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Summary

Cancer immunotherapies have recently shown outstanding clinical results in a number
of patients across various tumor types. However, currently only a fraction of patients
responds to immunotherapy, and it is a major concern to understand the underlying
mechanisms. The composition of the tumor microenvironment has been shown to have
an important impact on tumor growth and progression, as well as on response to ther-
apy. It has been reported that the type and density of tumor-infiltrating immune cells
are highly predictive for disease outcome in various cancers. These studies have also
suggested that a high density of tumor-infiltrating lymphocytes is strongly correlated
with mutational load. One hypothesis in this context is that somatic mutations found
in cancer cells may give rise to novel epitopes, so-called neoepitopes, which attract
and keep lymphocytes at the tumor site. Neoepitopes have also been suggested to be
crucial for the outcome of immune checkpoint therapies, as it was reported that cancers
with a high mutational load respond best to checkpoint therapy. An explanation for
this is that mutations give rise to neoepitopes that can be targeted by specific T cells
following their release from inhibitory signals.

It has now become evident that effective immunotherapies have to be tailored to the
specific immune setting of each tumor. The complex interplay between the tumor
and the immune system has to be systematically analyzed for characterizing patients
and identifying therapies they will most likely benefit from. This highly personalized
approach requires the integrated analysis of numerous tumor and host factors. Ac-
cordingly, the main aim of this PhD project was the establishment of an integrated
analysis pipeline to obtain detailed data about tumor-host interactions, including anal-
ysis of the mutational and neoepitope load, the type and densities of tumor-infiltrating
immune cells, the expression of immunological markers, and the expression of specific
cytokines.

This analysis pipeline combines available genomic and immunomic resources and adds
further depth into the analysis by additional computational pipelines. The already well
established sequencing and somatic mutation detection pipelines that have been devel-
oped in the DKFZ bioinformatics departments (Prof. Roland Eils and Prof. Benedikt
Brors) were integrated with the cytokine profiling and histological analysis workflows in
Professor Jäger’s group (NCT, Medical Oncology). Additional computational pipelines
for HLA genotyping from sequencing data, as well as for epitope predictions for HLA
class I and class II were implemented and included. Taken together these pipelines
provide a broad picture of tumor-host interactions. The established analysis pipeline
allows the rapid and systematic analysis of large patient cohorts.

Professor Jäger’s group has been collecting colorectal cancer (CRC) liver metastases
and systematically characterizing their immune cell infiltration and cytokine profiles,
as well as the correlation to clinical outcome. In these studies it was shown that
in general, there are at least two patient groups for each CRC stage: patients with
high infiltrate density and patients with low infiltrate density, with the latter having
a much worse prognosis. A patient cohort including 10 patients with high densities of
infiltrating lymphocytes (TIL-high) and 10 patients with low densities (TIL-low) was
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assembled and provided for analysis in this PhD project. The described integrated
analysis pipeline was developed using this patient cohort.

The established analysis pipeline was then used to systematically investigate TIL-high
versus TIL-low CRC metastases in order to assess the correlation of mutational and
neoepitope load to lymphocyte infiltration and whether additional factors distinguish-
ing the two groups can be discovered. The results show that the mutational and neoepi-
tope load is not significantly different between patients with high and patients with low
lymphocyte density in the analyzed patient cohort. Although a trend can be observed
in a way that the TIL-high group seems to be enriched for mutations and neoepitopes,
no statistical significance was detectable. Instead, the cytokine expression profiles are
clearly distinct between the two subgroups: CXCL12, CXCL9, CCL7, CCL27, IL-17,
IL-13, IL-7, IL-4, IFNg, GM-CSF, HGF, and TRAIL are significantly overexpressed
in the TIL-high group. Interestingly both, pro-tumorigenic as well as anti-tumorigenic
factors are overexpressed in the TIL-high group. Histological analysis additionally re-
vealed that the TIL-high samples are enriched for macrophages. Furthermore, PD-L1,
the ligand for the inhibitory immune checkpoint protein PD-1, is overexpressed in the
majority of TIL-high samples when compared to the TIL-low samples. These results
indicate that the immune contexture at the metastatic lesion seems to be a stronger
factor for lymphocyte infiltration than the mutational and neoepitope landscape.

The established integrated analysis pipeline has already been applied in the clinic
to conduct case studies with several patients being treated at the NCT. Patients with
refractory and rare cancers were extensively analyzed for their genomic and immunomic
features, which enabled the exploration of additional immunotherapeutic strategies. In
doing so, a working logistics for the clinical setting was established, and the results
provided insights into the feasibility of the approach. Based on these findings, clinical
studies with neoepitope-based vaccines are currently under development in Professor
Jäger’s group, and the predictive impact of the newly established integrated analysis
pipeline will be evaluated in prospective clinical trials.
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Zusammenfassung

Immuntherapien haben kürzlich in einer Reihe von Patienten und Tumorarten beein-
druckende klinische Erfolge erzielt. Allerdings spricht nicht jeder Patient gleichermaßen
auf Immuntherapien an, daher ist es derzeit ein großes Anliegen die zugrundeliegenden
Mechanismen zu verstehen. Es ist bereits bekannt, dass die Zusammensetzung des im-
munologischen Mikromilieus einen großen Einfluss auf Tumorwachstum und Prognose,
sowie auf Therapieansprechen hat. Es ist in zahlreichen Studien gezeigt worden, dass
die Art und Dichte von Immunzellinfiltraten prädiktiv für den Krankheitsverlauf sind.
Eine Hypothese in diesem Zusammenhang ist, dass somatische Mutationen in Krebs-
zellen neue Epitope schaffen, sogenannte Neoepitope, die von Lymphozyten erkannt
werden. Es wird weiterhin angenommen, dass Neoepitope einen grundlegenden Einfluss
auf Immuncheckpoint-Therapien haben, denn es ist bereits mehrfach gezeigt worden,
dass Patienten mit vielen somatischen Mutationen besonders gut auf diese Therapien
ansprechen. Eine Erklärung hierfür ist, dass T Zellen, die zuvor durch inhibitorische
Signale blockiert wurden, durch die Immuncheckpoint-Therapie wieder funktionsfähig
werden und die Neoepitope auf den Krebszellen erkennen können.

Es ist nun weithin bekannt, dass effektive Immuntherapien auf das spezifische im-
munologische Mikromilieu des Patienten angepasst werden müssen. Hierzu muss das
komplexe Zusammenspiel zwischen dem Tumor und dem Immunsystem des Patienten
systematisch untersucht werden, um Patienten genau zu charakterisieren und persona-
lisierte Therapien zu entwickeln. Dieses Vorgehen erfordert die integrative Analyse von
verschiedenen Tumor- und Hostfaktoren. Daher war die Etablierung einer integrativen
Analysepipeline, die es ermöglicht detaillierte Daten über Tumor-Host Interaktionen zu
erhalten, das Hauptziel dieser Doktorarbeit. Diese integrative Analysepipeline umfasst
die Analyse der Mutations- und Neoepitoplast, die Art und Dichte von Immunzellinfil-
traten, die Expression von immunologischen Markern, sowie die Expression bestimmter
Zytokine.

