database really is. Many people seem 10 rcfer
" to distributed databases as heterogeneous databases.

Of interest to me are questions relating to transaction support in the
heterogencous database environment.  Two basic approaches are possible in order to
intcgrate  differing DBMS's. The first approach integrates transaction management
policies into one global transaction manager that handles subiransactions accessing
the heterogencous database. The second is based on hierarchical composition of

. transaction management policies. In the latter approach, software is added on top of
existing systems whenever neceded (Gligor and Luckenbaugh, Interconnecting
Hecterogencous Database Management Systems, IEEE  Computer January 1984).

I's

The heterogeneous database research group at Penn State consists of three
students along with myself. We are looking at concurrency control (Y. Leu),
rccovery (D. Mannai), and deadlock issues (I. Mahgoub). In this workshop 1 would
u like to discuss the following set of related questions:

-

« Which of the problems are due to DBMS integration and not duc 1o
- heterogeneity?

« How 1is the consistency of heterogencous databases defined?

4 Ly ..
- + How does serializability apply to heterogeneous databases?
+ How strict must the definition of database autonomy be? How docs it complicate
N transaction management issues?
’.
-’

+ How impornant are atomic updates in this environment? How often arc they
expected?

+ Are we likely to have generalized solutions to the problem of concurrency
control  and recovery?
it « Specific algorithms we have developed for concurrency control and rccovery
. in HDDBs.

In the discussion we would like to consider all possible systems depicted in the
figure below. Especially in the shaded areas.
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3 1. The HPC System
The primary goal of the Hierarchical Process Composition (HPC) project is to provide tools

!*"\' for building, monitoring and maintaining long-lived, complex, distributed applications
v [LeF85a, LeF85b]. HPC is an experimental system for structuring applications, rather than a
manager of applications or an application itself. It has roughly the same relationship to i

- clients and host operating systems that the X window system has to its. Where X provides an
k- abstraction of nested windows, HPC provides an abstraction of nested processes.

E The ultimate target environment is long-haul distributed systems: systems with substanuul,
s variable communication delay and connectivity, and with independent site failures of signincunt
= frequency. This environment is further characterized by physical and administrative autonomy,
. and hetereogeneous hardware and software. The Xerox or DARPA internets and mobile packe:
P radio networks are good examples.

HPC uses only two basic host facilities: conventional (heavyweight) processes and network
interprocess communication. Large grain, loosely coupled processes are natural building blocks
for distnbuted computations. The interactions between processes are subject to the same
restrictions  as  interactions between hosts. They run autonomously, concurrently and
asynchronously, communicate only through explicit shared interfaces, and know only their own

v

r=

v
- ste.
HPC builds applications from these large-grain processes and network protocols. First,
E cooperating processes are joined by creating communication channels between them. This
composition leads to something like a dataflow graph. Each process can have several distinct
ports, each presenting different functions or network interfaces. Second, groups of reluted
b processes are encapsulated as abstract HPC "objects” and treated exactly like single processes.
t This leads to a hierarchy o1 tree of active entities, where the leaves are real processes and the
internal nodes represent larger and more complex activities with some degree of internal
'y parallelism.
fe Our use of abstraction and composition is not novel. There are many design and analysis
- tools which describe a system at several levels of abstraction, where a black box at one level is a
Ej croup of components with specific interrelationships at the next lower level (SARA, for onc).
’ This basic structuring also appears in several proposals for programming languages (DPL-82.
, PRONET), and in at least one implemented distributed operating system (CONIC). Whatis new
‘;ff or interesting about HPC?
' e  HPC process structure (the abstraction hierarchy and composition graphs) is completely
. dvnamic. The HPC system is not a language for describing static structures, but a set of
Jt tools for building, maintaining, modifving, and tearing apart applications during execution.
" [Fn&6]
. e  Everything in HPC is designed for an asynchronous, failure-prone environment. Rather
E- than attempting to provide transparent synchronization and reliability at the HPC level.
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explicit reports of failures and other unexpected events are provided to applications. Each
application’s manager can decide on the appropriate recovery or control policy and use
HPC primitives to implement it.

e  HPC runs on heterogeneous host systems. Each host’s resources may be different, and no

host is obligated to provide any specific network protocol or executable process image.
Type information is used to prevent improper combination of host resources.

e  Access control is based on application structure. The same hierarchy which defines

abstraction is used to define protection domains. The agents and contents of a domain are
immediately obvious, unlike access control list or capability list systems, and positive
control of every domain is intrinsic to the HPC system.

2. Observations and Problem Areas

We are satisfied the HPC design meets its major goals. However, in the course of
implementing and experimenting with the system, we found some problems related to HPC
implementation on the one hand and application management and programming on the other.

To 1mplement dynamic process structure while preserving abstraction, the HPC server
needs to set up and tear down network connections without the cooperation of the processes
being connected. We call this general capability third-party connect. Emulaton of third-party
connect for network protocol suites that do not support it is expensive, yet it is critical to
reconfigurable, modular software. Designers of future protocols must separate the session and
transport layers more carefully. [Fri87]

Since large-grain processes are loosely coupled, they should not have to synchronize often.
However, they must resynchronize occasionally to apply end-to-end control, (re)authentication,
flush transactions, indicate urgent data, and so forth. Dedicating communication channels to
infrequent synchronization is wasteful, but the alternative is synchronizing out-of-band in the
channels used for data, and many networking protocols do not support OOB communication. 1
would like to t.car approaches for dealing with the general problem of OOB or synchronization
marks.

Argus, Eden, and others, started with the viewpoint that interactions between distributed
entities should be synchronous. We began with, and still hold, the opposite view: distributed
interactions are intrinsically asynchronous. However, wrnting a program with muluple
asynchronous interations is notoriously difficult, and we now provide a lightweight task library
to support the illusion of synchronous interactions. As a result, many processes using HPC are
structurally similar to Argus guardians, although the HPC system knows nothing of this internal
structure, and atomic transactions are not provided (or desired). Our conclusion is that the grain
of parallelism appropriate for programming (given existing methods and paradigms) is smaller
than the grain appropriate for efficient use of distributed resources.

Even using lightweight tasks to simplify the programming, writing robust managers for
survivable applications remains extremely difficult. The problem is coping with arbitrary
asynchronous events (like process failure) when the primitive actions available in response are
themselves asynchronous. At the moment, there is too little experience with actual managers to
consider special languages or tools. Exploration of sample applications and their run-time
management may be the most important use of the prototype HPC implementation.
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3. Status

The HPC project began in mid-1984 as a "1 and a fraction” person project. Much of the
last three years has been taken up with design issues, especially the interactions between
distribution and control, to ensure a small set of features would support a wide vanety of
application management policies.

Currently we have a "wizard mode" prototype implementation running on Sun and Vax
Unix hosts. All communication between parts of the system uses standard IP protocols, and
applications can actually be spread across the DARPA intemet, but the HPC server i:self is not
distributed. Over half the code, and by far the least awractive pan, is dedicated to networking
support and the client and host interfaces. (It has been a matter of discussion whether building
on top of Unix or on top of bare hardware would have been more producuve.)

There are several directions HPC-based research could take. Having this toolkit begs the
question of how it can best be used, and experimenuon with various control policies for
distnbuted applications is the most interesting research program. Second, it was alwavs our
intention to distribute the HPC service itself, but time and effort prohibited a full development of
the distributed protocols required. This remains a challenging area. but one we don't feel
obligated to tackle in the near future. Third, there were a number of design issues which we
solved expediently but not properly. At some point a redesign that satisfies both our current
frustrations and coming experiences with client control policies would be appropriate. And
finally, there is always the desire to do "the last 10 percent” and distribute a high quality svstem
for others to use.

[Frni&86] S. A. Fnedberg, ‘“‘Control of Dynamic Process Swucture - Policies and
Mechanism’’, HPC Project Report 6, University of Rochester, October 1986.

[Fri87]) S. A. Fniedberg, *‘IPC for Modular Software Requires a Third Party Connect™,
Tech. Rep. 220, University of Rochester, June 1987.

[LeF85a)] T. J. LeBlanc and S. A. Friedberg, ““HPC: A Model of Structure and Change in
Distributed Systems™’, IEEE Transactions on Computers C-34, 12 (December
1985), 1114-1129.

[LeF85b] T. J. LeBlanc and S. A. Friedberg, ‘‘Hierarchical Process Composition in
Distributed Operating Systems’’, Proceedings 5th International Conference on
Distributed Computing Systems, Denver, Colorado, 13-17 May 1985, 26-34.
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LARGE GRAINED DATA-DRIVEN
APPROACH TO MULTIPROCESSOR
PROGRAMMING!

Jean-Luc Gaudiot and Liang-Teh Lee

Computer Research Institute
Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, CA 90089-0781

(213) 743-0249

Extended Abstract

The purpose of our research efforts as described in this paper is to inves-
tigate software methodologies for multiprocessor systems programming by
using a data-driven approach to solve the problem of runtime scheduling.
Indeed, the data-flow model of computation offers the potential for virtually
unlimited parallelism detection at little or no programmer’s expense. It has
been applied to a distributed architecture based on a commercially available
microprocessor (the Inmos Transputer). Some initial performance results
of our system have been described in [Gaudiot et al 86] and {Gaudiot and
Lee 87]. These results will be used for a comparison of the communication

! This research was supported in part by the U.S. Department of Energy under grant
DF-FG03-87ER25043. The views presented herein are solely the author’s and are not
necessarily endorsed by the U.S. Department of Energy.
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cost, degree of parallelism, and execution time of a matrix multiplication
example, with and without loop unrolling among the different stages of
partitioning.

A complete programming environment which translates a complex data-
flow program graph into occam as well as a set of instructions for our sim-
ulator has been developed. A graph generator creates a program structure
graph (PSG) and a data-flow graph (DFG). In accordance with the PSG
and DFG, the code generator generates both the occam program and a set
of simulation instructions. We will describe in detail the mapping from the
SISAL ( Streams and Iteration in a Single Assignment Language ) high-level
constructs into the low-level mechanisms of the Transputer. Synchroniza-
tion between different processes, array handiing problems, relay processes
and some important program structures, such as vector operations, WHILE
REPEAT / REPEAT UNTIL loops, and SELECT operations will all be
discussed.

In order to increase the utilization of the Processing Elements in the
system, maximize the parallelism and minimize the communication costs.
several optimization techniques will be considered. The partitioning issues
(granularity of the graph) will be presented and several solutions based
upon both data-flow analysis (communication costs) and program syntax
(program structure) are proposed and have been implemented in our pro-
gramming environment. Based on the program structure and on heuristics.
a high level partitioning algorithm which lumps together several actors to
form the macro-actor and generates a partitioned data-flow graph can be
implemented. The partitioning algorithm proceeds recursively: it traverses
the PSG until the tree is exhausted. A large grained parallelism is obtained
by the execution of all macro-actors concurrently upon data-flow principles
of execution.

To achieve better performance, the following approaches have been stud-
ied in our research:

e Communication cost thresholding: lumping together of those parti-
tions between which communication costs greater than a specified
value to reduce the number of partitions and the total communica-
tion cost of the system.

e Unrolling of loops: for array operations, unrolling the loop body to
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obtain a corresponding speedup.

e Static and dynamic allocation: making further partitioning and con-
sidering the type of interconnection networks, such as mesh and Hy-
percube connections, to achieve an efficient task assignment at com-
pile time and runtime respectively.

For testing and analyzing of our graph allocation and optimization
schemes, a set of benchmark programs, matrix operations, Livermore Loops,
etc., have also been performed on a deterministic simulator to evaluate the
performance of the translator on our proposed architecture (TX16).
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SCHEDULING IN DISTRIBUTED SYSTEMS

Thomas B. Gendreau
Department of Computer Science
Vanderbilt University
Box 1679, Station B
Nashville, TN 37235

A central problem in distnbuted systems is the scheduling of processes onto proces-
sors. This problem is motivated by issues such as load balancing, parallel algonthm
requirements, algorithm-architecture matching, and utilization of resources. Without &
satisfactory solution to the distributed scheduling problem. the creation of efficient large
grained parallel algorithms will not be possible.

Most work in distributed scheduling (in Local Area Network (LAN) environmernis)
reats processes in the system as if they were independent entities. In many systems this 1
a reasonable assumption. However. if a svstem (either LAN based or message-passing
multiprocessor based) wants to provide an environment for the development of paralle!
algonthms, then this is not a reasonable assumption. In a parallel application, processes
will have certain relationships with other processes in the algorithm. These relationships
can be described in terms of concurrency relations and communication relations. The con-
currency relation indicates how much of the processes’ work can be done concurrently.
For processes that are not directly related it mayv be possible that all their processing can
be done concurrently. For processes that share information the frequency of communica-
uon will be an important feature in determining the amount of work that can be done con-
currently. For example, we could have two processes in the algorithm that do not com-
municate with each other and whose only purpose is to compute some result and send 1t 10
a third process. In this case the work of both processes can be done concurrently. At the
other extreme we could have two processes that work in lock step with process A comput-
ing a result and sending it to process B and waiting for process B to do its work and
retuming a result back process A. In this case there is no concurrency between the
processes. The communication relationship indicates the amount of information that 1s
exchanged between processes.

In scheduling the processes of a parallel algonithm, the system will be able to make
more intelligent decisions if it has information about the concurrency and communication
relatons and other features (e g.. expected lifeume or process creation patterns) of the
processes in the algonthm. I the number of processes and the relationships between the
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processes of the algorithm are known before execution, then this information can be pro

vided to the system before the application runs. On the other kand, the number of

processes and their relauonships may be data dependent and thus not known untl run
time. In this case the system needs ways to gather information about the behavior of the
program. This may be done by having the application program communicate with the
operating system about important changes in behavior or by having the operating svstem
learn about the behavior of the program.

When an application process creates a new process at run-time 1t may be ahle to
inform the operating system about certain characteristics of the new process. These charac
teristics could include information about the relationship between the new process and
existing processes and information about the new process’ potential 1o create othes
processes. In order to do this appropriate protocols for the operating svsten apphicai
processes communication wiil have to be developed Some primary issues o this are
inciude the discovering of what imformiation 1y very helpful to the operanng svaiem and

creanon of alcorithms that can use this informaton with g tolerable amoun: of overhead

Having the system learn about the behavior of parallel programs iy atractive because
he programs are rarely developed to be run only once. Given tiis fu @ we can conwde:
he possibiliny thar the syvatemy can gather mfomuanon from previous runs of a program
Thix information can be used i the management of future runs of the program. It b

been recognized that some paraile! pru:r.ma\ co throush o certain number of phases, Thes

various phases may be characterized by different penierns of process creanion and desirad
uon and by changes in the concurrency and commuamication relatiomsbips Idealhv, ¢ o
management programs would be able toadentty thet o program was about o exhibye

certain type of behavior and tahe actions e g migration of processest that would aliow
the prozram to run more efncienty. This ic obuousds an ambitous goal and o number o
questions must be answered. Firsto whar aptomatos <hould be kept from the previos
runs” Second, now can the informanon be analyzed” Third, is the cost of collecuny into

mation during the running of the apphcation and the cost of running the managemen: pro

grams Justified by the increased performance of the appheatons?

We are currently anvesugcanng the appropriste operating svstem/Zapphication prozian:
interface and the problem of having the system learn ahout program behavior in LAN and
message-based multiprocessor ensvironments. We also examining ways o which bidlon
(Farb73. S1Si84), drafting [NIXGSS)L or the gradient model [LiKe87] alconthms can be
moditied 10 make use of greater intormanan about program structure and process relanon

ships
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An additional issue to consider is a justification for dynamic creation of processes by

! the parallel algorithm. It has been an implicit assumption of this work that the flexibiiity
provided by data dependent run-time process creation is useful For example, a process

that finds it has a large amount of computation to perform may want 10 create another pro-

cess to do part of the work on another processor in parallel. Ideally this i1s an attracuve

concept. An important open question is at what frequency can dynamic process creation be

-
';:' handled efficiently. We hope that our research in the above problems will give us some
- insight into this question.

&
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Expressing Large Grained Parallelism Using Operator Nets

J.I. Glasgow, G.H. MacEwen and D.B. Skillicorn
Queen’s University, Kingston

Introduction
NS The graphical language, operator nets [Ashcroft83], provides a method for
' describing interprocess communication and parallelism in a distributed computing
. environment. An operator net consists of a set of nodes and a set of directed arcs
:: corresponding to infinite sequences of data values from some underlying algebra.
) A program in the lunguage consists of a set of equations that relate the output arc
- of 4 node to a function applied to the input arcs of the node. These equations can
- themselves be comsidered a language: the functional language Lucid [Wadge85).
A behavioral semantics for operator nets hws been defined [Glusgow 19874} in
- which properties of & distributed system are expressed in the operator net model
- in terms of the fustories of an operator net and events that occur in such a net.

