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ABSTRACT
Today’s infrastructure as a service (IaaS) cloud environ-
ments rely upon full trust in the provider to secure appli-
cations and data. Cloud providers do not offer the ability
to create hardware-rooted cryptographic identities for IaaS
cloud resources or sufficient information to verify the in-
tegrity of systems. Trusted computing protocols and hard-
ware like the TPM have long promised a solution to this
problem. However, these technologies have not seen broad
adoption because of their complexity of implementation, low
performance, and lack of compatibility with virtualized en-
vironments. In this paper we introduce a scalable trusted
cloud key management system called keylime. Our sys-
tem provides an end-to-end solution for both bootstrap-
ping hardware rooted cryptographic identities for IaaS nodes
and for system integrity monitoring of those nodes via pe-
riodic attestation. We can support these functions in both
bare-metal and virtualized IaaS environments using a virtual
TPM. keylime provides a clean interface that allows higher
level security services like disk/network network encryption
or configuration management to leverage trusted comput-
ing without themselves being trusted computing aware. We
show that our bootstrapping protocol adds about 2 seconds
latency to IaaS node instantiation, we can detect system in-
tegrity violations in as little as 110ms, and that keylime can
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scale to thousands of simultaneous cloud nodes.

1. INTRODUCTION
The proliferation and popularity of infrastructure-as-a-

service (IaaS) cloud computing services such as Amazon
Web Services and Google Compute Engine means more cloud
tenants are hosting sensitive, private, and business critical
data and applications in the cloud. Unfortunately, IaaS
cloud service providers do not currently furnish the build-
ing blocks necessary to establish a trusted environment for
hosting these sensitive resources. Tenants have limited abil-
ity to verify the underlying platform when they deploy to
the cloud and to ensure that the platform remains in a good
state for the duration of their computation. Additionally,
current practices restrict tenants’ ability to establish unique,
unforgeable identities for individual nodes that are tied to a
hardware root of trust. Often, identity is based solely on a
software-based cryptographic solution or unverifiable trust
in the provider. For example, tenants often pass unprotected
secrets to their IaaS nodes via the cloud provider.

Commodity trusted hardware, like the Trusted Platform
Module (TPM) [39], has long been proposed as the solution
for bootstrapping trust, enabling the detection of changes to
system state that might indicate compromise, and establish-
ing cryptographic identities. Unfortunately, TPMs have not
been widely deployed in IaaS cloud environments due to a
variety of challenges. First, the TPM and related standards
for its use are complex and difficult to implement. Second,
since the TPM is a cryptographic co-processor and not an
accelerator, it can introduce substantial performance bottle-
necks (e.g., 500+ms to generate a single digital signature).
Lastly, the TPM is a physical device by design and most IaaS
services rely upon virtualization which purposefully divorces
cloud nodes from the hardware on which they run. At best,
the limitation to physical platforms means that only the
cloud provider would have access to the trusted hardware,
not the tenants [17, 20, 31]. The Xen hypervisor includes
a virtualized TPM implementation that links its security to
a physical TPM [2, 10], but protocols to make use of the
vTPM in an IaaS environment do not exist.

To address these challenges we identify the following de-
sirable features of an IaaS trusted computing system:

• Secure Bootstrapping – the system should enable
the tenant to securely install an initial root secret into
each cloud node. This is typically the node’s long term
cryptographic identity and the tenant chains other se-
crets to it to enable secure services.



• System Integrity Monitoring – the system should
allow the tenant to monitor cloud nodes as they oper-
ate and react to integrity deviations within one second.

• Secure Layering (Virtualization Support) – the
system should support tenant controlled bootstrapping
and integrity monitoring in a VM using a TPM in the
provider’s infrastructure. This must be done in collab-
oration with the provider in least privilege manner.

• Compatibility – the system should allow the ten-
ant to leverage hardware-rooted cryptographic keys in
software to secure services they already use (e.g., disk
encryption or configuration management).

• Scalability – the system should scale to support boot-
strapping and monitoring of thousands of IaaS resources
as they are elastically instantiated and terminated.

Prior cloud trusted computing solutions address a subset
of these features, but none achieve all. Excalibur [31] sup-
ports bootstrapping at scale, but does not allow for system
integrity monitoring or offer full support for tenant trusted
computing inside a VM (i.e., layering). Manferdelli et al.
created a system that supports secure layering and boot-
strapping, but does not support system integrity monitor-
ing, is incompatible with existing cryptographic services,
and has not demonstrated cloud scale operation [25]. Fi-
nally, the Cloud Verifier [34] enables system integrity mea-
surement and cloud scalability but does not fully address
secure layering or enable secure bootstrapping.

In this paper, we introduce keylime; an end-to-end IaaS
trusted cloud key management service that supports all the
above desired features. The key insight of our work is to
utilize trusted computing to bootstrap identity in the cloud
and provide integrity measurement to support revocation,
but then allow high-level services that leverage these iden-
tities to operate independently. Thus, we provide a clean
and easy to use interface that can integrate with existing
security technologies (see Figure 1).

We introduce a novel bootstrap key derivation protocol
that combines both tenant intent and integrity measurement
to install secrets into cloud nodes. We then leverage the
Cloud Verifier [34] pattern of Schiffman et al. to enable pe-
riodic attestation that automatically links to identity revo-
cation. keylime supports the above with secure layering in
both bare-metal and virtualized IaaS resources in a manner
that minimizes trust in the cloud provider. We demonstrate
the compatibility of keylime by securely enabling cloud pro-
visioning with cloud-init1, encrypted communication with
IPsec, configuration management with Puppet2, secret man-
agement with Vault3, and storage with LUKS/dm-crypt en-
crypted disks. Unlike existing solutions [38, 25], these ser-
vices don’t need to be trusted computing aware, they just
need to use an identity key and respond to key revocations.

Finally, we show that keylime can scale to handle thou-
sands of simultaneous nodes and perform integrity checks
on nodes at rates up to 2,500 integrity reports (quotes) ver-
ified per second. We present and evaluate multiple options
for deploying our integrity measurement verifier both in the
cloud, in a low-cost cloud appliance based on a Raspberry

1http://launchpad.net/cloud-init
2http://puppetlabs.com/
3http://hashicorp.com/blog/vault.html
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Figure 1: Interface between trusted hardware and
existing software-based security services via the
keylime trusted computing service layer.