Die Analysepipeline verknüpft bereits vorhandene Ressourcen zur detaillierten Analyse
von genomischen und immunologischen Fragestellungen und ergänzt diese durch weitere
computergestützte Analyseverfahren. Die bereits etablierten Pipelines zur Sequenzun-
tersuchung, die in den DKFZ Bioinformatik Abteilungen (Prof. Roland Eils und Prof.
Benedikt Brors) entwickelt worden sind, wurden mit den Methoden zur Untersuchung
von Zytokinprofilen und histologischen Analysen in der Arbeitsgruppe von Professor
Jäger (NCT, Medizinische Onkologie) verknüpft. Zusätzlich wurden weitere Analy-
sepipelines zur HLA-Genotypisierung aus Sequenzdaten und zur Vorhersage von HLA
Klasse I und Klasse II Epitopen entwickelt. Zusammengenommen bietet dieser Ansatz
eine umfassende Analyse der Tumor-Host Interaktionen und die entwickelte integrative
Analysepipeline ermöglicht die schnelle Verarbeitung von großen Patientenkollektiven.

In der Arbeitsgruppe von Professor Jäger werden verschiedene Studien durchgeführt
mit dem Ziel, die Immunzellinfiltration und die Zytokinprofile in Lebermetastasen
vom Kolorektalkarzinom systematisch zu untersuchen und mit dem klinischen Ver-
lauf zu korrelieren. Diese Studien haben gezeigt, dass in der Regel mindestens zwi-
schen zwei Patientengruppen unterschieden werden kann: Patienten mit einer hohen
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Dichte von Tumor-infiltrierenden Lymphozyten (TIL-high) und Patienten mit niedriger
Dichte (TIL-low), wobei letztere eine deutlich schlechtere Prognose haben. Ein Pa-
tientenkollektiv mit 10 TIL-high und 10 TIL-low Patienten wurde zusammengestellt
und für die Untersuchung in dieser Doktorarbeit bereitgestellt. Die integrative Analy-
sepipeline wurde an diesem Datensatz entwickelt.

Die entwickelte integrative Analysepipeline wurde anschließend dazu verwendet TIL-
high und TIL-low Lebermetastasen vom Kolorektalkarzinom systematisch zu unter-
suchen und gegenüberzustellen, um die Korrelation zwischen Mutations- und Neoepi-
toplast und Lymphozyteninfiltration zu überprüfen, und um eventuell weitere Faktoren
aufzudecken, die die beiden Gruppen unterscheiden. Die Ergebnisse zeigen, dass die
Mutations- und Neoepitoplast in Patienten mit hoher Lymphozyteninfiltration ten-
denziell höher ist als in Patienten mit niedriger Lymphozyteninfiltration, dieser Un-
terschied ist jedoch nicht statistisch signifikant. Allerdings unterscheiden sich die Zy-
tokinprofile der beiden Untergruppen eindeutig: die Expression von CXCL12, CXCL9,
CCL7, CCL27, IL-17, IL-13, IL-7, IL-4, IFNg, GM-CSF, HGF und TRAIL sind in der
TIL-high Gruppe signifikant erhöht. Interessanterweise befinden sich sowohl pro- also
auch anti-tumorigene Faktoren unter den erhöhten Zytokinen. Histologische Analy-
sen zeigten zudem, dass die TIL-high Proben eine höhere Dichte an Makrophagen
aufweisen. Weiterhin ergab die Histologie, dass PD-L1, ein Ligand für das inhibierende
Immuncheckpoint-Protein PD-1, in der Mehrzahl der TIL-high Proben überexprimiert
ist im Vergleich zu den TIL-low Proben. Zusammenfassend zeigen diese Ergebnisse,
dass das immunologische Milieu der Lebermetastasen vom Kolorektalkarzinom einen
stärkeren Einfluss auf die Lymphozyteninfiltration zu haben scheint als die Mutations-
und Neoepitoplandschaft.

Die etablierte integrierte Analysepipeline wurde bereits in der Klinik angewandt, um
Fallstudien mit Patienten, die am NCT behandelt werden, durchzuführen. Patienten
mit refraktären und seltenen Tumorkrankheiten wurden detailliert auf ihre genomi-
schen und immunologischen Eigenschaften hin untersucht. Dies ermöglichte die Er-
forschung zusätzlicher immuntherapeutischer Ansätze. Es wurden dabei logistische
und klinische Arbeitsabläufe etabliert, die es nun ermöglichen diese Ansätze klinisch
umzusetzen. Basierend auf diesen Erfahrungen werden derzeit in der Arbeitsgruppe
von Professor Jäger klinische Studien mit Neoepitop-basierten Impfstoffen entwickelt.
Weiterhin sind prospektive Studien in Planung, die den prädiktiven Wert der entwi-
ckelten integrativen Analysepipeline evaluieren sollen.
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Introduction
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1.1 The Human Immune System

The immune system protects the body against pathogens like bacteria, viruses and
parasites. It can be subdivided into the innate immune system and the adaptive im-
mune system. The innate immune system provides a first line of defense against many
common pathogens by recognizing typical patterns on the pathogen surface and starts
immediately after a pathogen has entered the body. The innate immune system, how-
ever, provides only limited protection against fast evolving pathogens. The adaptive
immune system in contrast, is able to recognize almost every foreign protein. Main
effectors of innate immunity are natural killer cells, mast cells, eosinophils, and ba-
sophils.

1.1.1 The Adaptive Immune System

B lymphocytes (B cells) and T lymphocytes (T cells) are the main effectors of the
adaptive immune system. Receptors on their surface enable them to recognize foreign
substances. A substance which can be recognized by surface receptors of the adap-
tive immune system is an called antigen, and the region which is actually bound and
recognized by lymphocytes is called epitope (Murphy et al., 2008).

T cells are the main effectors of cellular immunity. There are two major types of
effector T cells, CD4+ T helper cells and CD8+ cytotoxic T cells. T helper cells have
no cytotoxic activity, but they can activate and direct other immune cells, for example
B cells, to eliminate the pathogen. Cytotoxic T cells, in contrast, are capable of directly
inducing the death of pathogenic or malignant cells.

B cells are main effectors of the humoral immune response or antibody-mediated im-
mune response. This aspect of immunity is mediated through secreted molecules, as
opposed to cells mediating the cellular immune response (Murphy et al., 2008). Upon
activation, B cells differentiate into plasma cells that secrete large amounts of anti-
bodies. Antibodies can occur in soluble form found free-floating in blood plasma, or
attached to the surface of B cells where they function as B cell receptors (BCR). Each
antibody binds to a specific antigen and, upon binding, antibodies can either neutral-
ize the bound pathogen or may recruit effector immune cells to eliminate the detected
pathogenic or malignant cell.