Operator nets can be used to express either fine or large grained puralichie

In the behavioral model for operator nets, a node wnd i aseociated cgautions aic
' considered @ process that consumes input sequences and produces un outpat
sequence.  These process nodes can either correspond to operators (ime grained)
| { or to Lucid functions of any complexity (large grained). Euch arc of & net 1s inter-

preted as a communication channel that carries messages from one process 1o
another. For example, consider the Lucid function that inputs a sequence and

- returns the even values in the sequence: even(x) = x whenever (x miod 2) equal 1;
This function can be represented as a single process and used to caleulate all of
. the positive even integers as illustrated in the following operator net.
- ( 4+ ——*)/\ fby —7—-——‘}@ >
~— _—_// S

A In this operator net we have three processes which could potentially be computing
in parallel. For more fine grained parallelism we refine the function node into a
subnet containing only operators, Le.

X

S Y
i

so the resulting net would have five rather than three processes,

N
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Current research in using operator nets to specifv parallelism in distributed
systems is centered around three projects: 1) Specifying and verifying security pro-

perties of computer systems; 2) Specifying real-time systems using Lucid and

operator nets; and 3) Developing a formal theory of operator nets for reasoning q
about distributed systems. In the remainder of this abstract, we summarize each R
of these projects.

SNet Multilevel Secure System N

SNet is a multilevel secure system being designed as part of a project investi-
gating methods for specifying and verifving security properties of computer systems N
[Glasgow 1985,1987b, MacEwen 1987]. In particular, we are interested in methods o
that allow a natural decomposition of a security model into component models and
then into functional components that can be verified and implemented indepen- o
dently from other models and components. Security properties of SNet have been o]
specified and verified using operator nets. This approach has been particularly suc-
cessful since it has allowed us to specify abstract constraints, using a behavioral f
semantics for operator nets, and concrete executable constraints using a Lucid =
specification.

The SNet design comprises host muchines, secure terminal servers, and secure -_':]
downgraders connected via an untrusted newwork. The current prototype contains .
three hosts, one downgrader, and one terminal server based on NS32000 processors -
connected via an Ethernet. The Lucid specification contains approximately fifiy i
wodes of varying functionality. The implementation is a network of Concurrent
Euclid processes that mirrors the structure of the operator net specifications. ip
Real Time Specification Using Operator Nets o

This project involves the development of a methodology for specifving real ol
tume svstems using Lucid and operator nets (Skillicorn 1986]. Given any Lucid 7
funcuonal specification of a system, the approach constructs two operator nets thut
describe the early and late time constraints of the system. These operator nets are ::3

sets of equations that capture all of the real time properties of the system and can ~
be solved for any of the variables, given values for the others. For example, it is

possible to answer questions of the form: what execution speed is needed to
achieve a given set of input and output timings? Because the real time specifica- "
tion is written in Lucid, all of the formal techniques we have developed can be
applied to the real time part, as well as the functional part. Thus it is possible to
prove properties of the real time specification. Because the specification 1s execut-
able, it 1s relatively easy to locate performance bottlenecks and places where the .
real time constraints are missed. We are working towards using our formal theory
to allow statements about architectural constraints to be made and results concern-
ing the relationship of architecture and performance to be proven.

e
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Formal Theory of Operator Nets

One of the major problems with formal verification is that the languages used
to reason about programs differ greatly from those in which systems are built. The
underlying foundation of Lucid as a programming language was to provide a pro-
gramming and proof technique that shared a single coherent structure. This was
accomplished by defining the semantics of Lucid completely denotationally with
mathematical properties such as referential transparency. Unfortunately, the pro-
gram transformation rules provided by Lucid are sufficient for only a very limited
kind of formal reasoning. We are currently developing a a proof system based on a
behavioral semantics for operator nets. This theory will allow us to formally verify
that Lucid specifications correspond to abstract specifications written in a logic
language for operator nets.

The formal theory for operator nets is based on a behavioral semantics that
intuitively models computations in a distributed system. This model has been
extended to also allow for reasoning about knowledge, where knowledge is defined
as a function of a process’s initial knowledge, input history and reasoning capabil-
1y,
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. Mentat: A Prototype Macro Data Flow System *
. Andrew 8 Grimshaw, Jane W. S. Liu, and Mark D. Thomas
Dept. of Computer Science, Univ. of lllinois, Urbana, Illinois 61801
Mentat 11 is an object-oriented macro data flow system designed to facilitate parallelism in
distributed systems.  The macro data flow model of computation [2,3] is similar to the
» traditional, large grain data flow model [4-7] with two differcaces: 1) some macro actors are
persistent and maintain their internal state between firings, and 2) program graphs are dynamic.
‘ Mentat objects implement macro actors. Each object implements an actor for each member
function of the object cluss. Mentat program graphs are constructed at run time. Graph nodes
-'.:: are actors, each of which may be elaborated into an arbitrary subgraph at run time by the node
) Graph structure information is carried with the tokens. Thus. control of graph execution is
- completely decentrilized. Parallelism is gained when different portions of the graph execute on
o ditfirent procosars
k.. ’
Tre Mesra prozramming lanzuage s an extended C= = %0 C= = war choson for wovers)
“, reasorss [ simplel eflicient objectoriented, and has no par.xln constructs alroady bl i
o T oble thve of tue extensions is to facilitate the writing of data driver oblects amd the
construeon of procrem arapbs. These extensions are implemented by & preproce-sor thw
. r e T eNtenaed Jan prozrams into C—— programs augmented winh culis 1o N
.",-—' Chraryore i T Dhrary rotines dnterfaee with the Mentat virtual macro Gata fos s e
Conee et oz can then be execured onothe virtual machine. The preproceoor
. oo < b cde o deisinon of wetors and andependent objects, the automatic detection of muacro
. aatn thea st seneree on of cade to construct program graphs. and optional progranimer control
€ cra z i Lot
> T Newws procramming lanzuace consists of the following four principle extonsions:
> Choche bovwrds Moot porastent wnd regular in class specifiers
Sonre e et st ntenient s
E td b predetined member function mam(/ in class definitions
; Pornpiodt coneration of suboraph
T e ans et e the power of davaodriven computation easily aecessibie to prostani e
:'. T b rd Ve i the elass specifier indicates that the elass bs to b o N
- Purcfomones s Nt ches may be declared eithor persisten? or regules T sonian o
- Nt e debini o
P persistent recutar Mentat class-specifier
: ' Diotances of persistens cliasses maintain state between firings, whereas instances of regiuiar classe-
, do nots Lach inetunee of o Mentat object has a separate thread of control The e
‘ fanevions of the Mentun elasses implement actors. Mentat objects are similar to monitors 4 . no
g two actors for a partionlur instance of 4 Mentat object may execute simultancously.
.- I standard C - - O thiere is only ane thread of control. As a consequence member funeiion.
- wili alws s be execnted when called. Mentat objects must be able to specily which operations are
) candidiare Aor firing Sele ot Jaccept statements are added for this purpose. Guards cari depend o
Boocontoraf Jocdd varnahio s and the arguments of the member function~. By anelading the
'. .
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arguments of the member functions in guards we provide the programmer with additional
scheduling flexibility.

The programmer may also define a mainf) procedure for persistent Mentat classes, e.g.,
account::main() {...};. The main() procedure is started by the underlying machine once the object
has been instantiated. The main() procedure is the active portion of the persistent object. It
represents the thread of control in the object, and when 1t terminates the object is destroyed.
Under most circumstances the main() procedure will be used as an outer control loop determining
which operations to accept. If no main() procedure is present the preprocessor will generate onc

with an accept statement for each member function.

One of the purposes of the preprocessor is to detect data flow between actors and to
generate code to construct data flow subgraphs. Data Hows between two actors when either the

result of one actor is used as an input to another. or when one actor invokes another actor. The
preprocessor detects data flow by imposing an implicit single assignmient rule on all variables
We call these variable-

re-ult

used on the right hand side of expressions involving Mentat objects.

result variables, We call the Mentat operation that produces the the source operation.
t

Luch time a result variable is used on the night hand <ié 7 . new gnstance of the variable i
created. Then, when the result varizhie 1= used onothe Wl e d de of un expression an ar
created between the source operation and the expressior on the rizie hand side. Graph
contruction proceeds gtorun time unti el ome gl i Dordor woretien e Nt
vioonatered s A result varinble is foreed wher i e s st b ide o wostriet Toner o
Arevarnoro fonare indicates that the bovobed om0 noe
We have tmplennented o protoivpe Vistial e Catn o b oo excente Doacra co '
Powo progranis onoa benoprocessor Bncore Nl W , cothis protolype to evaluats
Cononionalln and perfon vanee of the vhaoro datn e o atn aeoa test bed for il
prepracessors The preprocessor s currens v in e v Sostase A prototyvpe version of tha
preprocessot wiin be connplete by Decemphir 1070 P Do dn el abeadnes from implementing 1
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Avalon: Language Support for Reliable Distributed Systems

Maunce P Herlihy and Jeannette M Wing
'Deparment of Computer Science
Carnegie Mellon University
Pitsburgh, PA 15213-3890

A widely-accepted technigue for preserving consistency in the presence of failures and concurrency 1s
to organize computations as sequential processes called transactions. Transactions are atormic, that is.
serializable and recoverable. Sernalizability means that transactions appear to execute in a senal orde-.
and recoverability means that a transaction either succeeds completely or has no effect. A transactor
that completes all its changes successfully commits; otherwise it aborts, and any changes it has made are
urdone

Avaor s a set of inguistic consiructs gesigned to give programmers exphcit CoNntrol over transact.or
based processing of atomc objects ‘or fault-tolerart apphcaions. These construclts are berg
mp.emented as as extensions to C++ [5]  The constructs inciuce new encapsu:aton and absiractor
mechans™s. as weil as suppon for concurrency arc recovery  The decis:or to extend an ex s g
la~g.age rather than to invert a new language was based on pragmatc consideratons We felt we co.'c
toc.s rmore efectively on the new and interesung 1ssues cf reliabilty and concurrency if we ¢.g not na. =
10 recesgr or reimpiemert basic 'anguage features. and we feit that bui'cing on top o* a wideiy-usec a~c
w Ce y-ava ab'e larguace wou'd faciiiate tme use of Avalon outside our own research groud

A program™ in Ava'on corsists of a set of servers. wnicnh resemble Argus guardians (4] A server
~caps. ates a se! of obects ard expons a set of operations and a set of constructors A senver
resdes at a sing'e physcal node. byt eack node may be home to multple se~vers. An app caicr

D

program explicitiy crea'es a server at a specitied node by caing one of its constructors. Ratrer tha-
snasng data directly, servers commurnicate by calling one another's operations An operaton call 1s a
remote procecure call with call-by-va'ue transmission of arguments and results. When a server receves
a~ operaton call. it creates a shon-ived “ight-we:gh!” process to execdte the operalion. A server car
a-so provide a spec.a’ background operal.on calied by the system after itis createc.

Tre objects managed by a server may be stable or vo'atle Stable objects survive crashes, wh'e
veiatie obects do not  Internally, the storage managed by an Avalon server s organized as a three-leve
b erarcry consisting of volatile, non-volatle. and stable storage. Objects are updated in fas: voiar
storage. which does not survive crashes Slower non-volatle storage, such as a disk, 1s used as a
backing store for pages in volatle memory. Non-volatile memory survives soft crashes. but rot ha-wc
crashes Finally, stable storage, such as replicated d'sks [3]. 15 used to keep a log of upoates 0 s'ap &
op.ects Stable storage survives all expected crashes

'Thi, research was sponsored by the Datense Advanced Resaarch Projacts Agency 1DOD) ARFA Order No 4976 moar tared by
the Arr Forco Avionics Laboratory Under Contract F33615 84 1 1520 Add tanal support for J Wing was provded in pant by ™
Natiwnal Science Foundation under grant DMC 8513254
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Syntactically, a server resembles a C++ class detinition, where the objects correspond to class
members, the operations correspond to member operations, and the constructors correspond 1o
constructors. At the statement level, Avalon provides primitives to begin and end transactions, either in
sequence or in parallel. Each transaction is identified with a process.

a transaction that aborts aborts all its children, even those that have committed. A transaction's effects
become permanent only when it commits at the top level. Thus, a subtransaction’s effects need not be
written to stable storage until its top-level transaction commits. Nested transactions can be used to make !

Avalon also supports nested transactions. A transaction commits only if all its children commit or abort. g

applications more robust. For example, if a subtransaction aborts, the parent transaction need not abort,
but can execute an alternative subtransaction. Nested transactions alsc increase the level of concurrency
within a singie transaction since subtransactions may execute concurrently.

In Avaion programs, each data object performs its own synchronization and recovery. A transacton s
guaranteed to be atomic if all the objects it manipufates are atomic objects. Avaion provides a set 0f
bult-in atomic data types that resemble typical built-in types (e g.. arrays and records). but these daa
types guarantee atomicity as well. Avalon aiso provides primitives to assist programmers in implement. =g
their own atomic types. Senal:izability and recoverability are implemented for the built-in atomuc types by
Camelot facilit:es such as locking protocols, new vaiue oid value logging. and commitment protocols

A novel aspect of Avalon is that concurrency control is governed by a property called hybna atomic::y
Informaily, hybrd atomicity recuires that transactons pe senalizable in the order they commit. Hybrc
atomicity 1s a local property. if each indiv.dual atom 2 object 13 hybnd atomic, then the system as a who'e
w:l: be atomic. Hybnd atomicity encompasses a varety of concurrency control protocols. For examp'e
hybnd atomucity 1S automatically ensured by two-phase locking protocols {1]. but programmers ca~
achieve higher levels of concurrency and avalability by taking the transaction ordennrg explicitly 110
accourt [2]. To ass:st programmers inimplementing their own hybnd atomic data types. Avalon provides
a built-in transaction denufier type tid. The ttd type provides a restricted set of operations that facihiiates
run-time tes:ng of seria'ization orders and the state of transaction commitment. A second novel aspect of
Ava'on s that programmers may define type-specific commit and abort operations for user-defined atom:c

N catatypes The system automatically appiies commit or abort when transactions terminate. User-gefrec
s commi: ard abort operat:ons are partcuary useful for defining application-deperdent synchror.zator
j,'.« and recovery protocols that enhance corcurrency and efficiency by exploiting specialized procetes of

0

]

the da:a type.
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Emerald: A Language to Support Distributed Programming

! Norman C. Hutchinson
B Department of Computer Scicnce
University of Arizona

svaten Olgect mobilite in Emerald thereflore subsumes both process migration amd data transio

Secand Frnerald has Linenaee sappeors formabalite. Novonly does the rinerald Linence eyl

R

-~

Iinerald is an object-based language and system designed for the construction of distritund

. apruraniens. The principle feature of Emerald is a uniform object model il])propl'i.’xt" for proara

. rine hotl private local objects and shared remote objects. Drnieradd objects e fully molnlel

RS canmove from node to node within the network. even during an in\‘(ﬂ‘;xll(,m. Pesvite this 12l

- weobie nature of objects. invocation of an operation on an object is location tudependens: the

i procrammer need not know the location of an object when invoking it Enwrald also suppor- oo

ahvrecet type svatem that concentrates on the specification. not the implementation of ob o

’ I,i!:“ritm ~ goal 1= to simplify distributed programming throveh languuze suppors, wihii

R providing aceeptable performance and flexibility, both locailv and in the distiibuted enviveo o

"" Line Fden 137 Emerald’s model of computation ix the olject. Ohjects are an exceliont v o
srructare @ distributed syvstem because they encapsulate the concopts of process. procedane,

. lmcution. In contrast to a several existing distributed programming languages and sveor

_ that crpport separate computational models for local and distributed entitios. Tmerald suppec o

siateobect mndel. Emerald objects include private entities such as integers and Boaicans, as v
a~ shared distributed entities such as compilers. directories. and entire file svstems. All objoecrs o

. programmed using the same model. and have identical invocation semantics.