Pi, and on-premises. We show that the overhead of secure
provisioning imposes approximately 2s overhead on creat-
ing new VMs. Finally, we find that our system can detect
integrity measurement violations in as little as 110ms.

2. BACKGROUND
Trusted Computing The TPM provides the means for
creating trusted systems that are amenable to system in-
tegrity monitoring. The TPM, as specified by the Trusted
Computing Group (TCG)4, is a cryptographic co-processor
that provides key generation, protected storage, and crypto-
graphic operations. The protected storage includes a set of
Platform Configuration Registers (PCRs) where the TPM
stores hashes. The TPM uses these registers to store mea-
surements of integrity-relevant components in the system.

To store a new measurement in a PCR, the extend op-
eration concatenates the existing PCR value with the new
measurement, SHA-1 hashes that value, and stores the re-
sulting hash in the register. This hash chain allows a veri-
fier to confirm that a set of measurements reported by the
system has not been altered. This report of measurements
is called an attestation, and relies on the quote operation,
which accepts a nonce5 and a set of PCRs. This attesta-
tion can include measurements of the BIOS, firmware, boot
loader, hypervisor, OS, and applications, depending on the
configuration of the system. The TPM reads the PCR val-
ues, and then signs the nonce and PCRs with a key that is
only accessible by the TPM. The key the TPM uses to sign
quotes is called an attestation identity key (AIK).

The TPM contains a key hierarchy for securely storing
cryptographic keys. The root of this hierarchy is the Storage
Root Key (SRK) which the owner generates during TPM ini-
tialization. The SRK in turn protects the TPM AIK(s) when
they are stored outside of the TPM’s nonvolatile storage
(NVRAM). Each TPM also contains a permanent credential
called the Endorsement Key (EK). The TPM manufacturer
generates and signs the EK. The EK uniquely identifies each
TPM and certifies that it is a valid TPM hardware device.
The private EK never leaves the TPM, is never erased, and
can only be used for encryption and decryption during AIK
initialization to limit its exposure.
Integrity Measurement To measure a system component,

4http://trustedcomputinggroup.org
5The quote takes in a field called externalData which can
be any arbitrary value that should be signed along with the
PCR values in the quote. While this is typically a nonce to
demonstrate freshness, the externalData can also be hashed
with other data that should be bound to the quote.



the underlying component must be trusted computing-aware.
The BIOS in systems with a TPM supports measurement of
firmware and boot loaders. TPM-aware boot loaders can
measure hypervisors and operating systems [22, 19, 29]. To
measure applications, the operating system must support
measurement of applications that are launched, such as the
Linux Integrity Measurement Architecture [30, 21]. One
limitation of approaches like IMA is the inability to mon-
itor the run-time state of the applications. Nexus aims to
address this limitation with a new OS that makes trusted
computing a first-class citizen, and supports introspection
to validate run-time state [36]. Several proposals exist for
providing run-time integrity monitoring including LKIM [24]
and DynIMA [8]. These systems ensure that a running sys-
tem is in a known state, allowing a verifier to validate not
only that what was loaded was known, but that it has not
been tampered with while it was running.

In addition to operating system validation, others have
leveraged trusted computing and integrity measurement to
support higher-level services, such as protected access to
data when the client is offline [23], or to enforce access
policies on data [26]. Others have proposed mechanisms
to protect the server from malicious clients, e.g., in online
gaming [1], or applications from a malicious operating sys-
tem [6, 7, 15]. However, these proposals do not account for
the challenges of migrating applications to a cloud environ-
ment, and often assume existing infrastructure to support
trusted computing key management.
IaaS Cloud Services In the IaaS cloud service model, users
request an individual compute resource to execute their ap-
plication. For example, users can provision physical hard-
ware, virtual machines, or containers. In this paper, we
refer to any of these tenant-provisioned IaaS resources as
cloud nodes. Users provision nodes either by uploading a
whole image to the provider or by configuring a pared-down
base image that the provider makes available. Users often
begin by customizing a provider-supplied image, then create
their own images (using a tool like Packer6) to decrease the
amount of time it takes for a node to become ready.
cloud-init is a standard mechanism across cloud providers

(e.g., Amazon EC2, Microsoft Azure...) that allows cloud
tenants to specify bootstrapping information. It accepts
a YAML-formatted description of what bootstrapping ac-
tions should be taken and supports plugins to take those
actions. Examples of such actions include: adding users,
adding package repositories, or running arbitrary scripts.
Users of cloud computing resources at scale typically spawn
new cloud instances using an application programming in-
terface and pass along enough bootstrapping information
to allow the instance to communicate with a configuration
management platform (such as Chef7 or Puppet, etc.) for
further application/instance-specific configuration. These
bootstrapping instructions are not encrypted, meaning that
a provider could intercept secrets passed via the bootstrap-
ping instructions. In our research, we found that organi-
zations will either (a) send an unprotected pre-shared key
for Puppet in their cloud-init bootstrapping actions, or
(b) rely on some weaker method of proving identity such as
going off the certificate’s common name (hostname).

6https://www.packer.io/
7https://www.chef.io/chef/
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Figure 2: Physical node registration protocol.

3. DESIGN
To address the limitations of current approaches, we con-

sider the union of trusted computing and IaaS to provide
a hardware root-of-trust that tenants leverage to establish
trust in the cloud provider’s infrastructure and in their own
systems running on that infrastructure. This section consid-
ers the threats that keylime addresses, and how to leverage
existing trusted computing constructs in a virtualized envi-
ronment while limiting complexity and overhead.

3.1 Threat Model
Our goal is to minimize trust in the cloud provider and

carefully account for all concessions we must make to enable
trusted computing services. We assume the cloud provider is
semitrusted, i.e., they are organizationally trustworthy but
are still susceptible to compromise or malicious insiders. We
assume the cloud provider has processes, technical controls,
and policy in place to limit the impact of such compromise
from spreading across their entire infrastructure. Thus, in
the semitrusted model, we assume that some fraction of the
cloud provider’s resources may be under the control of the
adversary (e.g., a rogue system administrator may control a
subset of racks in an IaaS region).