B cell activation occurs in secondary lymphoid organs, such as the spleen and lymph
nodes. There are two modes of B cell activation, either T cell-dependent or T cell-
independent. Antigens that activate B cells independent of T cells are often simple,
repetitive molecules such as glycoproteins or polysaccharides, as well as whole virus
particles or whole bacterial cells that are free-floating in the intercellular space. B
cells that differentiated through T cell-independent activation are short-lived, and the
produced antibodies are usually weaker in affinity and afficiency. B cells are also
capable of processing and presenting antigens which may lead to a T cell-dependent
activation. These antigens are usually foreign antigens. Once the antigen is processed
and presented on the cell surface (detailed description in section 1.1.1), T helper cells
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that were already activated by the same antigen from other antigen presenting cells
recognize the presented antigen and express surface proteins as well as cytokines which
promote B cell activation and proliferation. These B cells then differentiate to long-
lived plasma cells producing antibodies with high affinity and effectivity, and also to
memory B cells which provide persistent protection.

The antigen receptors of B cells (BCR) and T cells (TCR) are highly variable. This
variability is generated early during development in the primary lymphoid tissues, i.e.
the bone marrow for B cells, and the thymus for T cells. The genes encoding the variable
regions of BCRs and TCRs are rearranged randomly through somatic recombination
which generates a high diversity of antigen binding sites.

T cell receptors can only recognize an antigen if it is bound to specific membrane
proteins called major histocompatibility complex (MHC) molecules. CD8+ cytotoxic
T cells recognize antigens which are bound to MHC class I molecules, and CD4+ T
helper cells recognize antigens which are bound to MHC class II molecules.

Antigen Processing and Presentation

The two classes of MHC molecules, MHC class I and MHC class II are membrane-
bound surface molecules. While MHC class I molecules are expressed by all nucleated
cells, MHC class II molecules are primarily expressed by professional antigen presenting
cells (APCs), such as dendritic cells (DCs), macrophages and B cells.

MHC class I is a heterodimer of a transmembrane α-chain bound non-covalently to
β2-microglobulin (see Figure 1.2a). The α-chain folds into three domains, α1, α2, and
α3. The folding of α2 and α3 build the antigen binding site of MHC class I. The binding
groove of MHC class I is closed, and can bind peptides of length 8 - 10 amino acids
(see Figure 1.1a).

The MHC class II is composed of two transmembrane chains, the α- and the β-chain
(see Figure 1.2b). Each chain has two domains, α1, α2, and β1, β2, respectively. The
α2 and β2 domains form the antigen binding site of MHC class II. The binding groove
of MHC class II is open, which allows the binding of longer peptides, possibly even
whole proteins (see Figure 1.1b) (Nielsen et al., 2010; Sette et al., 1989). Typically,
bound peptides are 13 - 18 amino acids long, but the binding groove only interacts
with a core region consisting of 9 amino acids (Toussaint and Kohlbacher, 2009).

MHC class I molecules present endogenous peptides to cytotoxic T cells, whereas MHC
class II molecules present exogenous peptides to T helper cells. These peptides are
obtained via different pathways, and the combined specificities of MHC class I and
MHC class II molecules cover antigens from almost all compartments of the cell, as
well as antigens derived from intracellular and extracellular pathogens (Neefjes et al.,
2011).

MHC class I molecules present peptides which are the result of protein degradation by a
protease complex, called the proteasome. Importantly, the C-terminus of the peptides
is commonly determined by proteasomal cleavage, whereas the N-terminus can undergo
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(a) MHC class I (b) MHC class II

Figure 1.1: Binding grooves of MHC class I and MHC class II molecules. Panel
(a) shows the surface model of the binding groove of MHC class I (gray) together with a
bound peptide (red) (PDB-ID 1A1N). The surface model of the binding groove of MHC
class II (gray) together with a bound peptide (red) is shown in panel (b) (PDB-ID 1BX2).
Models were generated using the software BALLView (Moll et al., 2006)

(a) MHC class I (b) MHC class II

Figure 1.2: Structure of MHC class I and MHC class II molecules. A schematic
overview of the MHC class I molecule is shown in panel (a). MHC class I is a heterodimer
of a membrane-spanning α-chain bound covalently to β2-microglobulin. The α-chain folds
and creates a groove, which is the antigen binding site. A schematic overview of the MHC
class II molecule is shown in panel (b). MHC class II is composed of two transmembrane
chains, α and β. The antigen binding site is composed by two different chains. Figures
were taken from Murphy et al. (2008)
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further trimming by proteases (Backert and Kohlbacher, 2015). After being degraded,
the peptides are translocated into the endoplasmic reticulum (ER) by the transporter
molecule TAP (= transporter associated with antigen presentation). In the ER, the
MHC class I molecule is assembled, and in the absence of a peptide MHC class I is
stabilized by chaperone proteins such as calreticulin and ERp57 (see Figure 1.3. When
peptides are loaded on MHC class I, the chaperones are released, the peptide:MHC
class I complex leaves the ER and is then transported to the cell surface via the Golgi
apparatus, where the antigen is presented to CD8+ cytotoxic T cells. Peptides and
MHC class I molecules that fail to associate in the ER are returned to the cytosol for
degradation. The MHC class I loading pathway is displayed in Figure 1.3a.

The α- and β-chains of MHC class II molecules, are assembled in the ER, and form a
complex with the invariant chain (Ii). Ii binds MHC class II with part of its polypeptide
chain lying within the peptide-binding groove to stabilize the molecule, and also to
prevent premature binding of peptides (see Figure 1.3b). The assembled Ii:MHC class II
complex is transported to an endosomal compartment, the MHC class II compartment
(MIIC), where peptide binding can occur. The invariant chain is then cleaved by
acid proteases leaving a truncated form of the invariant chain, the class II associated Ii
peptide (CLIP). CLIP blocks the peptide-binding groove of MHC class II. Endocytosed
proteins are also degraded into short peptides by resident proteases in MIIC. Before
these peptides can be loaded on MHC class II CLIP has to be released. This process
is catalyzed by HLA-DM, which also stabilizes the MHC class II complex after CLIP
release. Furthermore, HLA-DM catalyzes the loading of peptides to MHC class II.
The peptide:MHC class II complex is then transported via the Golgi apparatus to the
surface to present peptides to CD4+ T helper cells. The MHC class II loading pathway
is displayed in Figure 1.3a.

The Genetic Organization of the Major Histocompatibility Complex

The major histocompatibility complex (MHC) is a large gene cluster where the genes
of MHC class I and MHC class II are located (Figure 1.4). In humans, this com-
plex is called the human leukocyte antigen (HLA) and is located on the short arm of
chromosome 6. The MHC of the mouse is called H-2 and is located on chromosome 17.

The MHC is a polygenic gene cluster containing several different MHC class I and
MHC class II genes. In humans, there are three MHC class I α-chain genes, HLA-A,
HLA-B, HLA-C, and three pairs of genes encoding the MHC class II α- and β-chains,
HLA-DR, HLA-DP, HLA-DQ (see Figure 1.4).