: While we believe that programmers deserve the consistency of semantics oflered by o cine’
. obect qnadels we do not accept the common criticism of object-based svstems: naneiv, that i
= are too ~hows Toa limited extent. the Emerald compiler is capable of analvzing e necds of e

) obiert and generatine an appropriate implementation. Tor cx‘amp]w, an array objct wiose ne

i~ entirely local to another object may be implemented using shared memory and dizect pos-
:-'_' while another array that is shared globallv requires a more ceneral (and expensive) hmpiementati
k that aliows remote access. These multiple implementations are generated by the compiler o
. the sam» source code depending on the needs of a particular object. This approach <implatos 1l
:~:: procraminers task since he sees a uniform model, while providing an implementation wiose cose
3 appropriate for the functionality required of each object.

. One novel aspect of Emerald’s uniform object madel is its support for finc-gravned ot
,::- Mobditv an the Emerald svetem differs from existing process migration schemes in two jnpot e
- re-pecte First, Emerald is object-based and the unit of distribution and mobility i< the ohgeos

Winle come Emerald objects contain processes others contain onlv data: arravs reconds and sine
- imteeers are all objects. Thus, e umt of mobihity can be much smaller than i process mgration

\
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recognize the notions of location and mobility, but the design of conventional parts of the language
(e.g., parameter passing) is affected by mobility.

In traditional process migration systems, process arc normally migrated by other entities {e.g..
load managers) without their knowledge. In fact, it is often a major design goal of such systeis
to make it impossible for a process to notice that it has been migrated. In contrast, location is an
attribute of each Emerald object and language primitives exist to move objects to new locations and
determine the current location of any object. Making location part of the language semantics allows
Emerald to be used for constructing applications such as load balancers and replicated servers that
wish to manipulate location to increase their performance or fault tolerance.

We have recently instrumented the Emerald mail system to investigate the benefit of Lol
weight mobility for a particular application. The results of this are reported in [G]. Briefiv. wo
compared the performance of moving mail messages addressed to users on other machines to thaw:
of accessing them remotely. For a tvpical (synthetic) workload. mobility allows the number «f
remnote invocations to be cut in half, and the total number of network pachets sent to b ‘
B 43

The Emerald language supports the concept of abstract type. The abstract type ol an oo
deines its interface: the number of operations that it exports, their names. and the numiber wil
ab~tract tvpes of the parameters to each operation. lor example, the abstract type [irvcto
~pcifies that directories implement the operations Add. Lookup. and Delete, Further, Add regres

a <tring and an object (of arbitrary tvpe). Lookup takes a string and returns an objoct faoe, of

arbitrary tyvpe). and delete requires just a string. We sayv that an object conforins to an abstra

tvpe if 1t implements at least the operations of the abstract tvpe. and if the abstract tyvpes of to

verameters conform in the proper way.

Since abstract tyvpes capture only the specifications of objects (and not their i'nplemcmaiicw» .
theyv permit new implementations of an object to be added to an executing system. This is 1y
tant for long-lived distributed applications sucli as mail svstems. file svstemis. and window >}>7»,),:‘\
sinee gt allows new Kinds of objects to be fitted dynamically into a system withont biinainz o
syvetern down and restarting it. To use a new object in place of another. the abstract type of the
new object must conform to the required abstract tvpe, Note that each object can implement s
different abstract tvpes. and an abstract tvpe can be implemented by many different objocts.

FEmerald has been implemented under 4.2BSD Unix on Vax and Sun computers. and is curivn
ronning on small networks at the University of Arizona, the University of Copenlineen, Dernmesh
atd the University of Washington. A small number of applications have been implemented: a ol
svstem. a shared calendar svstem. a file svstem. and a replicated name server. In addition. several
foad-sharing stvle applications have been implemented to experiment with light-weight mobility.

We are continuing work with Emerald along two major fronts. The first concerns rep!
tion. Emerald performs automatic replication of rmmutable objects (those that mav not chae !
their state over time). We have more recently been working on extensions to Emerald to suppoit =
replicated mutable data. We wish to take advantage of the semantics of operations (in particuli:
commutativity) to reduce the communication required to keep multiple replicas svnchronized when :.u
thev are updated. We are particularly interested in finding a clean language framework for dealine )
with replicated objects,

Secondly, we are interested in a stand alone implementation of Emerald. Our current npls o
mentation on top of Unix does not allow us to evaluate the intiinsic costs of particnlar lancuan '._',
foatures becanse of the large overlicad as-ociated with sending a network messace nuder Uiy e
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r-kernel being developed by Larry Peterson and myself at Arizona will provide a framework for
constructing kernels that have specialized communication requirements. Customizing an Emerald
kernel using the z-kernel as a base will allow us to better understand the fundamental costs of the
abstractions that Emerald provides.

An overview of the Emerald language is given in [1]. The rationale for the design. and &
description of the compiler algorithms used to deduce appropriate implementations are in [4]. The
type system is described in [2]. An overview of the object migration facility is in [6], and the detsil-
of the implementation of the run-time system including garbage collection are in [5].
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Modelling Time Dependent Behavior
in Parallel Software Systems

“ Debra S. Lane

University of Calfornia at Irvine
Department of Information and Computer Science
o Irvine, CA 92717

A great difficulty in building distributed systems lies in being able to predict

what the system behavior will be. A distributed or communicating system is
A defined here to be one in which the hardware consists of a set of processors
each with their own memory, connected by some communication medium (there
- is no shared memory), and the software is assumed to be of the CSP (Hoare's
N Communicating Sequential Processes) type. The problem is that while it is easy
to understand how each process behaves in and of itself, it is nearly impossible to
predict all the ways in which the processes will interact and influence each other’s
- execution. It is necessary to understand their interaction in order to determine

. how the system behaves (so that one might convince oneself or others that the
¥ system performs as intended).

r In the past few years some theories have been proposed to model features
b of communicating systems. Milner’s Calculus of Communicating Systems (CCS),
Winskel’s Synchronization Trees (ST), Hennessy’s Acceptance Trees (AT), and

Hoare and Brooke's theory of communicating processes are examples of formal
. . models of such systems. All of these models concentrate on modelling observable
properties of a system.

This paper presents a new representation of communicating systems called
o~ Event Dependency Trees (EDT) that models the time dependent nature of such
systems. None of the representations mentioned above explicitly represent time
but time is precisely the facter that introduces so much variability and complexity
into such software and systems. Many models in computer science assume that
events occur instantaneously, but here it is assumed that every event occurs

- with a certain time delay represented explicitly by an event name and a variable
- for the time delay. Communication events are important because that is how
processes interact. Events preceding the communication events, even if they are
“ only executions of sequential pieces of code, are also very important, however,
because they determine the exact manner in which the communication events will

occur.

Besides modelling time explicitly, EDT differs from CCS, ST, and AT in its
representation of systein behavior. Both CCS and ST represent system behavior
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as interleavings of events. The cembine tree operation in those models produces

the set of interleavings. AT represents the system as a state-transition graph.
The tree combine operation in AT takes two state-transition graphs and produces
a larger one. In EDT, the system behavior is represented as a partial ordering
of events. The combine tree operation in EDT produces the partial ordering of
events in a way that indicates how particular sets of events contend with cach
other to produce the various execution paths.

EDT show the right amount of information about system behavior, not too
much as in an interleaving representation, and not too little as in a state-transition
model. It is possible to identify each execution path by its unique event ordering.
In interleaving many event orderings produce the same execution path because
many times it is irrelevant that some event occurred before or after another sinece
they don’t influence each other’s execution. EDT shows exactly those events that
influence each other’s executio.: and also those that are not related.

EDT also provides answers to the questions “Why 1s one execution path
choren over another?” or "How is a particular execution path chosen?” The answer
i< that some set of events occurs before a different, contending set of events, CON,
ST. and AT all show the possible execution pathis but indicate only that they arive
because of nondeterminizm. What is the source of such nondeterminmismi? There
are two wavs in which nondeterminism arises in such syvstems: (1) throuch the use
of guarded commands, and (2) through the use of the comnunication constructs.
EDT models the nondeterminism that arises through the use of communicatio.
constructs in CSP-type lancuages.

In EDT processes are represented as trees where the nodes of a tree repre:eit
syvstem states and the arcs represent the execution of system events. An event is
one of three types: (1) execution: represents the execution of a sequential picce
of code (with no communication constructs), (2) communication: represents the
execution of a message passing construct. or (3) the null event. Communication
events are further subdivided into send, receive, and synchronized communication
events. In addition, each event has an associated time delay, represented by sonie
variable such as ¢.

The following notation is used:

1) e€[t; denotes a sending communication c¢vent that takes time t.

—

2) e[tj denotes a receiving corumunication event that takes time t.
3) e[t denotes a synchronized communication event that takes time f.
4) €[t] denotes an execution event that takes time ¢.

wn

) 7o denotes the null tree, which is also the null event.

These are the only events that can occur in EDTs. Using this model, all portions
of the computation that take time are accounted tor.
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Labelling trees is subject to some restrictions, which are not described here.
However, note that each event has a name ¢, a time ¢, and a type that is in the
set {erec,send,recv,sync,null}. The name of the null event, which is also the
null tree, is € or the empty string, and the time of the null tree is 0. The functions
name, type, and time when applied to an event, return the respective information
about that event.

Three operations are defined on trees: a prefix operation that allows a tree
to be prefixed by an event producing a new tree (prefixing an event to the null tree
results in a tree with a single arc labelled by the new event); a combine operation
that takes two trees and produces a new tree; and a remove operation that takes
two trees and removes one tree from the other. The combine operation is a very
important one in that it preserves the relevant information that indicates how
execution paths arise as a function of event orderings. A set of event dependency
trees along with the combine operation is shown to form an algebraic group. In
this model, two trees are defined to be equivalent if they are 1somorphic to each
other.

Once the formal model is defined the question becomes how does one use
it. EDT is useful for performing some types of analysis. It is assumed that &
programmer codes a piece of software. The software is then transformed into
an EDT representation. At this point other algorithms are invoked to analyze
the “software” for various properties or information. One type of information.
which the model was designed explictly to produce, is the set of execution paths.
identifled by their unique event ordering. Once one has this information it becomes
possible to ask questions of the form, “Will this execution path ever occur?”, or
in other words “Does event x alwavs occur before event y, and if so what in the
system causes 1177

Another type of analyvsis familiar to all is the detection of deadlock or proving
the ab:ence of deadlock. The algorithm detects two types of deadlock, deadlock
due to wrongful use of the svnchronization primitives, and deadlock due to timing
aspects of the system.

EDT is a formal model of distributed or communicating systems that
predicts how CSP-type processes will interact. Although it appears that EDT i1s
a model of software, assumptions about how the system impacts the execution
of the software is a crucial aspect of the model, the primary assumption being
that events take time that could differ from execution to execution. From an
EDT model of software one can identify each execution path by its unique event
ordering. This provides some insight as to how one might reason about whether
certain events and ultimately execution paths can occur. The model supplies
potentially important information for the design and construction of distributed.
parallel software systems.

-50-
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LGP2 Position Paper

Paul J. Leach
apolio computer inc.
330 Billerica Road
Chelmsford MA 01824

Introduction

At Apollo, we have experience in three areas that are relevant to the creation of systems support for large
grained parallel computations on a network of workstations and servers. First, we have collected from
users a set of parameters that they consider usefu! in the selection of machines to be used 1o perform
parallel computations. Second, we have idenufied some policy axes that mechanisms for machine selec-
uon need to support. Putting these two together, we created an architecture that allows the coexistence of
manyv different polictes, and for the user extension of the set of selection criteria. Fincliv. we have imple-
mented several parallel appicanons that make use of load balancing.

Policies and Parameters

. - 1
By polling potenual

users of large grain paralichism, we discorvered thut they had apploaians that wesll

want to discriminate hetween potentialiv uceiul nodes on the following bases. CFPU speed and ioad were

R I L 2 R R = T RS B PN R I -~
forecround”™ and DalkeTourn .l

the primary cniter:a menuoned, but the abiliy to distingunsh berween

lead were also desired Disk speed and load were secondary critenia an fact, availahie sk space seor

<

1o e more :mponant this mayv be becausy 2k performance 18 not as vanable i our environmen: as CPLU
performance. Man memory size was a criterion, but acwual memory load measures were not reguested &
all, perhaps because of the prevalence of virtual memoary in our environment. or perfaps bedause of U
unavallahiite of good measures. Finally, the software configurauon on a node would someumes be a

facior.

The ucers of nodes. 1in addition to wanung to hmit remote process creation on their nodes to imes of fow
loxd, however defined by the interaction of some of the above measures, alco wanted 1o be able to force
remotely created processes into the backeround, and to take interacuve use of the node nto acennt

Polizcv axes pobcies variatons that the mechamsms need to support aindnidual auton my, group owrner-
storoef nodes and the dewire 10 hmut ther use to the ownine group  Inter-user protection (or the laon
14 place constramts on simuitaneous use ¢f a node by different prinapals Evenal no-ore
were focatiy using a node, protecuon of files from remote processes would be an issue. especially on ~omie
nige user operating systems Another axis 1s individual responsiveness versus group throughput

Architecture

The basic mechanism that supports large grain parallel computations is just the ahility to create processes
on uther nodes in the network. Policy 1s enforced by having each node retain the power to determine who
and under what conditions remote processes may be created on that node. At the next layer up, a registny
of nodes and the selecuion crniteria they meet 1s Kept as a “hint” mechanism for quickhy locating suntable

nodes
Control over remote process creation

On each node, a control file 1s present in a known place, which contains the parameters defining allowable

usdve of the node  Terminology
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OWNER: 1the node owner; a person who can change the access permissions/availabhty criteria for
the node. Represented by write rights to the control file.

USER: a person who is allowed to use the node, assuming the rest of the criteria are met.
Represented by having read rights to the control file.

KBUSER: the person at the keyboard (unless the "server™ option is used).

HOLDER: the first person to start an unsafe program is the holder. Usually, it is the KBUSER. if
there is one.

FRIEND: a person who is trusted by the holder of the node 1o run unsafe programs while the holder
of the node is using it. The current implementation defines a friend to be a person in same project as
the holder, or same person as holder, but with a different project or orgamzauon ID.

INVOKER: a program that invokes other programs (1.e., a DSEE builder).

SAFE: trusted: a program vou are willing to let others run while vou are using the node 1s <aid o

be afe

SAFE DIR z directory holding programs that are assumed to be safe unless explicitly identified o the

o T
< 47

FORCE L cwner (or holdery of a2 node can 1gnore load considerauons by using FORCE o create

Jeo Thus i< primaridy for debugeing purposes.

a divieion of computauonal power of a node int - units; at most one remoe process can be
crexted tor exch avauable slot on node.

Nermally, you can create a process on a node if:
11 you have permussion.
2) vou are compatible with the other users of the node.
31 the node has a low enough load.
4) the kevboard user has not reserved the node for him/her self or friends.

Permission: You have to be the owner or a user.

Compaetbiin: You have 1o be the holder or a friend of the holder, or be runming a saic
procrarm. I “onh _safe friends™ 15 set. then even friends need to be running safe
procrams (see beiow)

Load
a. There must be a slot available; the number of remotely created processes must not exceed
“max_slots”
b. The CPU use must be less than "cpu_max" (less than “cpu_max_kb" if there 15 a
KBUSER)

¢. The keyboard user must not have typed anything for more than “min_idle” minutes.

Satal AAEd  deda® Sadmta

Reservation:
a If the KBUSER has “reserved” the node, then no-one can create a process, regardless of how
low the load i -
b If the KBUSER has “reserved_frniends” then only he/she and hiv/her friends can create

-
processes, repardless of how jow the load 1s
J
X
i
A
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Load Balancing

Each node “volunteers” its computational power when its local policy module decides that it would accep:
the creation of some remote processes. A node volunteers is by registering its availability with what we call
the compute slot allocator (CSA). When a node volunteers, it also informs the CSA of selection criteri:
that might be of interest to potential users of the node. The CSA maintains an attribute/vatue database for
these criteria, and allows potential users to query the database as part of the selection process Curren:
load is one of the pre-defined attributes. However, nodes and users can create new attributes at will.
allowing new selection criteria at any time. The CSA's database is regarded only as a source of hints abou:
the state of nodes.

