
M -A19l 094 PROCEEDINGS FROM THE WORKSHOP ON LARGE-GRAINED 1/2
PARALLELISM C2ND) HELD IN (U) CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST

UNCLASSIFIED J WING ET At NOV 87 CHU/SEI-87-SR-5 F/G 12/7 Nt.

I EhEilli/huiihE

I .hmmommhmmhmInnollliniiinlnmo

I.I
.4.44I1I

7"..

* 111 .
0,t • • •5 "P. IIBI • •

Special Report
0') CMU/SEI-87-SR-5

0 1FILE COPY

Proceedings from the Second
Workshop on Large-Grained
Parallelism

Jeanette Wing
Maurice Herlihy

Mario R. Barbacci rTIC
.. November 1987

.ECT.

] Approved for public Teleasel
Dis. ,tribution Unlimited I ,-.

*<
=:@ @• $ "

[@ .@.1
, '

Special Report
CMU/SEI-87-SR.5

November 1987

Proceedings from the Second
Workshop on Large-Grained

Parallelism

Jeanette Wing
Maurice Herlihy

Mario R. Barbacci

' 7i C~.& LI

:"2 2%r.. i....................................... Q 'A .rv,

- ~- I . ? .IN S p ,. -'.

S ' I .:'

,. Approved for public release.

Distribution unlimited.

Software Engineering l. stitute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

=.L

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

i

W This work was sponsored by the U.S. Department of Defense.

II

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordenng. please contact NTIS directly: National Technical Information Services, U.S Department of Commerce,
Springfield, VA 22161

r%

___ -'--- Carnegie Mellon University

- Software Engineering Institute

These are the proceedings of the Second Workshop on Large-Grained Parallelism held October 11-14,
1987, in Hidden Valley, Pennsylvania. The workshop was organized by the Software Engineering Institute
and the Department of Computer Science, Carnegie Mellon University, with the cooperation of the IEEE
Computer Society.

The purpose of the workshop was to bring together people whose interests lie in the areas of operating I
systems, programming languages, and formal models for parallel and distributed computing. The
emphasis of the workshop was on large-grained parallelism or parallelism between concurrent programs
running on networks of possibly heterogeneous computers rather than parallelism within a single process
or thread of control. Aspects of large-grained parallelism that were common to most participants' interests
were fault-tolerance, heterogeneity, and real-time applications.,I

Ninety abstracts were submitted for review by the program committee and the authors of thirtyeight of
these abstracts were sent acceptance letters and invitations to attend the workshop. To provide more
time for discussion and audience participation, only sixteen authors were asked to give twenty-five minute
talks based on their abstracts. The rest of the abstracts were summarized by discussion leaders. The
workshop was divided into five sessions of talks and two parallel sessions of discussion. The five general
areas covered by the talks were: scheduling, distributed languages, real-time languages and models,
operating system support, and applications. There were parallel discussions on scheduling and
distributed languages, and on real-time and operating system support.

There was a reasonable balance among the participants with regard to efficiency concerns on the one
hand, e.g., by the software and hardware systems and application builders, and correctness concerns on
the other, e.g., by the real-time modelers and language designers. We identified a number of key
challenges:

* Distributed systems, languages, environments

- Make transactions efficient. Integrate them into the operating system.

- Implement applications that demonstrate how to use transactions at both the
programming language and operating system levels.

- Identify applications other than databases to motivate the need for multi-site
transaction-based systems.

* Real-time systems, models, scheduling

- Devise and test analytical models for distributed scheduling of tasks that range in
degrees of computational complexity.

- Show the correspondence between physical time and iogical time using a formal
modeling approach.

- Identify a set of programming and specification language primitives that capture and
abstract from real-time events of interest.

In the year that elapsed since the first workshop on large-grained parallelism that took place in
Providence, Rhode Island, a number of the issues related to large-grained parallelism became more
focused, as evidenced by the topics and the quality of the abstracts submitted. Considering the wide
range of interests and background of the participants, the success of this workshop is a good omen for
future meetings.

Jeannette M. Wing Maurice P. Herlihy Mario R. Barbacci
Program Chair General Chair Arrangements Chair

/" Department of Department of Software Engineer'ng
Computer Science Computer Science Institute

i.-

-- Carnegie Mellon University

-_ Software Engineering Institute ,...__

Final Program

Time Sunday, October 11 Moderator

4:00 pm Registration desk opens
6:00 pm Dinner followed by informal discussions

Monday, October 12

7:30 am Breakfast
8:30 am Session 1 -- Scheduling Barbacci

Talks by Jack Stankovic and Jean-Luc Gaudiot
10:00 am Break
10:30 am Session 2 -- Distributed Languages and Environments Wing

Talks by David Notkin, William Weihl, and Maurice Herlihy
1200 am Lunch

.1:30 pm Parallel Discussions: Scheduling Stankovic
Parallel Discussions: Distributed Languages Weihl ,

3:00 pm Break
3:30 pm Session 3 -- Real-Time Languages and Models Herlihy

Talks by Janice Glasgow, Debra Lane, and Mario Barbacci 0

5:00 pm Break
6:00 pm Dinner followed by informal discussions

Tuesday, October 13

7:30 am Breakfast
8:30 am Session 4 -- Operating System Support Satya%.' .

Talks by Mark Sullivan and Rick Bubenick
10:00 am Break
10:30 am Parallel Discussions: Real-Time Languages and Models Bryan

Parallel Discussions: Operating System Support Satya
12:00 am Lunch
1:30 pm Free afternoon (unstructured meetings)
6:00 pm Dinner followed by informal discussions

Wednesday, October 14

7:30 am Breakfast
830 am Session 5 -- Applications Stankovic

Talks by Martin McKendry, Sid Ahuja, and Carl Diegert
S10 00 am Break

10:30 am Session 5 (Continuation) Wing
Talks by Liuba Shrira, Richard LeBlanc, and Hanno Wuppert

12 00 am Lunch

%,%%%

d 0 0

.' .,

_______ Carnegie Mellon University

' ---' Software Engineering Institute

Attendee List

S. R. Ahuja
Systems Architectures Research Department
AT&T Bell Laboratoies
Crawford Corner Rd.

U Holmdel, NJ 07733
" ucbvax!vaxl35!sra

Mario Barbacci
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
barbacci@sei.cmu.edu

Albert Benveniste
IRISA

4 Campus de Beaulieu
35042 Rennes Cedex
France

. RANDRE@irisa.irisa.fr

Doug Bryan
ERL 456, Computer Systems Labora:ory
Stanford University
Stanford, CA 94305

, bryan@sierra.stanford.edu

Rick Bubenik
Department of Computer Science
Rice University
P.O. Box 1892
Houston, TX 77251
rick@rtce.edu

Eric C. Cooper
Department of Computer Science
Carnegie Mellon University
Pittsburgh. PA 15213
ecc@cs.cmu edu

Luis Cova
Department of Computer Science
Princeton University

d Princeton, NJ 08544
% allegraIprincetonIcova

cova@pri nceton.pu.edu

% 6' - i-*

. .-- "- Carnegie Mellon University

L- Software Engineering Institute

Carl Diegert
Computer Science and Mathematics - Division 1412
Sandia National Laboratories
Albuquerque, NM 87185
diegert@sandia-2.arpa

Dave Detlefs
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
dld@f.gp.cs.cmu.edu

Alan Downing
SRI International
333 Ravenswood Avenue
Menlo Park. CA 94025
downing@spam.istc.sri.com

0 Alessandro Forn
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
af@speech2.cs.cmu.edu

Stuart A. Friedberg
Computer Science Department
University of Rochester
Rochester, NY 14627
stuart@cs.rochester.edu
{ames,cmcl2, rutgers} !rochester'stuart

Jean-Luc Gaudiot
EE-Systems DepartmentSAL-300

V' University of Southern California
Los Angeles, CA 90089-0781
gaudiot@usc-cse.usc.edu

Thomas B. Gendreau
Deparment of Computer Science
Vanderbilt University
Box 1679 Station B

. Nashville, TN 37235
gendreau@vanderbi lt. csnet

Janice Glasgow
Department of Computing & Information Science
Queen's University

*. Kingston, Ontano
%z Canada K7L 3N6

janice%qucs@wi scvm.wisc edu

-IV

- ,Carnegie Mellon University

Software Engineering Institute

Andrew Grimshaw
Department of Computer Science
Universtiy of Illinois
1304 West Springfield

-o Urbana, IL 61801
grimshaw@p.cs.uiuc.edu

Maurice Herlihy
Department of Computer Science

"* Carnegie Mellon University
Pittsburgh, PA 15213
herlihy@cs cmu.edu

Norman Hutchinson
Computer Science Department
University of Anzona
Tucson, AZ 85721
norm@arzona edu

" Michael B Jones
Department of Computer Science
Carnege Mellon University
Pittsburgh, PA 15213

V P michael jones@spice.cs.cmu.edu

r Debra S. Lane
Department of Information and Computer Science
University of California at Irvine
Irvine, CA 92717
diane@ cs.uci.edu

Richard LeBlanc
Georgia Tech
School of ICS
Atlanta, GA 30332-0280
rich@gatech.edu

Insup Lee
Department of Computer and Information Science

,*W University of Pennsylvania
Philadelphia, PA 19104
lee@cis.upenn.edu

*' Paul LeGuernic
IRISA
Campus de Beaulieu

:e": 35042 Rennes Cedex
France
leguernic@insa insa.fr

-v -

11 R no-

Carnegie Mellon University

Software Engineering Institute

Glenn H. MacEwen
Computing and Information Science Department

S,,Queen's University
Kingston, Ontario
Canada K7L 3N6

, macewenqucis@wiscvm.wisc.edu

.* Martin McKendry
FileNet Corporation
3530 Hyland Avenue
Costa Mesa, CA 92626
(hplabs/trwrb} !felix!martin

Michael Molloy
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
mkm@k.gp.cs.cmu.edu

K.T. Narayana
Department of Computer Science
Whitmore Laboratory

*i The Pennsylvania State University
University Park, PA 16802

Dave Nichols
Department of Computer Science
Carnegie Mellon Universty
Pittsburgh, PA 15213
nichols+@anldrew.cmu.edu

David Notkin
Department of Computer Science, FR-35
University of Washington

*Seattle, WA 98195
notkin@cs.washington.edu

Calton Pu
Department of Computer Science
Columbia University
New York, NY 10027
calton@cs columbia.edu

Mahadev Satyanarayanan
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
satya@andrew cmu.edu

- vi- :

-* ~ ~ ~ ~ Vl .. 1 .1 V4C

, _____ Carnegie Mellon University
_Software Engineering Institute

W Liuba Shrira
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139
liuba@xx.lcs.mit.edu

Jack Stankovic
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
stankovic@cs.umass.edu

Mark Sullivan
Computer Science Division, EECS Department
571 Evans Hall
University of California
Berkeley, CA 94618
sullivan@ucbarpa berkeley.edu

William E. Weihl
Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139
weihl@xxlcs.mit.edu

Chuck Weinstock
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
weinstock@sei.cmuedu

Tom Wilkes
Department of Computer Science
University of Lowell
1 University Avenue
Lowell, MA 01854
wilkes@ hawk. cs.ulowell.edu

Jeannette Wing
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
wing@k.gp.cs.cmu.edu

Hanno Wupper
Katholieke Universiteit Nijmegen, Informatica V
Toernooiveld
6525 ED Nijmegen
The Netherlands

1*1 -vii -

_. _,.i._i_ Carnegie Mellon University

SSoftware Engineering Institute

Table of Contents

Agrawal: Using a Network of Computer Workstations as a Loosely-Coupled Multiprocessor 1

Ahuja, Ensor, Horn: Parallelism in the Rapport Multimedia Conferencing System 2

Alonso, Cova, and Kyrimis: Process Scheduling in Loosely-Coupled Computer Networks 4

Barbacci. Weinstock, and Wing: Durra: Language Support for Large-Grained Paral!els/7 6

Bisiani and Forin: Agora: Heterogeneous and Multilanguage Parallel Programming 8

Bitz and Webb: Simulation and Performance Evaluation of Heterogeneous Parallel Robotic Systems 17

Bryan: Run-Time Monitoring of Tasking Betavior Using a Specification Language

Bubcnik and Zwaenepoel: Eager Evaluation in a Program Development Environment 17

Ccoper and Jones: An Object-Oriented Approach to Remote Procedure Call Stub Generatcr? 230

Diegert: Coupling a Network Computing Resource to a VLSI Placement Problem 23

Elmagarmid: Transaction Processing in Heterogeneous Distributed Databases 26

Friedberg: Hierarchical Process Composition z_

Gaudiot and Lee: Large Grain Data-Driven Approach to Multiprocessor Programming 31

Gendreau: Scheduling in Distributed Systems 34

Glasgow, MacEwen, and Skillicorn: Expressing Large Grained Parallelism Using Operator Nets 37

Grimshaw, Liu, and Thomas: Mentat: A Prototype Macro Data Flow System 40

Herlihy and Wing: Avalon: Language Support for Reliable Distributed Systems 42

Hutchinson: Emerald: A Language to Support Distributed Programming 45

Lane: Modei.ing Time Dependent Behavior In Parallel Software Systems 48

Leach: LGP2 Position Paper 51

Lee: A Programming System for Heterogeneous Distributed Environment 54

Le Guernic and Benveniste: The Synchronous Language SIGNAL 56

Long: Ootimistic Algorithms for Replicated Data Management 5S

McKendry: The FileNet System C

Molloy: Requirements for the Performance Evaluation of Paralel Systems 63

Narayana: Proving Real-Time Communicating Sequential Processes Correct 65

'% -. .v,,,...-.- ..-i~S~ -

- .Carnegie Mellon University

Software Engineering Institute

Notkin: Research in Parallelism at The University of Washington 69

Pu: Supertransactions 72

"-" Roberts and Ellis: Parmake and dp: Experience with a Distributed, Parallel Implementation of make 74

Satyanarayanan: Coda: A Resilient Distributed File System 77

Slhiira: Abstract 79

Stankovic, Towsley, and Rommel: Scheduling Parallel Programs on a Distributed System 81

Sullivan Marionette: Support for Highly Parallel Distributed Programs in Unix 84

Van Zandt: 'The PHARROS Project 85

Weihl: Research in Distributed Systems 8.

* Wilkes and LeBlanc: Programming Language Features for Resilience and Availabihty 9 G

- Wrabetz: A Coarse-Grained Distributed Multiprocessing System 93

Wupper and Vytopil: Static Typing of Temporal and Reliability Attributes in Distributed Systems 95

_-x •

I'

,°.

Sm
'.-Ix.

2 . , % . .f hA & A~. d ~ & .. h ?~I

USING A NETWORK OF COMPUTER WORKSTATIONS AS A
LOOSELY-COUPLED MULTIPROCESSOR

RAKES!!AGRA WAL

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(201) 582-2250
rakesh%allegraatt.com~ocsnet-relay

Inv

6 ABSTRACT

A major trend in computing in recent times has been the creation of large networks of computer
workstations. It has been speculated that the number of computing cycles installed in computer
workstations is an order of magnitude greater than the number installed in mainiframes. However, most
of these cycles are idle most of the time. There are many applications amenable to large grain parallel
processing that can profitably use these idle computing cycles by treating these networks as loosely-
coupled multiprocessors. There seem to be tw-o essential requirements for this approach to become
feasible:

*We must provide simple to use system facilities to access computing cycles from an idle
workst ation.

*We must develop tools for partitioning the problem into pieces that may be executed in parallel.

In NEST, we have extended System V Unix with a remote execution facility that allows creation of
transparent remote processes [1,3]. Developing applications that run in parallel on multiple machines i-s
particularly simple using this remote execution facility. If there is a program involving multiple
proces ses written in C that runs on a uniprocessor, it can be made to run on multiple machines by

simpl) changing the exec system call to rexec.
We also have developed a model for optimally partitioning a class of problems in the workstations
environment [2]. Our model recognizes that workstations are usually connected with a rather slow
communication medium, and explicitly takes into account the communication costs in addition to the
computation costs. The optimal partition can be determined for a given number of processors and, if
required, the optimal number of processors to use can also be derived- We also have performed
experiments that verify' and demonstrate the effectiveness of our model using matrix multiplication as an
example.

J" REFERENCES

1. R. Agrawal and A. K. Ezzat. Processor Sharing in NEST: A Network of Computer Workstations.
Proc. IEEE 1st Int'l Conf. Computer Workstations. San Jose, California, Nov. 1985. 198-208,

2. R. Agrawall and H. V. Jagadish. Parallel Computation on Loosely-Coupled Workstations.
Technical Memorandum, AT&T Bell Laboratories, Murray Hill. New Jersey, 1986.

3. R. Agrawal and A. K. Ezzat. Locanon Independent Remote Execution in NEST. IEEE Trans
Soft.~are Eng. 13, 8 (Aug. 1987), 905-912

I-1

"n NA A N % *A WORKSTATIONS A2 A

Parallelism in the Rapport Multimedia Conferencing System

S. R. Ahuja
J. R. Ensor
D. N. Horn

AT&T Bell Laboratories
Holmdel, New Jersey 07733

Rapport is a multimedia conferencing system which executes on a collection of network-
connected workstations. This system provides communication protocols and user interfaces
that effect a natural conferencing environment in which users conduct remote, interactive
conferences by talking with each other and producing and editing common displays on their
workstations. Rapport coordinates the transmission and use of shared information in several
media, including voice, graphics, images, and text. Thus Rapport is a distributed system with a
collection of simultaneously active agents accessing shared data and producing new data which
must be broadcast in real time. Underlying mechanisms for global name service, data storage,
and window management are used by Rapport to produce its conferencing aids.

Our current implementation of Rapport executes on a collection of Sun workstations which
are connected by an Ethernet. A specialized processor we have built to handle voice (and
eventually video) transmissions is attached to each Sun through its VIME bus. The NFS file
service provides common names and storage for programs and data used in conferences. The X
window system is used to provide a common means of producing displays on the various
workstations. Rapport provides each conferee with protocols for controlling a conference. Oui
system also allows user-level application programs to be associated with a conference. These
programs manipulate shared data and produce common displays on the screens of the conferees*
workstatiom

Coordinating the input and output of application programs is a principal responsibility of
Rapport. We are presently comparing the behavior of two approaches to the execution of
application programs. In the first approach, a single workstation executes an application
program and broadcasts its output commands to the other conferees' workstations. The major
advantage of this approach is that it allows the various conferees to see results of programs
without executing them. The corresponding disadvantage is that broadcasting all the window
level commands and arguments for display generation usually generates significant network
traffic. In the second approach, each workstation executes all application programs of a
conference under some constraints of synchronization and input control. This technique tends

to generate less network traffic since only the application program input commands are
transmitted among the conference workstations. The major drawback of this technique is that
each conferee must execute the same software in a consistent environment. Some programs are
written to utilize local state and are not suitable for this technique. For example, a bitblit
program might receive as an argument a pointer into its local machine's memory. Giving this
command and its argument to each conferee would not preserve the consistency of the
conference.

Though the basic tradeoffs between the two approaches are readily identified, the
importance of these tradeoffs are not obvious. The first Rapport implementation requires that
each workstation execute each application program locally. We are now building a version in
which each application program is executed by only one workstation The two versions of
Rapport give us the opportunity to examine some parallel execution issues. We can determine
the amount of network traffic generated by each approach, and hence determine whether the
differences in network load are significant in various situations. We can also investigate
whether synchronization amon- the application programs at program command input is notably

different from synchronization both at command input and program output. The single site

A- - .- N N.. --.. • . , •- .%.-... . .,. . . %.4 . .

r

execution of each application program allows different conferees to work on different displays
simultaneously. We are going to investigate the usefulness of this parallelism between the
synchronization points imposed by the conference management.

After performing these initial experiments with Rapport, we plan to create a modified
-* system in which conferences can take place over wide area networks. This extension poses

major difficulties. In the local area network environment we are using standard tools, NFS and
X, to reduce the apparent heterogeneity of the workstations. Further, conferencing inherently
involves the sharing and multicasting of information, which require a naming mechanism and
efficiency of transmission. NFS gives us a global name service and a convenient storage for
common programs and data. X allows us to conveniently coordinate the displays on the
conferees' workstations. In the wide area environment these tools are not available, so we will

be required to provide their services for ourselves. The implications for the real time
characteristics of the system are even more dramatic. The delays in producing displays on
remote workstations must be kept under control in spite of the larger transmission delays.
Furthermore, we must limit the skeAs among the transmission of the different media

03

'°%

. -, ., o-.I

PROCESS SCHEDULING IN LOOSELY-COUPLED
COMPUTER NETWORKS

Rafael Alonso
Luis Cova

Kriton Kyrimis

Department of Computer Science
Princeton University

Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

A computational environment in widespread use is that of a loosely-coupled local
area network (typically an Ethernet) of high performance workstations (such as SUNt
workstations). It has been observed that such networks have the potential for becoming
inexpensive parallel engines, especially for users whose applications show a coarse paral-
lelism (i.e., large grained parallelism). Furthermore, it seems that such systems are usu-
ally underutilized, i.e., many of the machines on the network are not in use at any one
time. Our current research aims at helping users with applications displaying large
grained parallelism to schedule their tasks and make efficient use of these idle processors.

Our work has proceeded along a number of lines. The first involves the exploration
of load sharing policies. As a user starts up several parallel tasks, it is desirable for those
jobs to be scheduled automatically, and in such a manner that each of them can obtain as
many processing cycles as possible. A load sharing mechanism can ensure that idle
workstations across the network can be used by a parallel application in a user-
transparent manner. We have built such a mechanism [ALON86] and have used it to
experiment with a variety of load balancing strategies. This work has concerned itself
with load balancing (i.e., making sure that the available work is evenly spread throughout
the network). This may not be appropriate for an environment where users own their
individual machines; in that situation some users might be willing to share cycles, but not
at the expense of slowing down their private computations. We are now studying tech-
niques for scheduling in such networks [ALON87a].

We have recently started on a related topic, that of the placement of parallel tasks in
networks of multiprocessing workstations (i.e., workstations such as the DEC Firefly or
the Xerox Parc Dragon). In such environments, the scheduling decision is a two-level
one, especially if there are different costs to communicate on the same machine than
across the network. For some applications that require a large amount of inter-task com-
munication it might be best to cluster all the computational threads on the same machine,
even if excess processing cycles are available elsewhere, while in other instances the

t SUN is a tradc mark of SUN Microsystcms, INC.

* -4-

~..i'.-- ~'*~V '~%' * * w ~%

computational component is the main processing bottleneck.

VOur work in this area consists of a joint project with researchers at Bell Communi-
cations Research. For this project, DUNE [PUCC1987], a multiple processor system, is
being used. Dune supports transparent process migration, both within a multiprocessor
and across the network. We are currently exploring a variety of scheduling algorithms
that take advantage of the process migration capability of the system to allocate several
parallel threads automatically on behalf of a user.

Lastly, we have also studied the issues involved in process migration. For many
applications, it will be true that, during some phases of the computation, there will be a
large number of parallel tasks, which will then dwindle in number to very few. In this
situation, it is desirable to spread initially all the tasks across the available machines and,
when there are only a few left, migrate those tasks away from each other (if they happen
to be on the same processor) or towards the more powerful machines. We have designed
and implemented a process migration mechanism for a network of SUN workstations
[ALON87b]. We are presently building tools that utilize the process migration func-
tionality of our system. For example, we are building a mechanism that will periodically
scan the machines on the network and ensure that processes that have used many CPU

* cycles in a short time do not run in the same processor if at all possible.

References

[ALON86]
p' Rafael Alonso, Phillip Goldman, and Peter Potrebic, "A Load Balancing Imple-

mentation for a Local Area Network of Workstations," Proceedings of the IEEE
Workstation Technology and Systems Conference, 1986.

[ALON87a]
Rafael Alonso and Luis Cova, "Sharing Jobs Among Independently Owned Proces-
sors," Technical Report, Department of Computer Science, Princeton University,
1987.

[ALON87b]
Rafael Alonso and Kriton Kyrimis, "A Process Migration Implementation for a
UNIx" System," Technical Report CS-TR-092-87, Department of Computer Sci-
ence, Princeton University, 1987.

[PUCC87]
Marc Pucci and James Alberi, "The Architecture of the DUNE Multiple Processor
System: An experiment in Generalized Interprocessor Communication," Technical
Report, Bell Communication Research, 1987.

t UNIX is a trademark of Bell Laboratories

* *

Durra: Language Support for
Large-Grained Parallelism

Mario R. Barbacci,
Charles B. Weinstock, and

Jeannette M. Wing

IP Software Engineering Institute and
Department of Computer Science

Carnegie Mellon University,
Pittsburgh, PA 15213

We are interested in a class of real-time, embedded applications in which a number of
concurrent, large-grained tasks cooperate to process data obtained from physical
sensors, to make decisions based on these data, and to send commands to control
motors and other physical devices. Since the speed of, and the resources required by
each task may vary, these applications can best exploit a computing environment
consisting of multiple special- and general-purpose, loosely connected processors. We
call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly
separate processors and communicate with each other by sending messages. Since
the patterns of communication can vary over time, and, since the speed of the individual
processors can vary over a wide range, additional hardware resources in the form of
switching networks and data buffers are also required in the heterogeneous machine.
The application developer is responsible for prescribing a way to manage all of these
resources. We call this prescription a task-level application description. It describes the
tasks to be executed and the intermediate queues required to store the data as it moves
from producer to consumer processes. A task-level description language is a notation
for writing these application descriptions.

To support this large-grained parallelism, we have designed and implementated Durra
[1], a task-level description language. We are using the term "description language"
rather than "programming language" to emphasize that a task-level application
description is not translated into object code in some kind of executable "machine
language" but rather into commands for a run-time scheduler. We assume therefore
that each of the processors in a heterogeneous machine has languages, compilers,
libraries of (reusable) programs, and other software development tools that cater to the

Arpanet addresses: barbacci@sei.cmu.edu, weinstock@sei.cmu.edu, wlng@k.cs.cmu.edu

-6-

",=% % ° ".% " ". % "- ". . % %'1% " ". " "" °- % %-"." " % ".*%" " % % =" % %=,%" % % %, ",,%, .'t. " ' %,% % % ' , a

special properties of a processor's architecture. Durra's support environment is
responsible for coordinating the use and interaction of the separate software
environments of the individual processors.

There are three distinct phases in the software development process for a
.. heterogeneous machine: (1) the creation of a library of tasks, (2) the creation of an

application description, and finally (3) the execution of the application. During the first
phase, the developer breaks the application into specific tasks (e.g., sensor processing,
feature recognition, map database management, and route planning) and writes code
implementing the tasks. For each implementation of a task, the developer writes a

"- Durra task description and enters it into the library. Developing programs for some of
the more exotic processors involves selecting algorithms appropriate to a processor's
architecture, and then painstakingly testing and tuning the code to take advantage of
any special features of the processor. For example, an application might use a matrix
multiplication task written in assembly for a systolic array processor while
simultaneously accessing a database of three-dimensional images maintained by a
program written in C running on a workstation. Developing these programs is a slow
and difficult process and Durra facilitates their reuse in multiple applications.

I

During the second phase, the user writes a Durra application description.
Syntactically, an application description is identical to a compound or structured task
description and can be stored in the library and used later as a component task in a
larger application description. When the application description is compiled, the
compiler generates a set oi resource allocation and scheduling commands. During the
last phase, the scheduler executes a set of commands which are produced by the
compiler. These commands instruct the scheduler to download the task
implementations, (i.e., code corresponding to the component tasks) to the processors
and issue the appropriate commands to execute the code.

In our presentation, we will illustrate the main features of Durra through examples, the
existing implementation of tool support for Durra, followed by preliminary conclusions ,r

and directions for future work. Further details on the language can be found in the
Durra reference manual [1] and an overview paper [2].

[1] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language",

Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, and Technical

Report CMU-CS-86-176, Department of Computer Science, Carnegie Mellon University,
December 1986.

[2] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language", in
Proceedings of the 16th International Conference on Parallel Processing, Pheasant Run
Resort, St. Charles, Illinois, August 1987.