Specifically, we assume that the adversary can monitor
or manipulate compromised portions of the cloud network
or storage arbitrarily. We assume that the adversary may
not physically tamper with any hypervisor host’s CPU, bus,
memory, or TPM8. We further assume that the provider
does not deploy a hypervisor with the capability to spy
on tenant VM memory (e.g., Ether [9]). We assume that
TPM and system manufacturers have created the appropri-
ate endorsement credentials and have some mechanism to
test their validity (i.e., signed certificates)

Finally, we assume that the attacker’s goal is to obtain
persistent access to a tenant system in order to steal, dis-
rupt, or deny the tenant’s data and services. To accomplish
persistence the attacker must modify the code loading or
running process. We assume that such modifications would
be detected by load-time integrity measurement of the hy-
pervisor or kernel [19], runtime integrity measurement of the
kernel [24], and integrity measurement of applications [30].

3.2 Architecture
To introduce the architecture of keylime we first describe

a simplified architecture for managing trusted computing
services for a single organization, or cloud tenant, without
virtualization. We then expand this simplified architecture
into the full keylime architecture, providing extensions that
allow layering of provider and tenant trusted computing ser-

8This is similar to the threat model assumed by the TPM,
where physical protections are not a strict requirement to
be compliant with the specification.



vices and supporting multiple varieties of IaaS execution
isolation (i.e., bare metal, virtual machines, or containers).
Figure 3 depicts the full system architecture with layering.

The first step in bootstrapping the architecture is to create
a tenant-specific registrar. The registrar stores and certifies
the public AIKs of the TPMs in the tenant’s infrastructure.
In the simplified architecture, the tenant registrar can be
hosted outside the cloud in the tenant’s own infrastructure
or could be hosted on a physical system in the cloud. The
registrar is only a trust root and does not store any tenant
secrets, so the tenant can decide to trust the registrar only
after it attests its system integrity.

To create a registrar, we can leverage existing standards
for the creation and validation of AIKs and credentials by
creating a TCG Privacy CA [37]. To avoid the complex-
ity of managing a complex PKI, we also created a registrar
that simply stores valid TPM AIK public keys indexed by
node UUID. Clients request public AIKs from the registrar
through a server-authenticated TLS channel.

To validate the AIKs in the registrar, we developed a vari-
ant of the TCG privacy CA protocol that has the same
security guarantees (see Figure 2). The protocol begins
with the node passing its ID and standard TPM credentials
(EKpub, AIKpub) to the registrar. The registrar then checks
the validity of the TPM EK with the TPM manufacturer.
If valid, the registrar creates an ephemeral key Ke and en-
crypts it with the TPM EKpub. Importantly, the generation
and installation of the EK by the TPM manufacturer roots
the trust upon which the rest of our system relies. Since we
are not managing certificates or concerned with the privacy
of AIKs, we use an HMAC to prove that the node is able
to decrypt the ephemeral key Ke encrypted with the EK
using the TPM ActivateIdentity command. The registrar
then marks that AIK as being valid so that it can be used
to validate quotes.

The core component of keylime is an out of band cloud
verifier (CV) similar to the one described by Schiffman et
al. [34]. Each cloud organization will have at least one CV
that is responsible for verifying the system state of the orga-
nization’s IaaS resources. The tenant can host the CV in the
IaaS cloud or on-premises at their own site (we give options
for tenant registrar and CV deployment in Section 3.2.1).
The CV relies upon the tenant registrar for validating that
the AIKs used to sign TPM quotes are valid. The regis-
trar, CV, and the associated cloud node service are the only
components in keylime that manage and use keys and pub-
lic key infrastructures associated with the TPM.

The CV participates in a three party key derivation pro-
tocol (we describe in detail in Section 3.2.2) where the CV
and tenant cooperate to derive a key, Kb, at the cloud node
to support initial storage decryption. The tenant uses Kb to
protect tenant secrets and trust relationships. The tenant
can use this key to unlock either its disk image or to unlock
tenant-specific configuration provided by cloud-init.

This protocol is akin to the method by which a user can
use the TPM to decrypt his or her disk in a laptop. To allow
the decryption key to be used to boot the laptop, the user
must enter a password (demonstrating the user’s intent) and
TPM PCRs must match a set of whitelisted integrity mea-
surements (demonstrating the validity of the system that
will receive the encryption key). In an IaaS cloud environ-
ment, there is neither a trusted console where a user can
enter a password nor is there a way to pre-seed the TPM

with the storage key or measurement whitelist. Our pro-
tocol uses secret sharing to solve these problems by rely-
ing externally upon the CV for integrity measurement and
by having the tenant directly interact with the cloud node
to demonstrate intent to derive a key. The protocol then
extends beyond bootstrapping to enable continuous system
integrity monitoring. The CV periodically polls each cloud
node’s integrity state to determine if any runtime policies
have been violated. The frequency with which the CV re-
quests and verifies each node’s integrity state will define the
latency between an integrity violation and detection.

To cleanly link trust and integrity measurement rooted
in the TPM to higher-level services, we create a parallel
software-only PKI and a simple service to manage it. We
refer to this service as the software CA. To bootstrap this
service, we use the key derivation bootstrap protocol to cre-
ate a cloud node to host the service. Since the bootstrap
key derivation protocol ensures that the node can only de-
rive a key if the tenant authorizes it and if the node’s in-
tegrity state is approved, we can encrypt the private key for
the software CA and pass it to the node upon provisioning.
Once established, we can then start other cloud nodes and
securely pass them keys signed by this CA. The linkage to
the hardware root of trust, the secure bootstrapping of rele-
vant keys, and user intent to create new resources are again
ensured using the bootstrap key derivation protocol. Once
established, standard tools and services like IPsec or Pup-
pet can now directly use the software CA identity credentials
that each node now possesses.

To complete the linkage between the trusted computing
services and the software identity keys, we need a mechanism
to revoke keys in the software PKI when integrity violations
occur in the trusted computing layer. The CV is responsible
for notifying the software CA of these violations. The CV
includes metadata about the nature of the integrity viola-
tion, which allows the software CA to have a response policy.
The software CA supports standardized methods for certifi-
cate revocation like signed revocation lists or by hosting an
OCSP responder. To support push notifications of failures,
the software CA can also publish signed notifications to a
message bus. This way services that directly support revo-
cation actions can subscribe to notifications (e.g., to trigger
a re-key in a secret manager like Vault).