The genes encoding the MHC class I and class II proteins are highly polymorphic
(i.e. many alleles exist at each gene locus). Up to date, 5500 MHC class I alleles are
known in human (IMGT/HLA database (Robinson and Marsh, 2000; Robinson et al.,
2013)). The number of registered DRα, DRβ, DQα, DQβ and DPα, DPβ proteins
is 2, 637, 26, 77, 16 and 118, respectively. This can potentially generate more than
4000 combinations of HLA class II α and β subunits (Nielsen et al., 2010). The allelic
variant of a particular MHC molecule determines its binding specificity and different
MHC molecules bind different sets of peptides. The HLA genotype is variable among
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Figure 1.3: The MHC class I and MHC class II antigen presentation pathways.
(a) Intracellular antigens, such es virus or tumor antigens, are degraded into peptides by
the proteasome. Peptides are translocated via the transporter associated with antigen
presentation (TAP) into the endoplasmic reticulum (ER) where they are loaded onto
MHC class I molecules. Peptide:MHC class I complexes are released from the ER and
transported via the Golgi apparatus to the surface where the antigen is presented to
CD8+ T cells. (b) Extracellular antigens, such as bacterial antigens, are endocytosed
and degraded into peptides by resident proteases. The two MHC class II chains are
assembled in the ER and form a complex with the invariant chain (Ii). Ii blocks the
antigen binding site of the MHC class II molecule in order to prevent premature peptide
binding. The Ii:MHC class II complex is transported to the MHC class II compartment
(MIIC), where also the degraded peptides are locates. In the MIIC, Ii is also degraded,
which leaves the class II-associated Ii peptide (CLIP) remaining in the peptide-binding
groove of MHC class II. Later, CLIP is exchanged for an antigenic peptide with the help
of HLA-DM and the peptide:MHC class II complex is then transported to the surface
where antigenic peptides are presented to to CD4+ T helper cell. Figure taken from
Kobayashi and van den Elsen (2012) and reprinted with permission.
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Figure 1.4: The genetic organization of the major histocompatibility complex
(MHC). In humans the MHC is called HLA and is located on the short arm of chromo-
some 6. There are separate clusters of MHC class I and MHC class II genes and some
other genes relevant for antigen presentation, like genes for the TAP peptide transporter
and HLA-DM. Figure taken from Murphy et al. (2008).

different individuals, while within a population or ethnic group the genotype is more
similar. The frequencies with which certain HLA alleles occur in different populations
have been determined (Gonzalez-Galarza et al., 2011).

1.1.2 Immunoinformatics

Immunoinformatics, or computational immunology, is the application of computational
methods to immunological problems (Backert and Kohlbacher, 2015). The most impor-
tant task of immunoinformatics is to analyze immunological data using computational
tools to generate biologically significant and rational interpretations (Rajat K. De,
2014). This includes the development of algorithms for mapping potential B cell and
T cell epitopes, and the inference of the HLA genotype from sequencing data, as well
as the establishment and curation of immunological databases.

A wealth of immunological information about MHC ligands, epitopes, T cell recep-
tors, and HLA alleles is available in several public databases (reviewed in Backert and
Kohlbacher (2015)).

One of the best established branches of immunoinformatics is the development of tools
for the prediction of HLA binding, also called epitope prediction. These tools employ
so-called machine learning methods, which use a given training dataset to learn a
function that maps a given input to its corresponding output (Backert and Kohlbacher,
2015). In the context of epitope prediction, large datasets of experimentally derived
epitopes are used as training datasets. The accuracy of these prediction tools increased
recently, due to the raising availability of large-scale immunological data (Backert and
Kohlbacher, 2015).

There are several tools available for HLA class I epitope prediction, which differ in
the used machine learning method and the training datasets (reviewed in Backert
and Kohlbacher (2015)). An ongoing continuous benchmark performed by Trolle and
colleagues (Trolle et al., 2015) shows that, currently, netMHCpan (Nielsen et al., 2007)
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is the best-performing tool, which is why this tool for HLA class I epitope prediction
was chosen for this study.

As described above, the first step of the MHC class I antigen processing pathway is the
cleavage of proteins by the proteasome. Tools for proteasomal cleavage prediction work
analogously to epitope prediction tools and are trained using in vitro or in vivo data
(Backert and Kohlbacher, 2015). The prediction tool NetChop (Kemir et al., 2002)
which was developed by the same group that developed netMHCpan, was chosen for
this study.

HLA class II epitope prediction is more difficult than predictions for class I, because
as described above, the binding groove of HLA class II is open and the position of the
binding core within an epitope is not known. Additionally, polymorphism of the HLA
locus and the high number of combinations of HLA class II α- and β-chains complicates
the task. For HLA-DR only the beta chain is polymorphic, so only HLA-DRB needs
to be considered for epitope predictions. Besides from the higher complexity of HLA
class II epitope prediction, the tools work analogously to class I predictions (reviewed
in Backert and Kohlbacher (2015)). As netMHCIIpan (Karosiene et al., 2013) is the
most recent tool, this tool was chosen for HLA class II epitope prediction for my work.

Development of tools for HLA typing from sequencing data emerged recently together
with the emergence of next-generation sequencing (NGS). In many clinical applications
sequencing data of a patient is already available, and costs for experimentally determin-
ing the HLA genotype can be avoided by using computational tools. Recently, several
tools for NGS-based HLA typing emerged (Boegel et al., 2012; Warren et al., 2012;
Kim and Pourmand, 2013; Bai et al., 2014). Each tool starts by using an alignment
software like Bowtie (Langmead et al., 2009) or BWA (Li and Durbin, 2010) to map
the input sequence reads to reference HLA sequences retrieved from the IMGT/HLA
(Robinson and Marsh, 2000; Robinson et al., 2013) database. For scoring and the
subsequent selection of candidate alleles each tool uses different approaches. For this
study, the most recent tool, Phlat, was chosen (Bai et al., 2014).

Immunoinformatics tools are mainly used in the context of epitope-based vaccines,
including cancer immunotherapy. The reverse immunology approach starts with the
identification of candidate peptides using epitope prediction algorithms. These candi-
date peptides are then synthesized, tested in vitro, and then used to stimulate T cells
or used in peptide-based cancer vaccines (see 1.4.1).

1.2 Cancer

Cancer is the result of uncontrolled and indefinite cell growth and division. It has
become evident that cancer is a genetic disease where somatic cells acquire multiple
mutations that overwhelm the barriers that normally restrain their uncontrolled ex-
pansion (Vesely et al., 2011). The DNA replication system is prone to mistakes, hence
every healthy cell has a wide number of intrinsic defense mechanisms by which damage
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to the DNA is identified and corrected. If repairs fail, senescence or apoptosis will be
triggered to keep cell proliferation from becoming aberrant.

Proto-oncogenes for instance, code for proteins that are involved in the regulation of
cell growth and differentiation in normal cells. Due to mutations, a proto-oncogene
can be activated and then becomes an oncogene, which contributes positively to the
growth of a tumor (Todd and Wong, 1999). Many oncogenes have been identified in
human cancer, such as RAS, WNT and MYC.

Tumor suppressor proteins in contrast, contribute negatively to the regulation of the
cell cycle (Sherr, 2004). They can additionally sense genomic disturbances caused
by mutations, or also sense the activity of oncogenes, and can induce senescence and
apoptosis in response (Vesely et al., 2011). Examples of tumor suppressor genes are
TP53, APC or PTEN. Mutations and loss of tumor suppressor genes is crucial for the
formation of many cancers (Weinberg, 2013).

