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Abstract

Thurstone’s Law of Comparative Judgment provides a method to convert subjective paired compar-
isons into one-dimensional quality scores. Applications include judging quality of different image recon-
structions, or different products, or different web search results, etc. This tutorial covers the popular
Thurstone-Mosteller Case V model and the Bradley-Terry logistic variant. We describe three approaches
to model-fitting: standard least-squares, maximum likelihood, and Bayesian approaches. This tutorial
assumes basic knowledge of random variables and probability distributions.
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1 Why Paired Comparisons?

When comparing different options, one often wishes to assign a single quality score to each option. For
example, you may want to score the quality of different image processing algorithms, or the skill of different
chess players, or the seriousness of different crimes. To illustrate, we place three images of an apple on a
quality scale in Figure 1. Here, we are concerned with scores on an interval scale, which means that only the

image A image B image C

quality scale

Figure 1: Image quality scale

relative differences between scores matters, and the scores could be shifted or multiplicatively scaled without
changing their meaning. An interval scale has two degrees of freedom: the placement of zero, and the unit of
measurement. Fahrenheit and Celcius temperature scales are interval scales, because the difference between
two temperatures matters, but the placement of 0◦ and the unit of “1 degree” is arbitrary.1

How do you gather data to score a set of options? It is tempting to simply ask a bunch of people to score
each of your options: “On a scale of 1 to 10, what is the quality of this image?” However, people may mean
different things by the same score (a 3 to one person may be different than a 3 for another person). It may
be hard to determine specifically what “1” and “10” mean (how bad does an image have to be to get a 1?).
It may be inflexible (what if you want to give something a 15?). Further, you may care more about scoring
the options in the context of the set, rather than on an absolute scale (you want to know “How much better
does this image look than the other options?” rather than “Does this image look good?”). Because of these
issues, gathering paired comparisons may be more useful than directly asking for quality scores.

In a paired comparison experiment, you ask, “Is A better than B?” Generally ties are not allowed (or
they may be counted as half a vote for each option). Ideally you would get comparisons for all possible
pairs of options you are judging, but this is not necessary to estimate the scores, and for a large number of
options, may simply be infeasible. There may also be issues of order presentation (which option is presented
first could affect the preference) but in the rest of this tutorial we assume that this issue can be ignored.

The result of a paired comparison experiment is a count matrix, C, of the number of times that each
option was preferred over each other option.

Ci,j =

{
# times option i preferred over option j if i 6= j

0 if i = j.

1.1 Roadmap

Now that we have defined the problem and the experimental count data, in the next Section we describe
Thurstone’s statistical model of judgments and Thurstone’s Law of Comparative Judgment, which provide
a method of estimating the quality score difference for two options. We will then extend the analysis to
estimating scores for more than two options using a least squares method (Section 3), a maximum likelihood
method (Section 4), and using the expected value of the score (Section 5). We illustrate the different
approaches with simulations (Section 6). This document ends with Matlab code to implement the described
functions.

1An alternate is a ratio scale, where the zero value is fixed e.g. age, where 0 years is a specific reference point. In a ratio
scale we can always compare to 0, so 20 years is twice as old as 10 years, whereas on a interval scale 20◦ is not twice as hot as
10◦. The classification of measurement scales is discussed by Stevens [10].
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2 Models for Comparative Judgment

There are two common models for analyzing paired comparison data. We first discuss Thurstone’s model,
and then the Bradley-Terry model.

2.1 Thurstone’s Model

In 1927, Louis Leon Thurstone pioneered psychometrics by using Gaussian distributions to analyze paired
comparisons [11, 7]. Thurstone’s model assumes that an option’s quality is a Gaussian random variable.

0

Quality Scale

Probability Densities for A and B
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ty

AB

µA
µB

Figure 2: PDFs of A and B

Consider the basic case of two options, where we let the Gaussian random variables A and B represent the
quality of option A and option B respectively:

A ∼ N (µA, σ
2
A), B ∼ N (µB , σ

2
B),

P (A = a) = 1
σA

φ
(
a−µA

σA

)
, P (B = b) = 1

σB
φ
(
b−µB

σB

)
,

where φ is the standard normal PDF (zero mean, unit variance),

φ(x) = 1√
2π
e−

1
2x

2

.

Thurstone’s model says that when a person judges whether A is better than B, they draw a realization from
A’s quality distribution and a realization from B’s quality distribution, and then choose the option with the
higher quality. Equivalently, they choose option A over option B if their draw from the random variable
A−B is greater than zero,

P (A > B) = P (A−B > 0).