-7-

~~~ .. r,. - r
w- %- % A %. :.A.L%.



Agora:
Heterogeneous and Multilanguage

Parallel Programming

Roberto Bisiani and Alessandro Forin

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Extended Abstract being used in the Word Matcher. Each of the corn-
The solution of many real-life problems encountered in ponents can be decomposed into parallel computations

science and industry requires the integration of parallel in many diffeient ways and both large and smai,
programs written in different languages and running on granularity decompositions are necessary.
heterogeneous machines. We call the development of
such systems heterogeneous parallel programming. For ex-
ample, sense- data acquisition and signal processing ..
might have to be integrated with planning, or electrical
circuit simulation might have to be integrated with ex-
pert system technology. The goal of the Agora project is
to facilitate heterogeneous parallel programming Word Words Sntenc*
Agora's support is both in terms of operating system lervl
mechanisms that can be used to implement
heterogeneous parallelism and in terms of programming
environment functionalities that facilitate the manage- Word Word Sentence
ment of parallel programs. This paper describes the El dmeri ofparalelprog ams Thi pa er d scrbes he Dispioy J S

former, see [31 for a description of the latter.
, We call the operating system level mechanisms Agora

Shared Memory, since they are based on a shared Pres -...... - Control transfer
memory model of parallelism. In order to simplify the
explanation of the Agora Shared Memory we will use Data transfer
an example abstracted from a speech recognition system
that has been successfully programmed in Agora [1].

The structure of the fragment of speech recognition Figure 1: Example of a Parallel, Heterogeneous
System: Speech Recognition.

system that is used as example is sketched in Figure 1.
This subsystem receives phonetic hypotheses and A satisfactory implementation requires a multiproces-
generates sentence hypotheses. Two components, Word sor that can execute programs with both C and Lisp
Matcher and Sentence Parser, are best implemented in C components. The Word Matcher requires a tightly
and the other two in Lisp. The aggregate computation coupled architecture while the Word Display can be run
power required by the four comronents to achieve real on a single processor that is loosely coupled with the
time execution is about 2 * 10r instructions for each rest of the system. The Word Matcher communicates
second of speech [21. with half of the computing power with the other components using a data-flow style of

'- socommunication; the Sentence Parser and Word Verifier"2 , This reqarc~h it sponsored by the Defense Advanced Raw-arch Proiem'

Agency, DoD, througJ ARPA Orde 5167, and monitored by the Space communicate as server and client.
and Naval Warfa'r Systems Command under contract N10003945- There are a number of tools that could provide support
C.0163 View, and conclusions contained in this document are those of for the implementation of the example, but none of
the aithomand should not be iteprted es re, presenng ofiat them has all the necessary characteristics. The tools useed
poben a ey e or i , o- the efeA d by the Al community (possibly with the exception of
Proweci Agency or of the hutsd States GovernmentbyteAcomny(psilwthhexetonf

ABE [71) are centered on a single computational model

* - -8-

-e'. , r e *. ,%W,*%? .. 0%.I. IfNVN 10 N. NI, I



(e.g. production system languages), are based on a
single language (e.g. Loops 15]), or have no support for Per~eii I

parallel processing (e.g. SRL (81). word 01

One common way to tackle multilanguage applica- ve,

tions with these tools is to implement a Lisp module
that calls all the modules that are programmed in dif-

41- ferent languages. This solution has a number of draw- Word

Al backs that m ake it unsuita ble to our purposes:

the structure of each module dependsWa
heavily on the other modules, e.g. the sen-
tence parser would have to be explicitly

K., programmed to activate the word display , os

ethe access of omplex data structures from

different languages must be handled by the
user code. Figure 2. Agora's Implementation of the Examp:c

- there is no easy way to parallelize the system
to increase performance. Shared Data

The tools used by the ope-ating system communitv to The ovals indicate shared data structures The.-e t...
link heterogeneous parallel programs (eg tures are allocated in Agora's shared memory and thei,
Matchmaker 19J, Sun RPC 111) have a different structure is known by Agora's system code Agora
shortcoming some of them support multilanguage provides standard functions to create, destroy, read and
parallel processing on heterogeneous architectures (e.g. write data structures as procedural extensions of each c,
Mach/Matchmaker), but they are geared only towards the supported languages. Depending on the language.
applications that can be efficiently cast into a client- these functions can be more or less merged with the
server relationship between modules. language syntax and semantics. For example, object-

As in the sequential solution, the structure of each oriented languages like C++ 110] and Portable Common
module depends heavily on the others since each Loops [61 give the opportunity of blending Agora's
module must be programmed to be able to explicitly functions more than their won-object-orTeImed counteT-
deal with the requests of the other modules. Debugging parts (see [4] for an example). Users can also define
is difficult since there are no tools to conveniently ex- custom access functions that are translated by Agora into
amine the data flowing between modules or to deal each language and are available to all the modules that
with more than one process at a time. Moreover, in need them.
current implementations on general purpose systems, The description of data structures and access functions
communication is rather expensive since there is a mes- is processed by Agora and stored in its database where
sage passing overhead even on shared memory ar- it is visible by all the tools in the environment, e.g. a
chitectures (currently about 2ms for a general purpose I debugger can interpret it to access data in the same way
MIPS machine). a user module does. Agora also generates a description

of the data structures and a translation of the access e
Agora's Approach functions for each language. The programming en-
Agora takes a different approach: first, concurrent vironment automatically includes the translated

modules share data structures independently of the descriptions and access functions at compilation an.
computer architecture they are executed on and of the link time.
language they use; second, concurrent modules ex-
change control information by using a pattern-directed Control
technique. Our hypothesis is that these two characteris- The boxes in Figure 2 represent concurrent computa-
tics facilitate heterogeneous parallel programming. The tions. Each computation (agent) has a queue where
only way to verify it is by implementing real systems Agora stores requests for activation of the agent The
and evaluating the effort required and the quality of the agent is free to dequeue an activation whenever it wants
result. and branch to different parts of its code depending on

Figure 2 shows how the example can be implemented the kind of activation dequeued. In the example of
with Agora. Figure 2, the arrival of a new element in the Words data

structure generates an activation for both the Word Dis-
play and the Sentence Parser agents. Activation pat-
terns can be set by agents at ars time, or by the usr via
the user interface. In the latter case, none of the agents
involved need to be aware tit it This is a major feature

% .. % %
- -..



of Agora's handling of control information, since it 4. Bisiani,R., et.al. Heterogeneous Parallel Processing,
maintains as much independence as possible between The Agora Shared Memory. Tech. Report CMU-

* the modules of a system. CS-87-112, Carnegie-Mellon University, Comp. Science
Multiple styles of computation, including control- Dept., March, 1987.

driven, can be programmed using the basic Agora S. BobrowD.G. and StefikM.J. A Virtual Machine for
mechanism. For example, a context can be used to pass Experiments in Knowledge Representation. Xerox Palo
parameters back and forth between agents. In the ex- Alto Research Center, April, 1982.
ample of Figure 1, the Sentence Parser uses this remote
procedure call mechanism to communicate with the 6. Bobrow D.G., et al. CommonLoops: Merging Lisp
Word Verifier. and Object-Oriented Programming. Proceedings of

OOPSLA'86, Sigplan Notices Vol.21 Nov 86, Portland,
Current Status Oregon, September, 1986, pp. 17-30.

The Agora Shared Memory has been operational since 7. Erman, L. et.al. ABE, Architectural Overview. In
September 1986 and is used daily in the development of Distributed Artificial Intelligence, Research Notes in Arfm

* a large speech recognition system (about 100,000 lines of cial Intelligence, Pitman Publishing Ltd., 1987.
code and developed by 15 researchers). Agora currently

runs on DEC Vax, IBM RT PC, Sun, Encore Multimax 8. Fox, M.S., McDermott, J. The Role of Databases in
and all possible combinations of these machines. The Knowledge-Based Systems. Robotics Institute,
languages currently supported are C, C++ and Com- Carnegie-Mellon University, 1986.
monLisp. 9. Rashid, R.F. An Interprocess Communication
CnlonFacility for Unix. Report, Carnegie-Mellon University.
ConclusionsComp. Science Dept., June, 1980.
Here are some of the hypotheses that we are exploring C0 . Sroustru p, . e C 9 aL u

in Agora: 10. Stroustrup, B.. The C+ Programming Language

o the same model can be used for both small and Addison-Wesley Publishing Co., 1956
large grained parallelism; 11. Sun Microsystems. Sun Remote Procedure Call

* shared memory is a viable communication Specification. Tech. Rept., Sun Microsystems Inc., 19S-4

a ..- actio, even between modules imple-
mented in different languages;

e a structured shared mremory can be implemented
with reasonable efficiency on non-shared
memory architectures and across
heterogeneous machines;

9 pattern directed invocation is a contenient con-
trol mechanism for a shared memory model.

* multiple styles of computation, including
control-driven, can be programmed using
the basic Agora mechanisms.

References

1. D. Adams and R.Bisiani. -The Carnegie-Mellon
University Distributed Speech Recognition System".
Speech Technology 3, 2 (April 1986).

2. Ananthamaran, T. and Bisiani,R. Hardware Ac-
celerators for Speech Recognition Algorithms.
Proceeedings of the 13th International Symposium on
Computer Architecture, IEEE, June, 1986.
3. Bisiani,R., Alleva, F., Correrini, F., Forin, A., Lecouat,

F., Lerner, R. Heterogeneous Parallel Processing, The
Agora Programming Environment. Tech. Report CMU-
CS-87-113, Carnegie-Mellon University, Corn p. Science
Dept., March, 1987.

.

-10-

-0,1 ~~~ ~' NOC r%% %%.



Simulation and performance evaluation
of heterogeneous parallel robotic systems

Francois Bitz and Jon A. Webb

V: 16 September 1987

Robotic systems are growing increasingly complex, in response to a desire for
- Increasing computer power.

e Increased flexibility of human interaction.

o Increased variety of sensors and motor control devices.

In response to this, the designer of such a system has had to construct heterogeneous networks ol

computers, which may incorporate simple real-time processors for motor and sensor control, powe ,'l
computers for image and signal processing, and general-purpose workstations for user interaction The

machines may be connected by a variety of communications media, including dedicated buses for close',

coupled computers, and local area networks for computers that are less tightly coupled. Not only can t-e
performance of each node vary, but also such important features as their operating systems, I

throughtput and interfacing can be very diverse.

Achieving good real-time performance in such a system is difficult. The complexity of the system and the

desire to make it useful for research makes it difficult to impose hard real-time constraints on the

performance of individual modules, in order to apply traditional real-time systems methods to optimizing
performance

Instead, the designer of such a system may first construct it, then try to determine the constraints on

performance. In doing so, he immediately discovers that:
, e Bottlenecks in system performance, such as I/O bottlenecks, may not be discovered until the

system is actually constructed. Moreover, these systems represent some of the most
complex and critical applications of computers.

.P.. * Discovering the source of bottlenecks is difficult, since the interaction of different modules
within the system cannot be observed without changing performance. Non invasive tracing
techniques are usually not possible to implement.

- Answering questions such as the effects of improved hardware or different placement of
modules on parallel computers is difficult, since the interaction of different modules can lead
to significant second order effects in system performance.

It is therefore essential to use appropriate tools as early as possible in the design phase of such a
system Such tools should allow the designer to evaluate performance as well as give him the flexibility of

changing the placement and characteristics of each component. For example a task might be able to run
on any of the nodes by itself, but where it is eventually placed will affect the performance of the overall

system

P.o --



The most appropriate tool is a simulator that can address these design issues. The object of perlorr'iance
evaluation and simulation is to determine the parameters which maximize the effectiveness of the system
resources through improved throughput, resources utilization and response time.

We have implemented such a simulator in a high level language, namely C++, an extension of C with
concurrent task facilities. The simulator allows multiple machines to be simulated concurrently. Each
machine can run multiple tasks concurrently as well have its own operating system and scheduling
scheme, such as FIFO, prioritized, or round-robin. The simulator can simulate such complex real time
constructs as interrupts, semaphores and rendezvous. Tasks and machine communications can be
implemented through queues (a basic object in C++) which simulate the communication media of the real

system (e.g ethernet, mailboxes, or shared memory). Efforts are also under way to facilitate the user
interface to the simulator through the use of a code generator. This becomes more crucial as the number

of nodes increases since generating code is a very repetitive and error prone operation.

The simulator has been used to simulate the real-time control system of the Martin Marietta Autonomous
Land Vehicle system in a component that used a Sun 3/160, the Carnegie Mellon Warp machine, and

three standalone MC68020 processors to detect obstacles in laser scanner data. Simulation results
suggested performance improvements by moving modules from the Sun to the standalone processors,
therefore achieving greater parallelism.

We intend to model a demonstration of CMU's Autonomous Land Vehicle (Navlab) from which we have
been able to gather real measurements (including task times, i/o throughput, and communication traffic;
The simulator will be run in order to compare how well the model corresponds to the real system The
simulator will then be used to predict the performance of a Navlab demonstration which includes a
sophisticated road following algorithm and obstacle avoidance. This demonstration will use some of the
modules of the first demonstration with major hardware and software upgrades. The simulator will also

predict how such a vision system will perform on other computer architectures. In this first version of the
simulator module placement will be first done by the user. However one of the goals of the simulator and

performance evaluator is to maximize performance given a set of constraints such as number of
machines and communication medium. Therefore it is desirable to describe the different modules in a
higher level language. We intend to benefit from some of the work done in the Software Engineering
Institute's Durra project in the way tasks and modules are described. Another potential utilization of our
simulator can be found in Carnegie Mellon's HET project in which a large number of heterogenous
machines are connected together through fiber optic links and 16 by 16 optical crossbars.

41
We intend to use the simulator to address questions of

* Module placement, where modules can be placed on different computer nodes. Of great
importance are the effects of translating a routine running in a general purpose computer to a
specialized machine such as the Warp array.

• Communications network changes, especially including performance improvements resulting
from the use of a reliable, dedicated real-time network in place o, the unreliable Ethernet

* Computer changes, especially including the division of parallel computers into multiple

-12-

%.j. °., .• ! •%"%° " .**1 ". °
°
.'%" % % " 

" ° ) •
- •• • .



parallel machines of smaller size. Preliminary results indicate that such a bifurcation could
lead to an improvement in performance of up to two.

•Assessment of how much prior information is needed about each of the real components of

the system in order to get reasonable good match between simulated and real performance.
In general it is possible to reduce the complexity of routines so that it is not necessary to
write the routines as they would appear in the real code. Sometimes it is even acceptable to

z' reduce a single routine to a delayo or run() statement which will give acceptable estimation
of the performance of the overall system.

* Simulation speed and computer requirements for simulation of a large number of machines.
Of particular interest is the possibility to distribute the simulation over and array of processors
(distibuted simulation).

-

'S..

je I-

? .' J ss J sJ' f~ V .. P ~ 'j *** .pS.-..*'. ~ **,* * *.*-~ - ;



Run-Time Monitoring of Tasking Behavior Using a
* Specification Language

Douglas L. Bryan
Computer Systems Laboratory

Stanford University

1 The Specification Language VP accepts ?C at FilishPumpirg =>
?P-calls Opera,-r at Cl]ag.-

TSL (Task Sequencing Language) is a language for before Operator call- 2p at Activct:
specifying sequences of tasking events occurring in This specification places con>traiit, cn th, a.C.r,:
the execution of distributed Ada 1 prograns Such pup tsV
specifications are intended primarily for testing and
debugging of Ada tasking programs. althlou h th
can also be applied in designing progranms TSL sp2cm-
ifications are included in an Ada program as formal 2 Implementation Issues
comments They express constraints t,, l sat isfi,

I by tlie sequences of actual tasking events The following are the goal of lie 'ISL i.r:, ri,':

The general form of a specification is as f.,1l %ws itor implementation.

when activator-compund-ci rntthn od-omo rd-1. automat icallv monitor fir con:,', : k..-

before c o -pound- t en2 problenis such as deadness error
2 allow the observation of events at aipr :r ::,,

Informaliv. a specification has the moaning. or specification languag, level. ral.i,, "h:,
architecture level

Whenever the events specified by acthiator- 3 detect and report the violtion f <b>:'
compound-erent occur, then the events spec- 4. report problems as soon as p,-s;i,.i. af?,r t
ified by body-compound-cvrnt must occur actual occurrence
before the events specified by ter inator- 5 provide useful diagnostic inf,-rnm.a 11
compound-event. 6. minimize the effects on the under!' mr con;,-,

A compound event is an expression constructed from tion being observed

basic events. A basic event can be thought of as an
s atomic action performed by a task. For example, "A

calls B at E" is a basic event. The operations avail- 3 An Implementation
able for forming compound events include sequenc-

*, .. : ing, conjunction, disjunction, and iteration. There are two major tools which cOnimr i., thi St a.

" The following is an example specification taken from ford prototype implementation of the TSI th,' coln

a simulation of an automated gas station piler and the run-time monitor The compiler trani-
forms TSL source code into Ada cod, whi.-h conl

<< PurnpProtocol >> structs data structures and interfares ti, un,, rl\inc

when ?lP accepts Operator at Activate computation to the TSIL run tini, miit r ( ." f: c
lthe 71, accepts "7C at Start-J'u mping => ure I .) During execution, t he nonit, r i ,rall, I .

'Ada us a re st-red tr~drmark of the U S (,o.rnrvir these methods, the TSL systni is prit i,l. -i, i c :,
.Ara Joint P'roKrain Offi-re) he used in conjunct in ith to Iwr Adi t 1 1 .

- . . -,. .". . . ."...--."**- * 4 ..... -" .,. . . . , , . , . , . .. ,I. .*. *',..'X . .. , . ,. .. , ,, .. '



A token graph representation of TSL specifications is 4 Current Status
computed during compilation, and constructed dur-
ing execution. These token graphs form the inter- The prototype implementation of the TSL compiler
nal representation of the constraints placed on the and run-time monitor has been completed. This it-
computation. One token graph is built for each plementation has shown the feasibility and utilitN
compound event. The graphs include a labeled arc of specificaion level debugging of multi-tasking pro-
for each basic event. At run-time, the monitor grams.
matches the observed behavior of the distributed sys-
tem against these graphs, and determines when speci- The interactive user interface of the monitor pro
fications are violated. Matching is performed by mov- serves the name space of the underlying compul:t
ing tokens from node to node, across arcs. Whenever tion. Events are reported, and the user requests il-
a token reaches the finish node of the body-compound- formation, using the names given in the Ada and 1 SI.
event or the termninator-compound-event, the monitor program. The violation of TSL specifications are re-

determines if the specification has been violated, ported during the execution of the final evcnt causing
% the violation. That is, violations are reported a_- so,.

as they occur. At that time the user can interact Ih

the monitor to determine the complete sequceno of
events leading up to the violation

Ada + TSL In the current implementation of the ionitor, the,
specification checking code forms a critical regi ,ii
which is executed by the tasks of the underl. ig con,-

TSL Compiler putation; the implementation relies on the fact that
events are reported in a synchronous manner. Dur-TSL Run-Time Ada ing any user interaction, the tasks of the underlyminc

Monitor
Ada Compiler computation are suspended. Thus, the monitor forms

a bottle-neck, often causing tasks in the unde-rlin;
Compiled Ada computation to block.

Linker
1 5 The Event Reporting Prob-

Self-Checking Tasking Program Te E

Figure 1: TSL Front-End. The fourth and sixth goals above are the main factors
used to determine the architecture of the run-tim"

* •monitor. It is desirable to report specification viola-
tions when they occur, and preserve program state
while the user determines the cause of the violation

The monitor also includes a user interface which al- The simplest way to preserve state is to suspend the
lows one to interactively query the state of a run-time underlying computation. However, any such suspen-
data base and the token graphs themselves. At any sion has a drastic effect with respect to the miniln-

* time during the computation, the user may examine interference goal
the state of the graphs. The tokens on the graphs The problem is, are events to be reported to th, nion
provide the user with a complete history of the corn- itor in an synchronous or an asynchronous ,lanner
putation, as it relates to the specifications. Similarly, If asynchronous ounicatin s seeced C

when a specification has been violated, the state of Isefche comcton h sectio oe,

the graphs provide the user with the chronology of code?,.. code"
• events causing the violation. In this way, the TSL

run-time monitor provides the capabilities of both a In a distributed system, certain event %ill al i-
monitor and an interactive, specification level debug- happen in a predete rmined order [or examnidl, s5,01
ger. task must call ant her ta.k h.fr, th, s o ta_-k

* -15-



can accept the call. We refer to these event pairs as implementation.
connected events. (Most events in a distributed com-
putation are not connected. For example, if two tasks
each call a third task, the order in which the calls References
occur is usually insignificant.) The means in which Hjelmbold, D.P. and Luckham, D.C.
events are reported to the specification checking code Debugging Ada Tasking Programs.
must preserve the connectedness of events. The cur- IEEE Software 2(2):47-57, March, 1985. In Proceed-
rent implementation preserves connectedness simply ings of the IEEE Computer Society 1984 Conference
by blocking tasks while an event is being processed. on Ada Applications and Environments, pp.96-110

IEEE, St. Paul, Minnesota, October 15-18, 19S4
Also published as Stanford University CSL TR 84-
263.

6 Solutions Under Develop- 23
Ledoux, C., and Parker, D.S.

ment Saving Traces for Ada Debugging

In Proceedings'of the Ada International Conference
'85. Cambridge University Press, 1985)

A number of monitor implementations are currently
being studied or developed which provided alterna, Luckham, D.C., Helmbold, D.P., Meldal, S., Bryan,
tive solutions to the report/interference trade-off D.L., and Ilaberler, M.A.,
One alternative is to dedicate one or more proces- Task Sequencing Language for Specifying Distributed

" sors to the monitor and make event reporting asyn- Ada Systems, TSL-1.
chronous By doing so, we can reduce the processing Proceedings of the ESPRIT Conference "Parallel Ar-
overhead associated with the processors executing the chitectures and Languages Europe", Eindhoven. The
underlying program as well as minimizing the block- Netherlands, June 1987, Springer Verlag Lecture
ing of tasks when events are reported. Notes in Computer Science, Vol. 259. An unabridged

version of this paper published as Stanford University
Another alternative involves the distribution of the CSL TR 87-334

"-' monitor itself. By executing the monitor on each
* available processor, the monitor on a given processor Peterson, J L

need only be concerned with a subset of tasks com- Petri Net.-
prising the total computation. This approach reduces Computing Surveys, 9(3), September. 1977

the processing requirements of a given execution of
th nionitor.

A new approach to monitoring TSL specifications is
al.ko being studid. In this approach, each specifi-
cation is transformed into an Ada task Each task
would then be concerned with the monitoring of a
single specification. In this way, the run-time moni-
tor itself can be reduced to a common user interface

* called by these tasks. This approach relies on the
Ada run-time system to perform load balancing and
scheduling of monitor tasks

Preserving connectedness is also being studies at the
language, rather then implementation, level It may
be desirable to extend TSL and allow the user to spec-
ify connected event pairs Then, under asynchronous
event reporting, the monitor can shuffle the event
stream to preserve connectedness Such an approach
would both extend the capabihtis of the language

-.'i and inmnize the assumptions made by the monitor

- I o

I-. -16 -



II

Eager Evaluation in a
Program Development Environment "

Rick Bubenik
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas

We define eager evaluation as the execution of computations prior to the time they are required,
with their results being stored in a temporary location. When at some later point those compu-
tations become necessary, we check if the eagerly computed results are still valid and if so. return

. them immediately without additional computation. Eager evaluation has the potential of providing
*. very fast response time at relatively low cost in an environment where:

1. There are frequently idle computational resources so that speculative computations can be
carried out without interference with other tasks.

2. There is a high likelihood of being able to predict the computations that will be necessary.

We believe these requirements are often met in a workstation environment where the program
development procedures are described by some declarative description such as a makffile. Typically,
in a workstation environment, most of the time the majority of machines are relatively idle. Con-
sider what happens when a user is modifying several program files that compose some application.
Typically, the user will edit the files, save the new versions, then rebuild the executable by issuing
the make command. The rebuilding process usually involves generating object modules from each
of the program source files, then linking these into a final executable file. When eager evaluation
is applied to this environment, the evaluator anticipates the need to recompile each of the source
files as new versions are saved and also anticipates the need to regenerate the final executable from
the new objects. Then, when the user types make, the results can be returned as soon as possible.

More generally, we assume that the overall computation consists of a number of subcompu-
tations whose relative order of execution is specified by an execution dependency graph. The
individual subcomputations are carried out by one or more processes with no shared memory be-
tween subcomputations. These processes can perform arbitrary side effects by sending messages to
server processes. The order in which side effects occur determines a side effect dependency graph.
There is no communication between subcomputations other than indirectly, through side effects.

In order for the eager evaluation to be correct, we require that

1. No side effects become visible before the computation is mandated (requested by the user).

1 his. research was supported in part by the National Science Foundation under grant DCR-8511436 and by an IBM

Faculty Development Award.

-17-

A .. ....*



2. After the computation is mandated, the side effects become visible as if the computation
was executed normally at the time that the computation was mandated. In other words,
the side effects should become visible in a serial order that is consistent with the side effect
dependency graph, with the input set of the computation as of the time the computation was
mandated.

" We propose encapsulations as a mechanism for supporting eager evaluation. All processes
carrying out part of a particular eager evaluation belong to the same encapsulation. Side effects
remain invisible until the encapsulation is mandated. Subencapsulations can be used for grouping
related activities. For example, the command(s) used to bring each target in a makefile up to date
can be placed in a separate subencapsulation. When a subencapsulation is mandated, the effects
concealed within it become visible to the external world. This facility is useful when only a portion
of the eager computation is requested by the user.

*An encapsulation coordinator monitors whether the various make dependencies remain satisfied.
. starts computations in encapsulated processes when dependencies are no longer satisfied, and logs

the server-encapsulated process interactions in the order they occur.' If during eager evaluation the
coordinator notices that one of its computations was performed in error, it undoes the corresponding
log records, and (potentially) restarts the computation.

* When an eager computation is mandated, the coordinator executes in two phases: a conszstncy
check phase and a writing phase. In the consistency check phase, all read interactions are checked
to determine whether the information on which eager evaluation was based is still valid. If a check
fails (because the item read has since been modified), some parts of the computation need to be
redone. If all checks succeed, the write phase begins. During the write phase, the side effects are
nIde visible in the order in which they were logged. Since these effects were logged in the order
they occurred, and since incorrect computations have been undone, the order in which side effects
appear is correct in the sense we described above.