Multiple changes need to occur, so that intrinsic defense mechanisms of normal cells
against becoming cancerous fail and they acquire the capability of indefinite growth.
Six fundamental changes and features that drive the transformation of normal cells to
cancer were identified and described as the hallmarks of cancer by Hanahan and Wein-
berg (Hanahan and Weinberg, 2000). These hallmarks were defined as the following:
self-sufficient in growth signals, insensitivity to anti-growth signals, evading apoptosis,
limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis.
Since the publication of these original hallmarks, substantial progress has been made
in cancer research, which led to the suggestion of four additional hallmarks: avoiding
immune destruction, deregulating cellular energetics, tumor-promoting inflammation,
genome instability and mutation (Hanahan and Weinberg, 2011) (Figure 1.9).

1.2.1 Cancer Genomics

As cancer is primarily caused by the accumulation of genomic aberrations, it is also
referred to as a genomic disease (Meyerson et al., 2010). So-called somatic mutations
are alterations in DNA that occur after conception, and are in contrast to germline mu-
tations neither inherited nor passed to offspring (U.S. National Library of Medicine).
With next-generation sequencing (NGS) techniques it is today feasible to detect such
genomic changes by sequencing the whole genome, or the coding part, the so-called ex-
ome, of a tumor sample (Whole-Genome-Sequencing and Whole-Exome-Sequencing).
The analysis of the cancer genome or exome, also called cancer genomics, provides
important insights for understanding the biology of cancer. The detection of genomic
aberrations, including single nucleotide variations (SNVs), small insertions and dele-
tions (Indels), and chromosomal copy number variations (CNVs), can also aid in di-
agnosis and therapy. The product of each alteration is a potential target for therapy,
for example targeted therapies with inhibitors against mutated growth factors, or im-
munotherapies against mutated antigens.

9



Figure 1.5: The hallmarks of cancer. Displayed are the original six hallmarks of
cancer as proposed by Hanahan and Weinberg in 2000 (Hanahan and Weinberg, 2000),
together with the emerging hallmarks added in 2011 (Hanahan and Weinberg, 2011).
The original hallmarks are: self-sufficient in growth signals, insensitivity to anti-growth
signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, tissue
invasion and metastasis, and the four emerging hallmarks are avoiding immune destruc-
tion, deregulating cellular energetics, tumor-promoting inflammation, genome instability
and mutation. Figure adapted from Hanahan and Weinberg (2011) and reprinted with
permission.

1.3 Cancer Immunology

1.3.1 Cancer Immunoediting

The immune system is capable of specifically identifying transformed cells that have es-
caped the intrinsic tumor suppressor mechanisms and eliminating them before they can
establish malignancy (Vesely et al., 2011). The core principal of this extrinsic tumor
suppressor mechanism, also referred to as cancer immunosurveillance, is that cancer
cells express antigens that distinguish them from their non-transformed counterparts,
thus enabling their recognition by T cells and their eventual destruction by immuno-
logical mechanisms (Vesely and Schreiber, 2013). Numerous studies during the past 20
years demonstrated that the immune system can in fact protect mice from outgrowth
of many different types of primary and transplanted tumors (reviewed in Vesely et al.
(2011)).
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In 2001, studies in immunodeficient mice showed that tumors that formed in the ab-
sence of a functional immune system are more immunogenic than tumors that arise in
immunocompotent hosts (Shankaran et al., 2001; Dunn et al., 2002). These findings
led to the cancer immunoediting hypothesis, which postulates that the immune system
not only protects the host against tumor formation but also edits tumor immuno-
genicity. Hence, the immune system is attributed a dual role of host-protective and
tumor-promoting behavior. In its most complex form, cancer immunoediting occurs in
three sequential phases: elimination, equilibrium, and escape (Figure 1.6) (Schreiber
et al., 2011).

The elimination phase can be described as an updated version of immunosurveillance:
a developing tumor is detected by the immune system and eliminated before it becomes
clinically apparent. For effective cancer elimination, a coordinated interplay of both
innate and adaptive immune components is needed. Here, activation and expansion of
effector CD4+ and CD8+ T cells plays an important role. If the tumor destruction is
successful, the elimination phase represents the endpoint of the cancer immunoediting
process (Schreiber et al., 2011).

When tumor cells survive the elimination phase, they may enter the equilibrium phase.
Here, the adaptive immune system prevents the outgrowth of tumor cells and addition-
ally edits their immunogenicity. Schreiber et al. describe this phase as a dormancy of
functional tumor cells, where tumor cells can reside in patients for decades, eventually
extending throughout their lives. Thus, the equilibrium phase may also represent a
stable endpoint of cancer immunoediting (Schreiber et al., 2011).

Tumor cells may escape the elimination and equilibrium phases by acquiring the abil-
ity to circumvent recognition and destruction by the immune system. In this escape
phase tumors become clinically apparent. Tumor cell escape can occur through many
different mechanisms, either when the cancer establishes an immunosuppressive tumor
microenvironment and impairs the function of the immune system (described in sec-
tion 1.3.4), or when tumor cells change in response to the editing process (Schreiber
et al., 2011). The best-studied escape mechanism is the loss of tumor antigens, which
is further described in section 1.3.2.

1.3.2 Cancer Antigens

At the core of immune recognition of cancer cells lies the fact that cancer cells ex-
press antigens that distinguish them from their non-transformed counterparts. These
tumor-specific antigens can be recognized by specific T cells which are then capable of
destroying the detected tumor cells. There are different classes of tumor-specific anti-
gens: viral antigens, antigens that result from mutations, antigens that are encoded by
cancer-germline genes, differentiation antigens, and antigens that are overexpressed in
tumor cells (Coulie et al., 2014).

Differentiation antigens are expressed only in the tumor cells and in the normal tissue of
origin. Melan-A (also known as MART1) is an example for an antigen which is specific
for the melanocyte lineage. Prostatic acid phosphatase (PAP) is an example for a
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Figure 1.6: The cancer immunoediting concept. The cancer immunoediting hy-
pothesis postulates that the immune system not only protects the host against tumor
formation but also edits tumor immunogenicity. In its most complex form, cancer immu-
noediting occurs in three sequential phases: elimination, equilibrium, and escape. Figure
taken from Schreiber et al. (2011) and reprinted with permission.
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prostate-specific antigen. Spontaneous T cell responses against differentiation antigens
have been reported repeatedly (Cox et al., 1994; Bakker et al., 1995; Kawakami et al.,
1994), and it is not known yet, why tolerance is incomplete against these antigens
(Coulie et al., 2014).

Overexpression of specific proteins in tumor cells can also be used to elicit a tumor-
specific immune response, because a threshold level of antigen expression is required
for a cell to be recognized by T cells. Several proteins have been detected to be
tremendously overexpressed in tumor cells when compared to normal cells. The pro-
tein HER2 is such an example, which is overexpressed due to gene amplifications in
several ephitelial tumors including ovarian and breast cancer. Another example of
tumor-specific overexpression is MUC1 which is overexpressed in most adenocarcino-
mas (Vlad et al., 2004). However it remains difficult to assess an appropriate tumor-
specific overexpression, and it has to be ruled out if a high expression occurs even in a
small subset of normal cells (Coulie et al., 2014). Viral, mutation-derived, and cancer-
germline antigens are highly tumor-specific and can elicit a specific immune response
against tumor cells. Viral antigens have been shown to be important for therapy in
a subset of tumors, including cervical carcinoma, hepatocarcinoma, and adult T cell
leukemia (van der Burg and Melief, 2011; Long et al., 2010; Fujita et al., 2008; Ramos
and Lossos, 2011).