Implementation

We have implemented a process creauon server, called the server process manager (SPM), that ha-
exventzliy the policy manager described above, and does simple CPU load calculations. The Apolic
software engineening system (DSEE) can use this facility to do parailel makes. The CSA 1s currently not
impiemented, so each DSEE user provides a hst of candidate nodes, each of which DSEE polls 10 deter-
nune load; the leact loaded are selected  Many of the policy ideas came from users who dislked having
DSEE use their node for makes while they were trying to get work done.
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A Programming System
for Heterogeneous Distributed Environment

Insup Lee
General Robotics and Active Sensory Processing Lab
Department of Computer and Information Science
University of Pennsylvania

Philadelphia. PA 19104

A programming syvstem (DPS) designed to facilitate the implementation ana
. exccution of distributed programs is being developed. The purposes of DI's ar
NEa - oy . . . . -
to faciiitate the development of large distributed programs consisting of prograss
L - . . \
written in different lancuages (currently C. LISP and Prolog) and to allow the
procrammer to exploit large-grain parallelism by distributing programs to ditferess
yrocessorsi? The svstem hides heterogeneity in the underlving prograning lan-
s A g A ing |
guages, architectures and operating systems from the programmer. The underlyine
(ii>r:'?}vurr*d svstem con<i.~'> of a loosely coupled heterogeneous mix of ccmputers
| inel Hne VAN 11/785. MicroVAN IT's, Symibolics and HP 3000 connected by an
E:herner.
JA
Ih
The salient features of DPS are that processes in a distributed program may be

written in the appropriate langnage for the task. and that the configuration of these
n processes into a distributed program is separated from programming of individual
processes. A DSP program consists of a set of communicating processes written
ir. C. LISP. or Prolog. The configuration of the program is specified using a dis-

o tritmited configuration language[3]. The configuration language provides a simple

) and cfficient wav to svnthesize a set of component programs to form a distribured

’ program: that is. it supports programning-in-the-large for distributed programs.

-~ A configuration written in this language identifies component sequential programs
and specifies process interconnection. To simplify the loading and execution of a

~ distributed program, it also identifies resources needed for execution and specifies

< process assignment constraints. The compiler uses this information in determin-

) ing process allocation, freeing the programmer from details about the underlying

- svstem. The run-time support of the programming system ensures that processes

acquire resources before start executing and handles distributed termination.

:::f The system currently supports message based communication between programs

~ written in C, LISP, and Prolog on Ultrix!, proprams written in LISP on Symbolics.

. 'Ultrix is a trademark of Digital Equipmient Corperation
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and programs written in C on HP 3000[1]. To support typed messages. we have

implemented a typed data communication package. which is a set of functions that
provide the ability to transfer complex data structures between processes, with type
and structure retained, even between dissimilar systems. For Prolog programs. we
have also implemented remote predicate invocation [4]. We plan to implemeunt
remote procedure call for programs written in C and LISP.

3
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The synchronous language SIGHNA L,

P. Le Guernic, A. Benveniste

E IRISA/INR.A Campus de Beaulieu
2 35042 RENNES Cedex
FRANCE

SIGNAL is a Real-Time Programiaing Language designed at IRISA to describe and implement

algonthms onto multiprocessors systems. Firstly defined to realize Real Time Signal Processing
] applications, SIGNAL adresses a larger field of needs for programming tools and especially in the
- areas where automata are used.

Based upon formal preperties, SIGNAL is used as the major support for correctness verification.
sequential simulation and repartition of algorithms.To implement an application, the following
method 1s applied:

1/ specification of tie algorithm in the synchronous language SIGNAL; at this stage. we
have a specification where the synchronisations and the parallelism capabilities have been

“. analysed.
2/ this first step provides as a byproduct a FORTRAN pregram, which can be used for
standard simulation purposes.
= 3/100ls are available to help the programmer in designing a multprocessor implemen:ation,
o while controlling the required modifications of the oniginal program.
I'he language.
- SIGNAL 15 a data-flow hike declarative language. [t is defined upon a small set of primitse
) operators acting on two kind of expressions:
e
(0 1. Signal expressions (ie expressions with dated sequences of values as operands) define
primitives cyclic processes (named Generators) in a definitionnal equation style: generators
produce output Signal from input ones in a synchroncus composition ( ie calculus are assumed to
have a zero-duration). For this purpose, the programmer is provided with two classes of operators:
1) Natural extensions of standard functions (+, x, ...) to sequences of values for which
signals are constrained to be synchronous:
' 11) A small and complete set of temporal instructions to generate the control pan
e (synchronisation and logic) of the program:
. delay operators, acting as fifo-registers;
.when operators, to delete data according to the value of a boolean control signal:
. default operators, to merge two signal with an implicit prionty, (specified to avoid
non functionnal behaviour).
b 2. Processes expressions define new processes from smaller ones in a block-diagram
e building style (a la Milner); two processes communicate by zero duration exchange of values.
They are defined by using the following operators:
v -Renaming of signals (input- and output-) which give new external names to named signals:
o -Connection of signals which define an input signal as being the output signal identically
named in the process; connections allow broadcasting of values; each input has no more
o, than one output connected.
N -Compostion of processes putting together two sets of signal definition equations; input
. signals with the same name in the operands are stated to be identical; operands may not
. have two output signals with the same name.
N This set of instructions provides suitable mechanisms for event based under- and oversampling of
o signals.
" The group works in cooperation with the project Signal Processing Architectures (Michel
N Sorine, leader) at INRIA-Rocquencourt. This work is supported by CNET (French National
Agency for Telecommunications).
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These expressions may be structured by the means of Process Declarations compound of: :
-an Interface which gives its name and describe the set of its external signals: |
-a Body which contains a processes expression |
-a set of Local deciarations of signal and subprocesses.
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The compiler.

>

- In addition to standard verifications and calculus (types, context,...), compiling SIGNAL
programs involve a static calculus of logical time properties and the production of the timed
precedence graph.

s

Aath 2 2k &

1 Logical time properties.
Signals handling in a SIGNAL program state logical ime constraints defining a system of
algebraic equations over the finite field Z/3Z, its clock calculus:
1to each signal § is associated a variable which value denotes at every moment of a virtual
clock:
-the absence cf a value in § when 0,
-the TRUE value for boolean S when 1,
-the FALSE value for boolean S when -1,
-the presence of a value in non-boolean S when 1;
ii)to each of the generators, a model of equation is associated:
ithrules of equations composition are simply deduced from the semantic of processes
expressions.

The correctness of the program in regard to parallel computation (starvation, nondeterminisny) are
studied on its associated equations sytem by using effective algorithms relevant to computation.! {
algebruic geometry. '

2 Precedence Graph.

A SIGNAL program define a set of output signals from input ones using data-flow varizhles l
The precedence graphe, associeted with a program, is defined by a one-to-one function from the
set of calculus to a set of nodes; an edge exists between two nodes N1 and N2 if and only if the
result of the calculus associated to N1 is used in the calculus associated to N2; moreover, this edge
is labelled with the clock denoting the moments when the dependance is effective. The absence of
circular definition of signals is verified using the graph, before a sequential FORTRAN Program is
generated for simulaton.

The Multiprocessor implementation.

The pair {clock calculus, conditional dependence graph} is the convenient level of compilation for
studving processor allocation.

At first, we define the notion of a functicanal subgraph as being a subgraph in which each input
node (node preceded by an outer one) precedes each output node ( node preceding an outer one).
such a functionnal subgraph may be translated in any sequence of its nodes according to a greater
order than its reflexive closure; every local optimisation depending upon the structure of the
processor may be used. Functionnal subgraphs may be calculated by local algorithms.

We intend to define a set of tools to help the programmer in implementing signal programs on a
multiprocessor by using hierarchical organisation of the graph. Functions are the atoms of
allocation; the set of the atoms is partitionned in synchronous subset ; the set of these subsets is
recursively partitionned with recpect to the inclusion of clocks. The first level of the hierarchy
represents the architecture. This work is in progress at this time, whith two target architectures: the
first is based upon Transputers and Signal Processors, the second is an IPSC.

o o o [ & 3 Cacaiia jo_~ % A Boilonding, .

"

The group works in cooperation with the project Signal Processing Architectures (Michel
Sorine, leader) at INRIA-Rocquencourt. This work is supported by CNET (French National 3
Agency for Telecommunications).
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Optimistic Algorithms for Replicated Data Management

Darrell D. E. Long

Computer Systems Research Group
Department of Computer Science and Engineering
University of California, San Diego

Extended Abstract

1 Introduction

In a distributed system, data are often replicated for protection against site failures and network partition<.
Through the use of replication, increased availability of data and reliability of access can be obtained. Whe:,
data are replicated at several sites an access policy must be chosen to insure a consistent view of the data =«
that it appears as though there were only a single replica of the data. The view presented to the user mu«-
remain consistent even in the presence of site failures and network partitions.

The simplest consensus algorithm is static majority consensus voting [2]. Static majority consensus vot
ing provides consistency control and mutual exclusion, but does not provide the highest possible availabilic:
of data since it requires that a majority of the sites to be reachable for an access request to be granted

An attempt to remedy the short-comings of static majority consensus voting. known as dyvnamic voting.
was introduced by Davéev and Burkhard [1]. Their algorithm improved the performance by allowing gnorums
to he adiusted automatically during system operation. The method that we propose. called Optimi<tie
Dy naniie Voting. operates on possibly out-of-date information, hoping for the best. It can be shown tiar
tiie srlenie provides mutual exclusion and that data consistency is preserved. There are many henefirs to

~including efficiency and ease of inplementation.

2 Optimistic Consensus Algorithms

Thie foandl

Cisli Iieasre tore realistic consistency control algorithims. The dyuamic voting schemes previously deseritid

v of aleorithms that are known colirctively as dyvnarnic voting {1.3.4) represent an ideal by which wo

r+lv on in<tantaneous information about the state of the system. Such information 1s unachievable even s
tie best of circunistances, and our experiments have shown that attempting to approximate the connection
vector bead to unacceptable loads being imposed on the sites.

Our analyses indicate that maintaining state information at each access produces availability of data
connparable to dynamic voting with a connection vector. Using information that is out-of-date dors o
atieet the consistency of the data. but does sacrifice some avaliability of data. Since the method thae we

f

prosee propagates connectivity information when an access i< cuccessfully made. the amonnt of astiiatain

of datithar is lostis relared to the rate at which the data i~ accessed.

Tie hisis of our scheme is the algorithim for detecting whethier the access request 1~ onginatine wirl,
the miajority partition. Since there is at most one majority partition. mutual exchusion s guarantecd aud
consistency is preserved. There are three sets of information that must be maintained: the partition sets. P,
which represent the set of sites which participated in the last successful transaction, a transaction numbe .
t, and a ver<ion number, v,, attached to each site.

Algorithm 2.1. Algorithm for deciding whether the current partition is the majority partition

1. Find the set of communicating sites, call it 7.

2. Request from each site 1 € R its partition set P,, transaction number t, and version numiber v,

3. Let Q € R be the set of all sites with version numbers that match that of the site with the huto
transactiou nutber.

4. Let P, be the partition set of any site m Q.

5. If the cardinality of @ is gieater than one half the cardinality of P, or is exactly our half and cantan
the maxiimuni element of P, then the cuttent partition is the majority partition
The advantage of the algort < that we propose is that they are nearly as efhaent ac crane o

conserisus i terims of the vmnber of essazes sentsand that then naplementation s sonple There o
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assumptions made about the state of the network other that which can be found by examining the partition a
sets and version numbers. We have an advantage over the scheme proposed by Jajodia {3.4) in that we

can. by simply changing step five of the above algorithm, incorporate lexicographical ordering or topological &
information into the decision process. Our early analyses indicate that topological sensitivity can greatly i
improve the performance of Optimistic Dynamic Voting. |

3 Stochastic Analysis i

Iu this section we present an analysis of the availability of data provided by our scheme. The previous work
on estimating the availability of replicated data managed by dynamic voting schemes had assumed idealized
consistency control algorithms that possessed instantaneous information about the system state.

The availability of data provided by optimistic dynamic voting is related to the availability of data ;
provided by lexicographic dynamic voting by the rate at which access requests occur. As the access rate
increases, the information available to our scheme regarding the system state becomes closer to the true state
of the svstem and the availability of data increascs. So long as the access rate is greater than the failure
rate the performance of our schieme is very good: regardless of the access rate it is always superior to stati
INATOTIY COnselisus voting.

Theorem 3.1. Tir availahiliy of data afforded by Optimistic Dynamic Voting. Ag(n). approaches the

avalddbo v of dara afforded by Lexicoaraphic Dyvnamic Voting. Ap(n), as the access rate approaches i
. A I A 5 L . A

L. perfonms asviaptotically as well as the original lexicographic algoritlon, TLis can b

Cyor ale v

wodireer mazipulation for small nunbers of sites. as it is below for three replicas. Here p represens
. 1 1

et of the taniy

- rate to the recovery rate, and o is the ratio of the access rate to the recovery rate

ot L /‘;,:'l - C)’JI - 3‘_‘/12 -+ llfl? +4cp+6p+o0o+1

L, A3 = ] S
RSN o (p=- 11 2p+0+1)
1
B P 109
SETINE
An b ran be st G any nber of teplicas based on a general form of the state diagram. '

O methond s sanpie and efficient. It provides consistency control. and more generally, mutual exelision

Tio avacabiey of data and the reliabiliny of access afforded by our method is superior to static natones

O the unplementation. tha our policy will replace static majority consensus voring as fie

consen-us vorttne for antyoa sinall increase in network traffic. We feel that because of this. and becs of
the e’y o q
.

peectoviof chob e tor peplicared dira convisteney and mmtual exclusion.
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a The FileNel System
::: Marlin S. McKendry
FileNel Corporalion

Cosla Mesa, California

\'-

The TileNet®syslem is a lighUy-coupled distribuled processing system usced o

N managing document bnoges. The syslem  exploils Lhe very high storage

- capacities of oplical disks Lo stere immages: o single 127 disk can hold 2.0

o gigabyles of data, or 40, OOO compressed images, coch cocupying 70 kilobytes.

Cplical disks are managed in an OSARYOplical Storage and Retrieval Unil, aka
Jukcbox) library which can boeid up to 200 disks. The maximum Lolal capacity

- of an OSAR is Lthus 500 gigabyles, or U million images.

= Fach OSAR is conlrotled by an OSAR scrver. The server js a 6G8000-series

processor, wilh memory, magnelic disk. and loce! area nelwork. Scrvers alss
manage delobases that mep uscr-specified indexing data Lo image localions on
) oplical disk. Access Lo the system is through workstations wilh bit-mapped
’ displays. Workslctions are usually diskiess. All scrvers and workstations run 2

variznt of Unix', aithough because the system is closed, Uhis is pol visible Lo
csers. The svelem's distribublion is alse invisible Lo vvers. To a veser, the enlire
“ Lom dppLars Lo funclion as o single vimt. The WorkPloSsystem con Lo uscd Lo
program the Dow ol documents befween users of Whe syslamn,

Ve

SleNet product has Leen 0 pping since 1985, Therce arce now approximate
svsboms anstalicd  wordliveedo Miajor applications  include  maortgag

ssinge, credhit ocard operations, customer supporl, and anegement of

NSRRI . v
I chodeal dravngs
oo firsy T ‘ !

g ) L coel o systorm was cosigned for small nomibers of uscrs, witl few

LR cms o oexpocted Lo suapport over J20 workstations. This rapidly proved
o Ticiont, and anooh darger svstams are now becoming common. JUois cloor
_- Vot overy e systommes are desiraise to anany costomers, Thus, the o

: e ds o oxpanding the o svstern Lo o support s sceveral s hnondied usees
Sopporting Lhese uscers while mamtaining Lhe umty of the system is difTicul( W
expeel Lo combime mechanisms for highly cfMicient caching, dynamic load
dhistribution. and Tault lolerance  Where necessary, we will exploit application

scrmmantics Lo control the costs of these mechanisins,

System Struclure

The system manages distribulion and associaled parallelism in Lwo distinet sels

::- of ]IlCC])dHiSHlH, A distributed file system supports mosh operations typically
. assectaled  with fife sysloimns Alongside  Lhe (e syslem, an RPC-buasced
Cy® - . L e .
=y 0 FileNet, OSAR, and Work¥io are reg.stered tradenmrks of FideNel Corporation  Specifications
: subject to chunpe without notice X
1 Unoas o trademunrk of ARG i
. '
"2
)
N .
- .
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mechanism provides applications with a means for managing distribution.

The file system is similar to Locus [Locus 81], except that at present it does not
support replication. It implements location transparency, and presents users
with a single view of the file system (i.e., the mount structure is global). Servers
are the crilical resource in the system, because much work is logically
centralized at servers. Thus, the file system attempts to move all processing
possible to workslations. In this spirit, directory lraversals are performed at
workstations. A sophisticated caching mechanism for file control blocks
(inodes) and file contents permits mosl filc management to be performed
withoutl contacting the server storing a file.