Unlike client processes, for which encapsulations are totally transparent and require no mod-
ifications, server processes have to be modified to participate in encapsulations. Essentially, they
must log relevant interactions with the coordinator, and record output in a temporary location. As
an example, consider how the file server can be modified. The file server handles encapsulations
by checking all incoming requests. A request from a nonencapsulated process is handled normally,
requiring no additional overhead: Requests from encapsulated processes are either handled nor-
mallv or forwarded to an associated encapsulation manager, depending upon the nature of the
request. The encapsulation manager then takes the responsibility of concealing side effects. When

* new files and directories are created, the desired name is mapped into a temporary name. All
*subsequent accesses to these files are redirected to the temporary versions. When a file is opened,

the encapsulation manager sends a request to the file server to open the appropriate version. The
file server returns a fileid, which the encapsulation manager then passes back to the requesting
computation. All future read and write requests specifying this fileid do not have to be forwarded
to the encapsulation manager, but rather can be handled directly by the file server. Consequently,

0. encapsulations do not impose (significant) overhead on what we conjecture to be the vast majority

of file server operations-reads and writes. Other operations requiring special attention include

deletions, renames, and certain query operations.
We believe that encapsulations are a more appropriate abstraction to support eager evaluation

.-.. than atomic transactions. Although atomic transactions provide another mechanism for hiding

* side effects and ordering them appropriately, we believe that if an atomic transaction were used

'In fact, it only needs to record a limited subset of the interactions.

*. ' . e 'r .. - .- e.. -~ . " % , % %- % '

A A



to encapsulate an eager evaluation, with the transaction committing (and hence making its side
efficts visible) when the computation is mandated, several problems would ensue:

1. If only a portion of a large eager computation is requested by the user, it would be impossible
to commit only a subset of a transaction in order to return just the requested results. Alter-

natively, if separate transactions are used for each portion, results computed in one portion
would not be accessible in another (i.e. an output file, such as an object file, would not be
accessible as an input file to some later stage of the computation).

2. If some of the subcomputations require terminal input, subsequent to terminal output, it
would be necessary to make some of the side effects visible before commit time, in contrast
%with the requirement that side effects be made visible atomicallv. We anticipate that the eager
evaluator will block the computation in the case of terminal input (until mandate time), then
make all previously computed side effects visible and continue executing normally.

3. More generally, there seems to be a fundamental contradiction, between the atomic commit
of transactions, and our desire to make side effects visible in an order that is consistent with
the side effect dependency graph. In particular, we feel that it should be possible for the user
to abort the computation after observing some partial output. This would not be possible if
the transactioii had committed by virtue of the computation being mandated.

4. We believe that the cost of atomic commitment, especially in the case of a distributed two-
phase commit, far exceeds what is needed for encapsulations. Much of the savings comes
from reduced I/O and protocol overhead since individual side effects can be made visible in

isohi, ioT,

None of this precludes taking advantage of transactions to support non-idempotent operations or
to inmprove reliability.

Previous work on eager evaluation has largely, concentrated on applicative environments. Our
work is different in that we explicitly deal with side effects, and in that the grain of computation
considered for eager evaluation is much larger. We believe that with a large grain of computation.
the potential for eager evaluation increases significantly, since the overhead involved in dealing with

the evaluations and masking side effects becomes relatively less important. Eager evaluation has
also been incorporated in some other programming environments. However, the type of environment
considered has typically been of the tightly coupled variety, where the environment has tight controls

over the commands executed and the files accessed. These environments appear to have an easier jolb
supporting eager evaluation due to the tighter controls. However, they do not appear to generali7e
easily to support eager evaluation of arbitrary computations.

In summary, we have described our concept of eager evaluation and its application in a pro-

gramming environment. We have proposed encapsulations as a mechanism for supporting eager

evaluation and outlined why we believe it would be superior to atomic transactions for this purpose.

We are currently implementing eager evaluation for make running under the V-System to get some

experimental evidence about the cost and the potential of eager evaluation in this environment.

-19-41
'  

N

PS% . .



An Object-Oriented Approach to
Remote Procedure Call Stub Generation

for Heterogeneous Environments

Eric C. Cooper
Pi Michael B. Jones

Computer Science Department
Carnegie Mellon University

Extended Abstract

Construction of stub generators is currently a time-consuming, error-prone task: the state of the art is analogous

to that of compiler construction before the advent of parser generators and retargetable code generators. We are

engaged in research to advance the technology of stub generation, by approaching the problem with two new idea,

Although both have been explored in other areas of computer science and software engineering, we believe their

application to the design and construction of stub generators is novel.

The first concept is parameterization. A particular stub generator can be classified according to various attributes.

including

e the data definition language (DDL) it accepts,

o the external representation it uses,

e the internal form it uses,

* the target language it produces, and

* the marshaling conventions it expects.

We believe that these attributes should be viewed as parameters to the stub generation process, just as BNF grammar'.

intermediate languages, and machine descriptions have come to be viewed as parameters to the compilation prxe,,

Following the analogy further, we are led to the idea of a stub generator generator, like a compiler compiler

higher-order tool that one uses to produce stub generators with particular choices for the above parameters.

The second concept is object-oriented design. The parameters we propose are complex structures; it is n,,:

immediately clear how to represent them. Table-driven schemes have been used in previous work for some of these

parameters, but the approach appears limited and difficult to extend to the other attributes.

We plan to use the ideas of type inheritance and polymorphism present in object-oriented languages such a

Simula, Smalltalk, and C++. The inheritance structures that car be expressed in object-oriented languages pro' id,

another way of representing the knowledge needed by a program, in addition to conventional modularriatio:

techniques such as abstract data types, modules, or packages. We propose to use type inheritance in stub gencratr

[p• -20-



FP - '- - -..- - 1W '- ' -. -T- - .1-W -7V - K -Ir! X - v. N7 Yv . V 7V I- ~ ,

construction to encode choices of DDL, external representation, target language, internal form. and marshaling

conventions.

The advantage of this approach is that it allows the design decisions for a particular parameter choice to be

implemented at a high level in the type inheritance hierarchy, while factoring out the details implied by the choices of

the other parameters. For example, one can implement code that defines some aspect of the marshaling conventions

(the argument passing scheme, say) in terms of generic target language operations. The particular marshaling I
routines can then be generated by inheriting both these marshaling conventions and a particular choice of target

_' language. If a different target language is mixed in. the code for the marshaling conventions need not change, and

vice versa. This separation appears difficult to achieve in stub generators programmed in conventional languages

We believe it will yield an order of magnitude simplification in the construction of stub generators for hetcrogcneou-

environments, in which multiple DDLs, target languages, target machines, and external representations are the norm

" I
"..Abstract Object Abstract Type Abstract Record Type ,

ii: IAda Object AdaL Typ Adarecord Type

Figure 1: Class refinements for data type representation I

Abtrc Objec Code Template Counted Loop TemplateJ :

C Object| G C ode Template !1C fo Lo
AaO bject I Arda Code Temlplal Ada Lfo~rP L oop

Lisp Object Lisp Code Template - Lisp do Loop

Figure 2 ('lass r-fincncn.N for c dc repre critit)n

- -:,
_Vli:



Research Plan

The first phase of our research project is to construct a prototype of a type transformation system, using an

object-oriented approach. This will be a general-purpose tool for transforming typed data from one representation

into another, with applications to remote procedure call marshaling and foreign function call interfaces. Type

representations will be described in a language-independent fashion; code for type transformations will then be

generated using language-specific code generators.

The second phase is to build a prototype multi-language code representation and generation system for use

with the above type transformation system. This will provide a method of representing code templates in a

language-independent fashion. Constructs such as assignments, type transformations, blocks, loops, conditionals.

and procedure calls will be representable. Code generation will again be done by language-specific code generators.

This will initially be used to represent and generate code for RPC interfaces of various kinds.

Our intent is to use an object-oriented approach for building both prototypes. Refinements of the class hierarchy

will be used to represent refinements of specifications. For instance, a language-specific representation for a data

type is a refinement of the language-independent declaration for that type; an Ada for loop is a refinement of an

V-' abstract counted loop. Figures 1 and 2 illustrate possible class refinements for type and code representation. We

intend to implement the prototypes in C++, for several reasons: C++ is portable, commonly available, and produces

efficient code. More importantly, it allows a fine grain of control over the c -',red oi.cts and operators, including

overloading of bilt-in operators.

A number of open problems must be solved during the course of this research in order to build reusable stub

generators. We must find a way to describe t)pe representations and remote procedure call formats independently

of specific DDLs such as Matchmaker, Sun RPC, or Couner. We must also investigate how to specify type

transformations in a way that is flexible enough for an environment of heterogeneous application program.

programming languages, and machine types.

Background

The authors have designed and implemented a number of stub generators and remote procedure call systems.

including Courier, Matchmaker, and Flume (the DEC SRC stub generator). In the area of programming language

design and implementation, we have worked on parallelism (C threads, Ada tasks) and exception handling in C++.

%'% 4R ',N

- ii;1; .R
% % %



-.a

SAND87-2325A

Coupling a Network Computing Resource
to a VLSI Placement Problem

.1 Carl Diegert
Sandia National Laboratories, Albuquerque NM 87185

We describe a problem and its successful assault by a single user exploiting many

computers, focusing on the strengths and weaknesses of (to borrow Apollo's term) the

network computing environment in which we worked. Our solution was the best entered

in a recent IEEE/ACM place-off competition, beating contestants using timeshared

computers (many users sharing single computer) and contestants using workstatio;.s

(computer allocated to single user). The aggregate compute power of the network

allowtvd us more experimentation and search that workstation contestants. Mainframiie

conestants, however, had more compute power available to them than the compute

power we applied from our network. The strength of our network computing is identified

as its convenience in carrying out our ideas, experiments, and analyses. Efficiency in

coupling the network compute cycles to the problem is ranked as relatively unimportant.

The competition problem was to give physical locations on a two-dimensional in-

tegrated circuit chip for about 3000 predesigned pieces (standard cells) of a given

microprocessor design. The contest administrator then (ran the computer code that)

interconnected these pieces, completing the physical design of the microprocessor chip.

• -Our winning placement solution produced a microprocessor design with both the small-

: est chip area and the least amount of interconnect wire.

With a bit more abstraction than we actually used, the problem is to search through

3000' ways to assign the predesigned cells to grid locations on the chip, looking for

an assignment (number:ng) that will produce a small chip. This enormous discrete

optimization problem is nasty in that attempts at greedy search quickly get stuck in

local minima. The problem is challenging because the real objective of chip size is

far too difficult to compute frequently during the search: statistical abstractions must

1% be used for guidance. Stochastic search techniques addressed both the nasty and the

challenging aspects of the problem.

The power of the network computing environment was in its convenience in setting

up, executing, and analyzing experiments over variations in search technique, object 1y

4 , -23-

%,



function, etc. Designed experiments were necessary because the search techniques were

stochastic: a desirable change in a parameter, say, is not apparent from comparing a

single new run with an old run. Instead, trying a new idea comprised a sequence:

* design an experiment;

* set up a computer run for each experimental sample point;

. execute the independent runs, usually in parallel;

a analyze results.

The Apollo network single-level store and the network's remote process facilities

were adequate for our pioneering effort. Madhat, the code that searched for placement

solutions, includes an flexible input parser. Madhat can digest problem setup com-

mands that other tools generate from a sample space of parameters. Execution of the
O_ parallel runs was tedious and wasteful, but workable. With each Madhat run leaving

results in the same subdirectory, we quickly and easily wrote codes for analysis of each

experiment.

We accepted great inefficiency in coupling network computer cycles to our problems,

as the network resource was entirely justified by the capabilities and productivity it

offered its daytime interactive users. We didn't have, and didn't stop to develop a

clever location broker. Instead, we resorted to using only network nodes that could

complete a run overnight (or, on Fridays, over a weekend), and scheduled only a single

run for a particular node on a particular evening (or weekend). The quantity and mix

of nodes to be available on a given evening did influence the design of the experiment

conducted that evening. We did this mostly by asking around, and with face-to-face

negotiations and verbal agreements with other (human) users of the network resource.

Adaptation of the allocation occurred by our collective human experience, and at most

resulted in changes from one evening to the next.

Synchronization of parallel Madhat runs occurred at most a few times each day.
Synchronization in this broad sense ranged from

O.
-, a. judge which of several runs stopped with a numbering likely to lead to a good

chip, and use this numbering as the starting numbering for more parallel runs,

to

- b. note a high-level problem in subsequent completion of physical designs from a

batch of solutions (a problem with feed-through cell management), introduce a

0 -24-

G'%



new nonlinear term in Madhat's objective function, set up an experiment with
variations on the new term, and execute the experimental runs.

Synchronizing once a day was effective, but more frequent synchronization might

produce a better solution, or might get to an equally good solution quicker. If the
computing network offered better support, we might try a type a synchronization a
couple of times an hour. The human thought needed at most synchronization points
would still be limited by the single user's ability to understand what the computers

had done, to develop a new idea, and to express execution of a new experiment to the
computers. For the most part, these human interactions set the pace of our progress.

MP. We would have welcomed an intelligent location broker, and other network computing
niceties, but we doubt that they would have gotten us to our solution much sooner, or

that they would have gotten us to a better solution.
To couple yet more power to the same problem perhaps we need to move to a

fourth environment, an environment with one problem, many computers, and many

users. The computing network would still allocate its computing resource to execute

experiments, now given by its several users. The network would now facilitate the users

building on each other's methods and results. Steps forward, then, accidental or clever,
might be more frequent. Borrowing from a Minsky title, this new height in integration

could be called societal computing.
(Abstract unclassified, presentation unclassified.)

9,.

Cu%

N



Transaction Processing in Heterogeneous Distributed Databases.

Ahmed K. Elmagarmid
Computer Engineering Program

121 Electrical Engineering East Building
The Pennsylvania State UniversityN University Park, PA 16802

ahmed@psuccl.binet
(814) 863-1047

A heterogeneous distributed database is a system of interconnected DBMSs that
use different strategies for data and transaction management. Though issues such as
universal query languages, and global view and schema integration have been

- investigated, transaction management issues introduced by the integration of
separate database management systems into one global database have not been widely
addressed in the literature.

Probably most disturbing to me is the general misunderstanding in the daLbasc
community as to what a heterogeneous database really is. Many people seem to refer
to distributed databases as heterozeneous databases.

".

Of interest to me are questions relating to transaction support in the
heterogeneous database environment. Two basic approaches are possible in order to
integrate differing DBMS's. The first approach integrates transaction management
policies into one global transaction manager that handles subtransactions accessing
the heterogeneous database. The second is based on hierarchical composition of
transaction management policies. In the latter approach, software is added on top of
existing systems whenever needed (Gligor and Luckenbaugh, Interconnecting
Heterogeneous Database Management Systems, IEEE Computer January 1984).

The heterogeneous database research group at Penn State consists of three
students along with myself. We are looking at concurrency control (Y. Leu),

recovery (D. Mannai), and deadlock issues (I. Mahgoub). In this workshop I would
like to discuss the following set of related questions:

. Which of the problems are due to DBMS integration and not due to
heterogeneity?

. How is the consistency of heterogeneous databases defined?

' How does serializability apply to heterogeneous databases?

. How strict must the definition of database autonomy be? How does it complicate
transaction management issues?

'.

* How imponant are atomic updates in this environment? How often are they
. expected?

* Are we likely to have generalized solutions to the problem of concurrency
control and recovery?

" Specific algorithms we have developed for concurrency control and recovery
in tII)DBs.

In the discussion we would like to consider all possible systems depicted in the
figure below. Especially in the shaded areas.

-26-

• %

|',P , -W , ," " 1" €" .-. €. o",'J" ,-' '. .' - q " k- ' w "I ' w . . . .. . . ,€ %.



fYI Nei-vr s tj

jpuim In WAN4

mY rim Ln LAN

,

.. *1tip



Hierarchical Process Composition

Stuart A. Friedberg
Computer Science D~epartmnent

,,4

University of Rochester
szuart@cs.ro-chester.edu

1. The IIPC Systemn

The primary goal of the Hierarchical Process Composition (HPC project is to provide tool,

SLF5,LF5] P sa xeietalte for Fndb r cunn apliaios rtert.

manager of applications or an application itself. It has roughly the same relationship to 1t.

clients and host operating systems that the X window system has to its. Where X provides an
Vs abstracton of nested windows, -PC provides an abstraction of nested processes.

The ultimate target environment is lon-haul distributed systems: systems with substanru i.
ariable communication delay and connectivity, and with ite failures of snitoo.,

frequency. This environment is further characterized by physical and administrative autonom\,
and hetereogeneous hardware and software. The Xerox or DARPA inteets and mobile pa!:
radio networks are good examples.

HPC uses only two basic host facilities: conventional (heavyweight) processes and netvrzkiT
inaerprocess communication. Large gain, loosely coupled processes are natural bul ng bloc
for distributed computations. The interacti ons between processes are subject to the samec
restrictions as interactions between hosts. They run autonomousl, concurrendv ain

V. asynchronously, communicate only through explicit shared interfaces, and knw only their cken
st I.

HPC builds applications from these large-grain processes and network protocols. First,
cooperating processes are joined by creating communicaton channels between them This
cor dnsition leads to something like a dataflow graph. Each process can have several distonts
ports, each presenting different functions or network interfaces. Second, groups of related
processes are encapsulated as abstract HPC "objects" and treated exactly like single processes.
This leads to a hierarchy oi tree of active entities, where the leaves are real processes and tht
internal nodes represent larger and more complex activities with some degree of internal
parallelism.

Our use of abstraction and composition is not novel. There are many design and analysis
tools which describe a system at several levels of abstraction, where a black box at one level is a
group of components with specific interrelationships at the next lower level (SARA, for one).
This basic structuring also appears in several proposals for programming languages (DPL-S2.
PRONET), and in at least one implemented distributed operating system (CONIC). What is ncv
or interesting about HPC?

0 HPC process structure (the abstraction hierarchy and composition graphs) is completely
dynamic. The HPC system is not a language for describing static structures, but a set of

tools for building, maintaining, modifying, and tearing apart applications during execution.
[Fri861

0 Everything in HPC is designed for an asynchronous, failure-prone environment. Rather
than attempting to provide transparent synchronization and reliability at the HPC level,

-28-

i-,. .- ' - . -.. . - - . - . - -. ...... .... . . -. . - - ", . . . .
. . .. . .. ." " " ." '. .- ".- - - .. ," " .' .' ." ., ." .- .-".,.". ,, ",-" , " , .- d ,,"',4,X," '-%-" " '" '% % ""J%'"".''d 

,*'
.'" %



explicit reports of failures and other unexpected events are provided to applications. Each
application's manager can decide on the appropriate recovery or control policy and use
HPC primitives to implement it.

,,.HPC runs on heterogeneous host systems. Each host's resources may be different, and no
host is obligated to provide any specific network protocol or executable process image.
Type information is used to prevent improper combination of host resources.

* Access control is based on application structure. The same hierarchy which defines
abstraction is used to define protection domains. The agents and contents of a domain are
immediately obvious, unlike access control list or capability list systems, and positive
control of every domain is intrinsic to the HPC system.

2. Observations and Problem Areas

We are satisfied the HPC design meets its major goals. However, in the course of
implementing and experimenting with the system, we found some problems related to HPC .
implementation on the one hand and application management and programming on the other.

To implement dynamic process structure while preserving abstraction, the HPC server ,
needs to set up and tear down network connections without the cooperation of the processes
being connected. We call this general capability third-party connect. Emulation of third-party
connect for network protocol suites that do not support it is expensive, yet it is critical to
reconfigurable, modular software. Designers of future protocols must separate the session and
transport layers more carefully. [Fri87]

Since large-grain processes are loosely coupled, they should not have to synchronize often.
However, they must resynchronize occasionally to apply end-to-end control, (re)authentication,
flush transactions, indicate urgent data, and so forth. Dedicating communication channels to
infrequent synchronization is wasteful, but the alternative is synchronizing out-of-band in the
channels used for data, and many networking protocols do not support OOB communication. I
would like to .ear approaches for dealing with the general problem of OOB or synchronization
marks. 74

Argus, Eden, and others, started with the viewpoint that interactions between distributed
entities should be synchronous. We began with, and still hold, the opposite view: distributed
interactions are intrinsically asynchronous. However, writing a program with multiple
asynchronous interafions is notoriously difficult, and we now provide a lightweight task library
to support the illusion of synchronous interactions. As a result, many processes using HPC are
structurally similar to Argus guardians, although the HPC system knows nothing of this internal
structure, and atomic transactions are not provided (or desired). Our conclusion is that the grain
of parallelism appropriate for programming (given existing methods and paradigms) is smaller
than the grain appropriate for efficient use of distributed resources.

Even using lightweight tasks to simplify the programming, writing robust managers for
survivable applications remains extremely difficult. The problem is coping with arbitrary "
asynchronous events (like process failure) when the primitive actions available in response are
themselves asynchronous. At the moment, there is too little experience with actual managers to
consider special languages or tools. Exploration of sample applications and their run-time
management may be the most important use of the prototype HPC implementation.

-29--



-: - X- -. a. p- - t -I q -- . . . . . .-- . - - - . % - .. o ,. -X .

3. Status

The HPC project began in mid-1984 as a "I and a fraction" person project. Much of the
last three years has been taken up wvith design issues, especially the interactions between
distribution and control, to ensure a small set of features would support a wide variety of
application management policies.

Currently we have a "wizard mode" prototype implementation running on Sun and Vax
Unix hosts. All communication between parts of the system uses standard IP protocols, and
applications can actually be spread across the DARPA internet, but the HPC server a self is not
distributed. Over half the code, and by far the least attr active part, is dedicated to networking

support and the client and host interfaces. (It has been a matter of discussion whether building
on top of Unix or on top of bare hardware would have been more productive.)

.71 There are several directions HPC-based research could take. Having this toolkit begs the
17%, question of howx, it can best be used, and experimention with various control policies for

distributed applications is the most interesting research program. Second, it vas always, our-
intention to distribute the HPC service itself, but time and effort prohibited a full developriten:1' of
the distributed protocols required. This remains a challenging area, but one we don't feel
obligated to tackle in the near future. Third, there were a number of design issues which vke
solved expediently but not properly. At some point a redesign that satisfies both our current
frustrations and coming experiences With client control policies would be appropriate. And
finally, there is always the desire to do "the last 10 percent' and distribute a high quality sVysteM,

for others to use.

[Fi61 S. A. Friedberg, "Control of Dynamic Process Structure -Policies and
Mechanism", HPC Project Report 6, University of Rochester. October 1986.

~ Fri 87] S. A. Friedberg, -LPC fo r Modular Software Requires a Third Party Connect".
Tech. Rep. 220, University of Rochester, June 1987.

[LeF85a] T. J. LtBlanc and S. A. Friedberg, "HPC: A Model of Structure and Change inl
Distributed Systems ', IEEE Transactions on Computers C-34, 12 (December
1985), 1114-1129.

1P [LeF85bJ T. J. LtBlanc and S. A. Friedberg, "Hierarchical Process Composition in
Distributed Operating Systems", Proceedings sh International Conference on
Distributed Computing Sysremas, Denver, Colorado, 13-17 May 1985, 26-34.

*6 -30-

application %anagement % % l %i

Currently~~~~~~~~~~ %ehv wzr oe rttp mlmnainrnigo u n a



LARGE GRAINED DATA-DRIVEN
APPROACH TO MULTIPROCESSOR

p PROGRAMMINGt

Jean-Luc Gaudiot and Liang-Teh Lee

Computer Research Institute
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089-0781

(213) 743-0249

Extended Abstract

The purpose of our research efforts as described in this paper is to inves-

tigate software methodologies for multiprocessor systems programming by
using a data-driven approach to solve the problem of runtime scheduling.
Indeed, the data-flow model of computation ofFers the potential for virtually
unlimited parallelism detection at little or no programmer's expense. It has
been applied to a distributed architecture based on a commercially available
microprocessor (the Inmos Transputer). Some initial performance results
of our system have been described in fGaudiot et al 86 and IGaudiot and
Lee 871. These results will be used for a comparison of the communication

t This research was supported in part by the U.S. Department of Energy under grant

DF-FG03-87ER25043. The views presented herein are solely the author's and are not
"-" necessarily endorsed by the U.S. Department of Energy.

I

.% -1

el .0 :%: A AN Io 0NiNI, _V_17



cost, degree of parallelism, and execution time of a matrix multiplication
example, with and without loop unrolling among the different stages of
partitioning.

A complete programming environment which translates a complex data- ,
flow program graph into occam as well as a set of instructions for our sim-
ulator has been developed. A graph generator creates a program structure

graph (PSG) and a data-flow graph (DFG). In accordance with the PSG
and DFG, the code generator generates both the occam program and a set
of simulation instructions. We will describe in detail the mapping from the
SISAL ( Streams and Iteration in a Single Assignment Language ) high-level
constructs into the low-level mechanisms of the Transputer. Synchroniza-
tion beLween different processes, array handiing problems, relay processes
and some important program structures, such as vector operations, WHILE
REPEAT / REPEAT UNTIL loops, and SELECT operations will all be
discussed.

In order to increase the utilization of the Processing Elements in the
system, maximize the parallelism and minimize the communication costs.
several optimization techniques will be considered. The partitioning issues
(granularity of the graph) will be presented and several solutions based