Cancer-germline genes were found to be expressed in many human tumors of different
histological type, whereas no expression was found in normal tissues, except for male
germline cells and trophoblastic cells (Coulie et al., 2014). Hence, cancer-germline
genes are an important source of tumor-specific antigens and can be used as targets for
immunotherapy. The expression of cancer-germline genes in male germline cells and
trophoblastic cells is irrelevant in this context, as these cells do not produce MHC and
cannot present antigens to T cells (Fiszer and Kurpisz, 1998). To date, over 60 cancer-
germline genes have been discovered (Coulie et al., 2014). The gene MAGEA1 was the
first cancer-germline gene that was discovered in melanoma in 1991 (van der Bruggen
et al., 1991). Examples for families of cancer-germline genes are MAGE, GAGE, CTAG,
and SSX, which are all located on chromosome X. Despite recent progress, the functions
of most of these genes remain unclear (Coulie et al., 2014).

Mutated antigens greatly contribute to the immunogenicity of human tumors. A single
nucleotide variation can potentially lead to the production of various new antigenic pep-
tides, so-called neoantigens, that can be recognized by autologous T cells (Coulie et al.,
2014). About one-half of the recognized tumor-specific antigens in cancer patients are
derived by mutations (Vigneron et al., 2013). The contribution of neoantigens to tumor
immunogenicity correlates with the mutation rate of the corresponding tumor: enti-
ties with high mutation rates like melanoma, lung cancer, and microsatellite instable
colorectal cancer are expected to express a high number of neoantigens (Coulie et al.,
2014). Most of the neoantigens are caused by passenger mutations and are therefore
often patient-specific (Coulie et al., 2014; Schumacher and Schreiber, 2015). Mutation-
derived neoantigens are highly attractive as immunotherapeutic targets as they are
expected to overcome central tolerance, and their expression is highly tumor-specific
(Hacohen et al., 2013; Heemskerk et al., 2013). Usage of neoantigens in personalized
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immunotherapies is gaining more momentum and has been implemented in several clin-
ical studies (Schumacher and Schreiber, 2015). This therapy approach will be discussed
in more detail in section 1.4.1.

Tumor-specific antigens play an essential role in the establishment of malignancy. Tu-
mor cells can escape the immune system due to a lack of immunological recognition
and may remain invisible to the adaptive immune system (Vesely and Schreiber, 2013).
There are several possibilities to evade immunological recognition. Tumor cells may
stop the expression of strong tumor rejection antigens, or genomic instability within
tumor cells may result in the loss of tumor-specific antigens (Coulie et al., 2014). Fur-
thermore, alterations in antigen processing and presentation pathways may facilitate
evasion from adaptive immune recognition. Analogous to other antigens, tumor-specific
antigens also undergo the MHC class I or MHC class II antigen processing pathways
and are then presented on MHC, where they can be detected by specific T cells. Tu-
mor cells can acquire defects in molecules that are involved in antigen processing and
presentation, specifically loss of TAP1, MHC class I, β2m, LMP2, and LMP7 have
been reported (Vesely et al., 2011). The result is the emergence of poorly immuno-
genic tumor cell variants that become invisible to the immune system and can grow
unhindered.

Figure 1.7: Tumor antigens recognized by T cells. a) Highly tumor-specific anti-
gens. A single nucleotide variation can lead to the production of new antigenic peptides
(neoantigen) that can be recognized by autologous T cells. Cancer-germline genes are
specifically expressed in many human tumors and on germline cells. As germline cells
do not produce HLA, no antigens are presented on these cells. b) Antigens of limited
tumor specificity. Differentiation antigens are tissue-specific and are expressed only in
the tumor cells and in the normal tissue of origin. Overexpression of specific proteins in
tumor cells can also trigger a tumor-specific immune response, because a threshold level
of antigen expression is required for a cell to be recognized by T cells. Figure taken from
Coulie et al. (2014) and reprinted with permission.
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1.3.3 Immunomodulatory Pathways

The amplitude and quality of T cell responses is regulated by a balance between
co-stimulatory and inhibitory signals, which are commonly referred to as immune-
checkpoints. In a non-malignant setting, immune-checkpoints are crucial for the
prevention of autoimmunity. Tumors however, dysregulate the expression of immune-
checkpoint as an immune-evasion mechanism. Recently, some of these immune-
checkpoints are being targeted therapeutically with tremendous clinical advances in
numerous cancers. Clinical application of checkpoint therapy is discussed in section
1.4, whereas the biological function and features of selected checkpoints are outlined
in the following subsections.

Inhibitory checkpoints

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is an inhibitory immune-
checkpoint regulator that is expressed by activated T cells and regulatory T cells,
where it plays a major role in regulating the amplitude of T cell response (Pardoll,
2012). Primarily, CTLA-4 counteracts the activity of its co-stimulatory homologue
CD28 (Schwartz, 1992; Rudd et al., 2009). In addition to the peptide-MHC-TCR in-
teraction, co-stimulatory signals provided by CD28 are required to activate a T cell.
CD28 and CTLA-4 share the same ligands: B7-1 (CD80) and B7-2 (CD86) which are
expressed on APCs (Hathcock et al., 1993; Freeman et al., 1993). Binding of CTLA-4
to its ligands leads to inhibition of T cells (Krummel and Allison, 1995; Gabriel and
Lattime, 2007). CTLA-4 has a much higher affinity than CD28 for both ligands and
outcompetes the activity of CD28 (Linsley et al., 1994). Clinical blockade of CTLA-4 is
thought to bias this competition for ligands in favor of CD28 and reverse the inhibitory
function of CTLA-4 (Melero et al., 2015).

Programmed cell death protein 1 (PD-1) is another inhibitory checkpoint protein.
While CTLA-4 predominantly regulates T cell activation, PD-1 predominantly reg-
ulates T cell effector activity, hence the function of these two checkpoint proteins is
distinct from each other (Sharma and Allison, 2015; Pardoll, 2012). PD-1 expression
is induced when T cells become activated to limit the response of the activated T cells
in order to avoid autoimmunity (Ishida et al., 1992). PD-1 is more broadly expressed
than CTLA-4: it is expressed by activated T cells, B cells, NK cells, and regulatory
T cells (Melero et al., 2015). Two ligands are known for PD-1: PD-L1 (CD274) and
PD-L2 (CD273). PD-L1 expression is induced after exposure to IFN-γ and was found
to be expressed on many cell types including T cells, ephitelial cells, endothelial cells,
and tumor cells (Dong et al., 2002). The PD-1 signalling cascade contributes to T cell
exhaustion (Barber et al., 2006) and tumors may exploit this pathway to circumvent
elimination. In many different tumor types, PD-1 was found to be highly expressed
on tumor-infiltrating lymphocytes such as regulatory T cells and CD8+ T cells (Sfanos
et al., 2009; Ahmadzadeh et al., 2009). Analogously, PD-1 ligands are commonly upreg-
ulated on tumor cells, PD-L1 was shown to be highly expressed on many solid tumors,
which was associated with poor outcome (Flies et al., 2011; Lipson et al., 2015; Sznol
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and Chen, 2013). These expression patterns may support the suppression of immune
effector mechanisms, and clinical blockade of these proteins may reverse this state and
enhance the activity of effector T cells and NK cells (Pardoll, 2012).