The FileNet application makes dermands of the file system that differ
substantially from those of a typical program development environment. We
have exploited these requirements already, and inlend to do more so in the
fulure. For example, we intend to provide a form of replication that avoids the
overbead of generalized schemes. In this approach, we will support replicated
: ..es (all code files), and replication of storage services for temporary
sv most permanent data is stored 1 data bases that bypass the file
voruing only these Imited subsets ol the general replication problem

oy

r

wi., address most needs. We will still have to support mutable replicated data
He pathis, configuration struclures, etc., but we will nol incur the

¢’ generalized epproaches. In the caeses we must supporl, we are abic
. cppacatinn semantizs to reduce costs. Usuelly, reconliguretion te
comedate faniures can proceed concurrentiv with appication processing.

megor portion of the il Net svsterm thal supports distribution s the
: o Lo

apnheations. This mechanism s used to
nTet o apphicathior crvices. MU uges a globel name server to bind
Lonopen pretoeos! fourrently XNS) s then used to

Lt ‘ r Une ooz AU presents e Jostnibuted
<ot S vedand there are nic 2reiributod consistency mechanisime
Lo i sres orling the Olesystem' Tras has been acceplaltle unde:
oo R suirements

Ao requnrenente are truly o distribtod I Uvpacal FrleNon svetern s
tosoosiasl pooachnnes support Lit-mappoed mlerfaces, storage of fNles con

mizonelrs diskel storaze ol imeges on opl disks, control of spceeial devices

such as scanners and printers, and databases mapping indexing data to optical
disw storage locations Thus, a typical user query involves several machines: the
user's (disikless) workslation may have to centacl its operating system server
for paged-out data, an index server Lo process a document query, and an oplical
csiorage server Lo relrieve a document image. Depending on the struclture of the
file eystom and the devices required Lo process the query, additional machines
may be mvelved  DBecause most users access Lhe same dalabases ond oplical
disks, scrver loading 1s critical Lo the system’s performance.

Summary

The FileNet system is an example of a distribuled system that operales as a
single umt. In many cases, accepled industry praclices are inadecquale to
supporting the system’s apphcation demands  In olher cases, a lack of
gencrahily an applicalion semantics can be explodted in ways nol possible by
deceners of more open systems In future, we expecet Lo conbimue Has approach,
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using industry standard techniques where possible, and developing our own
techniques as dictated by the requirements of the systemn's applications.

o
a4
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Requirements for the Performance Evaluation of Parallel Systems

Michael K. Molloy
CMU

Determining or predicting the performance of distributed and parallel systems tas been difficult in the
past. This will not change in the near future unless several prerequisites are met. Often, the designers of
distnbuted and parallel systems are too busy solving problems in a design to worry about the
performance of the final system. In the cases where performance has been addressed, prediction has
been impossible because of the lack of knowledge about the actual use of the systems. (i.e. Will there
actua'ly be ‘hotspots’ in parallel systems built around multi-stage switching networks?) in order to
properly address questions about the performance of a current or future system, a clear understanding of
the w0« 0ads anac ther patterns 1s needed.

Before ary rea'stic performance prediction can be accomplished, a more extensive base of exper menta:
knowecge must be estabished. However, before an experimental base can be establishea. new
measurement techniques and appropriate metrics must be defined. Many different systems nave beer
meas.red by researchers, but the measurements tend to be self-serving and incomparabie with eacn
otrer Guidance on what to measure, how to measure it, and how to report it is clearly necessary As an
ex3™o e Cons ger the hardware monitors in the RP3 project at IBM. The hardware monitor is buit into
tne system from the imitial design, an admirable trait. However, the monitor simply keeps a histogram
(separate counts) of the control lines internal to the architecture. This allows the analyst to find out how
c“en certain actons occur in the system. but nothing is known about the sequence of actons (most
imporantly the sequence leading up to a cntical event). A circular buffer holding the last few contro’
patte’~s would have gone a long way to extending the monitor's usefulness.

Urforunately. the problem 1s not as simple as adding some features to existing systems. It s a chicken
ard egg probem. How can we specify what should be measured and how. If we don't know what is goirg
to happen? On the other hand, how can we find out what is going to happen, f we don't measure
anyth.ng? The answer is a two phased approach. First, a methodology to measure a large universe of
informat.on 1n a condensed form is developed. Second, more specific probes, both software ang
hardware, are designed to zero 1n on possible problems or unusual phenomena uncovered (necessarily
incompietely) in the first phase. The study of advanced systems at HP, SUN microsystems, and IBM has
started with the acquiring of massive traces using large (640MB) highspeed (200MBps) memory arrays to
meet the storage requirements

As an exampie of the infancy of the measurement methodology, consider the recent problems with the
ARPANET After changing the ARPANET naming schemes to include domains and nameservers, the
ARPANET quickly became overloaded. It s stll overloaded and will cause problems tor some time. No
measurements were made for several months. No determination of the exact cause of the load increase
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was macde for several more months. The corrective action necessary has still not been determined. Yet
the ARFANET was been an established system for many years and has a dedicated network
maragement faciity The problem is found in the fact that the management faciity had tools to locate
normal communication problems ard test IMP processors, but no mechanism to study the ARPANET as
a distnbuted processing environment

There 1s some hope An example of an improved monitor design is the HP4972 LAN analyzer for
ethernets By limiting the scope of the environment, the design for the 4972 resulted in a flexible and
powerful monitor  The design begins with the input filter concept for restricting sampling. It expangs this
with the concept of the circular buffer and storing triggers. It is therefore possible to sample some subset
of the packets, bu'fer and store the two packets before some trigger (ke an error, particular acdress. or
cotsion).  Such monitoning sessions are set up using a high level programming language for the
acquisition ang generator of data This makes the monitor flexible enough to be usegd :in evoiving

esv.ronments
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Proving Real-Time Communicating Sequential Processes Correct

K.T.Narayana
Depariment of Computer Science
Whitmore Laboratory
The Pennsylvania State University
University Park, Pal6802, USA
(814)863-0147 narayana@psuvaxl uucp

The seminal paper by Hoare[8] on a notaion for Communicating Sequenual Processes (CSP) introduced
mput and output commands as fundamcnwal language concepts. Since then, programming bascd on mes-
sage passing has been extensively studied(1,6, 10, 18], The regime has established wself as disiributed
programming and has been distinguished from concurrent programming in that each process does not
share vanables with others and cooperaton is achieved using micssage passing. There have been
stzniticant advances made towards a formal theory for understanding the design, construction and

venticauon of disuibuted programs [2-5.7, 12,15, 20].

Wheon the basic notwon of CSP is augmented with the warr commands, it offers capabilities for pro-
grammung rcal-ume distnbuted applicauons. There has been a prohferation of languages (both con-
current and distributed) which seek to fucilitate the programming of real-time disuibuted systems. In
spite of the avatlability of high-level languages and the programmed real-ume applications, real-ime
programming continues o suffer from the absence of an adequate mathematcally founded methodology
tor speaification, design, construction, and verification. Recently, attempts have been made to alleviate

this problem?9, 11, 17] 1n a denotauonal context by providing real-ume models.

The first signuficant methodological advice for the construcuon of real-ume systems comes from Wirth.
In his paper on real-ume programming[19]), Wirth offers the following advice- "In order o keep real-
ume programs intclicctually managcable, we recommend that they first be designed as umc-independent
muluprograms and that only aftcr analvtic validauon they be modificd in isolated places, where the reli-
ance on exccution ime constraints arc simple 10 comprchend and document.” The remark though made
in the context of real-ume concurrent programming scems exremely relevant even for real-ume disun-

buted programming.

Our concern in respect of formal correctness of a real-ume program, in the light of the above, would be
to address the separation of concerns as fur as possible and 1o coalesce the reasoning to a unified whole
when it becomes imperative 10 do so. Here again the nouon of what consututes a specification of real-
ume program scems 10 be important. The simplest way of looking at a specificauon of a real-ume dis-
trihuted program is to regard that cach ndividual process establishes a given timing behaviour and the

distnibuted program estabhishes a funcuonal behaviour. For a certan class of real-tme programs, the
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functional behaviour of the program in the rcal-time modcl tends to be the same as that in the interleav-
ing model. Thus, while timing behaviour can be stated consistent with the real-time modcl, it 1s enough
to state the functional behaviour with respect to the interlcaving model for this class of programs. When
we extend the class of programs to thosc for which the functional behaviour in the real-ume model 1s
different from that in the interleaving model, then we need a stronger specificauon for the functional
behaviour. Further, the specification of the timing behaviour should be given consisient with the func-
tional behaviour in the real-ime model. We can address a third category of specification in which we
can spcak about the collective uming and functional behaviour of every process in each computiuon of
the program. This form of specification is the suongest of all. Thus, the specification regimes reflect

the grades of difficulty in proving the correctness of the real-time program.

By their very nature, real-time models tend to be complex. A proof regime offered only in the context
of rcal-time models makes the task of proving real-ume distributed programs daununz. On the other
hand. interfeaving models have the advanuge that they are weak. Further, correctness theory for disun-
buted programs based on interleaving models s well understood. Thus, a proof methodolozy which
seoks to draw upon a proof of the funcuonal behaviour of the program in the interleaving modeal shall

have definite advantages in casing the sk of proving real-ume distnibuted programs.

Thu~, we arproach the problem of the dosvizn of 2 prool svsiem for real-ume disinibuicd prozrams with
tr < . 1] &

the tollowang sieps.

a1 Fustly, we develop a proof system @ for reasoming about the ume behaviour of individual

processes. In the proof outhines of the umie behaviour of processes, we make assumpuons about the

state at various points, and further we muke assumptions about the waiting behaviour of /0 com- ;

munds. Assertions i the proof system @ are structured more on the hines of the e predicaies of

Nichon!14]. A met-variable ¢, adenuficd with process £ captures the notion of the advanaing a
byt

ume of process P,.

b) Secondly, we prove the logical correctness of the program using the Cooperation Test based
proof svstems of Apt, Franccz and De Rocver[2] and the towl comrectness prool system of Aptf3]
We may as well have chosen any other prool system, for example of Levin and Grios[12]0 The

central 1deas remain the same, but thewr articulation may be different,

¢) Finally, we couple the two proof systems together with capabihitics
1) for validating assumpuions about the state an the proof outlines of processes established
using €
1) for obtaining the exact warung behaviour of cach of the processes at ther 1o commands,
and

o for restncting the states of the program o tho o obonable i the real-ime models only
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Step (c) ensures consistency with respect to real-time models. Essentially, step (c) consists of formulat-

ing a system of cquations (lincar) which involve existential elements quantifying the waiting behaviours
of processes at each of its /o commands. We call these cquations Characteristic Equations of the sys-
tem. Then we define simultaneous solutions 1o these characteristic equations which are acceptable. The
acceptability criterion assures consistency with respect 1o the Maximum Parallelism model[16] of com-

munication and prohibition of unnecessary waiting of processes.

In summary, we develop a proof system for real-time CSP{13]. Wc¢ adhere to the central elements of
AFR proof system(2,3] by requiring that asscruons do not share vanables. Further, assertions in the
proof system consist of two parts; one treating uming aspects and the other dealing with the funcuional
bechaviour. As in AFR system, we make assumptions about the uming behaviour of 1/0 commands. We
make provision for performing waiting analysis of the real-ume program as part of the proof process.
The waiting analysis provides for the detcrmination of the waiting behaviours of processes at the 1o
commands. This particular aspect cases the programmer from oblaining an asseruonal structure for the
exact waiting behaviour of 1/o commands by a prion analysis. Further, the waiung analysis part of our
proof system could be automated. A strong invariant /p introduced into the proof system serves, more
or less. the same purpose in the real-ime model as the global invariant [ does in the AFR system under
the interleaving model. We show by examples the use of the proof system for several cias > of real-

tnme programs. The proof sysiem we develop s a ol correctness proof system.
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Research in Parallelism at
The University of Washington

David Notkin
Department of Computer Science, FR-35
University of Washington
Scattle, WA 981905

Sceptember 14, 1987

The Deparunent of Computer Science at the University of Washiugton has become increasingly
mvolved g praadiel compnting research. Through a new NSF Coordinated Experimental Research
Program eraan, fvctive Use of Parallel Computing, we have just acquired i Sequent Symmetry 81

processor and weexpect 10 DIZC SRC Firetly multiprocessor workstations to arrive innmiuently.

wing sections we briclly describe two current related rescarch efforts. concerning (1)

noof hivterozencous computer systemns and (2) systems that support various styles of

Pend parallel programming.

Heterogeneous Nemote Procedure Call  The Heterogencous Computer Systems Project 6 is
c 1 3 J Y

CNpaalira W

vetoreduce the costs of integrating diverse syvetem ty pes into a computing environment.,

Toe e approach has been to build both nehi-level and dow-level services that are flexible

erculs o accommodate multiple existing standards or models of computation. We have made
prosrc-s o woveral areas inclnding a remote procedure cell facibty (3 a naming fucility [15). a
proanon service 5amadl service (1T and s detribated Gile zervice.

T Hos RPC (HRPO) farility supports the emulation of exasting RIPC systems by allowing

ditierent

Totnote cor

puort protocols. control protocols. dati representations. and binding protocols to be

nuxed wid natenhed The stubs of HRPC clients sand server: are wrnitten in terins of abstractions
cf thew protocols and representations: the abstractions are bound to a specific =t of choices (for
w=tane e, TOPUIR sransport and Xerox Conrier data representation) when clients are bound to
servers Toos alioess wosingie HRUPO chent to connnunicate with maltiple servers written in vasious
oxL-tin B SN aTeqs, and vice versa.

Ope pellons wah RPC systems is the synchronons naaare of the RPC paradinn, which has
the porentil to soniabize procesang in servers. To permnt more paralicli=<m. we have developed

arnoabictract antfee to bvhtaweicht process pachasres that aliows us 1o employ various existing

bl oo an amanner shpilar to that by which we cmulate different RPC systems.

The bove HEPC faaiery b been running for over ayear. The HRPC systenitself rans on UNIX
sy~tas meleding VAXe< SITN:Cand the Tekrronix 4404 faunily. Run-time support includea SUN
RIPC {with bhoth TCP/IP ceid UDIY) on VAXes and SUNs and Courier RPC on Xerox Dandelions,
We plas to accormmadate the Fruellys and their RPC system when they arrive.

Onr oueony projects mchade: developing HRP'C support for both Lisp and Snallralk-80; explor-
g the corstruction of HRPC imtenmediaries called hridee servers that perform the necessary pro-
tocolnd data tnao ation s to Wlow exastingy clients and servers to speak nudireetly when they cannot
spesk dircctly s andnvestiating the utihiny of HRPC's support for hieterogencons data representa-
tions an a local context. supporting calls between hinguages that use dilferent data representations

1)

Diiteibuted and Parallel Programming Systems  For a decade our departient Lias been ac-
e e cpeaedan rewearel m obpectortenteo d systems and Losnaercs The desionand implementation

of the Tidon cvstony wilnch was the fier disrebated obyoor-based systan 1 amd provided Jocation
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. transparency and object mobility, led to the Emerald system (897 which provided a new program-

:: ming language specifically designed for distributed programming. The novel features of Emerald

- include (1) its use of a single object model for programming botl siall, passive, local objects (such

" as arrays) and large, active, distributed objects (such as mail systems), and (2) its support for fully

v mobile objects {12 Emeradd is highly efficient and Emeradd invocations exccute in approximately

:: pracedure call tine on a MicroVAX. More recently, a Distributed Smalltalk system has been pro-

- totyped to examine issues in extending the Smalltalk environment to multple networked machines

8 2. :

Our experience with object-oriented systems has led to an examination of the use of object-

" oricnted lanmuages for parallel programming. We have recently designed and prototyped an en-
{ vironmient called Presto 4 that currently mins on onr 10-processor Seguent. Presto extends the
K Y= Purmniee to runon o multivrocessor enviroament . In Presto, ohiects encansolare the notion of
-\-'_ act dudi types. e, protected data that is operated ononly by oot of procedures in the object,
:':» voote paraliclismn Presto adds the notion of the thread objees o whicl s the the Tindianensal
-;"' trrt of exeention. A Prosto object can ereate maudtiple thireeds citiior 1o encente wathon = or to
:-:. nvoko other objects 1n parallel with its excontion. Presto also provides = (
'. that =incdtaneoushy executing threeds can coordinate their activit T
x @bl it way the permitvs: thodr usean mohmen- to Dnearadned congatatins Dorexnmple
corly noeasurements <how that applications that usze honodreds of threads can perforns coanpatively
nnoonr Iprocess o machine.
o Conclusion and Acknowledgments  This abstract descrthes thowork of
denrsoanotio de sient Our partieular experts oo the contoxs of the everali |
- Hovoroor s meote Procedure Cudl system, proenanin ceme Tor oy
- cand progranning environments for paralle] compuaters,
. sioported n part by the National Scicnice Tourndation under Grane- OR-SR252008, i

CORSGIID L by an IBM Faonls D

ants Progran s and by the Dieiend oo
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Supertransactions
K
. Calton Pu
< Department of Computer Science

Columbia Uriversity

E New York. NY 10027

Increasing interconnection of computer systems produces heterogeneous distributed svs-
tems. To cope with heterogeneity in hardware. we port the same software (e.g. the Unix
- operating system) to different machines. However, integrating similar but different soft-
ware packages presents another challenge. In this abstract, we propose the supertransaction
b approach to accommodate heterogeneity in distributed transaction processing systems. For

brevity, we use the term database in the broad sense, to denote general transaction processing

o

D

1

7

St svstems.