upon both data-flow analysis (communication costs) and program syntax
(program structure) are proposed and have been implemented in our pro-
gramming environment. Based on the program structure and on heuristics.
a high level partitioning algorithm which lumps together several actors to
form the macro-actor and generates a partitioned data-flow graph can be
implemented. The partitioning algorithm proceeds recursively: it traverses
the PSG until the tree is exhausted. A large grained parallelism is obtained
by the execution of all macro-actors concurrently upon data-flow principles
of execution.

To achieve better performance, the following approaches have been stud-
ied in our research:

Communication cost thresholding: lumping together of those parti-
tions between which communication costs greater than a specified
value to reduce the number of partitions and the total communica-
tion cost of the system.

e Unrolling of loops: for array operations, unrolling the loop body to

Iw

I;
., 1

-32

d' : ' z , " 5 r% % % " , -- -'_ , .' " * , - '* ' ' * , ' ' . a w . . , €_



V.

obtain a corresponding speedup.

. Static and dynamic allocation: making further partitioning and con-
sidering the type of interconnection networks, such as mesh and Hy-
percube connections, to achieve an efficient task assignment at corn-
pile time and runtime respectively.

For testing and analyzing of our graph allocation and optimization
schemes, a set of benchmark programs, matrix operations, Livermore Loops,

etc., have also been performed on a deterministic simulator to evaluate the

performance of the translator on our proposed architecture (TXlC).

References

1' J. L. Gaudiot, M. Dubois, L. T. Lee., and N. Tohme, The TX16 A
Highly programmable multi-microprocessor architecture, IEEE Micro,
October 19S6.

!2 J. L. Gaudiot and L. T. Lee, Multiprocessor systems programming in a
r.. high-level data-flow language, Proceedings of the Conference on Paral-

lei Architectures and Languages Europe, Eindhoven, The Netherlands,
June 19S7.

3' J. L. Gaudiot and L. T. Lee, A methodology for multiprocessor sys-
terns programming, submitted to the Journal of Parallel and Dis-
tributed Computing, 1st revision.

.

6 33



-r ~ ~ -. -. -- -. -~~ -~ -. ~ - V~ - h W , - W-.r I- >-.' =- I -..- - - W R ~3

SL

SCHEDULING IN DISTRIBUTED SYSTEMS

Thomas B. Gendreau
Department of Computer Science

-. Vanderbilt University

Box 1679, Station B

. Nashville, TN 37235

A central problem in distributed systems is the scheduling of processes onto proce,-
sors. This problem is motivated by issues such as load balancing, parallel algorithm
requirements, algorithm-architecture matching, and utilization of resources. Without a
satisfactory solution to the distributed scheduling problem; the creation of efficient lare
grained parallel algorithms will not be possible.

Most work in distributed scheduling (in Local Area Network (LAN) environme,-
- treats processes in the system as if they were independent entities. In many systems thi, L>

" a reasonable assumption. However, if a system (either LAN based or message-passin.:1
S..multiprocessor based) wants to provide an environment for the development of paralic.

Ed alEorithms, then this is not a reasonable assumption. In a parallel application, processe>
will have certain relationships with other processes in the algorithm. These relationship>

S." can be described in terms of concurrency relations and communication relations. The con-

. currenc' relation indicates how much of the processes' work can be done concurrently.
For processes that are not directly related it may be possible that all their processing can

be done concurrently. For processes that share information the frequency of communica-
tion will be an important feature in determining the amount of work that can be done con-
currently. For example, we could have two processes in the algorithm that do not com-
municate with each other and whose only purpose is to compute some result and send it to
a third process. In this case the work of both processes can be done concurrently. At the

,Qother extreme we could have tw.ko processes that work in lock step with process A comput-
ing a result and sending it to process B and waiting for process B to do its work and

retuming a result back process A. In this case there is no concurrency between the
h " processes. The communication relationship indicates the amount of information that is4

exchanged between processes.

In scheduling the processes of a parallel algorithm, the system will be able to make
,. more intelligent decisions if it has information about the concurrency and communication

! relations and other features (e p.. expected lifetime or process creation patterns) of the

processes in the algonihm. If the number of processe,, and the relationships between the

hk 2 M,~

5. ' , ..- 5. ,' -
%



processes of the algorithm are known before execution, then this informnation can be proi
v'ided to the system before the application runs. On the other hand, the number of
processes and their relationships may be data dependent and thus not known until run
time. In this case the system needs ways to gather information about the behavior oif the
progra-m. This may be done by having the application program communicate with the

operating system about important changes I n behavior or by having the operating system
learn about the behavior of the program.

When an application process, cro:ates aI ne~k process at run-timeI 1! ma\ be able: t'

inform the operating system about1 certain characteristic:s of the newx process,, Ihesec ch ;-i,
tenistics could include information about the relation ,hip between the nesk process an
existing processes and information abhout the ness process' potentil to creaite te
processes. In order to do thlis appropriat '11 oco'Ls: ',() the o)Perat~ In, stm
processes commnlicationl \Xil1 have to be developed Some primairy issuesw if' thi\

nclude the di coverin g- of \0hat iifn inli nnI0 Ie \rN ho!!pLu! 10t the oeaa:s tma
* creation of ale:orithms that1 Canll till' inlorin.c:on) n a tolerjh'e amoant"I o0! ere.

I lavi n the systemn learn about the b brof parallelc proeraii, m , attrac t;yc.
J the program, are rarely developed to he rn ,,n,,1 onc. Given ta;%c can cn;e

the, PoSsibli:% that the SNv"tem aneahe in:,- mtanuni 0:, prvou.an

This, inf-omu-tion can be used In the nunaS ceeto ur usOf the, proram.I: L

been recognized that some para~e prorams c thro.u:-l a certain nmbe of phase> 11"..

I-n and chances in the Co,.'u-rnc n m.nc~u ca;:x~> le2
maaai~ieme nt progralN ms skou Id be a!b1e to id10\t~ rorn .a bott shn
cer-uin t\ pe of behaivior and take actions, (ec. m01uno pro Cee that %k uId >

runs"~ Second, lo" can the information be unxd Third. Is, theC cOofco ti i;o
-ation during- the runnin,, of the applicatio andth)ct Of runn nL the maae :p,-,

Cram's ust i fied by the increased perflrma nec of the apI a

We are currently inetiain h appropriate opeatn SvtriapiainPrOc

vinterface and the problem of the SN stern learnI ab'Out1 programII bhaviior in LA\ anJl

11arh73. StS iX4 J, drafting J NiXG1Sj. or the i'radie! n,; del (Li 1Ke87 allorihnis canl be
'mitie(I to make usec of- greater irtO:o wnat about procrai struICtLIre and proCs rela),Io

0-1

%sh..ips..

011



An additional issue to consider is a justification for dynamic creation of processes by

. the parallel algorithm. It has been an implicit assumption of this work that the flexibilhtv

provided by data dependent run-time process creation is useful. For example, a proces,

that finds it has a large amount of computation to perform may want to create another pro-

cess to do part of the work on another processor in parallel. Ideally this is an attractive

concept. An important open question is at what frequency can dynamic proces,, creation be

handled efficiently. We hope that our research in the above problems will give us some
insight into this question.

REFERENCES

-2 [ I....3 I Flarber, D. J., et. al.. "The Distributed Cornputing System, Proc C,yn:ur-,:

Spring 7., pp. 31-34. 1973.

-LiKeX,7I Lin. F.C.H. and Keller, R.M., "The Gradient Model Load Balancin .etod."

IF Tra,:s on So./rtarc Eng., pp. 32-38, Jan. 1987.

51 Ni. L..M., Xu, C. and Gendreau, T. B., "A Distributed Drafting Algor::nm for

Loid Ba1an,:in,"'" IEEE Trans. on Sofrware Eng.. pp. 1153-1161, Oct. 19S5.

IS':--.1 Stankovic, J. A. and Sidhu, I. S., "An Adaptive Bidding Aleoriim fo:-

Processes, Clusters, and Distributed Groups," Proc. of rie 4th Int'l Con crcrcc

(,,: Dixtri.buwcd Computirg Systems. pp. 49-59, May 1984.

A -

n. A



Expressing Large Grained Parallelism Using Operator Nets

J.A. Glasgow, G.H. MacEwen and D.B. Skillicorn
Queen's University, Kingston

I nt roduction
The graphical language, operator nets [AshcroftS5], provides a method for

describing interprocess communication and parallelism in a distributed computing
environment. An operator net consists of a set of nodes and a set of directed arcs

?." corresponding to infinite sequences of data values frora some underlying algebra.
A program in the language consists of a set of equations that relate the output arc
of a node to a function applied to the input arcs of the node. These equations can
themselves be considered a language the functional lanuage Lucid [adge.,].

A behavioral semantics for operator nets ha-, been defincd [Gla,,,gov 1987aj] in
-inch properties of a distributed system are expressed in th _pcrator net node',
in terms of the histories of an operator net and evcnt,_ that occur in su, a net.

Operator nets can be used to express either fine or large er aneJ parae;:>.

In the behavioral model for operator nets, a node and uCs as.-,o.ikted cJati n are
con:,idered a process that consumes input scquLencCes and produce> an ouT>.,:
sequence. These process nodes can either correspond to operators tf:e graincd
or to Lucid functions of any complexity (large grained). Each arc of a net is inter-
preted as a communication channel that carries messag:es from one process to)
another. For example, consider the Lucid function that inputs a sequence and
returns the even values in the sequence: even(x) = x v'wcr (.x ,,J 2) equu! 0.

This function can be represented as a single process and used to calculate all of
the positive even integers as illustrated in the following operator net.

+ fb ever

In this operator net we have three processes which could potentially be computing
in parallel. For more fine grained parallelism we refine the function node into a
subnet containing only operators, i.e.

""(--- equal

( mod )v enever1

s the resulting net \kooljld haive tic rather than three lrfwe,,,,c,

-37-

,, %
"=% %"""%"% " "% % ".% " "% - "% ,- -.- %-% -.1c.. . .• . . . . .A.



Current research in using operator nets to specify parallelism in distributed
systems is centered around three projects: 1) Specifying and verifying security pro-
perties of computer systems; 2) Specifying real-time systems using Lucid and
operator nets; and 3) Developing a formal theory of operator nets for reasoning
about distributed systems. In the remainder of this abstract, we summarize each
of these projects.

SNet Multilevel Secure System,

SNet is a multilevel secure system being designed as part of a project investi-
gating methods for specifying and verifing security properties of computer systems
[Glasgow 1985,1987b, MacEwen 1987]. In particular, we are interested in methods
that allow a natural decomposition of a security model into component models and
then into functional components that can be verified and implemented indepen-
dentlv from other models and components. Security properties of SNet have been -,,
specified and verified using operator nets. This approadh has been particularly suc-
cessful since it has allowed us to specify abstract constraints, using a behavioral
semantics for operator nets, and concrete executable constraints using a Lucid
,pecilfc _tion.

The SNet design comprises host machines, secure terminal servers, and secure
d,,wnraders connected via an untrusted network. The current prototpe contairs
three hosts, one downrader, and one terminal server based on NS32000 processors
c d:nected via an Ethernet. The Lucid specification contains approximately fifty
ndc , of varning functionality. The implementation is a network of Concurrent
Euclid processes that mirrors the structure of the operator net specificatiols.

Real Time Specification Using Operator Nets

This project involves the development of a methodology for specifying real M
time systems using Lucid and operator nets [Skillicorn 19861. Given an, Lucid

functional specification of a system, the approach constructs two operator nets tha,
de ,cribe the early and late time constraints of the system. These operator nets are
set, of equations that capture all of the real time properties of the system and can
he solved for any of the variables, given values for the others. For example, it i.,
possible to amwer questions of the form: what execution speed is needed to
achieve a given set of input and output timings? Because the real time specifica-
tion is written in Lucid, all of the formal techniques we have developed can be
applied to the real time part, as well as the functional part. Thus it is possible to
prove properties of the real time specification. Because the specification is execut-
able, it is relatively easy to locate performance bottlenecks and places where the
real time constraints are missed. We are working towards using our formal theory
to allow, statements about architectural constraints to be made and results concern-
ing the relationship of architecture and performance to be proven.

-38-

' . ". • '. €,'t.'or# V" '.w .' -,vll" , .. %','. " -%'.-'.'% ," ." ", " r. - ", " F-



Formal Theory of Operator Nets
One of the major problems with formal verification is that the languages used

to reason about programs differ greatly from those in which systems are built. The
underlying foundation of Lucid as a programming language was to provide a pro-
gramming and proof technique that shared a single coherent structure. This was
accomplished by defining the semantics of Lucid completely denotationally with

qmathematical properties such as referential transparency. Unfortunately, the pro-
gram transformation rules provided by Lucid are sufficient for only a very limited
kind of formal reasoning. We are currently developing a a proof system based on a
behavioral semantics for operator nets. This theory will allow us to formally verifN
that Lucid specifications correspond to abstract specifications written in a logic
language for operator nets.

- The formal theory for operator nets is based on a behavioral semantics that
intuitively models computations in a distributed system. This model has been
extended to also allow for reasoning about knowledge, where knowledge is defined
as a function of a process's initial knowledge, input history' and reasoning capahi-

References

[Ashcrkft 151
EA. Ashcroft and R. Jagannathan, "Operator Nets", in Proc'cdits of IFIP TC-]O IOrk"l:.:

Wi Conzfcrcnce on Fifth-Get'nration Comiputer Architectures, North Holland, 19S5.
[(;laso 19)85]

J.I. Glasgow, G.H. MacEwkcn, "A Two-level SecuritN Model for a Secure Nctvxork", Proc'ccdmg.
of the Eighth National Computer Security Conference, Gaithersburg. Sept 1985.

[Glasgow 198 7 a]

J.1. Glasgow, G.H. MacEwen, "A Computational Model for Distributed Systems Using Opera-
tor Nets', Proceedings of Parallel Architectures and Languages Europe (PARLE) Conference,"
Eindhoven, pp. 243-2W, June 1987.

[Glasgow 19S7b]
J.I. lasgow, G-. MacEen, "The Dcvelopment and Proof of a Formal Specification for i

.- Nuli-lcvel Secure System," ACA! Trans. on Computer Sv'.tcns, Vol. 5, No. 2, NILa , 7.
1MicEwun 

19S71

GAH. MacEwen, V. Poon, J.. Glasgow, "A Model for Nultilelc Securit, Based on Opcralor
Nets", Proceedings of IEEE Synposiuln on Security and Privacy, Oakland, April, 19S7.

ISkillicorn 19861
D. Skillicorn, J.I. Glasgow, "Real-Time Specification Using Lucid", Department of Computing
and Information Science, Queen's University, Technical Report, 19,.'."2 [\ Adge 198S]l
W.W. Wadge, E.A. Ashcroft, "Lucid the Dataflow Language", Acadcmic Press, 198q5.

IV ,

v ,- .99-

,*A
' %*' S % %',',,,



Mentat: A Prototype Macro Data Flow System

Anre S. Grinishaw, Jane W. S. Liu, and Mark I). Thomas
l)ept. ,of (Computer Science, Univ. of Illinois, Urbana, Illinois 61801

Nlentat I is an object -oriented macro data flow system designed to facilitate parallelism in
distributed systems. The macro data flow model of computation [2,3' is similar to the
traditional, large grain data flow model [4-71 with two differcaces: 1) some macro actors are
persistent and maintain their internal state between firings, and 2) program graphs are dynamic.
%lenta objects in:plerntt macro actors. Each object implements an actor for each member
function of thi, obje'," class. . ienitat program graphs are constructed at run time. Graph nod(

-" are actOrs eachof %% 1ICh inI v be elaborated into an arbitrary subgraph at run tine by the node.
]r api~ sri r' l in bfi,,aiorl is carried with the tokens. Thus. control of graph exec tii j, is

con ,p!,t , i decen itr, .d, I)aralleli.ni is gained when different portions of the graph execute wn

. ..... \ .:' ;- r.i:: Anz j:1a is an extended C-- for ( ',a- chi:t n fr
ri-A- I &j ', ,tcie> .'' +hjct oriented, and has no parall( co,,ns.ructs ;!r, d\ I: '.
Ii .... u,, :i',, i, . ex:e,.ra ,, is to facilitate the writing of data dri ,,. 1 ,ol :s an ,

I,:.T-i c , These extensions are implcne te.d b , ,;r,.-,,r t:
. , , .. .ati into - pr,0,gran 'T al t ':ltud \Ni * .*§- .,

• " +~ '.,:: 7, : I:. 1 + ,. ,''r.. i:nterfa.e, wvir th U . Niernta, \jrti.:,l mzacr,, ,Ca>.. i!.,', :tna ! :,

.rap 
-  

car r: n b. e executd oi:1 tie virt !;a 11:4 cl!il,. " l, ' i.r... I

:, a Ic, r: and indpendent oibicts. the autr,r;ia,:c d,.: (," t:1:acr(,
I: , :i ,, dc ' t) I oritruct prirgrani a h>. ard opti,,iia! pr ; r::.::,.r c ot tr,,!

It:, , . 1' ,.,,t: :r :i ,:.lru e! cor >i t.> of th c foll, Iirg four 1) ri ci l, (\I, , ,-:I-

i ,2. .:- ii ri ... I r .. tcnt anr r u7a it: c I:s> spec i ir

I.; !. ,(.(.. ' . i .rtr; ,. :i'll T 2z() iII clas- deti itioIs

Y: ... . \' .- i,,- I:,..'-, 1, . i ,r ( d:..:: , driven1 conltputatiui eaI± I\ 'oil2-.bi,' ,, cr,,..........

I. i. .- , 2' i :' c - p, 5;i I d :Idica'.- that the( clki-s is< I i I
!T i: I, I ),' d(eclared ei h.r pt r. i.2 t ir rc , '. I , ' :.t .\

enI r,,I-r.VeInt at class- specifier

- '.t 'e if ,,r-i:.. ia , i liaitll irt state between firings, whereas instanc'> < r,'ii..r cI.-v -

d,, , Ioii i ' v:e, of a +entat obijct has a separate thread of cofitrrl 'Ihcl ;,I.t,:.

,Icii , f t1, 1, c4 t I-.eN ii,i li.ient actors. M entat objects are siiiilar t, 1.l1;r- . ,,
I 1,)r a li latr i lie (if a iletat object may execute sir)lt ill \.

It: ti. rilird C - • hr r i' . mine thrad of control. As a coils(equence [emio be' r fun,: i',l:

-H al '.1 . , ,.ecut, -i hen called. .Nental ofbjects must be able to specifv which operat Ji:. 'IT-
a idi,-i. ',.. f,,r 1hriii 1, ,it "a -,e !t atent'nts are added for this purpose. (,u.rd, cat, dl t ,i ti;,

-* . I 'I , I, I , . v h r i t (if t I, +,  
in-vn40- ber f t i oII- I cl 1, 11

II -4o-

iI,,. ' . ' . ,% ,"%. ' . ° + . ' ' " . . + .+ . ' . ° . ,.-. + . " .- . -. • • -. ,.- . - .- . - .,% . .



FF- 

K-K 7V , K 71 K

arguments of the member functions in guards we provide the programmer with additional
scheduling flexibility.

The programmer may also define a iain() procedure for persistent Mentat classes, e.g.,
account::main() The main) procedure is started bt underlying machine once tle object
has been instantiated. The main() procedure is the active portion of the persistent object. It

represents the thread of control in the object. and when it terminates the object is destroyed.
Under most circumstances the main() procedure will be used as an outer control loop determining
which operations to accept. If no main() procedure is present the preprocessor will generate one
with an accept statement for each member function.

One of the purposes of the preprocessor is to detect data flow between actors and to
generate code to construct data flow subgraphs. )ata thows betLcen two actors when either the

41result of one actor is used as an input to another, or h,n one, actor invokes- another actor. Th,
preprocssor detects data flow by imposing an implicit sinlgh: assignment rule on all varialh.-
used on the right hand side of expressions in',oking entl" (,bj (t>. We call these variabl,-
rt:': var iable>, W e call the M entat operat7 ,K, th.aT p:'duc.- t,, re-;: the source operai(,.
L" .,c. time a result variable is used on the rildit h.: >ic. . .A ,-'anc, of the variabl, i.
cr.ted. "ht-T,, whenI the result varlani 1 . u-<,: t ., , .. >1 : an. e r1 o ano .i. -

c,-.: '.i b('T, trn the source operati, i, w, ' \ ,- . L, r .: land -id,. (;.
p ,- - at run time ::I . ..

riricat, t 1:1:'.. I

Rapm.'n, a proo ):, ' . exic,.e r.ar C:"

. " r,,.',i~ ,,ra:,>, .. ,',,; r,ce.- er IA.,X. r " :,-\ \A ." . . * pr, O,,: :., t o, (XA].

I.75 b U . r1h % I ' . . i ii p c r,, r t , T.. .i~ r .i~ . ... ... r . 1 } p r v tro c e s > r i> c .rr,. . ' a , .:' ' : - ' . \ i, ; )', ? , e r s],: . o : ,

"- . ;,, ir,",--,. a i]' , c o n .... t b \ ), ., *:- . lg- " In: :, 
in>:. K,. from n i tuple:,:'r, },

7 , ., , a: ' : t ". , v. . : r.] our '

,.7¢• 
- K ' '' . ' 

","~ . •: .. .*.. 
.' , " , T a-; ,

.r ! '. - ":. " " . \". 
• . : 

1 
: ,t ". , 

0'o 
¢d'c ,I.

~~. . .. . . ...................... 

.................

, ,,,.1 . --

- *' 

I...,. . .0

,. ' t' ", /.-: .,

.I 
.. • .,. 

. . / " .... ;. "'...". q..10-

0)P V0 1 01t 1 i

11-TI so. ' 

', 

I 
• 

'7 

; 
I 

1,4 \5 l''.

!_.'.I-.' 
I

IT
b"" 

4

.' I-, t P, I ,, 0- r. ,

.

i,,
%



Avalon: Language Support for Reliable Distributed Systems
Maurice P Herlihy and Jeannette M Wing

'Department of Computer Science
Carnegie Mellon Universty
Pittsburgh, PA 15213-3890

.A widely-accepted technique for preserving consistency in the presence of failures and concurrency is
to organize computations as sequential processes called transactions. Transactions are atomic, that is.
serial~zable and recoverable. Senializability means that transactions appear to execute in a serial order.
and recoverability means that a transaction either succeeds completely or has no effect. A transact '
tniat completes all its changes successfully commits, otnerwise it aborts, and any changes it has mace are

undone

Aa or is a set of lingu~stic constructs aesigned to givre programmers explicit contral over transact c--
* oaseci processnrg of atom c objects 'or fault-tolerant applicaions. These constructs are be ro
dsi. i7D eme-tec as as extensions to C++ [51 The constructs inciuce new encapsiuation and abstract c,-

m-ecna'- sn's. as we i as supocrt tor concurrency arc recovery The nlecision to extend an ex St
ar-c-age rathe, tl-a-n to invert a new lang..age was based on P'ag-a~c considerat ons We felt we co- c
foc.-s m-o'e e'iectively on tne new and inte'estnn issues cf reliabil ty and concurrency if we noc not na.e
to eeso o reimcement basic language features. and we fell tha! bunlcng on top o' a wdeiy-usec a-c
wo r--- -ava ao'e languace would faciiitatse '.e use of Avalon outd our own research gro.,.

A aooram in Ava'on consists of a set o' servers, wrion resemble Argus guardians [4] A s erve'-
se-caas.,i ates a set of oboects and exports a set of operations and a set of constructors A se-.e'
res des at a singie prysca none. b2* eac node may be home to multiple serv/ers. An aac cat c'
o'~og'am- exp' ct y creates a server at a spiecited node by ca 'ng one of its constructors. Ratnrer 'tna-
s'ra,;ng data d',ecty servers commu'r cate by calling one anothers operations An operation cal is a
re"'ote procec.re cal with callkby-va!ue transmission of arguments and results. When a server rece es
a- oDe',at on call, it creates a short-' ved "ignt-we ght! process to execte the operaton. A serve' can
a so prov'oe a spec~a: background operat, or called by tne system after it is createdn

Tre objects managed oy a serve, may be stable or volatle Stable objects survive crashes. wl 'e
vouhioe ob~ects no not Internally, tMe storage managed by an Avalon server is organized as a threele, e
th e'arc-y consisting of volatile, non-volat le. and stable storage Objects are updated in fast vo;ar e

*storage which does not survive crashes Slower non-volatile storage, such as a 05sK, is used as a
backing store for pages in volatile memory. Non-volatile memory survives soft crashes, but no*t ha'c
crasi"hes Finaliy, stable storage, such as replicated d ~sks [3[, is used to keep a log of updates to st.ac t
oco ect.s Stable storage survives all expected crashes

'Thi, research was sponsorfed by the Defense Ad a nced Rp-,oarcri Projoc Is Agency iDOCi A RFA Order No 4976 mcrnd t',
tt'o Air Force A/ onics Laborato-y ule Contract F3361 5 84 15I 2(, AddI onfl support to r J W-isgi %as pro~ldod r~ p.0 t
Na,itnai ;z esce Foundation under grant DNIC 851 5~4

L Z.



Syntactically, a server resembles a C++ class definition, where the objects correspond to class
members, the operations correspond to member operations, and the constructors correspond to

constructors. At the statement level, Avalon provides primitives to begin and end transactions, either in

sequence or in parallel. Each transaction is identified with a process.

Avalon also supports nested transactions. A transaction commits only if all its children commit or abort.

a transaction that aborts aborts all its children, even those that have committed. A transaction's effects

become permanent only when it commits at the top level. Thus, a subtransaction's effects need not be
written to stable storage until its top-level transaction commits. Nested transactions can be used to make

applications more robust. For example, if a subtransaction aborts, the parent transaction need not abort.

but can execute an alternative subtransaction. Nested transactions also increase the level of concurrency

within a single transaction since subtransactions may execute concurrently.

In Avalon programs, each data object performs its own synchronization and recovery. A transaction is

guaranteed to be atomic if all the objects it manipulates are atomic objects. Avalon provides a set o'
bu-It-in atomic data types that resemble typical built-in types (e g., arrays and records), but these data
types guarantee atomicity as well. Avalon also provides primtives to assist programmers in implement,=
tneir own atomic types. Serialzabi!ity and recoverabity are implemented for the built-in atomic types by
Came!ot faclites such as locking protocols, new value old value logging, and commitment protocols

A novel aspect of Avalon is that concu'rency cont'ol is governed by a property called hybrid atomict;

Informa :y. hybrid atomicty requires tha: transact ons oe seriaiizable in the order they commit Hybr c
atomic:ty is a local property: if each indvdual atoms object is hybrid atomic, then the system as a w t'oe
w.l be atomic. Hybnd atorniCi y encompasses a va ety of concurrency control protocols For examp'e
hyrid atomicty Is automatically ensured by two-phase locking protocols il]. but programmers ca-

acnieve higner levels of concurrency and ava lability by taking the transaction ordering expicitly into

- account [2) To assist programmers in implementing their own hybrid atomic data types, Avalon provides
* a built-,n transaction ident;fier type tid. Tne tid type provides a restricted set of operations that faclitates

run-time testing of seria';zation orders and the state of transaction commitment. A second novel aspect of
AvaTon is that programmers may define type-specific commit and abort operations for user-defined atom c

,ata types The system automatically appiies commit or abort when transactions terminate User-aef'rec

commit and abort operations are particu ar y useful for defining appltcation-deperdent synchron zat or

and recovey protocols that enhance co"currency and efficiency by exploiting specialized pro:elt es o'

,.* the data type

.- !-

-, 3

al



L.

References

[1] K P. Eswaran, J.N. Gray, R.A. Lone, and I.L. Traiger
The Notion of Consistency and Predicate Locks in a Database System
Communications ACM 19(11):624-633, November, 1976

- [2] M.P. Herlihy.
Comparing How Atomicty Mechanisms Support Replication.
In Proceedings of the 4th Annual ACM SIGACT-SlGOPS Symposium on Pnnciples of Distributed

Computing. April, 1985.
, [3] B. Lampson.

Atomic transactions.
Lecture Notes in Computer Science 105. Distributed Systems. Architecture and Implementation

"' Springer-Verlag, Berlin, 1981, pages 246-265.

[4] B H Liskov, and R.W. Scheifler.
- Guardians and actions: linguistic support for robust, distributed programs.

Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

[5] B Stroustrup
The C++ Programming Language
Adcson Wesley, 1986

S

K
"X

-44-
'%

% . . . .. ,% . . . . %% ,.•' ,. "



Emerald: A Language to Support Distributed Programmiv 1gn

* Norman C. Hutchinson
Department of Computer Science

University of Arizonia

1'::,, :a, I s anl obj'ect -based laniiua ge and systenm d esigned for the con ~lt mct jolt d .
>The principle feature of Ernerald is a uniform11 oh ~ct m~odel a ppropli t .

r: . :: pr ate, local objects and shlared remlote'O)Jc- obj;'- I- ;!;: t o. fl::'

fro ii node to node withlin thle network. even, d rin" Al II \orait I' I)e ' t

* i~ i t~ofobjects. invocation of an operat 1:on aN ;:1 ol ji'r 1, locat iolu lit(I l

nee-d niot know the location of an object wliil inv~okiig it. Eli ild ill,(

- .'- p. svsteiim that concentratoes Olt the sp'cI"ificio. it101 tlti 1) izi'lnIe itio I

1 ''~rd1 go~i is to simiplifyv distributed p)rograniiii~ i,-, ill~ia~Siil~ .
I' rniptaleperformiance and( flexJbilitv. both locav!. anrd iii the (listiilbiitcd v:

-'-Fdi Y . Er. ,ral.s model Of corn puttt iO i>- tie 01*C. 01i

a %i te s teni beca s' t hey elicapsiulate III. c(Ilrlpl t ofpres.p

a:.2 Irc .?oT In cortra,t to a several existing- distributed p)rogramimig langinag> a svd
- ~ ~ ;:a sm- .paratr; ccinluationai 1110(1(1 for local and di~tribjuted enities2.. EIII.ied 1'-

._ 't Iiiid 01. LnI'llra ]d obj' ts inclu1de p)ri vate' elil1itie(-s suc I as i tegerF anId B0, a.:" .

Iditributi-d entities such as omrpilers, directories, and entire fil' svsteis . AI! )1.1

P! lr~.1ti 11 irg the Sanie mnodel]. and have identical inoetoiiseiii c.
belev thlat prograiic-rs d1eserv'e t li consi I eno-v of setniii i olf Ir

e d o niot accept I' ton (IloTi1 cr itic iml of ('1hCId -l;."' ('1ten1 nan-~ II. 1,
To) T"lnu! extenIt . thi IniLe11ral Colnlil ca)a I CtI do (f alv!\,I'- I "e

;f i.g ~a IT[ar appropmrit. iniplemmemiIlliu. Jr a~ii ll n rrayv ohi. \k--1

irK local to aliotlicr object niav be imiplemnted using share d nwninrv anid ic p -

v 1b-Int erarray that is shiar',d globally require,, a mnore gerl(alid epn Ive)ni ii

tlctalo~ remjrote acces,,. Thiese, mutltiple imiplemnen tatilons ale generated bY the C Iinpl"- i -

tL. saowrce cod,- depenlding onl the needs, of a particuLir objectI. 'Ili, ,lpe <ii).'

;lrrrrimrstask since 1w sees a uriifurmn rnmoel. while provkiing anii11!nini: \ i

a;~.~rittlfir the functionality required of each object.

* ,- ~ li~litIi vi thie E~meratld system difFers fromn existimig, prTOCesS 11iiimatioi Stclellies Inl two nt! t;

rejei 1, 1- ir~t. Einrald Is object -bai ed arid the unit of distribumtion aliil iioiilt I te ol,
* ~~I sit' lmiierald oh) jes oitajIi pro(~ss others' contlaimi oiilk (hatl rroI -.

- i~~t'-~i- .tt ill oli,(ts. 'I h s, the( 11111 (f 11iioihilty cali he iiicli sniillcr tlhaii inl pit -- ~mtcs
Wvtt his t mmohilitv% Ili Lntm r.d,! hinfre sijhiiiiie tooth lr~i( v, iiir.tiiiiii i~ti.

-/45-

~ .~..' *.? . * * * ** ~ J*~* ** * *~ .s , %. . .

% -*'



4 .

w . I

recognize the notions of location and mobility, but the design of conventional parts of the languiae,,
(e.g., parameter passing) is affected by mobility.

In traditional process migration systems, process are normally migrated by other eritities (e..
* load managers) without their knowledge. In fact, it is often a major design goal of such system,

to make it impossible for a process to notice that it has been migrated. In contrast, location is ari
attribute of each Emerald object and language primitives exist to move objects to new locations and
determine the current location of any object. Making location part of the language semantics allows
Emerald to be used for constructing applications such as load balancers and replicated server> that

"* wish to manipulate location to increase their performance or fault tolerance.