The inhibitory receptor named lymphocyte activation gene 3 protein (LAG-3) is ex-
pressed on T cells during exhaustion (Wherry et al., 2007; Sierro et al., 2011). Known
ligands for LAG-3 are MHC class II and galectin 3, which was just recently discovered
(Kouo et al., 2015). It is anticipated that the blockade of LAG-3 may reverse T cell
exhaustion and enhance antitumor activity (Woo et al., 2012; Sierro et al., 2011).

T cell immunoglobulin and mucin domain-containing 3 (TIM-3, also known as
HAVCR2) is expressed on T helper 1 cells and cytotoxic T cells, but also on DCs
(Anderson, 2012; Snchez-Fueyo et al., 2003). The function of TIM-3 differs depending
on the cell type. TIM-3 was found to be commonly expressed by tumor-infiltrating
lymphocytes in melanoma (Fourcade et al., 2010) and NSCLC (Gao et al., 2012),
where it is thought to keep lymphocyte status inactive or even induce apoptosis upon
binding a ligand (Melero et al., 2015). One known ligand of TIM-3 is galectin 9 and
it is assumed that there are other ligands which have not been defined yet (Sakuishi
et al., 2010).

Co-stimulatory checkpoints

CD137 (TNFRSF9, also known as 4-1BB) is a T cell and NK cell co-stimulatory recep-
tor, which is expressed on the cell surface upon activation (Wang et al., 2009). Binding
of its ligand CD137L activates signalling that improves cytotoxic antitumor responses
and T cell survival (Melero et al., 1997; Shuford et al., 1997; Vinay and Kwon, 2012).

Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR,
also known as TNFRSF18) is a co-stimulatory molecule that is expressed on T cells.
Binding of its ligand GITRL induces the reversion of Treg-mediated suppression of T
cells and activates proliferation and effector functions in CD4+ and CD8+ T cells (Ko
et al., 2005; Schaer et al., 2012).

The co-stimulatory receptor OX40 (TNFRSF4) is primarily expressed on activated
CD4+ and CD8+ T cells where it enhances antitumor immune responses by promoting
T cell proliferation and survival (Ruby et al., 2007; Piconese et al., 2008). OX40L is
the ligand of OX40.

CD40 (TNFRSF5) is a co-stimulatory receptor that is expressed on APCs where it
promotes activation of APCs and enhances their antigen presentation activities, leading
to T cell activation (Quezada et al., 2004; Vonderheide and Glennie, 2013). CD40L is
the ligand of CD40.

The co-stimulatory receptor CD27 is expressed on resting and naive, but not on fully
differentiated T cells. It is also expressed on a subset of NK cells (Denoeud and
Moser, 2011). Binding to its ligand CD70 enhances T cell activation effector function,
maturation and survival (Hintzen et al., 1995; Hendriks et al., 2003; Hintzen et al.,
1994). CD27 was also shown to enhance NK cell proliferation and cytotoxic
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1.3.4 The Tumor Microenvironment

As tumors grow, they initiate profound molecular, cellular and physical changes on
the tissue in which they reside. The so-called tumor microenvironment emerges, a
complex milieu that comprises non-malignant cells such as stromal cells (e.g. fibroblasts

Figure 1.8: Receptor-ligand pairs between T cells and antigen-presenting cells.
Detailed description on following page.
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Figure 1.8: (Figure on previous page.) An immune synapse between a T cell (right) and
an antigen-presenting cell (APC, left) is shown. Various ligand-receptor interactions that
regulate T cell response to antigens presented on MHC are highlighted, co-stimulatory
interactions with black pointed arrows and inhibitory interactions with gray inhibitory
arrows. B7-H3, B7 homologue 3 (also known as CD276); B7-H4, B7 homologue 4 (also
known as VCTN1); BTLA, B lymphocyte and T lymphocyte attenuator; CD28H, CD28
homologue; CD40L, CD40 ligand; CD137L, CD137 ligand (also known as TNFSF9);
CEACAM1, carcinoembryonic antigen-related cell adhesion molecule 1; CTLA4, cyto-
toxic T lymphocyte-associated antigen 4; GITR, glucocorticoid-induced TNFR family-
related protein; GITRL, GITR ligand; HHLA2, HERV-H LTR-associating 2 (also known
as B7-H7); HVEM, herpes virus-entry mediator (also known as TNFRSF14); Ig, im-
munoglobulin; LAG3, lymphocyte activation gene 3 protein; LIGHT, HVEM ligand
(also known as TNFSF14); MHC, major histocompatibility complex; OX40L, OX40
ligand (also known as TNFSF4); PD1, programmed cell death protein 1; PDL, PD1
ligand; TIGIT, T cell immunoreceptor with Ig and ITIM domains; TIM3, T cell Ig
mucin domain-containing 3; TNF, tumor necrosis factor; TNFR, TNF receptor; VISTA,
V-domain Ig suppressor of T cell activation (also known as PD1 homologue). Figure
taken from Melero et al. (2015) and reprinted with permission.

and endothelial cells), mesenchymal cells, and immune cells, along with the numerous
mediators these cells secrete (Turley et al., 2015). Tumor cells can closely interact
with elements of the tumor microenvironment, which can have effects on tumor cell
survival, invasiveness, and responsiveness to therapeutics (Joyce and Pollard, 2009;
Polyak et al., 2009).

Tumors are often infiltrated by various innate and adaptive immune cells, which can
perform both, protumor and antitumor functions. Establishment of an immunosup-
pressive microenvironment is a key mechanism of immune escape, as mentioned in
section 1.3.1. Tumor cells can directly produce factors to inhibit the function of both,
innate and adaptive immunity, for example by upregulating the expression of inhibitory
checkpoint proteins as described in section 1.3.3 (Vesely et al., 2011). Also, immuno-
suppressive leukocytes are deliberately recruited by the tumor, for example: FOXP3+

regulatory T cells (Tregs), T helper 2 (Th2) cells, myeloid-derived suppressor cells
(MDSCs), M2 macrophages, and N2 neutrophils (Senovilla et al., 2012). In contrast,
leukocytes with antitumor effects also infiltrate the microenvironment and the tumor
as implementers of an ongoing immune response, for example: CD8+ cytotoxic T lym-
phocytes (CTLs), T helper 1 (Th1) and T helper 17 (Th17) T cells, M1 macrophages,
N1 neutrophils, natural killer (NK) cells, and dendritic cells (DCs) (Fridman et al.,
2012; Zitvogel et al., 2011). Moreover, it has been shown for various cancers that type
and density of tumor-infiltrating lymphocytes (TILs) correlate with patient survival
(Schreiber et al., 2011).