We define supertransactions as atomic transactions spanning more than one database. A
A supertransaction is atomic in the same sense of normal transactions: concurrent access should
be serialized, and database consistency recovered from crashes. We call the components of
, the supertransaction component transactions, which run on element databases. In contrast.
! a nested transaction has subtransactions running in the same database.

If all the element databases are implemented the same way, supertransactions are the
same as known as distributed transactions, for example, R* and TABS. A more interesting
possibility is a supertransaction running on element databases of different origins. In other
5 words, a supertransaction should support atomic updates across heterogeneous databases.

We introduce the design of Superdatabase, a heterogeneous database system to update

. different element databases consistently {1]. We assume that each element database provide-
5

L2

local transaction processing. including crash recovery and concurrency control. Our approach
is based on hierarchical composition (Figure 1). The element databases are the leaves. whi'e

the superdatabases are the internal nodes, extending crash recovery and concurrency cont:o;

~ to integrate different elements.

Each elernent datavase must satisfy two composibility conditions The first 1s on crast re

o covery: the element database must understand some kind of agreement protocol, for exan e

T T T T e e T P W e Ty
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Figure 1: The Structure of Superdatabases

two-phase commit. The second condition is on concurrency control: the element database
must present an explicit serial ordering of its transactions to the superdatabase. Fortunately.
explicit serial ordering is easy to obtain from all major concurrency control methods (two-
phase locking, timestamps, and optimistic concurrency control). For example. timestanip:
represent an explict serial ordering. A timestamp at the beginning of the shrink phase iu
two-phase locking also captures an explicit serial ordering.

Given element databases satis{ving the above two conditions, the superdatabase that con:-
poses element databases can carry out two-phase commit (or any other agreement protocal
understood by the elements) for crash recovery. To compose concurrency control. the super.
database checks the explicit serial ordering of transactions from all elements, making sure
theyv are serialized in the same order for all supertransactions.

This brief summary of superdatabase architecture only outlines a simple implementation

of supertransactions. Detailed algorithms and refinements are described in another paper (1.
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parmake and dp:
Experience with a distributed, parallel implementation of make

Eric S. Robernts and John R. Ellis
Digital Equipment Corporation
. Systems Research Center
) 130 Lytton Avenue
Palo Alto, CA 94301

Large software systems are typically developed as a set of smaller modules that are easier 10 manage indivi- |
dually. In order to provide automatic support for building a complete system and for keeping track of the

- dependencies between modules, facilities like the make program developed by S.1. Feldman at Bell Labora-

» tories prove extremely useful. In an environment that permits concurrency (cither through the use of mul-

tiprocessors or by using several machines on a distributed network), modular decomposition also provides ¢

- considerable opportunity for speedup, since the compilations of independent units can usually be performcd
O concurrently.

The hardware base for this work is the Firefly —a shared-memory multiprocessor workstation developad a:

. DEC’s Systems Research Center 10 serve as our principal computng resource. Typically, cach Fuois

R workstauon contains five MicroVAX-IT processors. There are currendy 90 Fireflies on the local Ethernar,

including two Firefly file servers. The Firefly operating system includes a remote file mechanism that pro-

> vides transparent access to any file on any machine. Each Firefly has a local disk containing a parual Uno

e directory wree. User directories and portions of the public readonly directories (/bin, /lib, ctc.) are sored on

the local disk. The rest of the public directories are accessed transparenty through remote symbolic links
the file servers. The most frequently accessed public files and programs are copied locally on each Firefly,
> kept up to date by nightly daemons. This arrangement approaitiales a cache-based distributed file systen:
. (which we are building).

To ke beiter advantage of the available processing power, we have implemented parmake — an eatcnsion
of the waditional make facility from Unix that provides for concurrent execution of those operations whill
. have no mutual dependencics. Morcover, parmake can also take advantage of the facilities provided by cur |

distant process facility dp to export some of that processing o idle Fireflies in the local arca network.

E The fcasible orderings of the independent tasks are determined by topologically sorting the dependency graph
' provided by the Makefile. For the most part, the Makefile is the same as that used for the raditionai make
. utility and requires no changes. In our early experience with parmake, however, we discovered that the
‘;n local Makefile discipline often relies on the imphicit left-to-right ordering, and we have added a backward-
- compatible syntax o allow programmers to make such dependencies explicit.

- Within the set of feasible orderings, parmake uses a set of heuristics 1o balance the 1oad on the local proces-
o sors, while dp conurols the scheduling of remote tasks based on machine-loading statistics. The heunistics

are controlled by several parameters that reflect the relative cost of the independent operations. For example.
the initial cost of invoking the dp mechanism (6 seconds) is large in comparison to the incremental cost of
- starting a new distant process (1 second) once the dp mechanism s iniualized. To accoumt for ins.

- \ ‘ f
- parmake docs not invoke dp untl the number of pending tasks reaches a relatively large threshold. once .
started, however, this threshold is reduced substantially to provide betier load balancing. W

e o . o ;
:.' The combination of parmake and dp provides capabilities similar 10 those of several other projects, includ- 3
d ing Locus at UCLA, Apollo’s DSEE, the V system at Stanford, and Andy Tancnbaum's distributed make a2 ‘
CWIl/Amsterdam. Our system is unique in two respects.  First, it 1s compatible with the standard version of :
-.: make and doecs not need w analyze the actual operation steps to provide speedup. Second, it is designed for {
Fa use 1n a distnibuted network of muluprocessors and must therefore consider the proper balance between fowa! .
and distnbuted concurrency. i
~ }
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'-::'_ Initial umings show that parmake reduces considerably the ume required o recompile large systems. The
o following table demonstrates the speedup for a large-scale recompilation consisting of 238 Modula-2+ files
! drawn from various library packages at SRC. These files contain approximately 65,000 source lines,
N independent of imports.
.__? processes local distant ;
o 1 1.00 0.95 |
o 2 1.68 i
v 3 220 ‘
: 4 1.90
N S 1.05 4.7
10 8.7
15 S 121
o 20 135
; 25 12.6
P 30 129
.
oo Table 1
- Speedup for Modula-2+ Compilation
N The “local™ column shows the speedup using 1 to 5 concurrent local processes relative 1o the single process
® case. Even though the Firefly has S processors, the maximum speedup was 2.2. This is due to the large
-"‘ memory demands of our Modula-2+ compiler, which typically uses 5 megabytes or more of virual memory
- to compile a file. Fireflies currentdy have 16 megabytes (of which several megabytes are required for the
:' operating system), so running more than three simultaneous compilations results in thrashing.
:: The *‘distant’ column shows the speedups as more concurrent distant processes are used, with each distant
= process on a separate idle machine. The processes read the source files froni the single controlling machine
{ . and write the objects back to the local disk on the controlling machine. As the table demonstratwes, max-
J ::.- imum speedup occurs with approximately 20 distant processes, which provides about 65% utilization. When
.-.: more processors are used, the processors on the controlling machine and the network bandwidth become lim-
::: itng factors and no further improvement is scen.
* The speedup is, however, strongly dependent on the specific nature of the computation being executed. The
table below presents similar timing information for the recompilation of the X11 library, which consists of
e 194 C files. The actual source files contain only 8,400 lines, but the included files raise the total line count
>, after preprocessing o 167,000
w
:: processes local distant
') 1 1.00 0.82
') 2 1.88
o 3 2.49
g 4 2.70
j 5 2.86 4.1
" 10 5.6
S 15 5.9
' 20 5.8
25 5.8
30 5.8
Table 2

Speedup for X11 Library (C-based)
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Since the C compiler is much smaller than the Modula-2+ compiler, virtual memory is no longer a
bouleneck, and the “local’ column continues to show improvement throughout the 1 to S range. The C
compiler also performs much more I/O relative 1o the amount of computation. The result of this is that the
local compilation quickly becomes limited by the disk speed. Distributing the five process case to five
machines results in a significant performance advantage, since each machine has an independent local copy
of the libraries on /usr/include, and there is similarly no contention for /tmp, since this is also local o each
machine. Even with this distribution, however, we do not see speedups above 5.9, since the time required to
read the source files from the controlling machine limits the available parallelism.

Our experiments have demonstrated that it is possible to achieve considerable improvement in performance
by adding local and distributed parallelism to the standard tools used to control recompilation. Moreover,
the performance advantage increases along with the ratio of computation to I/O, as it does, for example, in
optimizing compilers. We also expect that this performance will improve when we complete our current
work on cache-based distributed file systems. A research report with more details on our experiments is
forthcoming and will be available from SRC.




:“.F“:‘ Sl Bl S A ‘R 3 N
e Y N R W R~ iy
T L N D N A T TR

Extended Abstract

Coda: A Resilient Distributed File System

. Al Satyanarayanan
James J. Kistler
Lllen H. Sicgel

Je Depariment of Compuicr Science
Carnegic Mellon University

) Distnibuted file sysiems have grown in importance in recent years. As our reliance on such systems increases, the

problem of availability becomes more acute.  Today, a single server crash or network partition can scrioush

. mcenvenience many users. Coda is a distributed file system that addresses this problem in its full generality. Itss

designed to operate in an envuonment such as the Andrew system at CMU (3, 5, 2], where many hundreds or

) thousands of worksutions span a complex local arza neiwork.  Coda aspires to provide the highest degree of

availzbility possible in such an environment. An important goal is to provide this funcuonality without significant
los< of performance.

[ L:k2 Andrew, Coda distinguishes between chients from servers and uses caching of enure files as i remote
= accoss mechanism. In addivon 1o improving scalability, whole-file transter simphfics the handling of faileres wince
a [ can never be internally inconsistent. Coda masks server failures and network partitions 1o the fullest eaten
possibic. Failures during a file operation are tow!ly transparent at the user level unless the operation roquires data
thaet s norther cached locally nor present at any accessible server.

Azzrogates of files, called Volumes [6), are rophicated ot muliple server sites. When a file is ferchad, the actead
datx 1> ransferred from only one server. Howewer, the other avatlable servers are quericd o verify that the copy of

- the file being fetched 1s indeed the most recent. Alter modificavon, the file 1s stored at all the server rephcation e
- thot are cunenty accessible. To achieve good porfomance, Coda exploits parallelism an network protocols. W
have an implemenwuon of a paralicl RPC mechanisin that 1s capable of using mulucast, if asaiduble. This

. miechanism can transmit files in parallel 10 muliple sites,

Consistency, availebility and performance terd o be muteally contradictory goals in a distnbuted system, Coda
will provide the highest availabbity at the best performance. A ¢lase examination of the way files are shared i an
Lod e systemoandicates that an opuinusuc polioy regarding consisieney 18 hikely o be successful, Two princples

. dui devign of consistency mechanmisms in Coda. Furst, the most recentdy updated copy of a file that 1~
’ rhvacally accossible must alwavs be used. Secondl although mcoensistency 1S wlerable, 1t must be rure and alwes
dotrcicd by the system. We may eaxpenment with heunstics based on file access paticrns to resolve sample casos of
x . inccnaweny s Asan Locus (33 inconsitaney s dotectad by the use of verston vectors. However, Coda uaes wton,
o ' tran Lonens at servers to ensare that the version s cCtor and data ot a hile are mutually consistent at all vimies,
.

::-: ) Atthe present ume Coda s inthe detnled dowoonphasys The anelemennon el e parallad Rl ooy o,
;..::_’. . Poon u-.'np]clgd. but the bulk of the design and implamentaton work remarns to be done This includes arces such
,.:‘_.: as rocovery from falures, detecuon and resclution of anconsistency, file vanster protoceols, and suppost for
R, partioned operauon The evatuanion of Coda 2'ag the dimensions of performance and resibiency will alse requa

conscderable effort Althoush much work rencns, we expect hat our use of the Andrew file systom as o bas
Cuars 0 {7 for ransacuon sepport, and Mach 11 for operating svsieny support wadl cumplily implemeniaton
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ABSTRACT

Liuba Shrira
MIT Laboratory for Computer Science
Cambridge, MA. 02139
July 27, 1987

Dr. Liuba Shrira has received her M.Sc. and Ph.D. from Computer Science Dept. Technion Haita.
Israel. Her M.Sc. thesis was one of the first distributed implementations of CSP. Her Ph.D. thesis was on
methodoiogical construction of distributed and reliable algorithms. Since 1986, Dr. Shrira has been a
postdoctoral research fellow at the Laboratory of Computer Science, MIT with Programming Methodology
and Theory of Distributed Computing research groups. Dr. Shrira is one of the participants in the Mercury
heterogenious distributed systems project at LCS. The main interests of Dr. Shrira are in the
methodological design and analysis of distributed systems.

Recent Work

Within the Mercury project, Dr. Shrira has worked on the communication mecanism of the system. The
Mercury heterogenious system aims at a general class of applications written in a wide vanety of
languages. The approach is to connect programs in a flexible and efficient way by a new communication
mechanism called stream. This new mechanism combines the advantages of remote procedure calls and
message passing. Remote procedure calls have come 10 be the pretffred method of communication in a
distributed system because programs that use procedure are easier 1o undersiand and reason about than
those that explicitely send and receive messages. However, remote calls require the caller to watt for a
reply before continuing, and therefore can lead to lower performance than explicit message exchange.

Streams allow a sender to make a sequence of calls to a receiver, without waiting for the reply to the
previous call before making the next. The stream guarantees that the calis will be delivered to the
receiver in the order they were made and that the replies from the receiver will be delivered to the sender
in call order. Provided that the receiver executes the calls so that they appear to occur in call order, the
effect of making a sequence of calls in the same as it the sender waited for the reply to each call before
making the next.

However, new linguistic mechanisms are needed to use streams. For example, suppose
a ‘= p(x)
b =aly)
are two calls on the same stream, and what is wanted is to begin the call of q immediately after the call of
p has been made How can this be indicated? How can the results of the two calls be picked up without
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’ error or confusion? What happens if one of the calls signals an exception? Finally, suppose a
-\-J:: communication problem makes it impossible to complete one of the calls; how is this indicated?

-

? ) A new kind of data type cafled a promise was invented to integrate streams into programming languages
N Promises support an efficient asyncronous remote procedure call for use by components of a distributed
\C'_.' program. They are also usefu! as a general way of allowing a caller to run in parallei with a call and to
::j pick up the results of the call, including any exceptions it raises, in a convenient manner. Thus, promises
“~

k.- preserve the merits of organizing programs using procedures and procedure calls without sacrificing the
performance benefits of streams [LS].

x.‘\
-
.- | -
Independent of the Mercury project. Dr. Shrira has worked on a new efficient fault taulerant data
" replication schema. The schema improves availabilty of the system by exploiting the semantic
: knowledge of the application to relax the up to date consistency constraint. An interesting class of
: apphcations was identified and the schema was given a rigorous specification and correctness proof
o [LLS}
.
22,
° .
~ Dr. Shrira also worked on modular specifications of network protocols [FLS]. The work analyzed a
[ . . .
- network synchronyzining algorithm by B. Awerbuch designed to be used as subcomponent in derivation
o
S of other protocols. Modular specification and correctnes proof were given to the algorithm which enable
‘, them to be reused in specifications and proofs of the derived protocols .
o \
(
>~
'l
o
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Scheduling Parallel Programs On A
Distributed System

John A. Stankovic
Don Towsl‘ey
Gary Rommel

Dept. of Computer and Information Science
University of Massachusetts

August 1987

Abstract

In the near future it will be common to see local area networks with uni-processors
and multi-processors. There is also a growing trend to program applications by
decomposing them into multiple parallel tasks of large granularity. If these multiple
tasks are assigned to different processors, then it becomes a distributed program.
However, in spite of the potential parallelism, distributing a program can easily result
in a decrease in performance. This decrease is due to such factors as extra delay in
cominunication betwecn the varicus parallel tasks, operating system overheads such
as context switches, and delays imposed on the parallel tasks by the scheduling
algorithm. It is obvious that the total response time for a parallel application is only
as good as its slowest component. All these issues complicate the effective use of
local area networks for large grain parallelism.