We have recently instrumented the Emerald mail system to investigate the befit of

ixveiz t mobility for a particular application. The results of this are reported ill [6]. Ir.''

compared the performance of moving mail messages addressed to users on other maclre- to tl--
of accessing them remotely. For a typical (synthetic) workload. mobility allows thw n,",. ,f
"... ate invocations to be cut in half, and the total number of network packets elt to 1 .-- ,

* ... *

The tniera ,d Ianguage supports the concept of abstract typt. The abstract typ'. ov an

t -- ,:i- its interface: the number of oprations that it exports, their names, and the nunrs
ai.-t:act types of the parameters to each operation. For example, the abstract typ, I"ih"iffl

,iies that directories implement the operations Add. Lookup. and Delete. Iurtlier. Ad,i r. :.
* . - ri li. and an object (of arbitrary type). Lookup takes a string and returns an olj,,ct a..

*" a.,i:rarv tvpe), and delete requires just a strina. W, say that an object corijormis to an alt t:ct

if it implements at least the operations of the abstract type. and if the ab -tract yvei of'..
nora, eters conform in the proper way.

Since abstract types capture only the specifications of objects (and not their inirleneita::o:s
. ', permit new implementations of an object to be added to an executing system. Tlis j- ii:i;,
" :.i t for long-lived distributed applications such as mail systems, file s'sten-. and window \-

it allows new kinds of objects to he' fitted der amicallY into a system wtlioiut brii:>;. 1
,%-elli down and restarting it. To use a new obect in place of another. tie abqtract type of',I :.
I ob.ct must conform to the required abstract type. Note that each object cai, iiiiieoiie I::

,-,r,,nt at)ract types, and an abstract type cat.rbliiplenented v maty diii.rit o .

I nierabd has ben implemented under 4.2135D Unix oil Vax and Sun comlputers. and is cur;.
il, oi small n,.tworks at the Uiiversiity of Arizona. the Universityv of Copen!m oni. ).:.

and the University of \Vaslington. A small number of applications have beer implenente':: at:,..

system, a shared calendar system, a file system, and a replicated name server. In addition. seve: ,.
liAd-sharing style applications have been implemented to exp)erirnent witIi li ght-weigit niobll '4T

\V, are continuing work with Emerald along two major fronts. The first coicem, re;, (.i-
tin. E, morald performs automatic replication of linrut,,blc objects (those that riay r.c' cI::( 1
I wir state over time). We have more recently been working on extensions to Eirerald to sipp.

ropicated mutable data. We wish to take advantag, of the seniantics of operations (in particu!,:
commnutativity) to reduce the communication required to keep multiple replicas synchronized i h lwi

tl l v are updated. We are particularly interested in finding a clean language fianw, eork for d.,khl, i
-v. it I r,,plica ,.d ohij,'cts.

Secondly, we, are interested in a slarrt alone irpilintation of Errierald Our ciiient
Iri.rtat on or topi of UIrix does not alkw 1rs to evahlate the iritrinsic cosl' of /ltr(llrr 1111
f.. ir,. beta ,c ,.,. of th, larg,' ovelr' r de,,, 'ralim . iih sending a rietwor ri'' >-.. r, rirlei 1I"11,i ' I

-46-

% %4



x-Ihlernel being developed by Larry lPetersoni and myself at Arizona will provide a frameowork for
constructing kernels that have specialized communication requiremnents. Customizing an inirald
kernel using the x-kernel as a base will allow us to better understand the fundamental costs of tl,,e
abstractions that Emerald provides.

Ani overview of the Emerald language is given in [1]. Thc rationale for the design. an(!:
description of the compiler algorithms used to deduce appropriate implemenitatilonls are in ].Te
type system is described in [2). An overview of the object migration facility is in [6), and thre dz
of the implementation of the run-time systemn including garbage collection are in [r]

References

[1] Andrew Black, Norman Hutchinson. Eric Jul. and Hlenry Levy. Object stiucture in tieEw :>
sysemn. In Proceedings of the 4 C.11 COnferc-ice on 014 i- OIcU(Prgmni

Laynguagcs and Applicalion. pages 7S6 ACM. Octohor 19%Z(. Publj lwei Mi SIC;I) I,. N!'
)ye'!. 21. no. 11. November 19SG).

[2' Aii~lrew Black, Norman Hlutchinson. Eric 311i. llefir v Levy, atid TLarry C'arter. V:iu:
al-iract types in Emerald. IETL Tryn.soctin':z on Sof Iior Lg erw.i I 1 l~ai '.
A-lso, Tfechn~iical Report 86-02-01. Dc part nic: r of Cot:: p: or Sc:i1c.'.Ii f

'3' .-\r-drew P. Black. Supporting, distribuitod applic~ti oi:,: experlience wvitl. i:.Iu Pi.~.
t;,, T( nth .-I CM! Symposin ni oy, 01) jer: 'in !M(I :Filee .Dc nIrI

N:>nC. lluitciinn~. F;i(r/e? .j I- )i ,e ~~::,cJtI it,i IT '

PIPtheis.Departmorit of Comiputer Scie::cc. Ui,;Vc'ritv of \VaS11in-'toi: ea! \\O,K .J;:.':arv1987. Alo. Teclijilcal IlpDop. 10.lpiltnwilt of Conrp;'1. iet<'.U:'

"f lit p-Iinc~itlom:.

'U; l 1r - X , ' u -1l1 i 1 11 1 - I. a iI \ ' r % 3 a . F i(

I IIIa I 1 rl ol oI I .,.. -

'a:i 1' rS wm i o (T

or.

L %

%-% %-% -- --



Modelling Time Dependent Behavior
gin Parallel Software Systems

Debra S. Lane

University of Calfornia at Irvine
Department of Information and Computer Science

Irvine, CA 92717

A great difficultv in building distributed systems lies in being able to predict
what the system behavior will be. A distributed or communicating system is
defined here to be one in which the hardware consists of a set of processors
each with their own memory, connected by some communication medium (there
is no shared memory), and the software is assumed to be of the CSP (Hoare's
Communicating Sequential Processes) type. The problem is that while it is easy
to understand how each process behaves in and of itself, it is nearly impossible to
predict all the ways in which the processes will interact and influence each other's
execution. It is necessary to understand their interaction in order to determine
how the svstem behaves (so that one might convince oneself or others that the
system performs as intended).

In the past few years some theories have been proposed to model features
of communicating systems. Milner's Calculus of Communicating Systems (CCS),

Winskel's Synchronization Trees (ST), Hennessy's Acceptance Trees (AT), and
Hoare and Brooke's theory of communicating processes are examples of formal
models of such systems. All of these models concentrate on modelling observable
properties of a system.

This paper presents a new representation of communicating systems called
Event Dependency Trees (EDT) that models the time dependent nature of such
systems. None of the representations mentioned above explicitly represent time
but time is precisely the factor that introduces so much variability and complexity
into such software and systems. Many models in computer science assume that
events occur instantaneously, but here it is assumed that every event occurs
with a certain time delay represented explicitly by an event name and a variable
for the time delay. Communication events are important because that is how
processes interact. Events preceding the communication events, even if they are
only executions of sequential pieces of code, are also very important, however,
because they determine the exact manner in which the communication events will
occur.

-. Besides modelling time explicitly, EDT differs from CCS, ST, and AT in its
representation of system behavior. Both CCS and ST represent system behavior

I'-

-48-

, % %



as interleavings of events. The Ccillbine tree operation in those models produlct,>

the set (if interleavilis. AT represents the system as a state-transition graph.
The tree combine operation in AT takes two state-transition graphs and produe>
a larger one. In EDT, the system behavior is represented as a partial ordering

- of events. The combine tree operation in EIDT produces the partial ordering of
* ."events in a way that indicates how particular sets of events contend with each

other to produce the various execution paths.

EDT show the right amount of information about system behavior, not too
much as in an interleaving representation, and not too little as in a state-transition
model. It is possible to identify each execution path by its unique event orderingV.
In interleaving many event orderings produce the same execution path because

many times it is irrelevant that sorer event occurred before or after another since
they don't influence each other's execution. EDT shows exactly those events that

. influence each other's executio., and also those that are not related.

EI)" Td> pr,,vi de a0 w1r t q t, questions "\hy is one execui to .',1.

ch,,on over ano:ther?' or "li,, is a particular execution path chosei"" "I Te anuv.,

is that sone set of events occurs before a differe lit. contending set of events. ('( S
* ST. and AT all show the possible execution paths but indicate only that they ar:-(,

be.caue of nondeterWinisro. \hat is th, source of such nondetermimnisn? Th,rF,,
;are tv.',, ways in which nondeterminisin arses i!, such systems: (1) through the u,.
of Euarded commaids, and (2) through the use of the conimunication construct
EIDT models the nrondeterminism that arises through the use of communicat'i:

,-:t ruct s in ('$P-tvpe Ian nage>.

In EI)T processe, are represented as trees where the nodes of a tree repr,-i:.!

sycsten states and the arcs represent the execution of system events. An evelt is

one of three types: (1) execution: represents the execution of a sequential pie,.
of code (with no communication constructs), (2) communication: represents the
execution of a message passing construct, or (3) the null event. Communicati,,,n
events are further subdivided into send, receive, and synchronized communicati(:.
events. In addition, each event has an associated time delay, represented by soi:i,.

variable such as t.
..

The following ntation, is used:

d
1) c1t' denotes a sending communication event that takes time t.

. .. 2) eWt denotes a receiving communication event that takes time t.

3) c[t' denotes a synchronized communication event that takes time 1.

4) et] denotes an execution event that takes time t.

5) To denotes the null tree, which is also the null event.

These are the only events that can occur in EI)Ts. Using this model, all porti ,,m,

* of the computation that take time are accounted for.

I -S ., .-

'4.



Labelling trees is subject to some restrictions, which are not described here.
However, note that each event has a name c, a time t, and a type that is in the
set {exec, send, recv, sync, null}. The name of the null event, which is also the
null tree, is e or the empty string, and the time of the null tree is 0. The functions
name, type, and time when applied to an event, return the respective information
about that event.

Three operations are defined on trees: a prefix operation that allows a tree
to be prefixed by an event producing a new tree (prefixing an event to the null tree
results in a tree with a single arc labelled by the new event); a combine operation
that takes two trees and produces a new tree; and a remove operation that takes
two trees and removes one tree from the other. The combine operation is a very
important one in that it preserves the relevant information that indicates how
execution paths arise as a function of event orderings. A set of event dependency
trees along with the combine operation is shown to form an algebraic group. In
this model, two trees are defined to be equivalent if they are isomorphic to each
(ther.

Once the formal model is defined the question becomes how does one use
it. EI)T is useful for perfrmilri some types of analysis. It is assumed that a
programmer codes a piece of software. The software is then transformed into
an EDT representati,.i. At tliis point other algorithms are invoked to analyze
the "software" for various proerties or information. One type of information.
which the model was designed explictly to produce, is the set of execution paths.

idei by their uni uc eve:lt ordering. Once one has this information it becomes

p(,ssible to ask questin,-s of th- form, "\Vill this execution path ever occur.", or

in other words "Does evenit x always occur before event y, and if so what in tlie
'svstetii causes it.

Another type of analysis familiar to all is the detection of deadlock or proving
the abse-nce of deadlock. T1e alevrithii detects two types of deadlock, deadlock
due to wrongful use of the s-,ncr,,nization primitives, and deadlock due to timing

aspvct> of the svstemi.

-DT is a formal imod,- of distrihuted or communicating systems that
predicts how CSt'- type procss,.s will interact. Although it appears that EDT is

a model of software, assumptions about how the system impacts the execution
V of the software is a crucial aspect of the model, the primary assumption being

that events take time that could differ from execution to execution. From an
EDT model of software one can identify each execution path by its unique event
ordering. This provides some insight as to how one might reason about whether
certain events and ultimately execution paths can occur. The model supplies
potentially important information for the design and construction of distributed,
parallel software systems.

L

* -50-



LGP2 Position Paper
Paul J. Leach

apollo computer inc.
330 Billerica Road

Chelmsford MA 01824

P. Introduction

At Apollo, we have experience in three areas that are relevant to the creation of systems support for large

grained parallel computations on a network of workstations and servers. First, we have collected from

users a set of parameters that the\ consider useful in the selection of machines to be used to perform

parallel computations Second, we have identified some policy axes that mechanisms for machine selec-

tion need to support. Putting these two together, we created an architecture that allows the coexistence ot

r.any different policies, and for the user extension of the set of selection crter;a Fin:l>%, se have im,,e-

n-ated several parallel ap hcation- that make use of load ba!anc:nci

Policies and Parameters

B. ,.mc' potentual u-er of larce cratn parai . , se disco.,ered that t \ htK ap" .... t. lt

i- w ant to') d:crinilnate hetseen pouent:al> ueul node, on the follom ic baesc CP. F pc-d an ill, .

.t, pril.:,r criter:a ment ried, but the a li,.tv to dimncu-h b ', wen fore ... nd n. "n "a c a:.. k cr
I ad A crc al-o des:red Di'k speed and load oere secondary criter ir fact. a.a. a He d.>k space e.

'to e more :mportan': thi> may be beca- d.,k p.rfornance is not as var:ahie a our en,.;ronmerit a, (TLP
pcrtornm:ance \la.n memors stze wa a cr-r . but actual memory load mea-ure' crc n.0t r.:e'ted I"

a!:, perhaps becau.e of the prevalence of :rtual memir\ in our en\ir,,.ment, or perhao", au--
-.. una aiab>: of good meaures Finalk, the softwkare configuration or. a node would sometim.,e, be a

factor.

The users of nodes, in addt,'on to wanting to limt remote process creation on their no, des to time" of I,%,
hosever defined by the interaction of some of the above measures, also sk anted to be able to force

rea,,te!. created processe, into the backc-ound, and to take interactiie use of the rncIe into ace:":at

P( c axe pa .ces varlat on that the rechanisms need to support indiduil auton-my. croup on--r-
,,. U e and tfe de !re to I rat ther u ,e to the owknmc oroiup lnter-u,r pr(tetn r t h

z,. U[ p c o asi r.,I nt, or. s:rarutaneous use c a node b, d Ifferet prt',c pal, F'en it no-

Ptr 1,,cal us .n a rode. prctectwin of files from remote procese, %kould be an issue. esp, l o -o':nl

fr- s,.n cc uer operat:ng s,,stems Another axis is individual responsi\eness versu,- group throughput

Architecture

Tlhe ba~ic mechanism that supports large grain parallel computations is just the a!ilit, to create proces.e,
on other nodes in the network. Policy is enforced by having each node retain the power to determine ikho

and under what conditions remote processes ma be created on that node At the next laver up, a -eotir\

oif nodes and the selection criteria they meet is kept as a "hint" mechanism for quick!N locating suitabl:

ci e'I '. Control over remote process creation

K.)n each node, a control file is present in a known place, 5,1 1,ch contain, t}ie p.iraneter, defimin all w,, 0'.c
u-,Lce of th~e node Terminology

-51-

.%
=IL



OWNER: the node owner; a person who can change the access permissions/availablity criteria for
the node. Represented by write rights to the control file

USER: a person who is allowed to use the node, assuming the rest of the criteria are met.
Represented by having read rights to the control file.

KBUSER: the person at the keyboard (unless the "serser" option is used).

HOLDER: the first person to start an unsafe program is the holder. Usually, it is the KBUSER, if
there is one.

FRIEND: a person who is trusted by the holder of the node to run unsafe programs while the holder
of the node is using it. The current implementation defines a friend to be a person in same project as
the holder, or same person as holder, but with a different project or organization ID.

INVOKER: a program that invokes other programs (i.e., a DSEE builder).

SAFE: trusted: a program you are "illing to let others run while you are using the node is said to
•,, be sa fe.

SAFE DIR a director\ holding programs that are assumed to be safe unless exp]ictl, ider,tiCd t the

. tOR'C nv, ner (or hlcldcr of a node can ignore load consideratin> by u:,, FORCE t, crca::

i........... ... ........' d. Thl,: is primarily for debugging purposes.

SLOT a di,:>in of computational power of a nnde ir-,. units; at most one remote proct:. c.an hc

Cr e:::,J or c!a ti "iv a ' a slot on node.

SoN .. . , ou can create a process on a node if:
-ou have permission. I

2) ou are compa'ible with the other users of the node.
3) the node has a low enough load.
4) the keyboard user has not reserved the node for him,'her self or friends.

Permission: You have to be the owner or a user.

.. Cnrmp.:t,:hc You have to be the holder or a friend of the holder, or he runnmc a sa:

,program . If "onl _ safe friends" is set, then even friend, need to be running safe
r,," procrams (sec he', )

Lo, d IN",' a There must be a slot available; the number of remotely created processes must not exceed
.max slots"

b. The CPU use must be less than "cpumax" (less than "cpumaxkb" if there is a
KBUSER)

S c The keyboard user must not have typed anything for more than "min idle" minutes.

Reservation:
a If the KBUSER has "reserved" the node, then no-one can create a process, regardless of ho"

lots the load i\
h If the KBUSER has "reserved friend," then only he/she and hi,"!her friends can create

procestf, reet:rdless of how ;o" the load is

* -52-



Load Balancing

Each node "volunteers" its computational power when its local policy module decides that it would accept
the creation of some remote processes. A node volunteers is by registering its availability with Ahat we call
the compute slot allocator (CSA). When a node volunteers, it also informs the CSA of selection criter.:
that might be of interest to potential users of the node. The CSA maintains an attribute/value database for
these criteria, and allows potential users to query the database as part of the selection process Curren
load is one of the pre-defined attributes. However, nodes and users can create new attributes at \Ail!.
allowing new selection criteria at any time. The CSA's database is regarded only as a source of hints abou:

•_, the state of nodes.

-. Im)iplementation

WVe ha e implemented a process creation server, called the server process manager (SPM), that ha,
r'.: a the polhcy manager described above, and does simple CPU load calculations. The Apo'l.,

. -" s kiwart engineering system (DSEE) can use this facility to do parailel makes. The CSA is currentl not
..... t.ed, so each DSEE user provides a list of candidate nodes, each of which DSEE polls to deter-

P .rnie lad, the leaq loaded are selected Many of the policy ideas came from users %kho dilked haimr
"S-EF ue their nde for makes whiie they were tring to get wxork done.

'

-53-

%'' ~.



- -- v

A Programming System

for Heterogeneous Distributed Environment

G a b s Insup Lee

General Robotics and Active Sensory Processing Lab
Department of Computer and Information Science

University of Pennsylvania
Philadelphia. PA 19104

.A prograimling system (DPS) designed to facilitate the imph(I,'ila: :,

ex:ecutl(,l of di-tribluted program,, is being developed. The purpo(>ev of D-'S,:
to acili tate the developtent of large dist ributed programs consisting of :':,

writ tenl in different lan2uages (currently C. LISP and Prolog) and t( alow t

exploit lare-grain iarallf-lisin by distributing programs to differ:u
,ce~sors 2, The system hides het erogeiwitv in the underlying progra:\ .:n g I:. ,

puao_.cs. architectures and operati.g systems from the programmer. The underl:. ,

":" d isrzuted system consist- of a loosely coupled heterogeneous mix of computer>

:i:: VAX !1/7S. .,IicroVAX II's. Symbolics and HP 3000 connected by an

Ti, >-alit features of DPS are that processes in a distributed program may 1)"
en in the appropriate language for the task, and that the configuration of thls,

toe,-,s into a distribt ed program is separated from programming of individual

pr, ".'s-es.A DSP program consists of a set of communicating processes written
ii, C'. LISP, or Prolog. The configuration of the program is specified using a di -
tr:I,.,t configiration1 lang~uag, [31. The configuration language provides a si ni,,

an,! ,.'ci,.it ww" to svntlesize a set of component programs to forn a dist rib-it, ,i

Spi (,grain: that is. it supports prograiiing-in-the-large for distributed progranI-.

A configuration written in this language identifies component sequential programs

and specifies process interconnection. To simplify the loading and execution of a

distributed program, it also identifies resources needed for execution and specifies

process assignment constraints. The compiler uses this information in determinii-
ing process allocation, freeing the programmer from details about the underlying

system. The run-time support of the programming system ensures that processes

acquire resources before start executing and handles distributed termination.

The system currently supports message based communication between programs
- written in C, LISP, and Prolog on Ultrix , proprams written in LISP on SNbolics.

' itrix is a tradenark of Digital Equipmntr C -orpC ratot l

-54-

N,.



andl prograilns %\-ii en in C oin H P 3000 [11. To su~pport type'd if 55t( hav

ixiiplemlent ed it typed dat a conmmuni cat ion package, whichl is a Set of fu nc io ns t Lai

provide the ability to transfer complex data structures between processes, wvith type

and structure retained, even between dissimilar systems. For Prolog programns. we

have also implemented remote predicate invocation [4). We plan to liinplcineiit

%% remote procedure call for programs written in C and LISP.

References

1I1 Leo. N. Bariclilder. J1. Chang. I\-. >lok. S. Ngai. .1. flozario. Q. ;iii. I,,-1

a-,n. DPS Uscr* U AMan tal, GRASP Lab Internal Memo. Dept. of Ci~ur

.I Iiforimt ion Science, .lvest of Perislvaiiiiai. 1 SSG.

* 2~1, Lee and S.MN. Goldlwasser. "A Distributed Testbed for Active SP:,

*Prec. 10SO lit. Conlf. onl Robotics and Automaition. St.L

arh 195..

r3' 1. Lee. N. Pr zs.ad B. Szvnmanski. ' Partit inning of Ma>\e'Ra ::i-

:sfor Paralflel Processiug ,,. in1 Advances 'n Cry:c .E :NI

.~ Lee. 0>1. Yasuda. and G. Hager. ' Remote Predicaite Iii\ -at info: Di;-

ri Lited Pining Programs". TR-S7 6 Dept. of Compier an~i I In:

S~~c.University of Pnsvai.195 7.

* -55-

e p-e r P re% . %1



The synchronous language 3 lA L,
P. Le Guernic, A. Benveniste

It9.ISA/INR A Campus de Beaulieu
35042 RENNES Cedex
FRANCE

SIGNAL is a Real-Time Programining Language designed at IRISA to describe and implement
algorithms onto multiprocessors systems. Firstly defined to realize Real Time Signal Processing

* applications, SIGNAL adresses a larger field of needs for programming tools and especially in the
areas where automata are used.
Based upon formal properties, SIGNAL is used as the major support for correctness verification.

S.sequential simulation and repartition of algorithms.To implement an application, the followvinL
method is applied:

1/ specificion of the algorithm in the synchronous language SIGNAL; at this stage. Ae
4" have a specification where the synchronisations and the parallelism capabilities have been

analvsed.
2/this first step provides as a byproduct a FORTRAN prcgram, which can be used f,>r
standard simulation purposes.3/tools are available to help the progammer in designing a multiprocessor implemen.:,
while controlling the requred niodifications of the original program.

The language.

SIGNAL is a data-flow , like dc,:larative lang :',je. :t is defined upon a small set of pr:'":''.
opera:ors acting on two kind of C\prcsSions:

1. Signal expressions (e expressions with dated sequences of values as operands) def..
primitives cyclic processes (named Generators) in a definitionnal equation style: generator>
produce output Signal from input ones in a synchronous composition ( ie calculus are assumed ti

have a zero-duration). For this purpose, the programmer is provided with two classes of operaor>:
i) Natural extensions of standard functions (x, ... ) to sequences of values for whic'h

signals are constrained to be synchronous:
ii) A small and complete set of temporal instructions to enerate the control pa:nt

(synchronisation and logic) of the program:
* delay operators, acting as fifo-registers;
.%thcn operators, to delete data according to the value of a boolean control signal:
.dcfauh operators, to merge two signal with an implicit priority, (specified to avoid

non functionnal behaviour'.

2. Processes expressions define new processes from smaller ones in a block-diagram
building style ( la Milner); two processes communicate by zero duration exchange of values.
They are defined by using the following operators:

-Renaming of signals (input- and output-) which give new external names to named signals:
-Connection of signals which define an input signal as being the output signal identically
named in the process; connections allow broadcasting of values; each input has no more
than one output connected.
-Compostion of processes putting together two sets of signal definition equations; input
signals with the same name in the operands are stated to be identical; operands may not
have two output signals with the same name.

This set of instructions provides suitable mechanisms for event based under- and oversampling of
signals.

The group works in cooperation with the project Signal Processing Architectures (Michel
Sorine, leader) at INRIA-Rocquencourt. This work is supported by CNET (French National
Agency for Telecommunications).

!

.

.1 -A-



,,%

These expressions may be structured by the means of Process Declarations compound of:
-an Interface which gives its name and describe the set of its external signals:
-a Body which contains a processes expression
-a set of Local declarations of sirnal and subprocesses.

The compiler.

In addition to standard verifications and calculus (types, context,...), compiling SIGNAL
programs involve a static calculus of logical time properties and the production of the timed
precedence graph.

1 Logical time properties.
Signals handling in a SIGNAL program state logical time constraints defining a system of

algebraic equations over the finite field Z/3Z, its clock calculus:
i)to each signal S is associated a variable which value denotes at every moment of a virtual
clock:

-the absence ef a value in S when 0,
-the TRUE value for boolean S when 1,
-the FALSE value for boolean S when -1,
-the presence of a value in non-boolean S when 1;

ii)to each of the generators, a model of equation is associated:-, ill~rules of equations composition a-re simply' deduced from the semantic of processes

expressions.
The correctness of the progam in regard to parallel computation (starvation, nondeter-minism are

*.-i studied on its associated equations svtem by using effective algorithms relevant to computa:o:'.<.!
agebraic geometry.

2 Precedence Graph.
A SIGNAL program define a set of output signals from input ones using data-flow vari:h' e,;

The precedence graphe, associated with a program, is defined by a one-to-one function from the
set of calculus to a set of nodes; an edge exists between two nodes NI and N2 if and only if the
result of the calculus associated to NI is used in the calculus associated to N2; moreover, this ece
is labelled with the clock denoting the moments when the dependance is effective. The absence of
circular definition of signals is verified using the graph, before a sequential FORTRAN ProTmm i

cenerated for simulation.

The Multiprocessor implementation.

The pair (clock calculus, conditional dependence graph) is the convenient level of compilation for
studying processor allocation.

* At first, we define the notion of a functionnal subgraph as being a subgraph in which each input
node (node preceded by an outer one) precedes each output node ( node preceding an outer one): I
such a functionnal subgaph may be translated in any sequence of its nodes according to a greater
order than its reflexive closure; every local optimisation depending upon the structure of the
processor may be used. Functionnal subgraphs may be calculated by local algorithms.

We intend to define a set of tools to help the programmer in implementing signal programs on a.r.'. multiprocessor by using hierarchical organisation of the graph. Functions are the atoms of
allocation; the set of the atoms is partitionned in synchronous subset ; the set of these subsets is

recursively partitionned with recpect to the inclusion of clocks. The first level of the hierarchy
represents the architecture. This work is in progress at this time, whith two target architectures: the
..rst is based upon Transputers and Signal Processors, the second is an IPSC.

The group works in cooperation with the project Signal Processing Architectures (Michel
Sorine, leader) at INRIA-Rocquencourt. This work is supported by CNET (French National
Agency for Telecommunications).

-57-

r 4 e
or'



Optimistic Algorithms for Replicated Data Management

Darrell D. E. Long

Computer Systems Research Group
Department of Computer Science and Engineering

University of California, San Diego

Extended Abstract

1 Introduction

In a distributed system, data are often replicated for protection against site failures and network partition-
Through the use of replication, increased availability of data and reliability of access can be obtained. Wile:.
data are replicated at several sites an access policy must be chosen to insure a consistent view of the data ,
that it appears as though there were only a single replica of the data. The view presented to the user nii,"
remain consistent even in the presence of site failures and network partitions.

The simplest consensus algorithm is static majoritv consensus voting [2]. Static majority consensus- vt
iig provides consistency control and mutual exclusion, but does not provide the highest possible avaiiahi.
of data since it requires that a majority of the sites to be reachable for an access request to be grait..

An attempt to remedy the short-comings of static majority consensus voting, known as dynarnic vti:.
,% was introduced by Daveev and Burkhard [1]. Their algorithm improved the performance by allowing cu i'.

t . ad"sted aut omatically during system operation. The method that we propose. called Opri:nmJr,
Dv.%a:c::: Vot i:)g. operates on possibly out-of-date information, hoping for the best. It can b,- showi: ti.,
TI. . provides mutual exclusion anId that data consi- .. cy i- pres,.rved. There are many bnt

including eiciycv and ease of iiple:.ntat

2 Optimistic Consensus Algorithms

I f':., . of a:t:tns that are known o' " as dY'amic voti1 .41 represent an ideal bywih
,;I:, i :a- r, ,re reali~tit consistency control algcrithini . The, d, nalnic voting schemes previously de cr ,
r,.!:. on; in-'a:itaileous information about the state of the system. Such information is unachievable ec:, i-

* - t:,,- b.-, of circumistances, and our experiments have shown that attempting to approximate the coin,.ct
% ,Ct,, !, id to uivcceptahle loads being imposed on the sites.

Ou r aa indicate that maintaining state information at each access produces availabilit of d.t a
S.::p,. . to dvnamic voting with a connection vector. Using information that ik out-of-date do,. i,,