Since A−B is the difference of two Gaussians, A−B is a Gaussian random variable:

A−B ∼ N (µ, σ)

µAB = µA − µB
σ2
AB = σ2

A + σ2
B − 2ρABσAσB , (1)

where ρAB is the correlation between A and B.
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Figure 3: P (A > B) is the shaded area under the PDF of A−B.

Therefore the probability of choosing option A over option B (shown in Figure 3) is

P (A > B) = P (A−B > 0)

=

∫ ∞
0

1√
2πσ2

AB

e−(x−µAB)2/(2σ2
AB)dx

=

∫ ∞
−µAB

1√
2πσ2

AB

e−x
2/(2σ2

AB)dx

=

∫ µAB

−∞

1√
2πσ2

AB

e−x
2/(2σ2

AB)dx

=

∫ µAB

−∞

1
σAB

φ( x
σAB

)dx

=

∫ µAB

σAB

−∞
φ(t)dt

= Φ

(
µAB
σAB

)
, (2)

where Φ(z) is the standard normal cumulative distribution function (CDF)

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt =

∫ z

−∞
φ(t) dt.

By inverting (2), we can calculate the quality difference µAB as

µAB = σAB Φ−1 (P (A > B)) ,

where Φ−1 (x) is the inverse CDF of the standard normal. The inverse CDF of the standard normal is also
commonly known as the z-score or standard score since it gives the number of standard deviations that x
is from the mean. Although traditionally getting the z-score required lookup tables, modern computers can
calculate the inverse CDF function precisely.

Thurstone proposed estimating P (A > B) by the empirical proportion of people preferring A over B,
CA,B/(CA,B + CB,A). So, the estimator for the quality difference µ̂AB is

µ̂AB = σAB Φ−1
(

CA,B
CA,B + CB,A

)
. (3)

(4)

The estimate (3) is known as Thurstone’s Law of Comparative Judgment.

UWEETR-2011-0004 4



2.2 Thurstone’s Case V Model

Thurstone made a number of model simplifications for tractability. The estimate (3) requires σAB to be
known or estimated, and in the general model that requires estimating the variances and correlation of A
and B as per (1). The simplest and most popular simplification is the Case V model, which assumes that
all options have equal variance and zero correlations (or less restrictively, equal correlations instead of zero
correlations [9]):

σ2
A = σ2

B

ρAB = 0.

Without loss of generality2, set the variances to one half σ2
A = σ2

B = 1
2 so the variance of A−B is one,

σ2
AB = σ2

A + σ2
B = 1.

This sets the scale unit for the interval scale. This simplifies Thurstone’s Law given in (3) for Case V to

µ̂AB = Φ−1
(

CA,B
CA,B + CB,A

)
. (5)

For the rest of this tutorial, we will use these Case V assumptions and refer to this Case V model as
Thurstone’s model.

Another common approach is to assume that σ2
A = σ2

B = 1, so that σ =
√

2, and Thurstone’s law for

Case V carries an extra constant of µ =
√

2Φ−1(
CA,B

CA,B+CB,A
). This makes the equations less convenient, but

then the quality scale differences are easily interpreted as the number of standard deviations. If you want
the quality scaled in terms of standard deviations, you can multiply the quality scale values in this tutorial
by
√

2 (which is ok since the interval scale is not affected by multiplicatively scaling the scores).

2.3 Prior Knowledge

Prior knowledge is easily incorporated into the model by adding values to the count matrix according to
what you believe the proportion of counts should be a priori. Create a matrix B of the proportion of times
you believe one option would be preferred over the other. Then add a weighted version to the collected data.

C̃ = C + αB.

Using a prior B can help regularize the estimates and solve the 0-1 problem, as we discuss in Section 3.2.

2.4 The Bradley-Terry model

Bradley and Terry [2] introduced an alternate model, also known as the Bradley-Terry-Luce model (BTL)
for Luce’s extension to multiple variables in [6]. The BTL model differs from the Thurstone model in that
it uses Gumbel random variables for the quality of each option instead of a Gaussian. Then the BTL scale
difference A−B is a logistic random variable, and so P (A > B) can be calculated from the logistic cumulative
distribution function. This model has a closed-form solution:

P (A > B) = P (A−B > 0) =
exp(µA/s)

exp(µA/s) + exp(µB/s)
(6)