3.2.1 Layering Trust
We next expand this architecture to work across the layers

of virtualization common in today’s IaaS environments. Our
goal is to create the architecture described previously that
cleanly links common security services to a trusted comput-
ing layer in a cloud tenant’s environment. Thus, in a VM
hosting environment like Amazon AWS or OpenStack, we
aim to create trusted computing enabled software CAs and
tenant nodes inside of virtual machine instances. Note that,
in a bare-metal provisioning environment like IBM Softlayer,
HaaS [13], or OpenStack Ironic, we can directly utilize the
simplified architecture where there is no trust layering.

We observe that IaaS-based virtual machines or physical
hosts all provide a common abstraction of isolated execu-
tion. Each form of isolated execution in turn needs a root of
trust on which to build trusted computing services. Due to
the performance and resource limitations of typical TPMs
(e.g., taking 500 or more milliseconds to generate a quote,
and only supporting a fixed number of PCRs), direct multi-
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Figure 3: Layered keylime trusted computing architecture.

plexed use of the physical TPM will not scale to the numbers
of virtual machines that can be hosted on a single modern
system. As described by Berger et al. [2] and as implemented
in Xen [10], we utilize a virtualized implementation of the
TPM. Each VM has its own software TPM (called a vTPM)
whose trust is in turn rooted in the hardware TPM of the
hosting system. The vTPM is isolated from the guest that
use it, by running in a separate Xen domain.

The vTPM interface is the same as a hardware TPM.
The only exception to this, is that the client can request a
deep-quote that will get a quote from the hardware TPM in
addition to getting a quote from the vTPM. These quotes
are linked together by including a hash of the vTPM quote
and nonce in the hardware TPM quote. Deep quotes suffer
from the slow performance of hardware TPMs, but as we’ll
show in later this section, we can limit the use of deep quotes
while still maintaining reasonable performance and scale and
maintaining security guarantees.

To assure a chain of trust that is rooted in hardware, we
need the IaaS provider to replicate some of the trusted com-
puting service infrastructure in their environment and allow
the tenant trusted computing services to query it. Specifi-
cally, the provider must establish a registrar for their infras-
tructure, must publish an up-to-date signed list of the in-
tegrity measurements of their infrastructure, and may even
have their own CV. The tenant CV will interact with the
whitelist authority service and the provider’s registrar to
verify deep quotes collected by the infrastructure.

Despite the fact that most major IaaS providers run closed-
source hypervisors and would provide what amounts to opaque
integrity measurements [16], we find there is still value in
verifying the integrity of the provider’s services. By pro-
viding a known-good list of integrity measurements, the
provider is committing to a version of the hypervisor that
will be deployed widely across their infrastructure. This pre-
vents a targeted attack where the a single hypervisor is re-
placed with a malicious version designed to spy on the tenant
(e.g., the provider is coerced by a government to monitor a
specific cloud tenant). Thus, an attacker must subvert both
the code loading process on all the hypervisors and the pub-
lishing and signing process for known-good measurements.
In our semitrusted threat model, we assume the provider has
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Figure 4: Virtual node registration protocol.

controls and monitoring which limit the ability of a rogue
individual to accomplish this.

As in Section 3.2, we begin with the establishment of a
tenant registrar and cloud verifier. There are multiple op-
tions for hosting these services securely: 1) in a bare metal
IaaS instance with TPM, 2) on-tenant-premises in tenant-
owned hardware, 3) in a small trusted hardware appliance
deployed to the IaaS cloud provider, and 4) in an IaaS vir-
tual machine. The first three of these options rely upon
the architecture and protocols we’ve already discussed. The
last option requires the tenant to establish an on-tenant-
premises CV and use that to bootstrap the tenant registrar
and CV. This on-tenant-premises CV identifies and checks
the integrity of the tenant’s virtualized registrar and CV,
who then in turn are responsible for the rest of the tenant’s
virtualized infrastructure.

The primary motivations for a tenant choosing between
these options are the detection latency for integrity viola-
tions, scale of IaaS instances in their environment, band-
width between the tenant and the IaaS cloud, and cost. Op-
tion 1 provides maximum performance but at higher cost.
Option 2 will by limited by bandwidth and requires more
costs to maintain resources outside of the cloud. Option 3 is
a good trade-off between cost and performance for a small
cloud tenant with only tens of nodes or who can tolerate a
longer detection latency. Finally, Option 4 provides compat-
ibility with current cloud operations, good performance and
scalability, and low cost at the expense of increased complex-
ity. In Section 5, we examine the performance trade-offs of
these options including a low-cost registrar and CV appli-
ance (Option 3) we implemented on a Raspberry Pi.



Once we have created the tenant registrar and CV, we can
begin securely bootstrapping nodes into the environment.
As before, the first node to establish is a virtualized software
CA and we do this by creating a private signing key offline
and protecting it with a key that will be derived by the
bootstrap key derivation protocol. The following process
will be the same for all tenant cloud nodes. When a node
boots, it will get a vTPM from the IaaS provider.

We can enroll the vTPM into the tenant registrar by gen-
erating the appropriate vTPM credentials e.g., (EK, AIK)
and by requesting a deep quote bound to those creden-
tials from the hardware TPM on the host on which it runs
(see Figure 4). We denote a quote or deep quote using
QuoteAIK(externalData, [PCRs]) for a quote using AIK
from the TPM with the associated externalData and op-
tional PCR values included in the signed data. Upon re-
ceiveing the deep quote, the tenant registrar then asks the
provider registrar if the AIK from the deep quote is valid.
Finally, the tenant registrar will request the latest valid in-
tegrity measurements from the provider and check the PCRs
in the deep quote. Once enrolled, the node can use the
bootstrap key derivation protocol to unlock its private CA
signing key and begin operation.