,a.. t .' oi s,"nc v of the data. but does sacrifice some avajiability of data. Since tli inI t (I tlat ,
a t

''
" coi,,.cti\'ity iilfoiiatioi when an access i- sulccessfuiliy mad,. th, ail,,tt ,f ao:,f

Sa da' at is lho t i- r ,l;,'d to tl:,' rat, at which the data i- .

* T - I::,. !,;. -i- of our sch,.m iK. th, algorithm for detetiing whithr th, acr,-s requl'-t 1- orIL ':' . - \,i..:.

ti:- naj,,rr,, partition. Since there is at most one majority pa'rtition. iiutual exclhl.im, I, guaral',-,,I a:.;

. coi.Isteilcy LS preserved. There are three sets of information that must be maintained: the partition sets. I',
1- which represent the set of sites which participated in the last successful transaction, a transaction iiiiiiii,

t, and a version number, t,, attached to each site.

Algorit hn 2.1. Algorit;irn for deciding whether the currenit p.artition, is the majority partit mI

I" 1. Fird the set of comiu nicatiig sites, call it R7.

2. Iiequest from each site i E R its partition set P,, transactio niumber t, and version nun,r ,
3. Let Q C R be the set of all sites with version numbers that match that of the site with th,. hw! ...

transartion nu tmber.

4. Let P,, le the partition set of aii sit,' iII Q.
. 5. If the cardinality of Q is giaot.r tlhall oIe half the cardinality of P,,. or is exactly on'. half aid It .. >

the uIaxilunll elei.it of P,, theli th,' ru lent partition Is the majority partition
"- -1 h- advaiia,,, of thi' atlor: .- that %% elpr~los, is that they arer nearly as effiii,t a- s0 , , 111

" -58-

W- -C .% .



assumiptions made about the state of the network other that which call be found by examining the partition
sets anid version numbers. We have an advantage over thle scheme proposed by Jajodia (3,4] in that we
can, by simply changinig step five of the above algorithm, incorporate lexicographical ordering or topological
information into the decision process. Our early analyses indicate that topological sensitivity canl greatly
jnmpro4~e thle perfor mance of 0Opt imist ic DyvnamicVoig

3 Stochastic Analysis

Ini this. section wve presenit an analysis of the availability of data provided by our scheme. Thle previouS Work

on estimating the availability of rvplicated data managed by dynamic voting schemes had assumed idealized
consistency control algorithmns that possessed inistanitaneous information about the system state.

The availability of data provided by optimistic dynamric voting is related to the availability of data
provided by lexicographic dynamnic voting by the rate at which access requests occur. As the access ratf,

increases, t he information available to our scheiiie regarding the system state becomes closer to the true stat-,
-of the system arid the availabiliy of data increascs. So long as the access rate is greater than the failu.:

rvo the perforiiiance of our schemne is; very, good; regardless of the access rate it is always superior to stat:'

* ~Thleoremi 3.1. lie a,'ahi of data, affordedl bv Optimistic Dvnamic Voting. .Ao (nu) approarlwis the'

;t: .p:. r. sny ~c~ a well1 a,. t~le originial lexicographic algorithin. TI.>-c~:

.r::.c~~~ipul& io KSmril l ie1)rs of sites. as it L- below for three replicas. H ere- p rpee.

4 .:,z.t!t . I nu a!, to tile. rccoery late, and Clis the ratio of the access rate to the reave:: i

(p _ 1)4 2 p-C ' 1

4" -4-

Ar 3

A.. i'1 f: a:-, wiii wr of r 1lc; L b;d oni a general form of the state diarrain.
0 o' : 1- al, cCIPnt . It ;,r,\idi-s colnsistenicy control, a rid niore generally)nu%% l ~

o; *.;!, a:- tl.reia, h of access afforded by our met hod is superior to stail 1ic -:-

f-.C: a SI1': ireds.' in net work, t raffc. We feel that because of this, and e

41 t' il~4'''~ld 1tl. t L. oulr poll<" v~ll repjlace st at ic majority. cons~ens~u va Ii.t

I)D.i% a : ' \%. A 13urkhIirid 'C oi-si 'nee and Re covery Control for Replicated Files.- r

of the Tenthl ACM Sviriposiumi oil Operating Sy5tenjs Principles, (1985), 87-96.1

2D.IK.. GiFford. "Weighited Voting for Replicated Data.- Proceedings of the Seventh ACM vuA aiiil4:

Operariing SY stem Principles. (December 1979). 150-161.

]S J ai -Mamiagiing Replicated Files in Partitioned Distribtuted Database Systeis roe,.:l.-
tlie Third hiitcrna'ioaa Con ference oii Data Engineering. (February 1987). 412-418.

-4 . JajdiaandD.M ~ tcilr, -Dyziaiiii Voting.- .ACM SIGMOD International Conferece- o:i D:

Marxjag";zir, (May 19S7), 227-23S.

I %



The I'ilcNcll SysLcm

M1arLir S. M1cKuridry

Ii! eNc. Cor-porationl
Costa Musi. Cailforniar

ilic I-i IcNtcLOi vsLITI is a LigIitL -uou plud d is(TributLcd p r oucssilig svs I c 1 Lis cfo ru
man31aging documirin imoigos. The systemr exploit.s (Hic very high s-IT Org
capacities of opticail disks Lo store iimges: a single 12'- disk can hold 2.U
gig, bytcs of dita, or 40,000 compresscd img, ec cuyn 0klbts

VCnlp'-al disks are mnanageul in an OSAR&(Optreal Storage and REtricva-l Unit, ak
- ~~juke box') library which can liulcd up to 2-00 d1isks. 'II c m axi nurn Wu-1l capoc v

- oi anSAR is thus 500 gig-abytc!:. o- U millioni imaiges.

EahOSAR' is outr oled by an OSAP scrvcr. lie son cur is a 6l3100-serios
pro-cssor. with uerry, magnetick disk, arid locul are cc network. Servers as

*manmage data,)ascs thial njiup u1Sor-Sjpeciflud indeuxing data to imiage locations an!
c- .oical disk. Access to tho stuL(il is Htough 1vor ksLtalions VwIthhi-mpc
d splays. crsai m are Uually d isC -ss All son cu rs aind lvorksta)tions run. z

vrntOf U:nlx 1 alth)ou'gh hruiuc' th'Ium is closed, tis is 1) )1 visl t
isr.Th c sv%-!zc 2 's d istLi~. -b' ii i' hle to s~ns Fo a ur th TO

~apcans eI)action zis w'n'' on The Wo Inlkoysl.mcll n C bu1)-( used- Lu
ug~mm hu la ~ ocuni '! wacm n s Of the sysi-cii.

2 K's Pile~ot produ ,-Is buen an'lru 19U5. Ihe-re artc nov p: xrm-I
Syns VnstatuuiF n a 11 ct' dau ippliunt! ions includc I I

Ii Ta I ) N% Ip Iat 1a'1 u 1 rd ui a u I S I:

o .1 ;, r ' ' ' TIV hu mi lig Cullillioll. Pt. is C,;aD!

jP~ p Lr. n '- glzr' Ui~~ W) n 1 T ig I 1i lt' Of tHI 5\5't.CO i 5 cltTiciilt Vt:

ucc t to coriic TnI(2CJ))HEanTa for highly5 c-ticin 'ihiiL yniela
rhst r iiti[Jon. aidw fauttll NI luI lIr e' lii:A'S-;;iy, %vi with cxplOit. upplua trori
srimljriLcs h) controil iltie ernst, Ii 1li:s mnich;mismns.

liw sysi umn (]]SITit~( ili 1ritiitrir il ~ pw-ir:dt.' o eah ismr ill two dit illct sul.'

Of mniCehnomrSnnns. A dnIStU iblJted ftlu systc Carl tqrr.s most operations I vpiicall\
;rc-ec ited wvith the systenrs AIon gsi de (l 1.11c le sy s 1,u ii, anl L s,-, sd

C) iNc~ OSARi. wiTI Wur < Fiu r, Te.sw( r(IJ Iriia IL rks of FjtcNcL Corrtriionl Spnci fic ,O
-sI:A jIc L to c imi~c wjthoult TICo I

I 1i~ ~J i N ii trwh tin,ITI a A W,

-60-

~r
%- N*** , % J, % * **- * . *



mechanism provides applications with a means for managing distribution.

The file system is similar to Locus [Locus lv1]. except that at present it does not
support replication. It implements location transparency, and presents users
with a single view of the file system (i.e., the mount structure is global). Servers
are the critical resource in the system, because much work is logically
centralized at servers. Thus, the file system attempts to move all processing

= possible to workstations. In this spirit, directory traversals are performed at
workstations. A sophisticated caching mechanism for file control blocks
(mnodes) and file contents permits most file management to be performed
without contacting the server storing a file.

The FileNet application makes demands of the file system that differ
subtatialyfromn those of a typical program development environment. We

haivc exploited these requiremeints already, and intend to do more so in the
fut ur. For example. we intend to provide a tormorelctnth aidth
overhe., Of ge~neraliZed schemes. IT) this aperoa-0ch. We will support replicated

rec~~vfiles (all code Ciles), and replicatior, Of storage scrvices for temporary
r-nae ost permanent data is stored iii data bases that bypass the file

* 5 u noJngonly these limited Subsets of the general replication problemn
nmost needs. We w-ill still have to support mutable replica3ted data

- as confIgouratioi structures, etc., but we will not incur the
iuhe apTproacuhes.- In the ce we rnus, support, we are abie!

- v''iti:.seiat~sto reduce' co'Sts Usually. reconF, uratioln tc
-:1 311res canr pr o c e concurrenhewit a pplicat n pro7~sig

or artcnOf the, 1'i1- ssem'Aa supjporlts djistributio-n is the,

r:os -r'I", to )l pp .i 'loi- mechanismn is used t"
p ~ eat~~i erves i ue a g ~lnamne server to bind
the;: ~ ~ ~ p. 5sy L.' ; tc:r'ntl\ XNE) is te sdt

cm S' 'L'r rex: a, ao' coniste:'ncy >~rsi

:' ofu 0 image, sF i opt;' dl<ks co:Itrol of pca devices:

d ~s sti'ar ic innos 1Thus, a typic al user quo rv involves several macIhine,.: the
o e no- os')or kstationri ay have to contLact its operating system server

pr nur'd-mut daita, an ide x server to proces< a documnent quefry. anid an opir mel
t'af'.rc to rttrievu a dIocumeCt, Irriage. De pending on the strcur f h

fi',-\ yst r ari' the dcvices req~uired to procescs thle query, additional rnachines
rmiav be mivlved lBecaluse riot users acces> tLhc samre dat abaises and optical

die ;ks. s:cr eoad(1inhg is e riltica! to the system's performaliCe.

Su ni mi a ry

'Ilie lileNc-L system is an examiple of a distributed systermi that operates as a
si mg I' u nit- In mnany cases. accepted industry practices are in ad equi t( to

-1Ifs iJFp ir tr in : system is application d r ia mils In other cases, a lock of

cmil, oif morr' opii systermis lIniitre. x-' -x. pr tir (Tiiliri ',II Oipproaeli.

* -61-



using industry standard techniques w~here possible, and developing our own
techniques as dictated by the requirem-ents of the systemns applicaUTIoiS.

Recference

(Locus 81] Popek, G., Walker, B.. Chow, J., Edwards, D.. Kline, C., Riidisin, G., & it!
Thicl. C., LOCUS: A Network Transparent. High Reliability Distributed !wj'
Proceedings of the Eighth Symposium on Operating Sys terr: !1rz7ir-zj.:
published as SIGOPS Operating Systemn Review, Vol 15, No. 5, October ld

Autior's Address:

Y, Clfow 9 2 52;'

-62-

%~~~P 'r .



Requirements for the Performance Evaluation of Parallel Systems

U Michael K. Molloy

CMU

Determining or predicting the performance of distributed and parallel systems has been difficult in the

past. This will not change in the near future unless several prerequisites are met. Often, the designers of

distributed and parallel systems are too busy solving problems in a design to worry about the

.. performance of the final system. In the cases where performance has been addressed, prediction has
been impossible because of the lack of knowledge about the actual use of the systems (i.e. Will there

actualy be 'hotspo!s' in parallel systems built around multi-stage switching networks?) In order to
properly address questions about the performance of a current or future system, a clear understandlng of

.- the wo',, oads anl their patterns is needed.

* Befoe ary rea:stic performance prediction can be accomplished, a more extensive base of exper menta

know'ecge must be establshed. However, before an experimental base can be establisheo new
- measj'ement techriques and appropriate metrics must be defined. M~ry different systems nave bee-

meas.,-ed by researchers, but the measurements tend to be self-serving and incomparable with eac

ot-'e Guidance on what to measure, how to measure it, and how to report it is clearly necessary As an
exa-"D e cons cer thte hardware monitors in the RP3 project at IBM. The hardware monitor is bu it into

tle system from t-e initial design, an admirable trait. However, the monitor simply keeps a histogram

(sec a'ate courts) of the control lines internal to the architecture. This allows the analyst to find o.t how

- o'ten certa,-, act ons occur in the system, but nothing is known about the sequence of actions (most
imporqa'-ty the sequence leading up to a cntical event). A circular buffer holding the last few contro'

patte'"s wo,-d have gone a long way to extending the monitor's usefulness.

Urfort.,nately. tne problem is not as simple as adding some features to existing systems It is a cnicke"-

ard egg proo em How can we specify what should be measured and how, if we dont know what is gonrg

to happen' On the other hand, how can we find out what is going to happen, if we don't measure

f', anythng? The answer is a two phased approach. First, a methodology to measure a large universe of
informat on in a condensed form is developed. Second, more specific probes, both software and

hardware, are designed to zero in on possible problems or unusual phenomena uncovered (necessarily

incompletely) in the first phase The study of advanced systems at HP, SUN microsystems, and IBM has

4' started with the acquiring of massive traces using large (640MB) highspeed (200MBps) memory arrays to

meet the storage requirements

As an example of the infancy of the measurement methodology, consider the recent problems with the

ARPANET. After changing the ARPANET naming schemes to include domains and nameservers, the
k ARPANET quickly became overloaded. It is still overloaded and will cause problems for some time No

measurements were made for several months. No determination of the exact cause of the load increase

-63-

,% - . .. .I P .S . • % -% % % ' ,% . .% % -. -. - , ' '.. * * -. *.% ° .*o,*'. % % %*,.** .• . 4 '., .°,,% %



was made for several more months The corrective action necessary has still not been determined Yet
the ARPANET was been an established system for many years and has a dedicated network
maragement faciliy The problem is found in the fact that the management facility had tools to locate

norma communication p-oblems ard test IMP processors, but no mechanism to study the ARPANET as

a distnbed processing environment

There is some hope An example of an improved monitor design is the HP4972 LAN analyzer for

ethernets By limiting the scope of the environment, the design for the 4972 resulted in a flexible and
powerful monitor The design begins with the input filter concept for restricting sampling. It expands this

wltn the concept of the circular buffer and storing triggers. It is therefore possible to sample some subset
of the packets, bLffer and store the two packets before some trigger (like an error, particular aodress. or
colision). Such monitorng sessions are set up using a high level programmng language for the

acq.,siton and ge-era: or of data This makes the monitor flexible enough to be ijsec :n evolving

e.v srO'"e'2S

%,%%"

.I
., i

11

* '* .i.*%* ,. ~ - ..~ -, S ~ -' * - .- S ~ -~



Proving Real-Time Communicating Sequential Processes Correct

K.T.Narayana

Depariment of Computer Science

Whitmore Laboratory

The Pennsylvania State University

University Park, Pa16802, USA

(814)863-0147 narayana@psuvatl .uucp

The seminal paper by Hoare[S] on a notition for Communicatin, Sequential Processes (CSP) introduced

input and output commands as fundamenUl languagc concepts. Since LbCn, programming based on mes-

sa -e pL,;sing has been extensively studied[1,6, 10, 18]. The regime has established itself as distributcd

pro grarrirg and has been distinguished from concurrent programming in that each process does not

share ,ariables with others and cooperation is achieved using mncage passing. There have been

sienicant advances made towards a formal theory for understanding the design, construcuon and

'5, er imca'n of distributed programs [2-5.7, 12, 15.201.

3 \Vhc: the baic noLiLon of CSP is augmented with the %,ai commands, it offers capabilties for pro-

gramming real-time distrbuted applicatioTrs. There has been a proliferation of languages (both con-

current and distributed) which seek to facilitate the programmine of real-time distributed systems. In

s-ite of the availability of high-level languages and the programmed real-time applications, real-time

pr ,:ramming conunues to suffer from the absence of an adequate mathematically founded methodology

tor spccihfaton, de,,i(gn, contruction, and verification. Recently attempts have been made to alleviate

this problem',9, 1 , 17] in a dcnotatior)nal ontext by proiding rcal-tie models.

The firt significant methodological ad% ice for the con,ru,:ton of real-time s) stems comes from Wirth.

In his paper on real-time programmingL 19], Wirth offers the following advice- "In order to keep real-

time programs intellectually manageable, we recommend that they first be designed as time-independent

multiprograrns and that only after analytic validation they be modified in isolated places, where the reli-

ance on execution time constraints are simple to comprehend and document." The remark though made

in the context of real-time concurrent programming seems extremely relevant even for real-time distri-

buted programming.

Our concern in respect of formal correctness of a real-time program, in the light of the above, would be

• to address the separation of concerns as far as possible and to coalesce the reasoning to a unified whole

when it becomes imperative to do so. Here again the notion of what consututes a specification of real-

time program seems to be importamn. The simplest way of looking at a speci1ication of a real-time dis-

tributed program is to regard that each individual proccss estabhlishes a given uming behaviour and the

distributed programi estihl rishe a Iui tet ii.1il behaviour, For a ccrtain class of real-time piograms, the

-65-

v .

~ ~ ~ '4 . 4 6L' w, -0 wo Y s~~k ~ ~ 5j



functional behaviour of the program in the real-time model tends to be the same as that in the interleav-

ing model. Thus, while timing behaviour can be stated consistent with the real-time model, it is enough

to state the functional behaviour with respect to the interleaving model for this class of programs. When

we extend the class of programs to those for which the functional behaviour in the real-time model is

different from that in the interleaving model, then we need a stronger specification for the functional

behaviour. Further, the specification of the timing behaviour should be given consistent with the func-

tional behaviour in the real-time model. We can address a third category of specification in which we

can speak about the collective timing and functional behaviour of every process in each computnuon of

the program. This form of specification is the strongest of all. Thus, the specification regimes reflect

the grades of difficulty in proving the correctness of the real-time program.

B% their very nature, real-time models tend to be complex. A proof regime offered only in the context

S. of real-time models makes the task of proving real-time distributed programs dauntine. On the other

hand, interleaving models have the advantagc that they are %.cak. Further, correctness theory for disiii-

hL: ue-d programs based on interleaving mode,, is well understood. Thus, a proof methodology "hich

seeks to drak upon a proof of the functional bchaviour of the program in the intcrlej.vine model shall

ha% e definite advantages in easing the tak of pro\ in, real-time distributed programs.

Ttlu,, ,e approa,:h the problem of the d ()I :0 01 a 'r,,, syt.m fr real-Line distribuled pogr; sv

thc I lv; s me steps.

a) Firstly, kke develop a proof svsiem (C for reasoning about the time behas iour c! ind\ida

proe-,se, In the proof outlines of the tinu'e, bh aviour ofre>e>, ,ke make assumption> abut the

state at various points, and further s e make assumpttons, about the waiting behaviour of i/o corn-

mnmds. Assertions in the proof s\,tem , are structured mnore on the lines of the o;'i ,,re:,: ot

NiLonr l-j. A meta-variable r, identified %kith proc,,. I, capture,, the notion of the ads aum

tine of process 1',.

b) Secondly, we prove the logical correctness of he program us ing the Cooperation "e.st based

proof systcms of Apt, Francez and Dc Rocver [2] and die total corrc,:tncss proof ',:-em of Apt] 3j

We may as well have chosen any other proof system, for example of Lein and Grie][12]. TheIIcentral ideas remain the same, but their wrticultiton mdy be ditcrent.

c) Finally, we couple the two proof systems together k ith capabilities

i) for validating assumptions about the s ne i the proof outlines of proocsC cstabhlshed

using CE

ii) for obtaining the exact waiting bchavioiir of ca. h of the prolcss,,s at tilr i o coniinld,,

and

im for restricling the satc s of di" poe'r'ii tw th oi. ir in the reiltii ii , ii , del- onl\

-66-

%%

* dJ'.P%



|L.

Step (c) ensures consistency with respect to real-time models. Essentially, step (c) consists of formulat-

ing a system of equations (linear) which involve existential elements quantifying the waiting behaviours

of processes at each of its i/o commands. We call these equations Characteristic Equations of the sys-

tern. Then we define simultaneous solutions to these characteristic equations which are acceptable. The

acceptability criterion assures consistency with respect to the Maximum Parallelism model[161 of com-

munication and prohibition of unnecessary waiting of processes.

-7 .In summary, we develop a proof system for real-time CSP[131. We adhere to the central elements of

AFR proof system[2, 3] by requiring that assertions do not share variables. Further, assertions in the

proof system consist of two parts: one treating timing aspects and the other dealing with the functional

behaviour. As in AFR svstem, %,e make assumptions about the timing bchaviour of i/o commands. V,-

make provision for performing waiung analysis of the real-ume program as part of the proof process.

The waiting analysis provides for the determination of the waiting behaviours of processes at the Co

commands. This particular aspect eases the programmer from obtaning an assertional structure for the

exact w&aitine behaviour of i/o commands by a priori analysis. Further, the waiung analysis part of our

proof system could be automated. A strong invariant 1R introduced into the proof system serves, nore

or less, the same purpose in the real-time model as the global invariant I does in the AFR system under

the interleaving model. We show by examples the use of the proof system for several cii, .s of rcil-

tiojC prora,'-s. The proof svszim we develop is a totl correctness proof system.

1. AndrcAsG.R, Synchronizing Resources, Trans. Prog. Larg and Systems 3, (Oct,1981), pp. 405-
43.

2. AptK.R, FrancezN and Do Roever,W.P, A Proof System for Communicating Sequentijl
Procssecs, lrars. Prog. Lang and System"s 2, (1980), pp. 359-385.

. Apt.K.R, Proving Correctness of CSP Programs- A Tutorial, International Summer Schoo. on
Cor:rol Flow and Data Flow Con-cpts of Distributed Programming, Munich, July, 1984.

4 Barringer,H, KuipcrR and Pnueli,A. Now You may Compose Temporal Logic Specifications,
ACM-Annual ACM S~mp. on Theory of Computing,, 1984, pp. 51-63.

5. Brookes,S.D, Hoare,C.A.R and RoscoeA.W. A Theory of Communiating Sequential Processes..!
'." ACM 31, 3 (July 1984), pp. 560-599.

6 FcldmanJ.A, High Level Programming for Distributed Computing, Comm. of the ACM 22.
(Jun,1979), pp. 353-368.

7. Frances.N, Lehman,D and Pnucli,A, A Linear History Semantics for Languages for Distributed
Programming, ICS 32, (1984), pp. 25-46.

• %S. Hoare,C.A.R, Communicating Sequential Processes, Comm of the ACM 20, 8 (1978), pp. 666-
"" 67().

9. HuiingC, GerthR and De RoevcrW.P, Full Abtraction of a Real-Time Denotational Scrnanucs
for an OCCAM- like LANGUAGE. POPLS,, 1987.

I( lnmos Ltd. The OCCAM Language Reference Manual, Prentice Hall International, 1984

-67-

L'~



b'll I

11. Koymans,R, Shyamasundar,R.K, Dc RocvcrW.P, Gcrth.R and Arun Kumar,S, Compositional
Denotational Semantics for Real-Time Distributed Computing, Information and Control, . To
appear. Also in 1985 Conference on Logics of Programs, LNCS 193.

12. Levin,G and Gries,D, A Proof Technique for Communicating Sequenual Processes, Acta
Informatica 15, 3 (1981), pp. 281-302.

13. Narayana,K.T, Towards Proving Real-Time Communicating Sequential Processes Correct,
Research Report, Department of Computer Science, Pennsylvania State University, Aug 1987.

14. Nielson,H, Proof Systems for Computation Time, FST&TCS-3, , Dec,1983, pp. 258-273.

15. PnueliA, Application of Temporal Logic to the Specification and Verificauon of Reactive
Systems: A Survey of Current Trends, LNCS 224, (1986), pp. 510-584, Springer-Verlag.

16. Salwicki,A and Muldner,T, On the Algorithmic Properties of Concurrent Programs, LNCS 125.
(1981), , Springer-Verlag.

17. ShyamasundarR.K, NaravanaK.T and PitassiT, Semantics for Nondetcrministic Broadcast
Networks, ICALP, July, 1987.

18. Reference Manual for the Ada Progranwmnc; Language, Unilcdt States Dcpartmcnt of Defcnce.
Washington, 1983.

19. Wirth-N, Toward A Discipline of Real-Time Programming. Com?. of the ACM! 21), 8 (1977).
pp. 577-583.

20. Z,. iers,J, Dc Roever.,W.P and Boa,, Peter Van Erodc, Comtositionaity and Conu.rcnt Ncv.kork.
Soundness and Complctencss of a Proof Systr, ICALP 19,5 L\'CS 194, (195,. pp. 509-510.
Springer Verlag. '

-68-

% ,%

%



Research in Parallelism at

-. The University of WashingtonI

Departritcrt of Computer Science. FR-35

University of Wiashington

Seattle, WA 98195

September 14, 1987

The 1) pIrt :: rt of Comiputer Science at the University of WisLnhngtori has become increiviingly
I,. j)1.E coilit ig re~cs Through a ncw% INSF Coordiriited Expf-rinental ResearchFr, ~ Er1cit fU (*- of PI'oolr Cornputzoq. we lhave just acquircd Setneilt Symmrtetry 81

1. :p5 -17. X We -,v( v\- t J11)E SRC Fjretlv- ron 1tiprocuts-or work~tatjoins to arrive irnimiintly.
11: :1 f' (a 2' tlot, Ae briefly describe two cirrent re,:itedi researc)h c'iforts. concerning (1)

K, T 2od )1 -trcO:tjoli.s eornp1Uter ysVteiii, iuol (2) sivstc:ii, thait supr ai tyIcs of
'2<2...........~. inprograrntulng.

lletcro-encous Remote Procedum c Call The 1Ietcruogencuui: Comuter Syttiri Project 5;
'us I t.''. \ to 1-11ce t!"e ro~.t of iitegrtting dlver-c Syt-TII t\p Iito a Lo1(02 jug etlxirownrcit.

I;1 (-1111 be-he, itto build( bioth hl"1,-leve I al,,! low-1i'ei evi. thait are flexible

cl )l.TOdolte multileI eXisting- staxli~rds or tioll f' onlipultat ion. Wte have made
-rl li (.i ria- iluhdiuig it remotepr-or (Al] fur, il-y m.i ni facilty [15 . P

C,:~ <c rvi- uuu serv, e wud ;d% o' i ~~.e

di''ret '*~ Pr(ItOCOI , colntrol protocol'. dt;,rrcetitu i lbilditg protocols to be-4..iLi; .:I ~ T -I tlr-h of TIRWC clienlts ill i-irver- arc wrtterl OI ter,ll- of abs tactionsz
Ci, ol- *'.~lrcp7)5si::tiintio tealrtr:ition 12 1- bout,' to ;i :-]ccifc :-e t of choicesi (for

- v -T:-ul, -. it~ iT, lli'PC elteitl to ( oinnlino-at wit kt. IuIli,l::rvcr-% \ritteii ill N-Uiuut!
x. -u. E:e ,tt . ir vcir-a.

() ;-ti ?!,(, sivstetri is tle:-v 11.0on 111f. of tie( RP' pau,,ilgru. wliich has-:
:2 .* p- pr.. - m, tign !oerver- To perilit no r ,111r:Ill-11i. we haIve Ovel)()eU

.1 * :2 i. t tt~w:'ltproeS- ).. t~i;It Ifo%% le-s toe "niphy various xitig

in .o t.,::. .;r:tnr Siuu;irL to thorI beN whjii( 11We ii1:111l1-t difb-ent RP'ste .
Tii' 1.:- PCl'. i,viwv -i lee:, rulnliltig for over a year. Ho 1111 svStej.1i,ef riu, (,i UNIX

S-", l1. Vr-~h: AX-- S 17Nsz. aid the Telt ronix 41( fakilyh. Pun17-tiNe suppihot Inmieze SUN
](J' (witli, ll CI/' ; u'l 1'DP ) on VAX(-.- ama SUJN,,, anid Ce rier RM oil Xerox Dandelins.

W, 1A~ti to ; ~t, l(odot( tbl, Fiinhlys widl their 11CC svstlm w.lici ic y arrive.

Ou1. Ie~ '.: ) pt ( t- t1cice. d,.veiopin;g 111?l1(; sliprt for hothI Lis p uic] SnLilltalk-80, explor-I
m ;.t retf o,,f IMII? inmtrniedi.,ri--- cl_]-I lr)Ilt serve, s thut polntheI( nice ary pro-

t-o 1.T, tr.uz- litioTe to Lllow\ (Xi:-tn,'.' client,, ;id server, to -jwoik iiilireity wheni di-v caninot
.slw k dir,1 t. 1, tv:-i:oti the itilts of4 MRC s suip;ort for htrolemneols thita rehiresenta-
t0ioi a lora1 ronteXit. 5upprtiig cnU- between'I huLIgoUAVe that use dil runt datit represenitatiolis

D1,t r;1,utcd awtl- Tiir.ulll P~rograsmmning Systems i'Fr .%ol, I,] iiir eitiiit liet' 10(1l ac-

oft ' L i i ii 1w t% ,; - h fr h d -'rhu, dn o 11I-I an r i lot A liot

r-1

~ ~ %* **~. %N . .--

V..% **- %t .. '



- W~ ~' ~ ~W ~ '2 UUT W-K KJ W2-lL' W-7 C K7 L 2~ 7-

tri1:-;wa~rncy uid object mioltilit'v, led to the Emrerald systcii !S.9', witih proidii( a new program-

* ~~ilf im5~~ tg pec ifically deskigned for di.,tributed pirogramm Hiing Thc novel( fvatutres3 of Lijierald

include 1 it uwe of a s9ingle object model for prograirnijug both sinidl i'v. local objec ts (such

ias iarrays) and large, active. distributcd objects (such w; niaji systemns), ;uid (2) its support for fully

mo :ojects '12' Enter~ d is highly efficient atuid Liner.dd itivoa ion execute. inl approxinaely

-procedure caUl time onl a MicroVAX. More, recently. a Distributed Sitiulitalk system hai bieen pro-
-' tot Vhlet to eXantilie Issues ill CX ten dinig thec Smilltal-W enviroilnzt to 1iii1til cet worked liiacliinei

Our exjtericrce with obet-rcitd Ytelnu lla! led to ait exiii)IIt of' the u-i' of o~je.ct-
-orie *ed I c x for para-lel pro-raTnrnrig-. Wc have rcentlN i i'-11e 1 pni~rototd,( anl en1-

vi. di rest 4 tihat culr entlv rtir onl Our lU-ptoc- ',' qlt;-t. l t re-'o e-'tends, the

C'- ''''' -:nin it iii c -or 11!n't i Presto. (t 'lerts' C i' 'e f

a, i_. rt eic til tll;t I, opor;it-1 on onl]- of ;:o- t ,!1i'l r(t i o , c

T- lii: r lx -r;. * rc -t) zut tie( i oti f tie ti~r,-,i'l O!b . . liilt 1: i- ti 1:, al

i:;.;- (- x 'ci:. A l':-to o tjet a;.. err;itt lti ireils ri . To I:~ N'. I or to

I o! ; ti' - o b)(C ts in I .' r T ,1 11 i t- ext I t o n. P, I t ot jr. i. s'.cn It,: iL1): r s so

ti.: 11:- n' 01:5>.y ux.ecl t in" thrt ,t.! call cooren1,tIt' their ilotivi;-. '1 .,tds n . inl

* 11' 1i i-;;rite(- r, :nn;c~ll e.

Conichilon idt Ackno~..lcdgnienits 'ihi- c -r:7 c.l t -:-itma

in-u-:c. I-; t-vlt::,t; Xs tir tlie

Ii.;--.-:rk ~:-:'r'Ii part by tlit- Nationaiin Sr:, it-ctc 7'u iii-:C:.-Di~~,!

* R ofcr'enccs

1 7A-:- A IP, U!~sk 1: 1) Jitvk5  nl 1) N-1 1. Vb!, -- :

E-ft n) (.1.!.1 19nhid

1 11 i 'e Th' - s to I m l:' " ''i tt;tii of 1) 'iba 1 I '' -1! 1 Ti- r, Pr.)-. of
* ). . ! '~rpon Obtyrt- Orz ntcd ProgrmitoN] Su~it, m,, L.' i. ( tid Al , ol

3 It N Pl' r 1). T. CIliiig. E', D Luav4,tk.. ]. n anI M Ke 'Al:-. R l'ro-1lorc
F" ' . : v: f't: InTc-rtieon, togq Hll roltg1 niit: (P:iiptil r 1 T', .1. " .1'j r. 1Il1i r,;: . on

I IlNP, i~i.itd. E_ D. LazowV.miki, anid 11, MI Levy PR 1l;>l P A S v tn. for t ertOiieiied

P~-1-I Pr',rrursTiuug 'I'cch. Itp 87-09-01. D-.pt. (f Cobi1  1t i Univ of \u-i;io (Sept.

P .1 D( pJ2 ~jt of (oilip) Si I I'iti of \V.I 111t:i i 19',)

* -70-

5d,%



16' A. P. Black. E. D. Lazowska. 1t. M. Levy, D. Notkin, J. Sanislo, and J. Zaiorjan. Intercon-
Sliccting lHcterogeneous Computer Systems. Tech. Rep. 87-01-02, Dept. of Comp. Sci., Univ. of

\V,-shilgton (Jan. 1987).

[7] A. P. Black. Supporting Distributed Applications: Experience with Eden. Proc. of the 10th
Syrup. on Operatirng Sys. Print. (Dec. 1985).

I8 A. Black, N. lHutchin.son. E. Jul, and H. Levy. Object Structure in the Emcrald System. Proc. of
. the Sinp. on Object-Oriented Programming Systems, Languages, .nd Applications (Oct. 1986).

S [9' A. Black. N. lutchinson, E. Jul, H. Levy, and L. Carter. Distribution and Abstract Types in

l':TW-rol. IEI'.E Trarns. on Softw. Eng. (Jan. 1987).

I() D L E;,ger. .1. Zahorjan, and E. D. Lazowska. Speedup Versus Efhciencv in Paraflel Systems.

S",n lbp, 86-06-01. Dept. of Comp. Sci., Univ. Of Wa.li ngtoll (Aug. 1936). To appear, IEEE

i11 D L Li kg,"r. E. D. LazowskL. and J. Zahorjan. Adaptive Load Sharing in Homogeneous Dis-

tri1 )n: id ~VSe H. IEEE Trans. on Softu. EnJ. (May 1986).

2 .T:-, . 1I.'v. N. tlutchin,on. and A. Block. Finie-Grained Mobility in the Emerald System.

"- t .... 11th ACl Sf ,:p. on Opcrating Sys. Princ. (Nov. 1987).

1; .\ .X. N ,,r .wr:nod D. Notkin. Ga;tdaif Software Developinent Environments. IEEE Trans.

' D i itl W C. Griswold. Enhanement through Extension: Thie Extcn.sion Iterpitter.
,, .-I ('.n SIGPLAN ",7 Syrnp. on Intcrpretere and Interprtuc Ttchriiqucs. pp. 45-55

(J (i, 19 7

I M, J. Ziorrin. ;u.d D. Notkin. A Name Scricc for Evolvin ,}letrog.icou. Systems.

1_ app'.~ . r " ,f th: lith S"qrit,  ott O,,raling Sys. Pritc. (Nov. 1937).

16 L >"..: t',iralll Progr;u:!!wng wnd the Poker Pro-r,urning Environiniint. Comrqrutr (Jul.
19 1 I

17. M ... I .: ;:,l 1). No kiii. A Mail S",t Turi for Local. licterogeu'lciulls l'.nviron Ie:i's. Tech.

'I, p '-7- i. 1), pt. of Conil, S, i. Univ. o! slixg:ou (July 19S7).

I -71 -



Supertransact ions

Calton Pu

Department of Computer Science

Columbia University