=
1

2
+

1

2
tanh(

µA − µB
2s

), (7)

where s is the scale parameter for the logistic distribution (changing s changes the variance, but not the
mean). Equation (6) says that the probability. Then by again estimating P (A > B) by the empirical count

proportion
CA,B

CA,B+CB,A
and inverting (7) yields the estimate

µ̂A − µ̂B = s

(
ln

(
CA,B

CA,B + CB,A

)
− ln

(
1− CA,B

CA,B + CB,A

))
. (8)
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The inverse logistic CDF in (8) is commonly called the logit. To compare the BTL model scale differences with

the Thurstone model ones from (3), equate the variance by setting s =
√
3
π . Empirically as shown in Figure

4, the logistic CDF is very similar to the Gaussian CDF, so that using Thurstone-Mosteller’s solution or
BTL’s model produces very similar results. Some people prefer BTL for computational simplicity (you don’t
have to compute the inverse Gaussian CDF), although with modern computers and algorithms, computing
the inverse Gaussian CDF is simple, so the computational aspect is not an issue.

Figure 4: Gaussian vs Logistic CDF

The logistic CDF has a fatter tail and is slightly more sloped at the inflection point than a Gaussian with
the same mean and variance. This means that the BTL model will estimate slightly smaller scale differences
for proportions near 1

2 and slightly larger scale differences for proportions near 0 or 1 when compared with
Thurstone’s model.

3 Model Fitting

Thurstone’s model provides a method of estimating the scale difference for any single pair of options by
estimating P (A > B) by the empirical proportion of people preferring A to B. However, when considering
more than two options this approach breaks down because these values need to be massaged to fit on a one
dimensional scale. In this section we detail three different approaches to estimating the quality scores given
more than two options for the Thurstone model (the same approaches can be applied to the BTL model).

3.1 Thurstone-Mosteller Least Squares Method

To determine the quality scores for a set of m options, Thurstone offered a solution, which Mosteller later
showed was the solution to a least squares optimization problem [9]. Define the vector of quality scores

µ = [µ1, µ2, ..., µm], and let D be an m×m matrix where Di,j = Φ−1
(

Ci,j

Ci,j+Cj,i

)
is the (Case V) Thurstone’s

Law estimate (5) for the quality difference between option i and option j. (You may also use the BTL model
by forming D using the logit from (8).) The least squares estimate for the quality scores µ minimizes the

UWEETR-2011-0004 6



squared error between the quality scores and the Thurstone’s Law pairwise estimates:

µ̂ = arg min
µ∈Rm

∑
i,j

(Di,j − (µi − µj))2. (9)

This least squares problem has a simple closed-form solution which can be derived from the D matrix.
If we set µ1 = 0, the least squares solution is

µ̂j =
m∑
i=1

Di,1

m
−

m∑
i=1

Di,j

m
. (10)

If instead of assuming µ1 = 0, you prefer to assume that the mean of all the µi is zero, the solution is

µj =
m∑
i=1

Di,j

m
. (11)

3.2 The 0/1 Problem

When estimating quality differences by this least squares method, we will have problems estimating when
the proportion

CA,B

CA,B+CB,A
is 0 or 1, since Φ−1(0) = −∞ and Φ−1(1) =∞.

There are a couple of standard ways to deal with this problem [3], and we note a third optimal solution.
One solution to the 0/1 problem is to simply ignore the 0/1 entries and use an incomplete matrix solution
[8, 4]. We argue this is too heavy-handed a fix in that it ignores important information that the one option
is strongly preferred to the other option.

Another standard solution is to “fix” the 0/1 proportions by modifying the entries in the count data
matrix to change the 0/1 proportions to be 1

n and 1− 1
n , where n is the number of people surveyed for that

comparison. This is equivalent to modifying the count data:

C̃ij =


1
2 if Cij = 0

Cij − 1
2 if Cij = n (or equivalently if Cji = 0)

Cij otherwise

(12)

We will refer to this modified data matrix as the 0/1 fixed data. A related solution is to add a count or
fractional count to both the 0 and 1 entries of the count matrix; this is equivalent to assuming some prior
data (see Section 2.3). These fixes do change the count matrix, but in a conservative way that biases the
counts toward less confidence, and this fix is not as big a change as simply ignoring 0/1 entries. If one
employs this fix, we recommend adding 1/2 count to adequately fix the 0/1 problem without adding too
much noise to the data, though we note there is no general optimal value.

We note a third solution if there are more than two options: estimate the means by the maximum
likelihood estimate, which we detail in Section 4.2. This is the solution we recommend because it is an
optimal approach to the estimation and does not require adding noise or ignoring data.