In our project we have been studying the scheduling of large granularity parallel
programs on distributed systems where some of the nodes are multi-processors. We
have approached this complicated problem in three related ways: one analytical, one
based on implementation, and one based on simulation.

The analytical work considers a job to be composed of multiple, paralle] tasks
generated by a fork-join construct. The parallel tasks do not communicate witu
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each other, except at the last phase of execution (the join). The analvtical results
derive closed form solutions for response time of the fork-join job. These results show
that for uni-processors, scheduling fork-join jobs under processor sharing should be
done at the job level and not at the task level. We also derive analytical solutions
that show that the opposite is true for multiprocessors, i.e., sckeduling fork-join jobs
under processor sharing should be done at the task level and not at the job level.
One implication of these results is that if a job with multinle tasks is moved from
a multi-processor to a uni-processor, then the job should no longer be treated as a
collection of parallel tasks. We were also able to derive analytical results for fork-join
Jobs on a multiprocessor which compare processor sharing with first come first serve
(FCFS) scheduling. We find that FCFS exhibits better performance than processor
sharing over a wide range of systemns. We also studied the situation where there are
two classes of jobs and where a specific number of processors is statically assigned
to each of these classes. The results demonstrate that in a multi-processor a static
assignment of processors by classes must be avoided. This latter result gives ris. to
the next aspect of out project.

Current multiprocessing scheduling algorithms are quite limited, and usually treat
all tasks as independent. This could be a mistake in many circumstances. In the
implementation part of our work, we have developed a dynamic, multi-class, multi-
processor scheduling algorithm which we intend to implement on our SEQUENT ma-
chine under MACH. The implementation has been delayed until we obtain a version
of MACH for the SEQUENT. The algorichm supports the simultaneous execution of
short Jobs. long jobs, jobs with many parallel and commmunicating tasks, and those
jobs which require a dedicated set of processors. The algorithm separates policy from
mechanism and is highly parameterized for ease of tuning in different environments.
It does require lightweight processes. In addition, the algorithm makes use of the
insight gained from the analytical models. This algorithm deces not constder schedul-
ing across the network. It 1s necessary to integrate such a local, multi-processing.
scheduling algorithm into a distributed setting. Special problems arise when at-
tempting to integrate local multiprocessing scheduling with distributed scheduling,
especially when jobs are composed of parallel and communicating tasks. This gives
rise to the simulation phase of our study.

The simulation study removes the restriction found in the analyticzl models that
parallel tasks don’t communicate with each other. In the simulation study we inves-
t:zate various tvpes of communicating parallel programs with both synchronous and
asvnchronous IPC. We have developed focused addressing and bidding algorithms
that specifically address some of the major issues of such programs. A major charac-
teristic of this algorithm is that the scheduling modules at each site negaoticte cither
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to cluster highly communicating tasks, ..nd/or to distribute tasks across the network
when we predict that those tasks wouid benefit from executing on separate proces-
sors. Again, insights provided by the analytical results are used in formulating some
of the scheduling policies of this algorithm. To date, in this part of the work, we
have only considered communicating paralle]l tasks on a local area network of uni-
processors. Future work will attempt to integrate this scheduling algorithm with local
multi-processing scheduling algorithms. The simulation program is implemented.
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Marlonette: Support for Highly Parallel Distributed Programs
in Unix

Mark Sullivan
University of California. Berkeley,
Berkeley, CA 94720

Extended Abstract

A parallel algorithm can be implemented as a set of processes executing concurrently on
many loosely-coupled processors. AMarionette is a facility that simplifies the construction of such
parallel, distributed programs. It includes a library providing a high-level interface to the Uniy
facilities for remote process creation, interprocess communication. and asynchronous 1/ This
interface resembles Sun Remote Procedure Call [1] both in syntax and in its use of the XDR pro-
tocol [2] for machine independent data representation, but is oriented more toward multiprocess
parallel programs than client/server interactions.

Marionette supports a master/slave model of distributed computation It requires a dictni-
buted program to be divided conceptually into a foregrcund. contaiming the program’s mun
thread of control, and a background. in which functions mav be executed concurrently with the
main program and with each other. The foreground and background are escentially dupli-ate
copies of the program’s address space except that global variables in the background are read
only. The main thread invokes functions in the background using a non-blocking hbrar. call
When one of these functions completes, the main thread accepts the result parameters into the
foreground with a second library primitive. It m=, either poll or block until background fun-tinn
results become available. Using a configuratiou file, the library determines at run time the numbher
of processors available to the program. Attempts to invoke more functions in the bachground
than there are processors available return an error code.

The program may declare any global data structure to be shared between the foreground
and background. Like all global data. shared data structures may cnly be modified by the fore.
ground thread. [If the foreground thread then notifies Marionette of the modifications with
another hibrary call. subsequent background invocations will operate on the updated version of the
dita structure

In sum. the Marionette library provides:

) tran<parent initiahization of remote processes,
. a mieans for the programmer to request that certain of his functions be executed in parallel
. fluw control in the event that the program requests more parallel operations than it has

machines available to execute them.

. a high degree of fault-tolerance. If some processors fail or become over-loaded, performance
degrades. but correct execution continues without user intervention. Similarly. if additional
processars become available the program may take advantage of them.

. a mechanism for maintaining replicated data structures at all sites executing the program.

In addition to the library, Marionette includes two utility programs to smooth over some of the
mechanical concerns of distributed programming. A parallel compilation utility eusures that con-
sistent versions of the program binary files are available to the processors that will execute the
program  This utility must copy source code to file systems accessible to each processor and com-
pile these sources in instruction set of each processor. A second utility helps make debugging less
difficult by simulating execution of the multiprocess program in a single Unix process.  This pro-
cess can then be monitored with the standard Unix debugging tools.

The master/slave semantics enforced by Marionette limit communication between the paral-
lel components of the program to data passed into and out of the background by the main thread
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[ This organization simplifies the programmer’s synchronization task, though the foreground thread

" might become a performance bottleneck in communication-bound programs. The library primi-

b tives are flexible enough to allow a programmer to implement a paralle} algorithm without know-
_':,-: ing the number, type, and relative speeds of the processors that will eventually execute the pro-

o gram. Processor heterogeneity is handled by XDR and the parallel compilation utility. Through
:.-: the shared variable mechanism, a program can cache large data structures at remote processors.
o) The library assumes resporsibility for keeping the data structures up to date with regard to the
\ functions scheduled at the processor.

:-.' Marionette provides the most performance benefits to programs that can be decomposed
_.._‘.: into many small, independent operations. When the number of operations is much larger than the
:—.’ number of processors, faster or more lightly loaded processors will become available for scheduling
.p’:: more frequently, hence take on a larger proportion of the work. Real applications that may be

’ structured in this manner include “ray-trace” rendering in graphics [5| and Monte Carlo simula-

R tion techniques used, for example, in Chemical Physics [4]

::-" Currently. a prototype library, a parallel compilation utility, and some debugging tools run
K. on a network of Vaxes and Sun workstations Work on a distributed implementation of the
'J UgRay ray-tracing renderer [3] ucing Marionette is pearly complete. Future eflorts will explore
X Y the limits to parallelism imposed by our decision to synchronize communication through the fore-
A)

e ground thread
@
it
~° 1 B. Lyon. “Sun Remote Procedure Call Specification”, Technical Report, Sun Microsystems,
kv Inc.. 1984.

:f- 2 B. Lyon. “Sun External Data Representation Specification”, Technical Report, Sun
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Microsystems, Inc | 1981
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D. Marsh, “UgRay An Efficient Ray-Tracing Renderer for UniGrafix”, Technical Report
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-': 1 A. Wallgvist, B. Berne and C. Pangali. “Exploiting Physical Parallelism  Using
ko Supercomputers: Two Examples from Chemical Physics™, Computer 20, 5 (May 1987).
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Kad 5 T. Whitted. “An Improved lllumination Model for Shaded Display ™, Communicationas of the
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The PHARROS Project
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John Van Zandt
RCA Advanced Technology Laboratories
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The PHATROS Project (Parallel Heterogeneous
Architecture for Reliable Realtime Operating Systems) is
currently underway at RCA's Advanced Technology
. Laboratories. The goals of the project are to develop an
operating system and associated distributed architecture to
support applications which are distributed across
next-generation networks of hetecogeneous parallel
processors. The project is also concernad with methodology A
and tools to assist the applications development within the
context of this system. The focus of this project is on
applications which straddle the boundary between signal and
< data processing.

A

A

A

L

To this end, we have constructed a demonstration system "
consisting of a Connection Machine, a BEN Butterfly, a VAX
. cluster, and a WARP, along with a set of workstations, all
networked together using an Ethernet. Next year we will be
replacing the Ethernet network with direct connections
between the processors and the Butterfly using multiple VME
buses, modeling a tightly-coupled network as will be seen in
next generation distributed systems with the Butterfly !
i switch and shared memory as the interconnection system. The
Butterfly processors will be used as processing resources
for both the distributed operating system and for the ~
s application.

2

E

-~
e

This year, a large signal processing and tracking
. application is being implemented on top of this system.
!i The application is being decomposed into many interdependent
= tasks which will take advantage of the heterogeneous
parallel processors in the network. The modeling of the
performance and estimations of the communication ¥
DS requirements along with other measures will guide the .
granularity to be supported by the architecture and
) operating system. As part of this task we are developing a
set of tools to assist the programmer in distributing the
application. Also, performance monitoring tools will \
visually guide the programmer to better understand the \
complex interactions of the application as it executes in
. the parallel environment.

1
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Research in Distributed Systems

Wiliam E. Weih!
o MIT Laboratory for Computer Science
‘- 545 Technology Square
Cambridge, MA 02139
(617) 253-6030
) weihl@xx.lcs.mit.edu (Arpanet)
September 8, 1987

; My recent research in distributed systems has been focused in two main areas: distribLted transaction
- management, and heterogeneous distributed systems. These two areas are discussed in more detal

below
=

1 Di_tributed Transaction Management
o In earlier work, | developed an approach to the design of loosely coupled transaction systems that
o supports the modular design of highly concurrent applications. The approach, which builds on earlier

work on data abstraction, involves organizing programs around atomic data types. The design decisions
.. involved in designing a system can be divided into global and local decisions. Glotal decisions consirain
. the entire system, while local decisions affect individual types. A global decision that must be made
- involves the choice of a local atomicity propety, which characterizes the behavior required of the ditferert
- atomic types in a system to ensure that they cooperate to ensure global atomicity. Given this choice, new
'. types and transactions can be added 1o the system without moditying existing types or transactions, and

atomicity is still guaranteed. In other words, systems are extensible.

Extensibility is an important attribute of a system Performance, however, is equally important  One of
the pc'ential problems with transaction systems is that the level of concurrency can be relalively low; in
some applications this can be a serious problem. Atorrc types can be used to alleviate this problem by

using the semantics of a type in designing the concurrency control and recovery algorithms for the type.
u The specitication of a type can be analyzed to determine the czacurrency permitted for transactions using
objects of the type, this analysis can te used as feedback curing the design process to modify the
specification of a type if the permitted leval of concunency is not adequite to meet the performznce

4-: demands of the application. Furthermore, the implementation of a ty;e can be modified salfcly to permit
s any leve! of concurrency up to the limits imposed by the type's specifications; thus, a type can be
implemented initially in a simple way that pemmits relatively littie concurrency, and then re-implementad to
s;. permil more concurrency if it turns out to be a concurrency bottieneck.
My current work has several goals:
e To design powerful, efficient, and easy to use mechanisms for implementing atomic data

types.
« To develop more general concurrency control and recovery algorithms.

» To understand the interactions between, e.g., concurrency control and recovery.

These goals are mutually supportive; for example, the attempt to design new mechanisms and algorithms
creates a need for a deeper understanding of the algorithms and their interactions. Some of the

&

"v-ﬁ algorithms | have developed illustrate interesting interactions between concumency control and rec< very: |

3 would like -~ understand these interactions better, with the ultimate goal of generalizing the z2!gorithms
and developing better mechanisms for implementing them.
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= I have also been involved in a major effort (in part with Nancy Lynch and Michael Merritt) to develop
:« formal models for describing and analyzing distributed transaction systems. We have already described
‘ and analyzed a variety of concurrency control, replication, and orphan elimination algorithms. While the
. model we have used to date allows us to analyze algorithms that cope with aborts of transactions, it does
~ not include a notion of a site crashing. We are currently working on modelling crashes and analyzing
e algorithms that cope with crashes. In this work, as in the work described above, | am particularly
?": interested in modularity issues: what is the approriate decomposition of the system into pieces, and what
are reasonable correctness criteria for each of the pieces?
:_:l
B 2 Heterogeneous Distributed Systems |
- A number of us at LCS have also been working on a project (formerly called the LCS Common System,
- now called Mercury) aimed at solving some of the problems of heterogenedus distributed systems. We a
: have been particularly interested in heterogeneity at the level of the programming languages. Our work to
date has focused on two issues: the semantics of data types, and the communication model. y
Ry
" Data types present an obvious problem in a heterogeneous system: different languages have ditterent L

- notions of Jata types, with different underlying representations, yet some method must still be found for
» them to communicate. A basic prcmise of our approach at this point is that communication interfaces
o
v
4

L 4

between heterogeneous components must be described in language-independent terms. We have
designed a language-independent type system that is expressive and that permits a flexible connection
with each individual language. Earlier work typically placed sericus restrictions on the set of types and
the use of type constructors, and provided relatively inflexible translations between local types and the
types used for communication. We are currently worxing on extending this work to permit, for example
polymorphic intertaces

L

IRE: Lo

n trying to develop a semantic mode! tor the data types used in communicat.on, we came 10 the
conclusion that these types are fundamentally different from the types used for local computation. Types
used for local computation are frequently viewed as consisting of a set of values and a set of operaticns
(In a language like Ada. a module might define severa! types and some operations together, so the
operations might not be associated with a single type.) Types used for commurication, however, are best
viewed simply as sets of values Defining the semantics of communication types by associating
operations with them can lead to sarious problems as systems evolve. This has implications for single-
language systems such as Argus (which currently does not distinguish between types used for
) communication and types used for local computation), since the issue of evolution arises regarcdless of
: the numter of languages involved. We are currently redesigning the data communication mechanism in
: Argus tc provide better support for evolution by making a clear distinction between the two kinds of types

P
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Our initial discussions about communication models led to the conclusion that existing high-level
models, such as remote procedure call (RPC), are not adequate for a wide enough range of applications
(for example, driving a remote display, or transferring large amounts of data). As a result, we have
designed a new communication model that integrates RPC and byte-stream protocols into a single
semantic framework. The model allows a client to decide whether a call should be performed
immediately, in which case the system attempts to minimize the delay for the call, or whether it should be
streamed, in which case the system is free to buffer the call in an attempt to maximize throughput.

=2 ol

&~

The semantics of the communication mechanism guarantee that calls sent on the same stream appear
to be executed in the order in which they are sent. Thus, a client can stream one call and then stream
additional calls without waiting for the results of the first call, but still be sure that the calls appear to 2
execute in the order in which they were made. Of course, this makes sense only if the arguments of the
later ca!'; do not depend on the rcsults of the first call.

The choice to stream a call is made entirely by a client: servers can t2 written more or less as they :-g
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would be in the absence of streaming. In addition, a server needs to provide only a single intertace,
rather than one interface tor clients who want to use RPC and another for clients who want to use
byte-stream protocols.