New York, NY 10027

Increasing interconnection of computer systems produces heterogeneous distributed

terns. To cope with heterogeneity in hardware, we port the same software (e.g. the LUnix

operating system) to different machines. However, integrating similar but different sof:-

ware packages presents another challenge. In this abstract, we propose the supertransaction

approach to accommodate heterogeneity in distributed transaction processing systems. For

brevity, we use the term database in the broad sense, to denote general transaction procossir!g

systems.

We define supertrarisactions as atomic transactions spanning more than one database. A

supertransaction is atomic in the same sense of normal transactions; concurrent access should

be serialized, and database consistency recovered from crashes. We call the components of

the supertransaction component transactions, which run on element databases. In contrast.

a nested transaction has subtransactions running in the same database.

If all the element databases are implemented the same way, supertransactions are ih,

same as known as distributed transactions, for example, R' and TABS. A more interesting

possibility is a supertransaction running on element databases of different origins. In other

words, a supertransaction should support atomic updates across heterogeneous databases.

We introduce the design of Superdatabase, a heterogeneous database system to updat.,

different element databases consistently [1). We assume that each element database pro, id'-

local transaction processing, including crash recovery and concurrency control. Our appro.,cf:

is based on hierarchical composition (Figure 1). The element databases are the leaves. h.,

the superdatabases are the internal nodes, extending crash recovery and concurrency co(0:,.

to integrate different elements.

Each element datauase must satisf twocomposibility conditions The first is on cra-! r,

cov'rs the elment database must understand some kind of agreement protocol, for ,,i: ,

'Sr
~~ % % % S. % %~- ~ .



superclatabaseE
p

d1

Ssuperdatabase

DBI DB

Figure 1: The Structure of Superdatabases

two-phase commit. The second condition is on concurrency control: the element database

must present an explicit serial ordering of its transactions to the superdatabase. Fortunate!y.

explicit serial ordering is easy to obtain from all major concurrency control methods (two.

phase locking, timestamps, and optimistic concurrency control). For example. timesap-

represent an explict serial ordering. A timestamp at the beginning of the shrink pha-

•to-phase locking also captures an explicit serial ordering.

Given element databases satisfying the above two conditions, the superdatabase t1at coin.-

poses element databases can carry out two-phase commit (or any other agreement protocol

understood by the elements) for crash recovery. To compo6e concurrency control. the supnr-

database checks the explicit serial ordering of transactions from all elements, making su,.

they are serialized in the same order for all supertransactions.

4I This brief summary of superdatabase architecture only outlines a simple implementation

of supertransactions. Detailed algorithms and refinements are described in another paper [l.

References

U' Pu.

Supt rdatabases for Composition of Heterogeneous Databases.

T ,chnical Report CUCS-243-S6, Department of Computer Science. Columbia Universitv.
Jins -,- 7" June' l9,7

r

p,,,. "P

b,"L



parmake and dp:
Experience with a distributed, parallel implementation of make

Eric S. Roberts and John R. Ellis
Digital Equipment Corporation

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301

Large software systems are typically developed as a set of smaller modules that are easier to manage indivi-
dually. In order to provide automatic support for building a complete system and for keeping track of thc
dependencies between modules, facilities like the make program developed by S.I. Feldman at Bell Labori-
tories prove extremely useful. In an environment that permits concurrency (either through the use of mu:-
tiprocessors or by using several machines on a distributed network), modular decomposition also provide< a
considerable opportunity for speedup, since the compilations of independent units can usually be performc, ,

concurrently.

The hardware base for this work is the Firefly-a shared-memory multiprocessor workstation dovelope a:
DEC's Systems Research Center to serve as our principal computing resource, Typically, each FuL,:>,
workstation contains five MicroVAX-Il processors. There are currently 90 Fireflies on the local Ethcrn:.
including two Firefly file servers. The Firefly operating system includes a remote file mechanism that pr. -

vides transparent access to any file on any machine. Each Firefly has a local disk containing a parual L'n:i
directory tree. User directories and portions of the public readonly directories (/bin, /lit), etc.) are store,. ,:
the local disk. The rest of the public directories are accessed transparently through remote symtolic link
the file servers. The most frequently accessed public files and programs are copied locally on each Firef.\
kept up to date by nightly daemons. This arrangement approxi,,ates a cache-based distributed file system
(',hich we are building).

. To take better advantage of the available processing power, we have implemented parmake-an extcnsion;
of the traditional make facility from Unix that provides for concurrent execution of those operations vh. -
have no mutual dependencies. Moreover, parmake can also take advantage of the facilities provided b' o_:
distant process facility dp to export some of that processing to idle Fireflies in the local area network.

The feasible orderings of the independent tasks are determined by topologically sorting the dependency caK-.-
provided by the Makefile. For the most part, the Makefile is the same as that used for thc tIiditiona" makc

* utility and requires no changes. In our early experience with parmake, however, Ae dscovered tk-at t -.
local Makefile discipline often relies on the implicit left-to-right ordering, and we have add-d a bak' -

"" compatible syntax to allow programmers to make such dependencies explicit.

, Within the set of feasible orderings, parmake uses a set of heuristics to balance the load on the local proces-
.- sors, while dp controls the scheduling of remote tasks based on machine-loading statistics. The heurist:e,

are controlled by several parameters that reflect the relative cost of the independent operations. For cxample.
the initial cost of invoking the dp mechanism (6 seconds) is large in comparison to the incremental cost o:-
starting a new distant process (I second) once the dp mechanism is initialized. To account for i'i,.
parmake does not invoke dp until the number of pending tasks reaches a relatively large threshold, once
started, however, this threshold is reduced substantially to provide better load balancing.

The combination of parmake and dp provides capabilities similar to those of several other projects, includ-
ing Locus at UCLA, Apollo's DSEE, the V system at Stanford, and Andy Tanenbaum's distributed makv a:
CWI/Amsterdam. Our system is unique in two respects. First, it is compatible with the standard %erion on
make and does not need to analyze the actual operation steps to provide speedup. Second, it is desgin,d fee
usc in a distributed network of muluproxessors and must therefore consider the proper baance bct, e,.n ,'.
and d,,tribuLcd concurrency.

%V'



Initial timings show that parmake reduces considerably the time required to recompile large systems. The
following table demonstrates the speedup for a large-scale recompilation consisting of 238 Modula-2+ files
drawn from various library packages at SRC. These files contain approximately 65,000 source lines,
independent of imports.

processes local distant
1 1.00 0.95
2 1.68

3 2.20
4 1.90
5 1.05 4.7

10 8.7
15 12.1
20 13.5
25 12.6
30 12.9

Table I
Speedup for Modula-2+ Compilation

The "local" column shows the speedup using I to 5 concurrent local processes relative to the single process
• case. Even though the Firefly has 5 processors, the maximum speedup was 2.2. This is due to the large
-- memory demands of our Modula-2+ compiler, which typically uses 5 megabytes or more of virtual memory
- to compile a file. Fireflies currently have 16 megabytes (of which several megabytes are required for the

operating system), so running more than three simultaneous compilations results in thrashing.

The "distant" column shows the speedups as more concurrent distant processes are used, with each distant
process on a separate idle machine. The processes read the source files from tue single controlling machine
and write the objects back to the local disk on the controlling machine. As the table demonstrates, ma\-
imum speedup occurs with approximately 20 distant processes, which provides about 65% utilization. When
more processors are used, the processors on the controlling machine and the network bandwidth become lim-
itng factors and no further improvement is seen.

The speedup is, however, strongly dependent on the specific nature of the computation being executed. The
table below presents similar timing information for the recompilation of the Xl I library, which consists of
194 C files. The actual source files contain only 8,400 lines, but the included files raise the total line count
after preprocessing to 167,000:

processes local distant
1 1.00 0.82

* 2 1.88_-I

3 2.49
4 2.70

V 5 2.86 4.1
10 5.6
15 5.9

* 20 5.8
. 25 5.8

30 5.8

Table 2
ell Speedup for XII Library (C-based)

-

* -7%5-



i -,. 0 , ,• 0 .0 0 >.-, *iB'" "' -, O - *--.0 *". -O. --

J.

Since the C compiler is much smaller than the Modula-2+ compiler, virtual memory is no longer a
i bottleneck, and the "local" column continues to show improvement throughout the 1 to 5 range. The C

compiler also performs much more I/O relative to the amount of computation. The result of this is that the
local compilation quickly becomes limited by the disk speed. Distributing the five process case to five

%' machines results in a significant performance advantage, since each machine has an independent local copy
S"of the libraries on /usr/include, and there is similarly no contention for /tmp, since this is also local to each

- machine. Even with this distribution, however, we do not see speedups above 5.9, since the time required to
read the source files from the controlling machine limits the available parallelism.

Our experiments have demonstrated that it is possible to achieve considerable improvement in performance
by adding local and distributed parallelism to the standard tools used to control recompilation. Moreover,
the performance advantage increases along with the ratio of computation to 1/0, as it does, for example, in

' "" optimizing compilers. We also expect that this performance will improve when we complete our current
I- work on cache-based distributed file systems. A research report with more details on our experiments is

forthcoming and will be available from SRC.

'

.%

,o

,.



I.7

E~t ended Ahmtraict

Coda: A Resilient Distributed File System

M!. Sawyanaraylanani
James J. Kistler
Ellen Hi. Sit-gel

Deparrmenl of Computer Science
Carnegie Afellon University

Distributed file systems have grown in importance in recent years. As our reliance on such systems increases, the-
problcrn of availability becomes more acute. Today, a single server crash or nietwkork partition can seriou'i)%A inconvenience many users. Codi is a distributed file system that addresses this problem in iLs full generalityN. It is,
designcd to operate in an environment such as the Andrew systemi at CMIU [3, 5. 2], w.here mnany hundreds or
thousands of w.orkstations span a complex local area netwAork. Coda aspires to provide the hichest deigrcc of

aa~aitvpossible in such an environment. An impo)rtant goal is to provide this funictonality wviihout siznificant
lo~of per-formnce

Li ,- Andrew., Coda distinguishes betweeen cl:ients from servers and uses caching of entire files as its rcn-o:c-
-aL , mechanism. In addition to improving scaihi ity, \'% hol-file transfer simplifies; the handlin- of fIue -ic

a ti, -ari never be intcrnmllv1, inconsistent. Coda masks server fa.ilures and netw\ork partitions to the fullcet eventa
* po~he.Failures during a fie operaition are to!_lly transparenit at the user level unless the operion- rQluires i

t n neither c a che l Io cally no r p reoscnti atI ans a.cess ible se -rver

Acerceates of files, called Vol ' oes [6], are rzp-l;eated at mlpeserver sies. When a file is fe-t. hd, the: ili;,l
data i, transferred from only one server. Howe\ er, the other asadable servers are queried to verify that the copyv ko
the fil 1c1eing fetched is indeed the most recent. A fter rm.,1~od,,aton, thec file is stored at all the s, r-% cr re'plie:on ite

t:a,-e cunen'Jvy accessibL. To achieve good etomne Codai explois parallelism In network proto-ols. \
ha'.% eaimplemenitauon of a parallel RPC neh~ii thti aal fuig muILaSt. If asailuble 1Tlri

ir.huimcan transmit files in parallel to mu!-_;,e sues .

Co~avallabilit% an"' 1performance te-,jd to bemuua! contraidictory goals in a distributed- ~S tnl,' Col.i
il id: the highest avauiaility at the. best per.formance. A Jlose: examnI nution of the %kay files a sh.,,, d i al

i;!tc I 5 t m indicates that, an optimisti.c pol!cv reearJhne, consircncv is lIke Io be suc Cssful. 1 A0 o'."c
41;1_ do-i 'a of consisten. v mechanismis In Codai. First, th ot rcently' updaed Cop) ta i
T" 1. .. a.. es~ill Must al'.'. as be used. Sec:nd. alhaueh iioisecvis tolerable, it must be, r-,%a" '''.'

*Lt 111 t syNstecm. We najy e \pe rimnt '.n henri 1 ti h.cs a' on I ile accss patteNs 1 to resol' e S rp1 '.

r. As inLcs , incnitr' dctc cied b) tle Use of 'er. ioni vectors. HrOA es r, Cu.,1 u.. '.

*tr2i:i. 1 _ J n 'i cr5 er,. to en-jr" 0_it the versNioni c tom aid daita of a f ite are mutuill' tl ISItr al .1

A,, 0;c present timei Coda is ;- the' %ctjle dc' '1,2l: i 2.na~O dtep~ac

'm plcted, but the bulk of' the design and implemntaition work remains to be done ibis inicludes area .i mi
.. as fc ro rm failures. cetec tion and reso+lution iof' inL(onsmst,-n~ , file tranidcr protocols, and lup tIor

pair titi.'d operauon The esaluatwn oif Coda a!O~ ie dimensions Of perTformanc and resilienIcy lk Ill al 'W~ requL1!:
con''rileeffort Aithoii:h much %%.ork rcno;s . \.% eexpect t0 't our use Of die Anrices file s\, simiah i~.

Car: t1 ',, 1,r transaction s.:pp'rti, aml Nla. hl tofr oprtr'sseM supportf %kill smIIplj);f\iilme:ai:

V-

S'-



S. References

[I] Accc ti, N.. Baron, R., Bolosky. W., Golub, D., Rashid, R., To, anian, A. and Young. M.
Miach: A New KerTl Foundation for UNIX Development.
In Proceedings of the Summer Usenix Conference. July, 1986.

. [2] Howard, J.H.. Kazar, M.J., Menecs, S.G.. Nichols, D.A., Satyanarayanan, M., Sidebotham, RN. and West,
-" MJ.

'-" Scale and Performance in a Distributed File System.p In Proceedings of the 1 lth ACM Symposium on Operating System Principles. November, 1987.

.[3 Morris, J. H, Satyanar yanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S. and Smith, F.D.
Andrew: A Distributed Personal Computing Environment.
Communications of the ACM 29(3), March. 1986.

[4] Popek, G.J. and Walker, B.J.
The LOCUS Distrib- ted System Architecture.
The MIT Press. 1985.

[5] Satyanarayanan, NI., Hloward, J.1t., Nichols, D.N., Sidebotham. R.N., Spector, A.Z. and West, MJ.
The ITC Distributed File System: Principles and Design.
In Proceedings of'i:e 10th ACM Symposzu,n on Ocra.ring S~stem Prirciplcs. Decembe-r. 19S5.

-'- [ Sidcbotham, R.N.
4 Volumes: The Andrc, File System Data Stiucturing Primitive.

, In European Unix User Group Corference Proceedings. August, 1986.
Also available as Techni,:al Report CMU-ITC-053. Ir-formation Technologv Certcr, Carn,zic Mehan

University.

, [7] Spector, A.S., Thorpson, D., Pausch, R.F., Eppincr, J.L., Duchamp, D., Draves, R., Daocls. D.S. ad
Bloch, J.J.

Camelc:. A Disvrt '::c "[ r,:. -sJ i :'ir F0 .J.x. for ,L ;: and te Intcrnc:.
Tcchnical Report CN'.-CS-S7- 129, DcT;,rument of Co,,putcr Science, Carnegie MclionT ni'crv::

19 7.

.M
-M

p

" . "I
.A2..A1oa .,I



ABSTRACT

Liuba Shrira
MIT Laboratory for Computer Science

Cambridge, MA 02139
' July 27, 1987

Dr. Liuba Shrra has received her M.Sc. and Ph.D. from Computer Science Dept. Technion Haifa,
Israel. Her M.Sc. thesis was one of the first distributed implementations of CSP. Her Ph.D. thesis was on
methodological construction of distributed and reliable algorithms. Since 1986, Dr. Shrira has been a

postdoctoral research fellow at the Laboratory of Computer Science, MIT with Programming Methodology
and Theory of Distributed Computing research groups. Dr. Shrira is one of the participants in the Mercury

- heterogenious distributed systems project at LCS. The main interests of Dr. Shrira are in the

methodological design and analysis of distributed systems.

Recent Work
i

Within the Mercury project, Dr. Shrira has worked on the communication mecanism of the system The
Mercury heterogenious system aims at a general class of applications written in a wide variety of

languages. The approach is to connect programs in a flexible and efficient way by a new communication
mechanism called stream. This new mechanism combines the advantages of remote procedure calls and

message passing. Remote procedure calls have come to be the preffred method of communication in a

distributed system because programs that use procedure are easier to unders:and and reason about than
those that explicitely send and receive messages. However, remote calls require the caller to wait for a

.. reply before continuing, and therefore can lead to lower performance than explicit message exchange.

Streams allow a sender to make a sequence of calls to a receiver, without waiting for the reply to the
- previous call before making the next. The stream guarantees that the calls will be delivered to the

receiver in the order they were made and that the replies from the receiver will be delivered to the sender
- in call order. Provided that the receiver executes the calls so that they appear to occur in call order, the

effect of making a sequence of calls in the same as if the sender waited for the reply to each call before

making the next.

- ' However, new linguistic mechanisms are needed to use streams. For example, suppose

a = p(x)
b =q(y)

are two calls on the same stream, and what is wanted is to begin the call of q immediately after the call of

* p has been made How can this be indicated? How can the results of the two calls be picked up without

I.

S. -7 -

79 -A..



error or confusion? What happens if one of the calls signals an exception? Finally, suppose a
communication problem makes it impossible to complete one of the calls, how is this indicated?

A new kind of data type called a promise was invented to integrate streams into programming languages
Promises support an efficient asyncronous remote procedure call for use by components of a distributed
program. They are also useful as a general way of allowing a caller to run in parallel with a call and to
pick up the results of the call, including any exceptions it raises, in a convenient manner. Thus, promises
preserve the merits of organizing programs using procedures and procedure calls without sacrificing the
performance benefits of streams [LS].

Independent of the Mercury project, Dr. Shrira has worked on a new efficient fault taulerant data
replication schema. The schema improves availability of the system by exploiting the semantic
knowledge of the application to relax the up to date consistency constraint. An interesting class of
applications was identified and the schema was given a rigorous specification and correctness proof
ILLS]

Dr. Shrira also worked on modular specifications of network protocols [FLS]. The work analyzed a
network synchronyzining algorithm by B Awerbuch designed to be used as subcomponent in derivation
of other protocols. Modular specification and correctnes proof were given to the algorithm which enable
them to be reused in specifications and proofs of the derived protocols.

References

[LS] Liskov, B., Shrira, L., "Promises- Linguistic Support for Efficient Assynchronous Procedure Calls in
Distributed Systems", submitted to POPL 87.

ILLS] Ladin, R., Liskov., B., Shrira, L., "i- Technique for Constructing Highly-Available Services
, j -accepted to joumal of Algorithmica.

[FLS] Fekete, A., Lynch, N., Shrira, L., "A Modular Proof of Correctness for a Network Synchronizer " In
proc. Second Intemational Workshop on Distributed Algorithms, Amsterdam, May 87.

%

.i.

V-V .r



Scheduling Parallel Programs On A
Distributed System

John A. Stankovic

Don Towsley
Gary Rommel

Dept. of Computer and Information Science
University of Massachusetts

August 1987

Abstract

tIn the near future it will be common to see local area networks with uni-processors

and multi-processors. There is also a growing trend to program applications by
decomposing them into multiple parallel tasks of large granularity. If these multiple
tasks are assigned to different processors, then it becomes a distributed progam.
However, in spite of the potential parallelism, distributing a program can easily result
in a decrease in performance. This decrease is due to such factors as extra delay in
communication between the various parallel tasks, operating system overheads such
as context switches, and delays imposed on the parallel tasks by the scheduling
algorithm. It is obvious that the total response time for a parallel application is only
as good as its slowest component. All these issues complicate the effective use of
local area networks for large grain parallelism.

In our project we have been studying the scheduling of large granularity parallel
p'rograms on distributed systems where some of the nodes are multi-processors. We
have approached this complicated problem in three related ways: one analytical, one
based on implementation, and one based on simulation.

The analytical work considers a job to be composed of multiple, parallel tasks
generated by a fork-join construct. The parallel tasks do not communicate with

.A,:

-81-

,1



each other, except at the last phase of execution (the join). The analytical results
derive closed form solutions for response time of the fork-join job. These results show
that for uni-processors, scheduling fork-join jobs under processor sharing should be
done at the job level and not at the task level. We also derive analytical solutions
that show that the opposite is true for multiprocessors, i.e., scheduling fork-join jobs
under processor sharing should be done at the task level and not at the job level.
One implication of these results is that if a job with multiole tasks is moved from

*,.. a multi-processor to a uni--processor, then the job should no longer be treated as a
collection of parallel tasks. We were also able to derive analytical results for fork-join
jobs on a multiprocessor which compare processor sharing with first come first serne
(FCFS) scheduling. We find that FCFS exhibits better performance than processor
sharing over a wide range of systems. We also studied the situation where there are
two classes of jobs and where a specific number of processors is statically assigned
t,) each of these classes. The results demonstrate that in a multi-processor a static
assignment of processors by classes must be avoided. This latter result gives ris to

the next aspect of out project.
" Current multiprocessing scheduling algorithms are quite limited, and usually treat

all tasks as independent. This could be a mistake in many circumstances. In the
implementation part of our work, we have developed a dynamic, multi-class, multi-
processor scheduling algorithm which we intend to implement on our SErQUENT ma-
chine under MACIl. The implementt ion has been delayed until we obtain a version
of MACIH for the SEQUENT. The algOri~hm supports the simultaneous execution of
short jobs. long jobs, jobs with many parallel and communicating tasks, and those

jobs which require a dedicated set of processors. The algorithm separates policy from,
mechanism and is highly parameterized for case of tuning in different environments. -.

It does require lightweight processes. In addition, the algorithm makes use of the
insight gained from the analytical models. This algorithm does not consider schedul-
ing across the network. It is necessary to integrate such a local, multi--pro,'essing.
scheduling algorithm into a distributed setting. Special problems ari;e when at-
tempting to integrate local multiprocessing scheduling with distributed scheduling. -'

especially when jobs are composed of parallel and communicating tasks. This gives
rise to the simulation phase of our study.

The simulation study removes the restriction found in the analytical models that
parallel tasks don't communicate with each other. In the simulation study we inves-
t!gate various types of communicating parallel programs with both synchronnus and"
asynchronous IPC. We have developed focused addressing and bidding algorithn>
that specifically address some of the major issues of such programs. A major charac-
teristic of this algorithm is that the scheduling modules at each site neg9htaft' eithr



- - - - - - - - - - N K- - * "U TJ r' . 7 P P r - r .-. -r.' e r r: -

to cluster highly communicating tasks, ,.nd/or to distribute tasks across the network
when we predict that those tasks would benefit from executing on separate proces-
sors. Again, insights provided by the analytical results are used in formulating some
of the scheduling policies of this algorithm. To date, in this part of the work, we
have only considered communicating parallel tasks on a local area network of uni-
processors. Future work will attempt to integrate this scheduling algorithm with local
multi-processing scheduling algorithms. The simulation program is implemented.

-i:s

.

o,-.. .. - -



* . Marionette: Support for Highly Parallel Distributed Programs
In Unix

Mark Sulhiran

Universitv of California, Berkeley,
Berkeley, CA 94720

3Extended Abstract

A parallel algorithm can be implemented as a set of processes executing concurrently on
many loosely-coupled processors. Marionette is a facility that simplifies the construction of such
parallel, distributed programs. It includes a library providing a high-level interface to the Inix
facilities for remote process creation, interprocess communication, and as nchronou, I/() Th-
interface resembles Sun Remote Procedure Call [1] both in syntax and in its use of the XI)l{ pr-
tocol [2] for machine independent data representation, but is oriented more to%%ard multiproce-

- parallel programs than client/server interactions.

M3rionette supports a master/slave model of distributed computati,,n It require, a d-t ri-
* butrd program to be divided conceptually into a fortgrcund, containimng the pririi r in
* thread of control, and a background, in which functions ma' be executed concurrentl 'lth th,.

main program and with each other. The foreground and background are essentiall duidi, -t.

coloe , of the program's address space except that global variables in the backgr, unil are ra i
onKl The main thread invokes functions in the background using a non-blocking litrAr. call

" \hen one of these functions completes, the main thread accepts the result parameter. int. th.
f,,reground Aith a second library primitive. It m-. either poll or block until backgrouni fun. ti,,n
result> become available. U'sing a configuration file, the library determines at run time the numl,'r
of pr,cessjr, available to the program. Attempts to invoke more function, in the bakg.,,undi
than there are processors available return an error code.

The program may declare any global data structure to be ehartd between the foreground
" arid background. Like all global data. shared data structures may only be modified by the rore-

gr,unid thread If the foreground thread then notities Marionette of the modification, Aith
an,,ther library call, subsequent background invocations will operate on the updated Nersion of the3 d.:ta structure

In surn. the NIarionette library provides:

. tranqparent initialization of remote processes,

. 0 a m.ar for the programmer to request that certain of hi functions be executed in parallel

0 flt,, control in the event that the program requests more parallel operations than it ha!
machines available to execute them.

- . a high degree of fault-tolerance. If some processors fail or become over-loaded, performance
degrades. but correct execution continues without user intervention. Similarly. if additional
processors become available, the program may take advantage of them.

- *a a mechanism for maintaining replicated data structures at all sites executing the program.

In addition to the library, Marionette includes two utility programs to smooth over some of the
mechanical concerns of distributed programming A parallel compilation utility eisures that con-
sistent versions of the program binary files are available to the processors that will execute the
program This utility must copy source code to file systems accesible to each processor and com-

-, pile these sources in instruction set of each processor. A second utility helps make debugging less
1P diflicult t,N simulating execution of the multiprocess program in a single t'nix process This pro-

ress can then be monitored with the standard tUnix debugging tools.

The rmater/sla e semantics enforced by "larionette limit communication between the paral-
Ilel crp,,nents of the program to data passed into and out (if the background by the main thread

,f J, ""

V %' %



-AI 094 PROCEEDINGS FRON THE WORKSHOP a LARGE-GRAINED 2/2
PARALLELISM (2ND) HELD IN (U) CARNEGIE-KELLON UNIV
PITTSBURGH PA SOFTUARE ENGINEERING INST

UNCLASSIFIED J MING ET AL NOV 87 CU/SEI-87-SR-5 F/G 12/7 UL

lEllElllllliIII



''1

1 2

II

SI5 Zk

& ,,

S.

"u

'alll ,.0 ul- ,
.. li11i, 1111122II~"a: 1111

5,

5.,% .. ..,_ _.. . ..,.-,. .,-, . . ., ....> . , , . , , ,4,., ,,. . _., . ., , ., .



This organization simplifies the programmer's synchronization task, though the foreground thread
might become a performance bottleneck in communication-bound programs. The library primi-
tives are flexible enough to allow a programmer to implement a parallel algorithm without know-
ing the number, type, and relative speeds of the processors that will eventually execute the pro-
gram. Processor heterogeneity is handled by XDR and the parallel compilation utility. Through
the shared variable mechanism, a program can cache large data structures at remote processors.
The library assumes resporsibility for keeping the data structures up to date with regard to the
functions scheduled at the processor.

Marionette provides the most performance benefits to programs that can be decomposed
into many small, independent operations. When the number of operations is much larger than the
number of processors, faster or more lightly loaded processors will become available for scheduling
more frequently, hence take on a larger proportion of the work. Real applications that may be
structured in this manner include "ray -trace" rendering in graphics 15] and Monte Carlo simula-
tion techniques used, for example, in Chemical Physics 141

Currently. a prototype library, a parallel compilation utility, and some debugging tools run
on a network of Vaxes and Sun %orkstations Work on a distributed implementation of the

'gTCa% ray-tracing renderer [3] u.ing Marionette is nearly complete. Future efforts will explore
the limits to parallelism imposed by our decision to synchronize communication through the fore-
ground thread

1 . Lyon. "Sun Remote Procedure Call Specification'. 'Technical Report. Sun Microsystems,
Inc., 1984.

2 [3. Lvon. "Sun External Data Representation Specification", Technical Report, Sun
Microsystems, Inc 1981

. D. Marsh. 'N'gRa An Efliient Ra, -Tracing Renderer for UniGrafix', Technical Report
.,CtB/Computer Science Dpt 87/360. lni ersit% of California. Berkeley, May 1987.

4aA. allqvist, B. Berne and C. Panga.h "Exploiting Physical Parallelism U'sing
Supercomputers: To Examples from Chemical Physics''. Computcr 20. 5 (May 19S7).

• " T. Whitted. "An Improved Illumination Model for Shaded Display". Cormrnincation, of the
A('.Xf Q., 6 (June 1980). 313-349.

,

'N16

0 -85-

0. r W SR .1 .

V '.

, ,* 
1

r'A°V °



The PHARROS Project

by

John Van Zandt
RCA Advanced Technology Laboratories

The PHArROS Project (Parallel Heterogeneous