4 Maximum Likelihood Scale Values

First, we show that if there are just two options, the maximum likelihood estimate of the quality score
difference is given by Thurstone’s law (3). Then we give the maximum likelihood estimate for multiple
options (which is not equivalent to the least-squares solution given above).

UWEETR-2011-0004 7



4.1 Maximum Likelihood for Two Options

Let the paired judgment data for two options, A and B, be a = CA,B and b = CB,A. The likelihood of the
quality difference, µAB = µA − µB , is

L(µAB) = P (a, b|µAB) =
1

γ
P (A > B)aP (B > A)b (13)

=
1

γ
Φ(µAB)aΦ(−µAB)b,

where γ is a normalization constant and we have used the identity P (B > A) = 1 − Φ(µAB) = Φ(−µAB).
The maximum likelihood quality difference is

µ̂AB = arg max
µAB

L(µAB)

= arg max
µAB

(Φ(µAB))
a

(Φ(−µAB))
b

= arg max
µAB

a log (Φ(µAB)) + b log (Φ(−µAB)) .

This may be solved by Lagrange multipliers

0 =
a

Φ(µAB)
φ(µAB)− b

Φ(−µAB)
φ(−µAB)

a

Φ(µAB)
=

b

1− Φ(µAB)

µ̂AB = Φ−1
(

a

a+ b

)
= Φ−1

(
CA,B

CA,B + CB,A

)
,

which verifies that Thurstone’s Law yields the maximum likelihood solution if there are only m = 2 options.

4.2 Maximum Likelihood for Multiple Options

Extending the two option maximum likelihood estimation described in Section 4, to a comparison of m
options, there is no longer a closed-form solution. Instead, one must solve a optimization problem.

Let µ be the vector of quality scale values µ = [µ1, µ2, ..., µm]. Define the log-likelihood of our count
data, C, as

L(µ|C) ,
∑
i,j

Ci,j log(Φ(µi − µj)). (14)

To find the maximum likelihood solution quality scale values, one must solve

arg max
µ

∑
i,j

Ci,j log(Φ(µi − µj))

subject to
∑
i

µi = 0.
(15)

To find a unique solution, include the constraint that the mean of all the quality scale values is zero as in
(15), or set one of the quality scale values to zero µ1 = 0.

We show in the appendix that (15) is a convex optimization problem.

UWEETR-2011-0004 8



4.3 Maximum A Posteriori Estimation

One can also form the maximum a posteriori (MAP) estimate, by including a prior on the scale values p(µ):

arg max
µ

L(µ|C) + log(p(µ))

subject to
∑
i

µi = 0.

If there is little information about the true scale values that can be used to choose a prior, then we suggest
a Gaussian prior that assumes the different scale values are drawn independently and identically from a
standard normal will reduce the estimation variance and often provide better estimates. In that case the
MAP estimate solves:

arg max
µ

∑
i,j

Ci,j log(Φ(µi − µj))−
∑
i

µ2
i

2

subject to
∑
i

µi = 0.

(16)

This choice of prior acts as a ridge regularization on the scale values [5], and is still a convex optimization.

4.4 Advantages of Maximum Likelihood Estimation

Maximum likelihood estimation is an optimal approach to estimation problems in the sense that it produces
the solution that is most likely. Additionally, this maximum likelihood solution does not suffer from the
0/1 problem of the least squares methods because the maximum likelihood method does not use the inverse
CDF. The 0 entries in the count matrix do not contribute to the likelihood and µi are constrained by the
other terms in the log-likelihood to keep them from being driven to ∞.

5 Expected Quality Scale Difference

Instead of using the maximum likelihood quality difference, one can estimate the quality difference to be
the expected quality difference where the expectation is taken with respect to the likelihood (or with respect
to the posterior mean if there is a prior). On average, we expect this solution to perform better since this
approach uses the full likelihood information rather than just the maximum of the likelihood.

5.1 Expected Quality Estimate

Consider the two option case. Treat the unknown quality score difference as a random variable U . The
likelihood P (a, b|U = u) is the probability of observing a people preferring option A, and b people preferring
option B, as given in (13).

P (a, b|U = u) =

(
a+ b

a

)
P (A > B|U = u)a P (B > A|U = u)b.

Using Bayes rule, the posterior can be written in terms of the likelihood as

P (U = u|a, b) =
P (a, b|U = u)P (U = u)

P (a, b)
.

P (U = u|a, b) =
1

γ
P (A > B|U = u)a P (B > A|U = u)b P (U = u)

=
1

γ
Φ(u)a (1− Φ(u))b P (U = u),

UWEETR-2011-0004 9



where γ is a normalizer constant,3

γ =

∫ ∞
∞

Φ(u)a (1− Φ(u))b P (U = u)du.