When considering the cost of performing a deep quote,
the provider must carefully consider the additional latency
of the physical TPM. Deep quotes provide a link between
the vTPM and the physical TPM of the machine, and new
enrollments should always include deep quotes. When con-
sidering if deep quotes should be used as part of periodic
attestation, we must understand what trusted computing
infrastructure the provider has deployed. If the provider is
doing load time integrity only (e.g., secure boot), then deep
quotes will only reflect the one-time binding at boot between
the vTPM and the physical TPM and the security of the
vTPM infrastructure. If the provider has runtime integrity
checking of their infrastructure, there is value in the ten-
ant performing periodic attestation using deep quotes. In
the optimal deployment scenario, the provider can deploy
keylime and provide tenants with access to the integrity
state of the hypervisors that host tenant nodes. To limit
the impact of slow hardware TPM operations, the provider
can utilize techniques like batch attestation where multiple
deep quote requests from different vTPMs can be combined
into a single hardware TPM operation [28, 31].

3.2.2 Key Derivation Protocol
We now introduce the details of our bootstrap key deriva-

tion protocol (Figure 5). The goal of this protocol is for the
cloud tenant to obtain key agreement with a cloud node they
have provisioned in an IaaS system. The protocol relies upon
the CV to provide integrity measurement of the cloud node
during the protocol. The tenant also directly interacts with
the cloud node to demonstrate their intent to spawn that re-
source and allow it to decrypt sensitive contents. However,
the tenant does not directly perform integrity measurement.
This separation of duties is beneficial because the attesta-
tion protocols may operate in parallel and it simplifies de-
ployment by centralizing all integrity measurement, white
lists, and policy in the CV.

To begin the process, the tenant generates a fresh random
symmetric encryption key Kb. The cloud tenant uses AES-
GCM to encrypt the sensitive data to pass to the node d with
Kb, denoted EncKb(d). The tenant then performs trivial

secret sharing to split Kb into two parts U , which the tenant
will retain and pass directly to the cloud node and V , which
the tenant will share with the CV to provide to the node
upon successful verification of the node’s integrity state. To
obtain these shares the tenant generates a secure random
value V the same length as Kb and computes U = Kb ⊕ V .

In the next phase of the protocol, the tenant requests the
IaaS provider to instantiate a new resource (i.e., a new vir-
tual machine). The tenant sends EncKb(d) to the provider
as part of the resource creation. The data d may be configu-
ration meta-data like a cloud-init script9. Upon creation,
the provider returns a unique identifier for the node uuid
and an IP address at which the tenant can reach the node.

After obtaining the node uuid and IP address, the tenant
notifies the CV of their intent to boot a cloud node (see area
A in Figure 5). The tenant connects to the CV over a secure
channel, such as mutually authenticated TLS, and provides
v, uuid, node IP, and a TPM policy. The TPM policy speci-
fies a white list of acceptable PCR values to expect from the
TPM of the cloud node. At this point the CV and tenant
can begin the attestation protocol in parallel.

The attestation protocol of our scheme is shared between
the interactions of the CV and the cloud node (B) and that
of the tenant and the cloud node (C) with only minor dif-
ferences between them (Figure 5). The protocol consists
of two message volleys the first for the initiator (either CV
or tenant) to request a TPM quote and the second for the
initiator to provide a share of Kb to the cloud node upon
successful validation of the quote. Since we use this pro-
tocol to bootstrap keys into the system, there are no ex-
isting software keys with which we create secure channel.
Thus, this protocol must securely transmit a share of Kb

over an untrusted network. We accomplish this by creat-
ing an ephemeral asymmetric key pair on the node, denoted
NK, outside of the TPM10. We use a TPM quote to bind
this key to the identity of the TPM. We do so by including a
hash of NKpub along with the nonce in the extra data field
in the quote. The initiator can then encrypt its share of Kb

using NKpub and securely return it to the cloud node.
The differences in the attestation protocol between CV

and tenant arise in how each validates TPM quotes. Be-
cause we wish to centralize the adjudication of integrity
measurements to the CV, the TPM quote that the tenant
requests only verifies the identity of the cloud node’s TPM
and doesn’t include any PCR hashes. Since the tenant gen-
erates a fresh Kb for each cloud node, we are not concerned
with leaking U to a node with invalid integrity state. Fur-
thermore, because V is only one share of Kb, the CV cannot
be subverted to decrypt resources without user intent.

We now describe this protocol in detail. The initiator
first sends a fresh nonce (nt for the tenant and nCV for the
cloud verifier) to the cloud node along with a mask indicat-
ing which PCRs the cloud node should include in their quote.
The CV sets the mask based on TPM policy exchanged ear-

9Because Kb may not be re-used in our protocol, the cost
of re-encrypting large disk images for each node may be
prohibitive. We advocate for creating small sensitive data
packets like a cloud-init script, and then establish local
storage encryption with ephemeral keys.

10NK could also be generated and reside inside the TPM.
However, since it is ephemeral, is only used for transport
security and the quote binds it to the TPM, we found the
added complexity of also storing it in the TPM unneeded.



Tenant
 Cloud Veri0ier
 Node
 Registrar


ID, V, IP, port, whitelist


nCV, mask


QuoteAIK(H(nCV|NKpub),PCRs),NKpub


Valid AIK?


EncNK(V)


nt


QuoteAIK(SHA1(nt|NKpub)),NKpub


Valid AIK?


A


B


C


Mutual TLS 
Server TLS 
No TLS 

Legend	

EncNK(U),HMACKe(ID)

Figure 5: Three Party Bootstrap Key Derivation Protocol.

lier and the tenant creates an empty mask. The initiator
requests a quote from the TPM with the given policy. The
externalData of the quote is set to SHA1(n|NKpub). The
node then returns QuoteAIK(externalData, PCRs), NKpub

to the initiator. During the protocol to provide U , the ten-
ant also supplies HMACKb(ID) to the node. This provides
the node with a quick check to determine if Kb is correct.

The initiator then confirms that the AIK is valid according
to the tenant registrar over server authenticated TLS. If the
initiator is the CV, then it will also check the other PCRs
to ensure they are valid according to the tenant-specified
whitelist. If the node is virtual, then the quote to the CV
will also include a deep quote of the underlying hardware
TPM. The CV will in turn validate it as described in the
previous section. Upon successful verification, the initiator
can then return their share of Kb. Thus, the tenant sends
EncNK(U) and the cloud verifier sends EncNK(V ) to the
node. The cloud node can now recover Kb and proceed with
the boot/startup process.

