معادلة تفاضلية تامة
في الرياضيات، المعادلة التفاضلية الدقيقة أو المعادلة التفاضلية الكلية هي نوع محدد من المعادلات التفاضلية العادية التي لديها تطبيقات كثيرة في الفيزياء والهندسة.
تعريف
[عدل]إذا أفترضنا مجموعة مفتوحة فرعية متصلة D من R 2 ودالتان I و J ذات مجال مستمر على D، حينها تكون المعادلة التفاضلية العادية الضمنية من الدرجة الأولى التي على الصيغة التالية
تسمى معادلة تفاضلية تامة إذا كانت هناك دالة F قابلة للتفاضل باستمرار، تسمى الدالة الإحتمالية، [1][2] بحيث
و
يُشير مسمى «المعادلة التفاضلية الدقيقة» إلى الإشتقاق الدقيق للدالة. للدالة، المشتق الدقيق أو الكلي بالنسبة إلى يمكن حسابه من خلال الصيغة
مثال
[عدل]الدالة , على الشكل
هي دالة محتملة للمعادلة التفاضلية
وجود دوال محتملة
[عدل]في التطبيقات الفيزيائية والهندسية، لا تكون الدوال I و J عادةً مستمرة فحسب، بل يمكن اشتقاقها باستمرار . تزودنا نظرية شوارز حينها بمعيار ضروري لوجود دالة محتملة. بالنسبة للمعادلات التفاضلية المعرّفة على مجموعات متصلة ببساطة، يكون المعيار كافيًا ونحصل على النظرية التالية:
إذا أُعطيت معادلة تفاضلية على الصيغة (على سبيل المثال، عندما يكون ميل F صفر في اتجاه x و y عند (F (x، y) ):
مع I و J قابلتان للإشتقاق بشكل مستمر على مجموعة فرعية متصلة ومفتوحة ببساطة D من R 2، فإن الدالة الإحتمالية F موجودة إذا وفقط إذا
حلول المعادلات التفاضلية الدقيقة
[عدل]بالنظر إلى معادلة تفاضلية دقيقة محددة في مجموعة فرعية D من R 2 متصلة ومفتوحة ببساطة مع الدالة المحتملة F، فإن الدالة القابلة للتفاضل f مع (x، f ( x )) في D هي حل إذا وفقط إذا كان هناك رقم حقيقي c بحيث
لمسألة القيمة الأبتدائية
يمكننا محليًا إيجاد دالة محتملة بواسطة
وخلال حلها
بالنسبة إلى y، حيث c عدد حقيقي، يمكننا بعد ذلك التوصل إلى بقية الحلول.
مراجع
[عدل]- ^ Wolfgang Walter (11 مارس 2013). Ordinary Differential Equations. Springer Science & Business Media. ISBN:978-1-4612-0601-9. مؤرشف من الأصل في 2020-10-30.
- ^ Vladimir A. Dobrushkin (16 ديسمبر 2014). Applied Differential Equations: The Primary Course. CRC Press. ISBN:978-1-4987-2835-5. مؤرشف من الأصل في 2020-10-30.