If we assume a uniform prior for P (U = u) over the range [−t, t], then the expected quality scale difference
U is

E[U |a, b] =
1

2tγ

∫ t

−t
uΦ(u)a(1− Φ(u))b du. (17)

Alternatively, we could assume a Gaussian prior for P (U = u). Using the standard normal, the expected
quality scale difference U is

E[U |a, b] =
1

γ

∫ ∞
−∞

uΦ(u)a(1− Φ(u))b φ(u)du (18)

=
1

γ

∫ 1

0

Φ−1(p) pa(1− p)b dp.

5.2 Computation of Expected Quality Estimate

Unfortunately, no closed form solution exists, so the integral and the normalizer constant must be numerically
computed. Numerical integration is slow, and may be prone to precision errors depending on the method of
integration. Matlab may be used to attempt to approximate the integral (trapz, quad, quadgk), but Matlab
is limited to machine precision (32 or 64 bits) and may not evaluate the integral accurately enough. (Matlab
may return 0 when the actual solution should be a very small non-zero number). Mathematica has more
sophisticated numerical integration routines and arbitrary precision calculations. Maple may also be used.

5.3 Bayesian Estimation of Preference Probability

In the previous section, we considered the quality difference, U , to be a random variable, and estimated it
by taking its expectation. In this section, we instead consider the probability that option i is chosen over
option j to be a random variable, Xi,j . We consider the result of performing Bayesian estimation, and the
relation to priors and smoothing.

The count data is generated from a binomial distribution where the parameter xi,j , is an observation of
Xi,j :

P (Ci,j , Cj,i|xi,j) ∼ Binom(Ci,j + Cj,i |xi,j)
∝ xi,jCi,j (1− xi,j)Cj,i

After observing the data C and assuming a uniform prior probability on xi,j , the posterior probability of
xi,j has a beta distribution with parameters C + 1:

P (xi,j |Ci,j , Cj,i) ∝ xi,jCi,j (1− xi,j)Cj,i

∼ Beta(xi,j |Ci,j + 1, Cj,i + 1). (19)

The maximum a posteriori estimate of xi,j is x̂i,j =
Ci,j

Ci,j + Cj,i
(the mode of the beta distribution (19)).

Then calculate the quality scale difference by setting x̂i,j = Φ(ui − uj) and inverting, which results in
Thurstone’s law:

ui − uj = Φ−1
(

Ci,j
Ci,j + Cj,i

)
.

3Although at first glance P (u|a, b) looks similar to a beta distribution, it is parameterized by u, instead of p = Φ(u), so it
is not the same. The normalizer must be calculated numerically.
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Figure 5: Results of one trial comparing five options with true qualities (−.5,−.25, 0, .25, .5). Plot compares
estimates from least-squares estimate assuming the Thurstone model (“LS”), the maximum likelihood es-
timate assuming the Thurstone model (“ML”, “MAP”), and the least-squares estimate assuming the BTL
model (“LS (BTL model)”).

Next, instead of estimating xi,j by its mode, consider estimating xi,j by its mean E[Xi,j ] =
Ci,j + 1

Ci,j + Cj,i + 2
.

Then the resulting estimate of the quality scale difference is

ui − uj = Φ−1
(

Ci,j + 1

Ci,j + Cj,i + 2

)
.

This result is equivalent to the Thurstone’s law estimate if one puts a prior of 1 on all the counts, meaning
that a priori you believe that all of the choices are possible. This may also be interpreted as Laplace
smoothing the count data.

6 Illustrative Experiments

We illustrate the different estimation approaches with some simulations. We make n quality observations
for each of pair of m options (simulating surveying n people for their preferences about all possible pairs of
m options). We first generate the true means µ1, µ2, ..., µm for the m quality score distributions. Then, for
each pairwise comparison for each person, the perceived quality scores for the ith option are drawn IID from
N (µi, σ

2 = 1
2 ) as in Thurstone’s Case V. The count data is collected, and µ̂ is estimated from the data.

Fig. 5 illustrates the results of one run of the simulation, with n = 50 people surveyed about all pairs
of m = 5 options. The true mean values are marked on top, and are at (−.5,−.25, 0, .25, .5). The mean
quality estimates are shown on the next rows for the least-squares estimate assuming the Thurstone model,
the maximum likelihood estimate assuming the Thurstone model, and the least-squares estimate assuming
the BTL model.