Our mechanism permits clients to pipeline remote calls, taking advantage of the concurrency between
the sender and receiver of a message, and of the buffering capabilities of the network and the
communication protocols. For some applications, pipelining can result in dramatic improvements in
performance. An interesting open question, however, involves the applicability of pipelining. for what
kinds of service interfaces can streaming be used profitably? For example, if typical uses of a service
require a client to receive the results of one call in order to compute the arguments for the next call,
pipelining could not be used to advantage. In the few cases we have examined, we have been able to
modity the service interfaces so that clients can pipeline calls. My hope is to develop a small set of
general transformations ot this sort, with the result that pipelining can bé used for a wide range of
applications
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Programming Language Features for Resilience and Availability
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Distributed Systems Group, School of Information and Computer Science
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o Extended Abstract

Since late 1981, the Clouds project at Georgia Tech [Allc83, Dasg87] has been occupied
with the design and construction of a reliable multicomputer, that is, a unified environment
over loosely-coupled distributed resources in which reliable applications may be constructed.
The research goals of this project include decentralized cooperative control, location
independence for data as well as processing, and failure tolerance of computations. Failure
tolerance implies the resilience of data despite node crashes, the availability of resources
despite partial failures of the system, as well as continued forward progress of jobs in the
system. The Clouds architecture offers several features in support of these goals, including :
support for passive objects, capability-based object access, location-transparent object b
invocation, nested and toplevel actions (transactions), and customizable as well as automatic
synchronization and recovery mechanisms.
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In support of programming the levels of the Clouds system above the kernel level, we
bave designed and implemented a systems programming language called Aeolus
{LeBI8S, Wilk85,Wilk86]. The purposes of the Acolus language include: providing
abstractions of the Clouds features of objects, actions, and processes; providing access to the
recoverability and synchronization features of Clouds; and serving as a testbed for the study
of programming methodologies in action/object systems. The combination of Aeolus and the
Clouds kernel provides support for resilient objects. i

SuN
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. Acolus support for objects includes a hierarchy of object classifications which share a
) common implementation and invocation syntax. The support in Aeolus for elements of this
hierarchy ranges from completely automatic synchronization and recovery (the paradigm
E presented by most other systems offering support for resilience), through programmable
g synchronization and recovery based on object semantics, to “‘lightweight’” objects—Iliving in
the address space of their creators—in which recovery support has been “optimized out.”
A similar hierarchy of support for actions and action/object interactions is included in ‘
e Acolus. The constructs for programmer specification of resilience properties support the
separation in Clouds of failure atomicity—the "all-or-nothing’ behavior of atomic actions—
g and view aromicity, in which actions are prevented from observing the uncommitted results of
e other actions. Failure and view atomicity together form the traditional notion of

serializabiliry; we believe their separation in Clouds provides a powerful means of increasing
. the efficiency of actions as a reliability technique, especially in development of resilient
o structures for use in operating systems [McKe85]. This characteristic is exploited in the
- linguistic features of Aeolus.

1
., Recently, we have been using Aeolus to examine availability issues in Clouds [Wilk&7]. ;
e We have developed a scheme for deriving replicated objects from single-site specifications )
- which we call Distributed Locking. This scheme addresses the issues of control of !
concurrency and state consistency among the replicas in a system in which objects may have
-:: arbitrary structure; in Clouds, objects may be logically nested in an arbitrary manner, in the
> sense that an object may hold capabilities to other objects. Distributed Locking consists of a
methodology for deriving a replicated implementation from the single-site version, as well as a 1
v, mechanism to support this mcthodology. In accord with the Clouds philosophy in other
': arcas, it does not assume any particular policy for replication control (e.g., quorum
o consensus).
o
® -90-
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>
o The methodology of Distributed Locking consists of two steps: the programmer writes a
v single-site implementation of an object with appropriate Aeolus/Clouds lock mode
g compatibility specifications for synchronization; then, an availability specification (availspec)
\': is provided separately for the object, which supplies information about the object’s replication
:_- properties. (The availspec is described in more detail below.)

“:-j The mechanism provided by Distributed Locking also consists of two parts:

- 1. when an action obtains a lock on an object, the system also obtains locks on some subset
' of its replicas, according to a user-specified policy;
"I

:- 2. when an action commits, the object state is copied to the subset of replicas locked in
:'_,: step (1), according to another user-specified policy.

> The polcies for locking and state copying among replicas used in the DL mechanism may
be specified by the programmer in an availspec as handlers for the lock and ropy events,
. respectiveiy. These may consist of one of several default policies (e.g., the quorum
-.:'_' consensus or available copies algorithms), or the programmer may specify custom handlers
\_ using the same system-supplied primitives which we have developed for programming the
’ default bandlers. When a quorum consensus-style algorithm is used for a lock event, the
e programmer may also specify the relative availabilities of the modes of each lock type
e declared by the object.

: Other Clouds researchers have been concerned recently with the issue of forward progress
_.r: in Clouds. A scheme called Parallel Execution Threads (PET) has been developed which
'_’.' essentially provides replication of actions as well as objects [Aham87, Aham87a]. PET may
-, be regarded as a generalization of the so-called “hot spares’” scheme. Our current research
'\-i’ includes specifying how PET may be controlled by the Clouds system; this functionality is to
”' ' be embedded in a subsystem which we call the Fault Tolerant Job Scheduler.
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A COARSE-GRAINED DISTRIBUTED MULTIPROCESSING SYSTEM

Joan M. Wiabety
SRIT International

Problem Statement

Users of distributed svstems are developing an increasing number of application-
that are computationadly intensive. but thev are unable to obtain reasonable perfon-
mance for those applications on distributed svstems. One way to improve perforna o
is to inerease the amount of parallelism used in the svstem. However, the existin:
programming languages and operating svstems do not provide adeqguate support
the development and execution of applications that require shared use of the avuilab
processing resources. Current models of interaction in distributed svstems are 1
approprinte o parallel computations. and must be replaced with models which provis

Wol-speed communication primitives and sapport for paralle]l operstions.

A the some thmes special-piurpose stand-alone processing hardware i~ bheines in
porntedinto heteroceneons networks of muliprocessors. workstations, and poosloc-
proeessarss The developers in these environments do not leave the taols op 1
nicderhving oporating svstems o support decomposition of computationally e
aprlications into tsks that can functionally use the best capabilities of the Leterooe -
e processine elements, In these disuibuted network environments, progrann b
Fatcuages anod methodolovies e required that allow developers o desicn apedionto
that niake the hest use of the processing capabilities, hoth i terms of avaiiable -
Pelisie and processing hardware capabdines,

’

Objective

At SR we e devel e omodel for compnting on these disteihoecd penaee -
ol hetevooepeons cood antopone s processine elements, Ounr ioded s decioned
abbress nwao odss The first s o provide ooprocramiiing envivoment and meth o -
o thar fneilivates the development of paralie] colde to exceente compntationally e -
sive apelientioonss ThIS involves developing oo madel Tor paradl D eompoiation e 5
Aate Pl nnderhvine diseriboated arehireerare,

Thoe seccd won I o peos e o nnderleine exeent o saston thee bt et

coprtine oo b ane applies it etlicenty e the disuibomed soeliitectore s Current i--
ribnted svsterns support interproeess copmunication baronot efficient diste ueea
computation. While these systems juay provide the capability of disoibured or poosdt -
computstion. no support is provided for antomatic allocation and execution !
processes. The execution system must make distributed computation both feasibil-
and eflicient by providing these capabilities. One should expect the performance of o
di~tributed parallel architecture to achieve multiprocessor performanee.

Approach

In order 1o provide a programming environment that does not require users 1o
program in entirely new wavs, vet allows the user to take advantage of parallelism. we
have combined visunal programming methods with the writing of scquential code 1o
produce coarse-grained tasks. Becanse communications and task manacement over-
hewd ean be high on distributed system, it is not eflicient o handle fine-grained sk
and thus coarse-grained parallelisme provides aorensonable tradeofl hetween achiovabl
povallelism and Gl execution and cotmmniention averhead,

T ——
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In order to support the cflicient execution of coarsc-grained parallel tslis o
heterogencous and antonomous processors, our commputing model addresses horl e
method of execution of tasks and the method of allotation of tasks. The metliod
exccution of tasks on the graph can take one of two forme. Excention can be o

0,

‘At driven, where tasks are executed on a first-come-first-served basis as inpot da
:;'-:: hecomes available.  Alternatively. execution can be demand-driven. where tashis o
e only executed if their outpnt data is required for subsequent task<. The choiee of ¢x
':" N cution mechanism will affect the level of fault-tolerance, the capability for reul-tini

execution, and the role of external input and output handling. Further. the relarive
excecution costs incurred by cach of these execution mechanisms within the runting,
svatem of a distributed svstem of processors must be addressed.

B

::: The allbcation of tasks to processors in the syvstem is dynamic in order o

. etliciently utilize autonomous and heterozencous processing capability. Incorporar .

N status collection o provide the information necessary for load balancing i allooa]

“ and subsequent execution of taxks is a requircment for disuibuted systenn el
tires. While the effectiveness of load-Lalancing may be significantly redueed L1l

N cotmnnications costs inenrred for stats propagation. the cffective capacity o -0

Loty diter creany beeause nodes ore antoncmous and may he executing -
Leal Banerions, The Towd at each ost must therefore he considered etk

Frortioer, Leconse processing resonrees e heterogencous, the absolute poo -0
v oat cacd it st also be tiken o acconnt.

Ti ronting svstem for graph exeention ninst provide the capabilitv v <y, o
teforncaions exchanee bhetween tosks onoarbitrary processors. 2] tuskoaetiva
deternried b the computing models apd 35tk allocation and exeenti o o
oy proeessor~ Our intiad foens it develop wormntime svstem that uses e 0
cative properties of the graph of an application to dyvnamically allocat and oo
arroodistribnted netw ek of antonoamous nodes. A pplicative execnt
Ve tasds ot oeaph Wil sllow e pumttime sysvem v etfidientiy utilize vl el
v e resoorrces, Lvecution procecds by trversing the o grapls with I;:»Ts TR
vnted oad svnehronized Dy inpnt dates Communication between tasks i~ 1
cooc st and cutpot ditas and can be easily accommodated Dy pressso
Vit d of comapmmniention i~ deemed more naturnl for disteibaned oo

aoed vt anderiving interprocess commnieations primitives than other e
conet i e i <horedamemory mndtiprocessoess Furtlers elininnt o
co P et e pen oves the need 1««‘ <liped abdpess spaees Bt
L

= Pyvirtas of oo desion, te rwn:".mw svstern cdbso Galoes oedlvanioee ol ke

- Cronn =de-ctiocn omsth e with applientive programeming. wnd the doealing ot o7

cit gy the eraph in d_\u:mnmll) alloeating wned exeenting tashs, Do syt v
moderate te hiol communication costs, exploitation of these propertios is imype:

¥
@

- Finallv, the design of the execution svstem includes the capability for status coli ot o
AN to support task allocation. and for voluntary allocation of processing capabiling
- nmmnunmux‘ nodes. We intend o take advantage of existine work for hoth of th-
3 funetions. [1]]2!

R
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Static Typing of Temporal and
Reliability Attributes in Distributed
Systems

Hanno Wupper, Jan Vytopil
Catholic University Nijmegen!

Distributed computer systems which control
physical processes must be prompt (in “real time”)
and reliable. For their methodical development one
nceds a specification language that supports treat-
ment of formal promptness (timing) and reliability
requirements and that can (i) serve as a basis for
development and verification, (ii) provide a
formalism for theoretical investigation of proper-
ties of distributed reliable real-time systems, and
(u1) allow the exchange of re-usable algorithms. —
A first prototype of such a language shall be

resented. It is based on a generalization of the
concepts of static data-typing and polymorphism.
It allows to associate, in systems specifications,
attnbutes describing temporal properties with the
cemposents Lad subcomponents of the systems to
be specified in a similar wav as data types are
assnciated with expressions and sub-expressions in
strongly tvped languages. Such a speatfication will
be sintactically correct only if 1t 1s consistent with
respect to temporal properties and guarantees that
the specified svstem will fulfil the stated
regulrements.

This prototype of a specification language can
be used for the development and vernification of
such distnbuted real-time svstems that have to
react at fixed moments or within a fixed period. It
has mainly to be developed te show that a
consistent language based on the principles of
static timing and reliabihity typing can indeed be
defined. Future versions will also contain
constructs for systems with vaniable temporal
behaviour and will, moreover, treat reliability
attributes besides the temporal ones.

Clarification of terms

Timing requircments for rcal-time systems
must not only include qualitative statements about
the necessary temporal order of activities, but
maorcover quantitative statements with respect to

Informatica V., Toermoorveld

6525 ED Nymegen, The Netherlands
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physical time (e.g. the duration of an activity in
seconds) [Koymans 83].

Reliability in computer science often is
defined as the probability that a certain component
functions correctly over a certain period of time.
This definition gives rise to four questions: (1)
Does it cover Reliability’ in the sense of natural
language (i. e. is it a sufficient basis to allow to
decide whether we can “rely” on a system)? (2) If
we accept the definition: How do we obtain the
reliabilities of the building blocks of systems (in
other words: what means “to function™)? (3) How
doces a system’s reliability depend on its structurc
and the reliabilities of its components. (4) How carn
we formulate reliability requirements for the
overall system?

Question (1) is extra-mathematical and <hal!
not be addressed. In any case this probabilistic
approach is widely accepted to approvimate
Reliability closely enough to justifv further re-
scarch For hardware comp‘oncnts cnzm corir s

85]. (3) is purcly intra-mathematical and has b-;*u.
studied well: If components of knewn reliahilines
and known average repair times are assembledin g
given way, the overall reliability can be compuiid
by statistical means. This has lead to approsved
methods to include redundancy
order to increase reliability. The requirement tha
redundant components be really indeponden
usually not checked formally, however. Analves o
accidents often reveals that their cause was noe s
unforescen failure of a basic component but ur
illegal interference betwoeen components assunicd
to be independent (Leveson 8] Though relialon
is a probability, (4) cannot simply be dealt wath o
stating one number for a whole system Ttis mor
realistic—and common practice—to separatels ro
quire rehabilities differing in order of magniude
for different sub-functions of a comples sy
Reliability requirements are in itselt sometiang
complex, closely linked to the system structure A
language that allows to formally establish that 104
is still missing, however.

Static typing associates an attnbute (“type’)
with certain or all sub-expressions of a teat
conventionally thisis a “data type” saving somc-
thing about the set of values the expression may
possibly assume. If such a text has been proved to
be syntactically correct, this ensures that duning

I svstems an

exccution all function applications will be well-
defined and that the corresponding implemen:
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tation can do without dynamic tests except in
situations where they are explicitly required.

Polymorphism allows the essentials of
algorithms to be formulated independently of a
particular application. The so obtained algorithms
are re-usable to handle objects of different proper-
ties without loss of the benefits of static typing.

Cardelli [85] and Barendregt [86] both present
languages based on the state of the art of static
typing and polymorphism. Though such languages
do with comparatively few and simple concepts,
they can be shown to cover the data abstractions of
Ada as well as the classes of object oriented
languages [Cardelli 83]. We can show that with
minor additions such languages may also allow the
description of distributed systems and com-
munication in a structured way, with the security
of static tvping.

The role of language in systems development
and verification

In the evolution of programming and
specification languages we can distinguish three
stages with respect to lan “wage support in systems
development. Langue, ne first stage give no
surport ot all Languages in the second stage—
which are accompanied by powerful run-time
Svsteme —aliow or enforce automatic inclusion ot
“run time checks”, svnchronization, garbage
collection, stack admimistration. etc to help to
detect design errors or avord error-prone pro-
gramming Languagesn the third stage, however,
suntactially en'orce consistency to make run ime
checks unnecessary, One way to achieve this s
stalic tvping. The necessary syntactic restrictions
and the enforced redundancy will be taken as a
benefit rather than an obstacle if the language not
merely rules out inconsistent svstems but also
supports the development of consistent ones or
allows to write re-usable algorithms. TPoly-
morphism here is a valuable tool.

With respect to algorithmic cerrectness, we
are used to third stage languages. It contemporary
languages support timing at all, the corres-
ponding constructs are hardly beyond second
stage (cf. Wirth [1977)). Parnas observed in [1965]
that the support of reliability has not vet developed
bevond the first stage.

Our approach

Static typing and polymorphism as described
by [Cardclh 85) or [Barendregt 86] are based on a
mathematical theory of types general enough to

~9h-
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cover not only data types (i. e. sets of values), bue

also timing and reliability attributes

A first generalization step lead to our preser:
language [Wupper 87]. It allows us to formall,
state timing requirements and take them into th:

development process to arrive at systems guara?
teeing to fulfil these requirements without dy:
amic time checks or synchronization. The aly
rithms so derived are polymorphic and can be ro

used in contexts with different functionality ar:
different, but structurally similar, timing reguire

ments.
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