The cloud node does not retain Kb or V after decryption
of d. To support node reboot or migration, the cloud node
stores U in the TPM NVRAM to avoid needing the tenant
to interact again. After rebooting, the node must again
request verification by the CV to obtain V and re-derive
Kb. If migration is allowed, the provider must take care to
also securely migrate vTPM state to avoid losing U .

4. IMPLEMENTATION
We implemented keylime in approximately 5,000 lines of

Python in four components: registrar, node, CV, and ten-
ant. We use the IBM Software Trusted Platform module
library [18] to directly interact with the TPM rather than
going through a Trusted Software Stack (TSS) like Trousers.
The registrar presents a REST-based web service for en-
rolling node AIKs. It also supports a query interface for
checking the keys for a given node UUID. The node com-
ponent runs on the IaaS machine, VM, or container and
is responsible for responding to requests for quotes and for
accepting shares of the bootstrap key Kb. It provides an un-
encrypted REST-based web service for these two functions.

To support vTPM operations, we created a service the
IaaS provider runs to manage hardware TPM activation and
vTPM creation/association. This service runs in a desig-
nated Xen domain and has privileges to interact with the
Xen vtpmmgr domain [11]. We then implemented a utility
for the deep quote operation. Since the Xen vTPM imple-
mentation does not directly return the PCR values from the
virtual TPM (i.e., the shallow quote) during a deep quote,
we chose to first execute a shallow quote, hash its contents,
and place them in the external data field of the deep quote.
This operation cryptographically binds them together. We
then return both the shallow and deep quotes and require
the verifier checks both signatures and sets of PCR values.

The cloud verifier hosts a TLS-protected REST-based web
service for control. Tenants add and remove nodes to be
verified and also query their current integrity state. Upon
being notified of a new node, the CV enqueues metadata
about the node onto the quote_request queue where a con-
figurable pool of worker processes will then request a deep
quote from the node. Upon successful verification of the
quote, the CV will use an HTTP POST to send V to the
node. The CV uses PKCS#1 OEAP and with RSA 2048
keys to protect shares of Kb in transit.

The tenant generates a random 256-bit AES key and en-
crypts and authenticates the bootstrap data using AES with
Galois Counter Mode [27]. The tenant uses trivial XOR-
based secret sharing to split Kb into V and U . The tenant
executes a simplified version of the same protocol that the
CV uses. The tenant checks with the registrar to determine
if the quote signing AIK is valid and owned by the tenant.

Upon receiving U and V , the node can then combine them
to derive Kb. To limit the impact of rogue CVs or tenants
connecting to the node’s unauthenticated REST interface,
the node stores all received U and V values and iteratively
tries each combination to find the correct Kb. Once the
node has correctly derived Kb, it mounts a small in-memory
file system using tmpfs and writes the key there for other
applications to access.

4.1 Integration



While the key derivation protocol of keylime is generic
and can be used to decrypt arbitrary data, we believe the
most natural cloud use-case for it is to decrypt a small IaaS
node-specific package of data. To enable this use-case we
have integrated keylime with the cloud-init package, the
combination we call trusted-cloud-init. As described in
Section 2, cloud-init is widely adopted mechanism to de-
ploy machine-specific data to IaaS resources. To integrate
keylime and cloud-init, we patched cloud-init to sup-
port AES-GCM decryption of the user-data (where cloud-

init stores tenant scripts and data). We modified the up-
start system in Ubuntu Linux to start the keylime node
service before cloud-init. We then configure cloud-init

to find the key that keylime creates in the tmpfs mounted
file system. After successful decryption, cloud-init can
delete the key and scrub it from memory.

To support applications that need node identities that do
not manage their own PKIs, we implemented a simple soft-
ware CA. The tenant provisions the software CA by creating
the CA private key offline and delivering it to a new node us-
ing trusted-cloud-init. We also deliver certificates to the
software CA that allow it and the tenant to mutually authen-
ticate each other via trusted-cloud-init. To demonstrate
the clean separation between the trusted computing layer
and the software key management layer, we use the ZMQ
Curve secure channel implementation [14]. This system use
elliptic curve cryptography and other techniques dissimilar
from the cryptographic algorithms, keys, and other tech-
niques in use at the trusted computing layer.

To enroll a new node, the tenant first generates a node
identity key pair using the software CA client. The soft-
ware CA supports a plugin architecture that allows the ten-
ant to specify what type of key pairs to create (e.g., X.509
RSA 2048). The tenant then connects securely to the soft-
ware CA over ZMQ and gets the node’s identity certificate
signed. The tenant can now provision a new node with this
identity using trusted-cloud-init. The software CA also
supports receiving notifications from the CV if a node later
fails integrity measurement.

To support transparent integration with an IaaS plat-
form, we patched OpenStack Nova and libvirt to support
the creation of companion vTPM Xen domains for each
user created instance. We link the OpenStack UUID to the
keylime provider registrar. We then implemented a wrap-
per for the OpenStack Nova command line interface that
enables trusted-cloud-init. Specifically, our wrapper in-
tercepts calls to nova boot and automatically encrypts the
provided user-data before passing it to OpenStack. It then
calls the keylime tenant, which begins the bootstrapping
protocol. This allows OpenStack users to transparently use
keylime and cloud-init without needing to fully trust the
OpenStack provider not to tamper or steal the sensitive con-
tents of their user-data.

4.2 Demonstration Applications
We next describe how keylime can securely bootstrap

and handle revocation for existing non-trusted computing-
aware applications and services common to IaaS cloud de-
ployments.

IPsec To enable secure network connectivity similar to
TNC [38], we implemented trusted-cloud-init scripts to
automatically encrypt all network traffic between a tenant’s
IaaS resources. The scripts use the OpenStack API for IP

address information and then build configurations for the
Linux IPsec stack and raccoon11.

Puppet To enable secure system configuration manage-
ment, we integrated keylime with Puppet We do so by gen-
erating the signed RSA keys that Puppet uses to communi-
cate with the Puppet master using the Software CA process
described previously. These steps bypass the need to either
use the insecure autosign option in the Puppet master to
blindly accept new nodes or to have an operator manually
approve/deny certificate signing requests from new nodes.
To support continuous attestation and integrity measure-
ment, we implemented a plug-in for the CV that notifies the
tenant’s Puppet master when a node fails its integrity mea-
surements. The master can then revoke that node’s access
to check-in and receive the latest configuration data.