Fig. 6 shows results for a single pair of options (m = 2), averaged over 10,000 runs of the simulation for
varying true quality-differences. If the true quality difference (shown on the x-axis) is large, then the 0/1
problem occurs (see Sec. 3.2), and the Thurstone’s Law estimate given by (3) is that the quality difference
is “infinite.” For this case of m = 2 options, recall that (3) is also the maximum likelihood estimate. The
green line is the maximum likelihood estimate given a prior of 1 count to both options (this could also be
called a maximum a posterior estimate). This is always well-defined and performs better than Thurstone’s
Law for all quality differences. The red line shows the mean quality estimate as given by (17). This is a
more robust estimate, and as shown in Fig. 6, will perform better than the maximum likelihood with prior
when the true quality difference is large, but may perform worse when the true quality difference is small.

Fig. 7 shows the simulation results when there are m = 10 options. These results were averaged over
1000 runs of the simulation. For each run, the true mean quality of each of the ten options was chosen
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-- Thurstone's Law
-- Mean Quality
-- Maximum Likelihood

 with Prior

Figure 6: Result of 10,000 trials with two options. In each trial 25 people judge the paired comparison. The
mean quality of option A is fixed at 0, and the mean quality of option B is varied along the x axis.

uniformly on [−x, x].
Fig. 7 compares the Bradley-Terry model (labelled “BTL”) with the Thurstone model (all results not

labelled “BTL”). We also compare the different methods of solving the 0/1 problem (Section 3.2): the least
squares methods (“LS”) where any 0/1 proportions were“fixed” according to (12) (denoted by “0/1 fix”),
Morrissey and Gulliksen’s incomplete matrix solution [8, 4] (denoted by “incomplete”), maximum likelihood
(“ML”), and the maximum a posteriori estimate where the prior is independently and identically a standard
normal on each of the quality scores (“MAP”, from (16)). We show two different metrics in Fig. 7:
Interval Mean Squared Error: the average squared error in the quality scale difference for each option
pair.

Si,j = µi − µj = ground truth quality difference

S∗i,j = µ∗i − µ∗j = estimated quality difference

Interval MSE =
∑
i6=j

(Si,j − S∗i,j)2

m(m− 1)
.

Probability Mean Squared Error: the average squared error in the estimated choice probability for each
option pair.

Pi,j = P (Qi > Qj) = Φ(µi − µj) = ground truth choice probability

P ∗i,j = Φ(µ∗i − µ∗j ) = estimated choice probability

Choice Probability MSE =
∑
i6=j

(Pi,j − P ∗i,j)2

m(m− 1)
.

When the true qualities are close together, the BTL logistic model performs slightly better than the
Thurstone-Mosteller Gaussian model because the logistic CDF has a steeper slope when the probability is
1
2 so it estimates slightly lower values. The least squares methods perform worse as the true means become
more separated, but the maximum likelihood methods perform better.
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Figure 7: Result of 1,000 trials comparing ten options. In each trial 25 people judge each paired comparison.

7 Summary

Fitting Thurstone’s model or the BTL model to paired comparison data can be a useful tool to analyze the
relative qualities of a set of options. Various estimation methods can be used to fit each model. If the true
quality differences are believed to be separated by at least a standard deviation, then we suggest using the
maximum a posteriori estimate is advantageous because we have seen it consistently produce good results,
it is an optimal approach to estimation, the data does not need to be modified to avoid 0/1 problems, and
it can be solved efficiently as a convex optimization problem.
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8 Appendix

The maximum likelihood solution (15) is equivalent to solving for the µij = µi − µj that solves

arg max
∀µij

∑
i,j

Ci,j log(Φ(µij))

subject to µij + µjk = µik ∀ i, j, k ∈ {1, ...,m}

The likelihood
∑
i,j Ci,j log(Φ(µij)) is concave if Φ is a log-concave function, since log(Φ(x)) would be concave

and concavity is preserved under addition and positive scaling.

Definition. Log-concave. A function f : Rn → R is log-concave if f(x) > 0 and g(x) = log(f(x)) is concave
(or equivalently if h(x) = − log(f(x)) is convex).

Proof. Use the fact that log-concavity is closed under convolution. Since the Gaussian PDF is log-concave

(the second derivative of its log is d2

dx2 log φ(x) = −1), and the CDF is the convolution of the Gaussian PDF
with the unit step function (which is also log-concave).

The concavity of the Gaussian CDF may alternatively be proved because the CDF of a differentiable
log-concave probability density is log-concave. The Gaussian is a differentiable log-concave density function,
so the CDF of a Gaussian is log-concave.