Architecture for Reliable Realtime Operating Systems) is
currently underway at RCA's Advanced Technology
Laboratories. The goals of the project are to develop an
operating system and associated distributed architecture to
support applications which are d.stributed across
next-generation networks of heterogeneous parallel
processors. The project is also concerned with methodology
and tools to assist the applications development within the
context of this system. The focus of this project is on
applications which straddle the boundary between signal and
data processing.

To this end, we have constructed a demonstration system
consisting of a Connection Machine, a BEN Butterfly, a VAX
cluster, and a WARP, along with a set of workstations, all
networked together using an Ethernet. Next year we will be
replacing the Ethernet network with direct connections
between the processors and the Butterfly using multiple V
buses, modeling a tightly-coupled network as will be seen in
next generation distributed systems with the Butterfly
switch and shared memory as the interconnection system. The
Butterfly processors will be used as processing resources
for both the distributed operating system and for the
application.

This year, a large signal processing and tracking
application is being implemented on top of this system.
The application is being decomposed into many interdependent
tasks which will take advantage of the heterogeneous
parallel processors in the network. The modeling of the
performance and estimations of the communication
requirements along with other measures will guide the
granularity to be supported by the architecture and
operating system. As part of this task we are developing a
set of tools to assist the programmer in distributing the
application. Also, performance monitoring tools will
visually guide the programmer to better understand the
complex interactions of the application as it executes in
the parallel environment.

0.0

%,%

k-k

.?f



'%

Research in Distributed Systems

Wl:liam E Weihl

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

(617) 253-6030
weihl@xx.Ics.mit.edu (Arpanet)

September 8, 1987

My recent research in distributed systems has been focused in two main areas: distribLted transaction
management, and heterogeneous distributed systems. These two areas are discussed in more detail
lbelow

1 Di.tributed Transaction Management
In earlier work, I developed an approach to the design of loosely coupled transaction systems that

supports the modular design of highly concurrent applications. The approach, which builds on earlier
,ork on data abstraction, involves organizing programs around atomic data types. The design decisions

involved in designing a system can be divided into global and Iocaldecisions. Glot al decisions constrain
the entire system, while local decisions affect individual types. A global decision that must be made
involves the choice of a local atomicity prope'ty, which characterizes the behavior required of the different
atomic types in a system to ensure that they cooperate to ensure global atomiciy. Given this choice, new
types and transactions can be added to the system without modifying existing types or transactions, and
atomicity is still guaranteed In other words, systems are extensible.

Extens;bility is an important attribute of a system Performance, however, is equally important One of
the pclent.al problems with transaction systems is that the level of concurrency can be relatively low; in
some applications this can be a serious problem. Atorr:c types can be used to alleviate this problem by
using the semantics of a type in designing the concurrency control and recovery algorithms for the type.
The specification of a type can be analyzed to determine the cc icurrency permitted for transactions using
objects of the type; this analysis can Ie used as feedback during the design process to modify the

specification of a type if the permitted level of concurrency is not adequate to meet the performznce
demands of the application. Furthermore, the implementation of a ty;-e can be modified safc'y to permit
any level of concurrency up to the limits imposed by the type's specifications; thus, a type can be
implemented initially in a simple way that permits relatively little concurrency, and then re-implemented to

F!, permit more concurrency if it turns out to be a concurrency bottleneck.
.jo

My current work has several goals:

e To design powerful, efficient, and easy to use mechanisms for implementing atomic data
types.

e To develop more general concurrency control and recovery algorithms.

o To understand the interactions between, e.g., concurrency control and recovery.

These goals are mutually supportive; for example, the attempt to design new mechanisms and algorithms
creates a need for a deeper understanding of the algorithms and their interactions. Some of the

, algorithms I have developed illustrate interesting interactions between concurrency control and recc very: I
would like .N understand these interactions better, with the ultimate goal of generalizing the c'gorihms
and developing better mechanisms for implementing them.

,.;

-87-



I have also been involved in a major effort (in part with Nancy Lynch and Michael Merritt) to develop
formal models for describing and analyzing distributed transaction systems. We have already described
and analyzed a variety of concurrency control, replication, and orphan elimination algorithms. While the

model we have used to dale allows us to analyze algorithms that cope with aborts of transactions, it does
not include a notion of a site crashing. We are currently working on modelling crashes and analyzingalgorithms that cope with crashes. In this work, as in the work described above, I am particularly

interested in modularity issues: what is the approriate decomposition of the system into pieces, and what
are reasonable correctness criteria for each of the pieces?

2 Heterogeneous Distributed Systems
A number of us at LCS have also been working on a project (formerly called the LCS Common System,

now called Mercury) aimed at solving some of the problems of heterogeneous distributed systems. We
have been particularly interested in heterogeneity at the level of the programming languages. Our work to
date has focused on two issues: the semantics of data types, and the communication model.

Data types present an obvious problem in a heterogeneous system: different languages have different
notions of data types, with different underlying representations, yet some method must still be found for
them to communicate. A basic pr-mise of our approach at this point is that communication interfaces
between heterogeneous components must be described in language-independent terms. We have
designed a language-independent type system that is expressive and that permits a flexible connection

- ith each individual language. Earlier work typically placed serious restrictions on the set of types and
the use of type constructors, and provided relatively inflexible translations between local types and the
types used for communication. We are currently woring on extending this work to perrrit, for example
polymorphic interfaces

In trying to develop a semantic model fot the data types used in communica,on, we came to the
conclusion that these types are fundamentally different from the types used for local computation. Types
used for local computation are frequently viewed as consisting of a set of values and a set of operations
(In a language like Ada, a module might define several types and some operations together, so the
operations might not be associated with a single type.) Types used for communication, however, are best
viwed simply as sets of values Defining the semantics of communication types by associating
operations with them can lead to serious problems as systems evolve. This has implications for single-
language systems such as Argus (which currently does not distinguish between types used for
commun,,aion and types used for local computation), since the issue of evolution arises regardless of
the nurner of languages involved. We are currently redesigning the data communication mechanism in
Argus tc provide better support for evolution by making a clear distinction between the two kinds of types

Our initial discussions about communication models led to the conclusion that existing high-level
models, such as remote procedure call (RPC), are not adequate for a wide enough range of applications
(for example, drving a remote display, or transferring large amounts of data). As a result, we have
designed a new communication model that integrates RPC and byte-stream protocols into a single
semantic framework. The model allows a client to decide whether a call should be performed
immediately, in which case the system attempts to minimize the delay for the call, or whether it should be
streamed, in which case the system is free to buffer the call in an attempt to maximize throughput,

The semantics of the communication mechanism guarantee that calls sent on the same stream appear
to be executed in the order in which they are sent. Thus, a client can stream one call and then stream
additional calls without waiting for the results of the first call, but still be sure that the calls appear to
execute in the order in which they were made. Of course, this makes sense only if the arguments of the
later ca;'3 do not depend on the rSults of the first call.

The choice to stream a call is mde entirely by a client. servers can I-' written more or less as they

-88-

A ' " ~ "K K "



Vi

would be in the absence of streaming In addition, a server needs to provide only a single interface.
rather than one interface for clients who want to use RPC and another for clients who want to use
byte-stream protocols.

Our mechanism permits clients to pipeline remote calls, taking advantage of the concurrency between
the sender and receiver of a message, and of the buffering capabilities of the network and the
communication p'otocols. For some applications, pipelining can result in dramatic improvements in
performance. An interesting open question, however, involves the applicability of pipelining, for what
kinds of service interfaces can streaming be used profitably? For example, if typical uses of a service

- require a client to receive the results of one call in order to compute the arguments for the next call,
pipelining could not be used to advantage. In the few cases we have examined, we have been able to
modify the service interfaces so that clients can pipeline calls. My hope is to develop a small set of
general transformations of this sort, with the result that pipelining can be used for a wide range of
app!ications

F,,

ill

8'.9Si -89-

. .. . ~ ~ ~ ~ ~ - -- ' "= " ' 4 ' '," ' - , ., " ' , ,° . % ' '



Submitted to the Second Workshop on Large Grained Parallelism,
Hidden Valley, PA, October 11-14, 1987.

Programming Language Features for Resilience and Availability

C. Thomas Wilkes and Richard J. LeBlanc

Distributed Systems Group, School of Information and Computer Science
Georgia Institute of Technology, Atlanta GA 30332-0280

Internet address: {wilkes, rich) @ stratus.gatech.edu Voice: (404) 894-6170

Extended Abstract

Since late 1981, the Clouds project at Georgia Tech [Allc83,Dasg87] has been occupied
with the design and construction of a reliable multicomputer, that is, a unified environment
over loosely-coupled distributed resources in which reliable applications may be constructed.
The research goals of this project include decentralized cooperative control, location
independence for data as well as processing, and failure tolerance of computations. Failure
tolerance implies the resilience of data despite node crashes, the availability of resources
despite partial failures of the system, as well as continued forward progress of jobs in the
system. The Clouds architecture offers several features in support of these goals, including
support for passive objects, capability-based object access, location-transparent object
invocation, nested and toplevel actions (transactions), and customizable as well as automatic
synchronization and recovery mechanisms.

J." In support of programming the levels of the Clouds system above the kernel level, we
have designed and implemented a systems programming language called Aeolus
[LeBI85, Wilk85, Wilk86]. The purposes of the Aeolus language include: providing
abstractions of the Clouds features of objects, actions, and processes; providing access to the
recoverability and synchronization features of Clouds; and serving as a testbed for the study
of programming methodologies in action/object systems. The combination of Aeolus and the
Clouds kernel provides support for resilient objects.

Acolus support for objects includes a hierarchy of object classifications which share a
common implementation and invocation syntax. The support in Aeolus for elements of this
hierarchy ranges from completely automatic synchronization and recovery (the parad:gm
presented by most other systems offering support for resilience), through programmable
synchronization and recovery based on object semantics, to "lightweight" objects-living in
the address space of their creators-in which recovery support has been "optimized out."

A similar hierarchy of support for actions and action/object interactions is included in
Aeolus. The constructs for programmer specification of resilience properties support the
separation in Clouds of failure atomicit)y--the "all-or-nothing" behavior of atomic actions-
and view atomicity, in which actions are prevented from observing the uncommitted results of

,4, other actions. Failure and view atomicity together form the traditional notion of
serializability; we believe their separation in Clouds provides a powerful means of increasing
the efficiency of actions as a reliability technique, especially in development of resilient
structures for use in operating systems [McKe85]. This characteristic is exploited in the
linguistic features of Aeolus.

Recently, we have been using Aeolus to examine availability issues in Clouds [Wilk87].
We have developed a scheme for deriving replicated objects from single-site specifications
which we call Distributed Locking. This scheme addresses the issues of control of
concurrency and state consistency among the replicas in a system in which objects may have
arbitrary structure; in Clouds, objects may be logically nested in an arbitrary manner, in the
sense that an object may hold capabilities to other objects. Distributed Locking consists of a
methodology for deriving a replicated implementation from the single-site version, as well as a
mechanism to support this methodology. In accord with the Clouds philosophy in other
areas, it does not assume any particular policy for replication control (e.g., quorum
consensus).

* -90-

%* %*



Wilkes and LeBlanc Features for Resilience and Availability

The methodology of Distributed Locking consists of two steps: the programmer writes a
single-site implementation of an object with appropriate Acolus/Clouds lock mode
compatibility specifications for synchronization; then, an availability specification (availspec)
is provided separately for the object, which supplies information about the object's replication
properties. (The availspec is described in more detail below.)

The mechanism provided by Distributed Locking also consists of two parts:

1. when an action obtains a lock on an object, the system also obtains locks on some subset
of its replicas, according to a user-specified policy;

2. when an action commits, the object state is copied to the subset of replicas locked in
step (1), according to another user-specified policy.

The pol cies for locking and state copying among replicas used in the DL mechanism may
be specified by the programmer in an availspec as handlers for the lock and copy events,
respectiveiv. These may consist of one of several default policies (e.g., the quorum

-.". consensus or available copies algorithms), or the programmer may specify custom handlers
using the same system-supplied primitives which we have developed for programming the
default handlers. When a quorum consensus-style algorithm is used for a lock event, the

programmer may also specify the relative availabilities of the modes of each lock type
declared by the object.

Other Clouds researchers have been concerned recently with the issue of forward progress
in Clouds. A scheme called Parallel Execution Threads (PET) has been developed which
essentially provides replication of actions as well as objects [Aham87, Aham87a]. PET may
be regarded as a generalization of the so-called "hot spares" scheme. Our current research
includes specifying how PET may be controlled by the Clouds system; this functionality is to
be embedded in a subsystem which we call the Fault Tolerant Job Scheduler.

"REFERENCES

[AhamS71 Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes. "Fault-Tolerant
Computing in Object Based Distributed Operating Systems." PROCEEDINGS OF
THE SI.TH SYMPOSIU'M ON RELIABILITY IN DISTRIBUTED SOFT"WARE A.%D DATABASE

SYSTEMS (IEEE Computer Society), Williamsburg, VA (March 1987): 115-125.

[Aham87a] Ahamad, M., and P. Dasgipta. "Parallel Execution Threads: An Approach to
Fault-Tolerant Actions." TECI,;ICAL REPORT G1T-ICS-87/16, School of

* Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, March 1987.

[Allc83] Allchin, J. E. "An Architecture for Reliable Decentralized Systems." PH.D.
DIs., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1983. (Also released as technical report GIT-ICS-
83/23.)

[Dasg87] Dasgupta, P., R. LeBlanc, and W. Appelbe. "The Clouds Distributed
Operating System: Functional Description, Implementation Details, and Related
Work." TECHNICAL REPORT GIT-ICS-87-28, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, July 1987.

[LeBI85] LeBlanc, R. J., and C. T. Wilkes. "Systems Programming with Objects and
Actions." PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON
DISTRIBUTLD COMPUTING S'STEMS, Denver (July 1985). (Also released, in
expanded form, as technical report GIT-ICS-85/03.)

[,MLKCS] McKendry, MI S "Ordering Actions for Visibility." TRANSACTIONS OS

* -91-

plp

d-



Wilkes and LeBlanc Features for Resilience and Availability

SOFTWARE ENGINEERING (IEEE) 11, no. 6 (June 1985). (Also released as
technical report GIT.ICS-84/05.)

[Wilk85] Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
Grr-ICS-85/07, School of Information and Computer Science, Georgia Institute

-e_ of Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Wilk86] Wilkes, C. T., and R. J. LeBlanc. "Rationale for the Design of Aeolus: A
Systems Programming Language for an Action/Object System." PROCEEDINGS

OF THE 1986 INTERNATIONAL CONFERENCE ON COMPUTER LANGUAGES (IEEE
Computer Society), Miami, FL (October 1986): 107-122. (Also available as
Technical Report GIT-ICS-86/12.)

,, [Wilk87] Wilkes, C. T. "Programming Methodologies for Resilience and Availability.'
PH.D. DIS., School of Information and Computer Science, Georgia Institute of

i Technology, Atlanta, GA, 1987. (In progress.)

'492

'I

15 -92-

act&



~*. ~ ~ ,.-~. -'- *~ - -, , - .-.- w-r -2 W_..-. r rq W ZW"

L

A COARSE-GRAINED DISTRIBUTED MULTIPROCESSING SYSTEM

S .lo;Ili M. Wrliwt /

Problem Statement
P se~of* di-diibnlted svstemis re clevelopiin anl increasing iflumn hcr oI'appiIi(:It*1t.-

tii:lt fl'(, Coin litatollflhl\ iiiteiisive. but, they arc unable Uto 0lutini rIea oilbie Iw I-
Illailcf Ibe tllosc Iplllitiolls onl (]itrihutvd sytm.Olle wayl to i mj )1o\'c J~iiiii

-l It T('as L' I o11111lit Of* I patit l 'Tli uISed inl te system . However, the(Ai-i
- ~ ~ I w- -~~i inig agagsad tingo systciis do nlot provlde adeq 1 te stippoiI

tilt d. ( Ic ll \it lit aIlld(i exelitioli of*al) elol 111:11 lequilre slimred of at tl ac il:

P' -it'siI((. (tltPlo cs. of'h 1inltist b RliaCi w itrhumodes li(iIt

co IpI.t(I . ld III' c 1(p l cd \ l il...l \II'

ofi lite till 1,'0(oX ile -
* egrn llCniri e HI\S flit .llows the mie' t taPe adl lt1g(1v(if tll iiiil .d )I

*~.. hav I oIn- (I"i visl u gra iiii, i iir e oiods w it ol t of (-r)Ing o eiet~l(
J~iol~i~ coii>(-iaiied t l l I' tfiS( (0I~111 lhiatiS ad ts (Ai IIi(ilit \

'I' l, c II.-1

th , (,11U, ~f~lfII (IIp,11 r w l. w

tU I4.]:

:I ic -93- 'l 11'



III orderI to supiport thce fficliit (\('(itimti of' (()arse-grii(d aif1:.>-
heterogeneous -nd autionnous proC('ssK0i . Out' ('0111pu~till"ig odel (Pdlie--. 1'j 11w
lctlhod of' (etitiofl of' taISks and the iiietfiod of, ahflocatijoi of(J- TlcIn' iot.

exe'cutioni of, task4s onl IIh graph caII t~ik' one of' two foljO. l"x\cciitioii cen
- ~~drive!ii, where tnaks are( executvl onl a flzs IIIon- fir1st-serIve d 111 Sil'l

* leronts avajla)I(. Ale iflatiel\. eCCIlIoii ("ill k' (I-11I0iddtei I ~ -stP

(Ally exeritedIf thetir outpuit dat foreure r[1 subseyient tasu k. ihc choir'.f (dK

e xecutionI. anld the j-ole of exteil1 inlput and output hat11iliiig. Further. tII- I- 1it!-
exeutoixcot>Incuire d Uy eadi o IS e\eciito1) flmecu lir;sS %\litl tl(o ruImI*!-

systemt of' aI (list luted systeml of'poesr f Iist 1w addressed.

The all Catioil of tksto pr-ocesso(rs inl the! sys,-temis I.dyaic ill 01 1-
cfts--t!\- litiliie atnltiots1011 111d( heteIw0eneoIS process ing (iait.Ii)I

stata.-.n kohci ) provide the ilf'oi ImitwfIIl l(*CesSN liV f'or load halanlcilng il Pi
atl Sl)(ftii d~iii of taksi :I rteqmidiii f'or disir'iled s -tiIji :it

Wa> \hiile the effectiveiies.s of load-laJlncing ma ax Libe sigalificatlil m-li''1, I
- - * a>: II I:tl' iOltS i1111ed for sate pl01gat111il. the Clecctive (',Ipfo(Iv

Tlo lo~ Ic' -'-a' e anav lil Ili- (in Oi-cmthIdo'-

I I -V- I- I s, II j X -l'I t I-o lt . I o (pliiN a '

It cii ] t' t - ahit racy prwor -sot 2) t:L-1 :1 K 1

it I Ii II :, iii uf 1'~ ii. :la 1ii 3 u) t ~t. oita :Il ex'f il i :I
0 Ii ~hl I' i h''] (Ollilti : l fo it t ot.epo rtoio -- Jfiiit i- 1!

-a~~ e for, Io tIa al c ti
fiurtiI\\ [ti

11 1 ! I] m :c l

lijid >\~oll Ill ii~iiiii o jlh liIu1 -: u- i. ;I'a lI ll Ii :-u' Ii- 1ii a-'
I 11 r. e I 1

* -1i i -94- :l- , , II



Static Typing of Temporal and physical time (e.g. the duration of an activity in
Reliability Attributes in Distributed seconds) [Koymans 83].

Reliability in computer sci.ence often isSystems defined as the probability that a certain component

functions correctly over a certain period of time.
Hanno Wupper, Jan Vytopil This definition gives rise to four questions: (1)

Catholic University Nijmegen 1  Does it cover 'Reliability' in the sense of natural
o. language (i. e. is it a sufficient basis to allow to

decide whether we can "rely" on a system)? (2) If
Distributed computer systems which control we accept the definition: How do we obtain the

physical processes must be prompt (in "real time") reliabilities of the building blocks of systems (in
and reliable. For their methodical development one other words: what means "to function")? (3) How
needs a specification language that supports treat- does a system's reliability depend on its structure(
ment of formal promptness (timing) and reliability and the reliabilities of its components (4) How car,
requirements and that can (i) serve as a basis for'-' we formulate reliability requirements for tht,
development and verification, (i) provide a overall system?
formalism for theoretical investigation of proper- Question (1) is extra-mathematical and shaP
ties of distributed reliable real-time systems, and not be addressed. In any, case this probalili-tic
(u;) allow the exchange of re-usable algorithms. - approach is widely accepted to approximate
A first prototype of such a language shall be Reliability closely enough to justifv further re-

presented. It is based on a generalization of the search. For hardware component_. englr, erir;
concepts of static data-typing and polymorphism disciplines have contributed a lot to (2 )"r:
It allows to associate, in svstems specifications, 85]. (3) is purely intra-mathematical and b .:,
attributes describing temporal properties with the studied well: If components of knowrn re!: '..-

comp-ocnt> _d sub-components of the systems to and known average repair times 3re aen-,,,d :'.

be specified in a similar way as data types are gi.en way, the overall relability can b. corn"'
a--iated vith expressions and sub-expressiens in by statistical means. This has lead to appr,'
strongly ty pd languages. Such a specfication will methods to include redundancy in _v_.-:- 2.

bo syntacticallv correct only if it i! consistent with order to increase reliabilty. The rolurm t- .
temporal propertie reib.e rey 'Md "endre-pect to temporal properties and guarantees that redundant components be really in-_,, ,, -

the specified system will fulfil the stated usually not checked formally, however Ana-:,,!
r,.urements, accidents often reveals that their cau, % wa, n,

Ihis prototype of a specification language can unforeseen failure of a basic comN,nnt 1-1 47
Ib,' ued for the development and verification of illegal interference between compne, nt, a,-t::,
s'ch distributed real-time systems that have to to be independent [L veson 8 J Though ro -i -
react at fixed moment, or within a fixed period. It is a probability, (4) cannot simply b..' dealt %%: ,.
has mainly to be developed to show that a stating one number fora whole system It
consistent language based on the principles of realistic-and common practice-to separat',,
static timing and reliability tyTin.K can indeed be quire reliabilities differing in order of ma
defined. Future versions will also contain for different sub-functions of a complex--
constructs for systems with variable temporal Reliability requirement- are in itsehl s,,n1wt!
behaviour and will, moreover, treat reliability complex, closely linked to the system stru, h;, I.k
attributes besides the teml:xral ones. language that allows to forn-Llv estabh-h talit .: ,

"-"i ois still missing, however.
Clarification of terms Static typing associates an attribute ("tyu)

Timing requirements for real-time systems with certain or all sub-expressions of a text,
must not only include qualitative statements about conventionally this is a "data type" saving some-
the necessary temporal order of activities, but thing about the set of values the expression may
moreover quantitative statements with respect to poxssibly assume. If such a text has been proved to

be syntactically correct, this ensures that during

"Informatica V, Joemeooveld execution all function applications ,ill be v,,ell-

6525 D Nilmegen, I he Netherland-, defined and that the corresponding inmplmen-

-% - -9 5-

" _%- , .* . ." .,., ,_,.%, -• _-,. _, ,,.. , , '. . -.% .,* .' .-- ' e -0 _A", N, .% , .% Zd,'. -" " • " " ." %" .,



tation can do without dynamic tests except in cover not only data types (i. e. sets of valu(0, t:
situations where they are explicitly required. also trrdng and reliability attributes

Polymorphism allows the essentials of A first generalization step lead to our pre':

algorithms to be formulated independently of a language [Wupper 87]. It allows us to formil.,
particular application. The so obtained algorithms state timing requirements and take them Into t!,.
are re-usable to handle objects of different proper- development process to arrive at systems guaro

ties without loss of the benefits of static typing. teeing to fulfil these requirements without dv:

Cardelli [851 and Barendregt [861 both present amic time checks or synchronization The a! '-

languages based on the state of the art of static rithms so derived are polymorphic and can b, 7..
typing and polyrmorphism. Though such languages used in contexts with different functionality a,'-

do with comparatively few and simple concepts, different, but structurally similar, tim:rg rc>.v
' '' "they can be shown to cover the data abstractions of ments.

Ada as well as the classes of object oriented
languages [Cardelli 85]. We can show that with References
minor additions such languages may also allow the

description of distributed systems and cor- Bareniregt 86

munication in a structured way, with the securitv H. P. Barendregt, M. van Lecuwen
0." ," f >tatic typing - Futctmn;,! Programrir, and the L :c......

in: Current Trends in Concurrency (J. V ': :.AI
et a]., ed,.), LNCS 224, Berlin 19.S;

The role of language in systems development

and verification Birolini q;
In the evolution ot programming and A Birolim: Quait,.t up:d Zu:,cY.-.

.pecificatkon languawos we can d stinguish thrt.' s-:;r Svetem:, Berlin New York "To 1 ]o,1-'

stae',.'swith re ,pect to laT --iape support in svstems

duvel op-nrt. [,anIJw_ . ne first stage give no Cardelli -

.u pp'rt a' all. Languag> in thu' sec,:ond stage- L Cardclli, P. Wen'Tcr 0r: U'c'ot.;,:.
.. "." Ii 1,oh are acco,.mpanied by powertul run-tinh D.at, AI>M.'t:: ,.n .

.svtm- -allow or enfo)rcc automatic inclu'ion ot ACM Comp Surv. 17(1 9S;. Nr. 4.p" 47---

run tI mu chuck '", svnchronzat on, garbae

collccti, n, stack admini-,tration. etc to help to __ ____"-- ~ ~~~~~~R Kovrnans, 1. V,-to, V .deI ,.,.r . .
detcot de',ign error> or avoid error-prone pro- - '

vra mm] ng 14 nlor i:ua c .rn the third stage, however, T: : r ,; Y71 17:: N
I :.ACM, 211d Sy r ino

.:,ti t'r"' rc Oer:- Itcn t, make run time MI ntreal, Aug. 1 Q,

chucks unnece"'-ar,. One way to achieve this i,"

,t,)t c tvpng. The necess-ary svntactic restriction, e\ e.,n . ..,

and the enforced redundancv wi)l be taken as, a Nancy G. [.eve'on .,t:rc S, ; ,

he-netit rather than an obstacle if the language not an4 Houw. Comp. Surv ;, No. 2, It'L' 1-

merely rules out inconsistent systems but also pp.12-16 3 I
supports the development of consistent ones or

allows to write re-usable algorithms. Iolv- Pam.i' 8;

morphism here is a valuable tool. D, C. Parna,, Sci'tuac Aspc-.' : c '

With respect to algorithmic ckrrcctni'ss , we DcfVnse System% C.ACM 28 (1 J5, No 17

* are used to third stage languages If contemxrar-' }'lrh7

languages support timing at all, the corres-Q:. ~~N Wirth, Toward a Di ,ci, hrc c"l,;.7"'

ponding constructs are hardly beyond second Pro'iramm ing ,C.ACM 20(1977), No S

stage (cf. Wirth [19771). Pamas observed in 119651

that the support of reliability has not vet developed WiIp e r 87
beyond the first stage.S ~H. Wu pper. 1. Vytopil n 4 '':a: u

Formal 7 reatrnent of RCIaibi:tV in S'to,:-
Our approach Specficatioin-. Fachtagung "Requirement-, Ft,

Static typing and pxly'morphism as describNd ginocng" Gest-llschaft f lnf ., St Augu,,tin 20 -27

by [Cardelli 8,J or [Warendregt 861 are based on a 5 leST,7 KLN. Informati ca, Report no Q"

mathematical theory of types general enough to

0



I

ba.

UNLIMITED, 1INCI ASSIFT~l // n/

ICURITY CLASSIFICATION OF THIS PAGE kDl'7 R /

REPORT DOCUMENTATION PAGE
l REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b, OECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-SR-5

6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
fit applIca ble)

SOFTWARE ENGINEERING INSTITUTE[ SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (Cit). State and ZIP Code) 7b ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Be. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Sc ADDRESS tCIty. State and ZIP Code) 10 SOURCE OF FUNDING NOS

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO NO 1 NO

PITTSBURGH. PA 15213 N/A N/A N/A

1 TITLE (Include Security Classflcatloni
PROCEEDINGS FROM THE SECOND WORKSHOP ON LARG -GRAINED PAR LLELISM

12. PERSONAL AUTHOR(S)
MARTO BARRACCT, FT)TT( R

13L TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr,.Io,. Day) 15 PAGE COUNT

FINALi FROM TO _100

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS eContinue ori reverse if necemar", and IdentIfy by block nurmber

FIELD GROUP SUB GR LARGE-GRAINED PARALLELISM

19. ABSTRACT IContinue on reverse if neceuar-y and identify by block nn mberi

THESE ARE THE PROCEEDINGS OF THE SECOND WORKSHOP ON LARGE-GRAINED PARALLELISM HELD OCTOBER
11-14, 1987, IN HIDDEN VALLEY, PENNSYLVANIA. THE WORKSHOP WAS ORGANIZED BY THE SOFTWARE

ENGINEERING INSTITUTE AND THE DEPARTMENT OF COMPUTER SCIENCE, CARNEGIE MELLON UNIVERSITY,
WITH THE COOPERATION OF THE IEEE COMPUTER SOCIETY.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 1 SAME AS RPT E OTIC USERS X3 UNCLASSIFIED, UNLIMITED

22s NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL SHINGLERAro Cod
KAR SINLE (412) 268-7630 SEI JPO

* DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

% % % • % % V% 4 ,% %", ... --, A : - "w" . , , :, . ... ., . ..-. , .,.. , _.._ _.:,., .-. , .-. ,..,..-.,,,.., ,



..

lop

.-~~I.,-..>

3.1

e me P,.

*.p~PP* 40oo.% S

, o. • • • • • • • • • • • O •

91