Vault While tools like Puppet are often used to provi-
sion secrets and keys, tenant operators can instead use a
dedicated secret management system that supports the full
lifecycle of cryptographic keys directly. To demonstrate this,
we have integrated keylime with Vault, a cloud-compatible
secret manager. Like Puppet, we use the Software CA to
provision RSA certificates for each node and configure Vault
to use them. We also implemented a revocation plugin for
the CV that notifies Vault to both revoke access to a node
that fails integrity measurement and to re-generate and re-
distribute any keys to which that node had access.

LUKS Finally, to demonstrate our ability to provision
secrets instead of cryptographic identities, we implemented a
trusted-clout-init script that provides the key to unlock
an encrypted volume on boot.

5. EVALUATION
In this section we evaluate the overhead and scalability of

keylime in a variety of scenarios. We ran our experiments
on a private OpenStack cluster, a Xen host, and a Raspberry
Pi. In OpenStack, we used standard instance flavors where
the m1.small has 1 vCPU, 2GB RAM, and a 20GB disk,
and the m1.large has 4 vCPUs, 8GB RAM, an 80GB disk.
We used Ubuntu Linux 14.10 as the guest OS in OpenStack
instances. The Xen host had one Xeon E5-2640 CPU with
6 cores at 2.5Ghz, 10Gbit NIC, 64 GB RAM, a WinBond
TPM, and ran Xen 4.5 on Ubuntu Linux 15.04. The Rasp-
berry Pi 2 had one ARMv7 with 4-cores at 900Mhz, 1GB
RAM, 100Mbit NIC, and ran Raspbian 7. We ran each of
the following experiments for 1-2 minutes and present aver-
ages of the performance we observed.

5.1 TPM Operations
We first establish a baseline for the performance of TPM

operations with the IBM client library, our Python wrap-
per code, the Xen virtual TPM, and the physical TPM. We
benchmarked both TPM quote creation and verification on
the Xen host (Table 1). We collected the physical TPM mea-
surements on the same system with a standard (non-Xen)
kernel. We collected both vTPM quote and deep quote mea-
surements from a domain running on Xen. As expected, op-
erations that require interaction with the physical TPM are
slow. Verification times, even for deep quotes that include
two RSA signature verifications, are comparatively quick.

5.2 Key Derivation Protocol
11http://ipsec-tools.sourceforge.net/
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Table 1: Average TPM Operation Latency (ms).
TPM vTPM Deep quote

Create Quote 725 68.5 1395
Check Quote 4.64 4.64 5.33

We next investigate the CV latency of different phases
of our protocol. In Figures 6 and 7, we show the aver-
aged results of hundreds of trials of the CV with 100 vTPM
equipped VMs. Each operation includes a full REST in-
teraction along with the relevant TPM and cryptographic
operations. We also benchmarked the latency of the pro-
tocol phases emulating zero latency from the TPM (Null
TPM). This demonstrates the minimum latency of our CV
software architecture including the time required to verify
quotes. The results from the Null TPM trials indicate that
our network protocol and other processing impose very little
additional overhead, even on the relatively modestly pow-
ered Raspberry Pi. The bare metal system had a slightly
larger network RTT to the nodes it was verifying causing it
to have a higher latency than the less powerful m1.large.

In Figure 7, we see that latency for the quote retrieval
process is primarily affected by slow TPM operations and is
comparable to prior work [31]. The bootstrapping latency
is the sum of the latencies for retrieving a quote and provid-
ing V. We find the bootstrapping latency for bare metal and
virtual machines to be approximately 793ms and 1555ms re-
spectively. Virtual nodes doing runtime integrity measure-
ment after bootstrapping benefit from much lower latency
for vTPM operations. Thus, for a virtual machine with a
vTPM, keylime can detect integrity violations in as little as
110ms. The detection latency for a system with a physical
TPM (781ms for our Xen host) is limited by the speed of
the physical TPM at generating quotes.

5.3 Scalability of Cloud Verifier
Next we establish the maximum rate at which the CV can

get and check quotes for sustained integrity measurement.
This will define the trade-off between the number of nodes
a single CV can handle and the latency between when an
integrity violation occurs and the CV detects it. Recall that
the CV quote checking process is an embarrassingly parallel
problem where the CV does a round robin check of each
node. We emulate an arbitrarily large population of real
cloud nodes using a fixed number test cloud nodes. These
test cloud nodes emulate a zero latency TPM by returning a
pre-constructed quote. This way the test nodes appear like
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Figure 9: Scaling the CV on bare metal

a larger population where the CV will never have to block
for a lengthy TPM operation to complete. We found that
around 500 zero latency nodes were sufficient to achieve the
maximum quote checking rate.

We show the average number of quotes verified per second
for each of our CV deployment options in Figure 8. Because
of our process-based worker pool architecture, the primary
factor affecting CV scalability is the number of cores and
RAM available. These options provide a variety of choices
for deploying the CV. For small cloud tenants a low cost
VM or inexpensive hardware appliance can easily verify hun-
dreds of virtual machines with moderate detection latency
(5-10s). For larger customers, a well-resourced VM or dedi-
cated hardware can scale to thousands with similar latency.
For high security environments, all options can provide sub-
second detection and response time. In future work, we plan
to implement a priority scheme that allows the tenant to set
the rate of verifications for different classes of nodes.

We next show how our CV architecture can scale by adding
more cores and parallelism. We use the bare metal CV and
show the average rate of quotes retrieved and checked per
second for 500 test nodes in Figure 9. We see linear speed-
up until we exhaust the parallelism of the host CPU and
the concurrent delay of waiting for many cloud nodes. This
performance represents a modest performance improvement
over Schiffman et al.’s CV which was able to process approx-
imately 2,000 quotes per second on unspecified hardware [34]
and a substantial improvement over the Excalibur monitor’s



Table 2: On-Premises bare metal CV verifying 250
Cloud Nodes using 50 CV processes.