Corollary 1. f(x) is log-concave iff f(x) > 0 and (f ′(x))2 ≥ f ′′(x)f(x)

This follows from the condition that h(x) = − log(f(x)) is convex iff the second derivative of h(x) is
greater than or equal to zero.

Lemma 1. The cumulative distribution function of a log-concave differentiable probability density is log-
concave.4

Proof. Let g(t) = exp(−h(t)) be a differentiable log-concave probability density function and let the cumu-
lative distribution be

f(x) =

∫ x

−∞
g(t) dt =

∫ x

−∞
e−h(t) dt.

We prove that f is log-concave by showing that f satisfies corollary 1.
The derivatives are

f ′(x) = g(x) = e−h(x)

f ′′(x) = g′(x) = −h′(x)e−h(x) = −h′(x)g(x).

For h′(x) ≥ 0, since f(x) > 0 and g(x) > 0,

f(x)f ′′(x) = −f(x)h′(x)g(x) ≤ 0

(f ′(x))2 = g(x)2 > 0.

Therefore, Corollary 1 holds.
To show Corollary 1 holds for h′(x) < 0, we note that since h is convex,

h(t) ≥ h(x) + h′(x)(t− x).

4This lemma appears in Boyd and Vandenberghe’s Convex Optimization [1], as exercise 3.55.
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Taking the negative, exponent and integrating both sides,∫ x

−∞
e−h(t) dt ≤

∫ x

−∞
e−h(x)−h

′(x)(t−x) dt

= e−h(x)+xh
′(x)

∫ x

−∞
e−th

′(x) dt

= e−h(x)+xh
′(x) e

−xh′(x)

−h′(x)

=
e−h(x)

−h′(x)
.

Multiplying both sides by −h′(x)e−h(x),

−h′(x)e−h(x)
∫ x

−∞
e−h(t) dt ≤ e−2h(x)

f ′′(x)f(x) ≤ (f ′(x))2.

9 Code

1 function q = thurstone(a,b)
2 % This function returns the estimate in the difference of the means
3 % according to Thurstone's law of comparative judgment (Case V).
4 % Each quality distribution is assumed to have variance = 1/2
5 % so that the variance of the difference of any two quality
6 % random variables is 1.
7 %
8 % Usage:
9 % q = thurstone(a,b)

10 % Input integers a and b representing the number of times
11 % object a or b was preferred.
12 % Example: q = thurstone(2, 3);
13 %
14 % q = thurstone(v)
15 % Input vector v is the counts for the number of times that
16 % v(1) or v(2) was preferred. Only supported for vectors of length 2.
17 % Example: q = thurstone([2 3]);
18 % This gives the same result as the example for thurstone(2, 3)
19 % above.
20 %
21 % q = thurstone(p)
22 % Input can also be a scalar, p for the proportion of times
23 % that C1 was chosen over C2.
24 % Example: q = thurstone(0.4);
25 % This gives the same result as the example for vector C above.
26 %
27 % q is the estimated difference in the means of C(1) − C(2)
28 %
29 % S = thurstone(C)
30 % C is a square matrix of counts, where
31 % C(i,j) = # times option i was preferred over option j
32 % and it is assumed that
33 % C(i,j) + C(j,i) = number of times that option i was judged against j.
34 % Note that diag(q) = 0 since comparing any 2 same options
35 % should result in a 50−50% chance of chosing each option.
36 % Example: S = thurstone([0 3; 2 0]);
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37 % S(1,2) should be equal to the above examples.
38 % S(2,1) should be equal to the negative of the above examples.
39 % Generally S == −S'.
40

41 %=======
42 % Kristi Tsukida <kristi.tsukida@gmail.com>
43 % Created Jan 11, 2010
44 % Last Updated Mar 3, 2010
45 % added matrix input
46 %=======
47

48 % Input checks
49 if nargin > 1
50 assert(isnumeric(a), 'a must be numeric');
51 assert(isnumeric(b), 'b must be numeric');
52 assert(isscalar(a), 'a must be a scalar');
53 assert(isscalar(b), 'b must be a scalar');
54 assert(¬isnan(a), 'a cannot be NaN');
55 assert(¬isnan(b), 'b cannot be NaN');
56 assert(a>0, 'a must be positive');
57 assert(b>0, 'b must be positive');
58