Network RTT Rate Bandwidth
(ms) (quotes/s) (Kbits/s)

4ms (native) 937 3084.6
25ms 613 2017.0
50ms 398 1310.2
75 ms 282 928.3
100 ms 208 684.7
150 ms 141 464.2

ability to check approximately 633 quotes per second [31].

5.4 On-Premises Cloud Verifier
Finally, we investigate the performance of the CV when

hosted at the tenant site away from the cloud. We show
the results of our bare metal system’s quote verification
rate and the bandwidth used for a variety of network de-
lays we inserted using the comcast12 tool in Table 2. These
results show that it is possible to run the CV on-premises at
the tenant site at the cost of a reduction in quote checking
rate (and therefore detection latency) and several Mbit/s
of bandwidth. As such, we recommend the highest perfor-
mance and lowest cost option is to run the CV in the cloud
alongside the nodes it will verify.

6. RELATED WORK
Many of the challenges that exist in traditional enterprise

networks exist in cloud computing environments as well.
However, there are new challenges and threats including
shared tenancy and additional reliance on the cloud provider
to provide a secure foundation [4, 16]. To address some of
the challenges, many have proposed trusted computing.

The existing specifications for trusted computing rely on
trusted hardware, and assume a single owner of the system.
With the advent of cloud computing, this assumption is no
longer valid. While both the standards community [40] and
prior work [2] is beginning the process of supporting virtu-
alization, no end-to-end solution exists. For example, the
cTPM system [5] assumes a trustworthy cloud provider and
requires modifications to trusted computing standards. An-
other proposal for higher-level validation of services provides
a cryptographically signed audit trail that the hypervisor
provides to auditors [12]. The audit trail captures the exe-
cution of the applications within the virtual machine. This
proposal does not provide a trusted foundation for the audit
trail, and assumes a benign hypervisor. Bleikertz, et al., pro-
pose to use trusted computing to provide cryptographic ser-
vices for cloud tenants[3]. Their Cryptography-as-a-Service
(CaaS) system relies on trusted computing, but does not ad-
dress bootstrapping and requires hypervisor modifications
that cloud providers are unlikely to support.

To address the issues of scalability, several proposals ex-
ist to monitor a cloud infrastructure, and allow for valida-
tion of the virtual machines controlled by the tenants of the
cloud [34, 32, 33, 35]. The cloud verifier pattern proposed
by Schiffman, et al., allows a single verifier to validate trust
in the cloud infrastructure, and in turn the cloud verifier
“vouches” for the integrity of the cloud nodes. This removes

12https://github.com/tylertreat/Comcast

the need for tenants to validate the integrity of the hyper-
visor hosts prior to instantiating cloud nodes on them and
avoids the need for nodes to mutually attest each other be-
fore communicating. The tenant simply provides their in-
tegrity verification criteria to the verifier, and the verifier en-
sures that the tenant’s integrity criteria are satisfied as part
of scheduling resources. We utilize the cloud verifier pat-
tern in our work, with some important differences. First we
extend it to support secure system bootstrapping for both
bare metal and virtualized IaaS environments. Second, we
do not host any tenant-owned parts of the integrity mea-
surement infrastructure in the provider’s control as they do.
This means that our solution is substantially less invasive
to the cloud provider’s infrastructure (e.g., they required
nearly 5,000 lines of code to be added to OpenStack) and
is less prone to compromise. For example, keylime relies
upon the vTPM integrity measurements inside tenant nodes
rather than enabling the cloud provider to have explicit vir-
tual machine introspection (i.e., secret stealing) capabilities.

Excalibur aims to address the scalability problems of trusted
computing by leveraging ciphertext policy attribute-based
encryption (CPABE) [31]. This encryption scheme allows
data to be encrypted using keys that represent attributes of
the hypervisor hosts in the IaaS environment (e.g., software
version, country, zone). Using Excalibur, clients can encrypt
sensitive data, and be assured that a hypervisor will only
be given access to the data if the policy (the specified set
of attributes) is satisfied. Excalibur only addresses trusted
bootstrapping for the underlying cloud platform. Therefore,
a compromised tenant node would be neither detected nor
prevented. The Excalibur monitor is a provider-owned (but
attested) component that holds the encryption keys that al-
low a node to boot on a particular hypervisor. keylime uses
secret sharing to avoid having bootstrap key stored (and
therefore vulnerable) in any cloud systems except for in the
cloud node for which they are intended.

The CloudProxy Tao system provides building blocks to
establish trusted services in a layered cloud environment [25].
The Tao environment relies on the TPM to establish iden-
tity and load-time integrity of the nodes and software in
the system. Their system does not support system integrity
monitoring as they assume that all interactions will only be
with other trusted programs running in the Tao environ-
ment. Tao relies upon mutual attestation for all communi-
cating nodes, but is unable to use TPM-based keys because
they are not fast enough to support mutual attestation. Us-
ing the out-of-band CV, we avoid mutual attestation while
maintaining rapid detection of integrity violations. The Key
Server in Tao holds all the secret keys to the system, must
interact with hosts to load new applications, and must be
fully trusted. The Key Server does not offer compatible de-
ployment options for IaaS environments, especially for small
tenants who cannot afford secure facilities or hardware se-
curity modules. Furthermore, CloudProxy Tao does not de-
tail the secure bootstrapping of their Key Server or Privacy
CA component for TPM initialization. keylime explicitly
describes bootstrapping of all relevant components and en-
ables multiple realistic secure deployment options for CV
and registrar hosting.

7. CONCLUSION
In this paper, we have shown that keylime provides a

fully integrated solution to bootstrap and maintain hardware-



rooted trust in elastically provisioned IaaS clouds. We have
demonstrated that we can securely bootstrap hardware-rooted
cryptographic identities into cloud nodes, and leverage those
identities in higher-level security services, without requiring
each service to become trusted computing-aware. keylime also
uses a novel key derivation protocol that incorporates a ten-
ant’s intent to provision new cloud resources with integrity
measurement. Finally, we have demonstrated and evaluated
several deployment scenarios for our system’s critical com-
ponent, the cloud verifier. Overall, keylime introduces less
than two seconds of overhead during the provisioning and
bootstrapping process, and requires as little as 110ms to re-
spond to an integrity violation. Furthermore, we have shown
that keylime can scale to support thousands of IaaS nodes
while maintaining quick response to integrity violations.
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