59 p=a/(a+b);
60 elseif isscalar(a)
61 p=a;
62 assert(isnumeric(p), 'p must be numeric');
63 assert(¬isnan(p), 'p cannot be NaN');
64 assert(p≥0, 'p must be positive');
65 assert(p≤1, 'p must be less than 1');
66 elseif isvector(a)
67 v=a;
68 %assert(length(v)==2, 'function not defined for vector v longer than 2');
69 assert(isnumeric(v), 'v must be numeric');
70 assert(all(v≥0), 'counts in v must be positive');
71 assert(sum(v)>0, 'counts in v must have positive sum');
72 % vector v
73 if(length(v)==2)
74 p = v(1) ./ sum(v);
75 else
76 assert(all(v≤1), 'probabilities in v must be less than 1');
77 p = v;
78 end
79

80 else % matrix input
81 C=a;
82 assert(isnumeric(C), 'C must be numeric');
83 assert(all(C(:)≥0), 'counts in C must be positive');
84 assert(sum(C(:))>0, 'counts in C must have positive sum');
85 assert(size(C,1)==size(C,2), 'C must be a square matrix');
86

87 N = C + C';
88 % matrix of probabilities
89 % (norminv handles matrices of probabilities)
90 p = C ./ N;
91 % fix p so that q ends up with zeros on the diagonal.
92 p(speye(size(p))>0) = 0.5;
93 end
94

95 % Assuming independence, and each quality RV has variance = 1/2,
96 % the variance of C1 − C2 is 1
97 sigma = 1;
98 % Calculate q
99 q = norminv(p, 0, sigma);

100 % same as q = norminv(p, 0, 1)*sigma;
101 % norminv(p, 0, 1) is the zscore of p

UWEETR-2011-0004 16



1 function S = scale ls(counts, threshold)
2 % Use the least squares complete matrix solution
3 % (Thurstone, Mosteller) to
4 % scale a paired comparison experiment using
5 % Thurstone's case V model (assuming sigmaˆ2 = 0.5 for each
6 % quality's distribution)
7 %
8 % counts is a n−by−n matrix where
9 % counts(i,j) = # people who prefer option i over option j

10 % S is a length n vector of scale values
11

12 if nargin < 2
13 threshold = 2;
14 end
15

16 [m,mm] = size(counts);
17 assert(m == mm, 'counts must be a square matrix');
18

19 % Empirical probabilities
20 P = counts ./ (counts + counts');
21 P(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5
22

23 Z = norminv(P);
24 S = sum(Z,1)' / m;

1 function S = scale gulliksen(counts, threshold)
2 % Use the Morrisey−Gulliksen incomplete matrix solution to
3 % scale a paired comparison experiment using
4 % Thurstone's case V model (assuming sigmaˆ2 = 0.5 for each
5 % quality's distribution)
6 %
7 % (This code follows Gulliksen's formulation given in Engeldrum's
8 % Psychometric Scaling book)
9 %

10 % counts is a n−by−n matrix where
11 % counts(i,j) = # people who prefer option i over option j
12 % S is a length n vector of scale values
13 % Scale values are set up to have mean of 0
14

15 if nargin < 2
16 % default threshold on scale difference
17 threshold = 2;
18 end
19

20 [m,mm] = size(counts);
21 assert(m == mm, 'counts must be a square matrix');
22

23 % Empirical probabilities
24 P = counts ./ (counts + counts');
25 P(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5
26

27 % Thurstone's law estimates of each pairwise quality difference
28 % (norminv calculates the z−scores or z−value)
29 % ! entries in Z could end up NaN
30 Z = norminv(P);
31

32 M = double(abs(Z) > threshold); % 1 where |Z(i,j) | > 2, 0 otherwise
33 M(eye(m)>0) = m − sum(M); % set the diagonal values
34

35 d = sum(Z, 2); % = # of valid comparisons + 1
36

37 S = M \ d; % = inv(M) * d;

UWEETR-2011-0004 17



1 function S = scale ml(counts, threshold)
2 % Use cvx to compute maximum likelihood scale values
3

4 if nargin < 2
5 % default threshold on scale difference
6 threshold = 2;
7 end
8

9 [m,mm] = size(counts);
10 assert(m == mm, 'counts must be a square matrix');
11

12 previous quiet = cvx quiet(1);
13 cvx begin
14 variables S(m,1) t;
15 U = repmat(S,1,m);
16 ∆ = U − U'; % ∆(i,j) = S(i) − S(j)
17

18 minimize( t );
19 subject to
20 −sum(sum(counts.*log normcdf(∆))) ≤ t
21 sum(S)==0
22 cvx end
23 cvx quiet(previous quiet);
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