Tumor-Infiltrating Lymphocytes

The first evidence that TILs are associated with favorable patient prognosis was shown
in melanoma (Clark et al., 1989; Clemente et al., 1996), followed by a study in colon
cancer, which showed that particularly CD8+ cytotoxic TILs have important influence
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on clinical outcome (Naito et al., 1998). Since then, numerous studies in a wide range
of cancers confirmed correlation of TILs and prognosis. It was even found that type and
density of TILs can be a more powerful prognostic indicator than previous pathological
markers (Schreiber et al., 2011).

Remarkable positive correlation was demonstrated for CD8+ TILs, for example in:
colon cancer (Straeter et al., 2005; Naito et al., 1998; Kondo et al., 2003), esophageal
cancer (Yasunaga et al., 2000), breast cancer (Yoshimoto et al., 1993), ovarian cancer
(Sato et al., 2005), malignant melanoma (Haanen et al., 2006), and several other cancers
(reviewed in Senovilla et al. (2012)).

Similar to CD8+ cytotoxic TILs, CD45RO+ memory T cells have clearly been associ-
ated with better prognosis (Fridman et al., 2012). In contrast, the CD4+ TILs Treg and
Th1, Th2, and Th17 T helper cells have been shown to have contradictory effects on
clinical outcome among different cancers (Fridman et al., 2012). Treg T cells express
phenotypic markers such as CD25 and FOXP3. Correlation of intratumoral Treg T
cells and poor survival was shown for ovarian cancer, breast cancer and hepatocellular
carcinoma underlining the suppressive function of Treg cells. However, for a number of
other cancers no correlation of Treg cells and clinical outcome was found, and for other
cancers, even an inverse correlation was reported (reviewed in Fridman et al. (2012)).
Similar contradictory results were reported for Th17, and Th2 T helper cells. Merely,
infiltration with Th1 T helper cells is associated with good clinical outcomes for all
cancer types (Fridman et al., 2012). This discrepancies may reflect that tumors that
grow in different organs have different phenotypes and that each tumor has a unique
microenvironment (Fridman et al., 2012).

However, even when a tumor is highly infiltrated with lymphocytes, their function is
often impaired, due to modifications in the complex interplay of immune cells and the
expression of cytokines and their receptors (Fridman et al., 2012).

Cytokines and Chemokines

Cytokines are secreted or membrane-bound proteins that can influence and regulate the
function of immune cells (Dranoff, 2004). Chemokines are a subfamily of chemotactic
cytokines that regulate leukocyte migration (Cameron and Kelvin, 2003). Cytokines
can directly stimulate or suppress immune effector cells in the tumor microenvironment,
and cancer cells often initiate changes in local cytokine expression, disrupting the
complex interplay between cytokines and immune cells (Fridman et al., 2012).

The different types of CD4+ T helper cells secrete different combinations of cytokines
which mainly drive their effector functions. Th1 cells, which are known to be an-
titumorigenic, mainly secrete IL-2, interferon-γ (IFNγ), and tumor necrosis factor-β
(TNFβ), cytokines which are associated with inflammation and cytotoxicity (Cameron
and Kelvin, 2003; Senovilla et al., 2012). Th2 cells mainly secrete IL-4, IL-5, IL-6,
IL-10, IL-13, and transforming growth factor-β (TGFβ), which serve to downregulate
inflammatory actions (Cameron and Kelvin, 2003).
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Figure 1.9: Elements of the tumor microenvironment. The tumor with its invasive
margin is shown, together with tertiary lymphoid structures (TLS) and the cells of the
tumor microenvironment. CTL, cytotoxic T lymphocyte; DC, dendritic cell; FDC, follic-
ular dendritic cell; IFNγ, interferon-γ; IL-12, interleukin-12; IM, invasive margin; IRF1,
interferon regulatory factor 1; MDSC, myeloid-derived suppressor cell; NK cell, natural
killer cell; TH , T helper; TReg cell, regulatory T cell. Figure adapted from Fridman et al.
(2012) and reprinted with permission.

Secretion of cytokines stimulate other immune-cell infiltrates, which in turn release
additional cytokines. Hence, the composition of cytokine-secreting cells in the tu-
mor microenvironment is critical. For example, several chemokines are secreted by
cancer-associated fibroblasts, such as CCL2, CCL3, CCL4, and CCL5, which influence
the macrophage composition in the tumor microenvironment (Turley et al., 2015).
Macrophages in turn are key producers of a number of cytokines which are correlated
with CD8+ cytotoxic T cell infiltration . Other chemokines which have been correlated
with a clinical benefit are CXCL1, which may attract Th1 cells, as well as CXCL9 and
CXCL10, which may attract memory T cells (Mlecnik et al., 2010).

1.4 Cancer Immunotherapy

The idea of harnessing the immune system to fight cancer is not new, but it was
considered highly controversial among scientists. Today, there is no doubt that the
immune system has the capacity to recognize and eradicate cancer, and the develop-
ment of methods to induce and manipulate effective antitumor responses is gaining

20



great momentum. An underlying basis of cancer immunotherapy is the activation of
the patient’s own immune effector cells to specifically eradicate tumor cells. Exten-
sive research of tumor biology and immunology has led to a better understanding of
tumor-host interactions and immunotherapies are now being rationally designed. Im-
munotherapeutic approaches are versatile, including adoptive T cell therapy, gene-
engineered T cells, immune checkpoint blockade, and therapeutic cancer vaccines.
These approaches are summarized in this section, with a special emphasis on neoanti-
gens and cancer vaccines.

Adoptive T cell therapy relies on existing tumor-reactive T cells which are isolated from
cancer patients, expanded in vitro, and reintroduced to the patient. The idea behind
this approach is that these TILs are located in high densities within the tumor, but their
antitumor effects are impaired by an immunosuppressive microenvironment. Removing
these T cell populations from that suppressive environment enables their activation
and clonal expansion (Restifo et al., 2012). An additional advantage of adoptive T
cell transfer is that the patient can be prepared before the actual transfer to provide a
favorable microenvironment for the transfered antitumorigenic T cells (Rosenberg and
Restifo, 2015). So-called lymphodepeletion can be performed immediately before T
cell transfer: the patient’s immune system is temporarily depleted using chemotherapy
and total-body irradiation, which then leads to an improved persistence and antitumor
activity of transfered T cells (Rosenberg and Restifo, 2015). It was demonstrated that
this adoptive T cell transfer protocols achieve objective response rates of almost 48%
in metastatic melanoma, and a fraction of patients is even considered as ’cured’ from
metastatic melanoma (Restifo et al., 2012).

It seems however, that the usage of naturally occurring TILs for adoptive T cell therapy
is only effective in melanoma, for reasons that are not fully understood (Restifo et al.,
2012). Therefore, genetically-engineered T cells are being developed to be used for
adoptive T cell therapy in different cancers. T cells can be genetically engineered to
express T cell receptors that specifically target tumor antigens. A promising technique
for T cell gene-engineering is the usage of chimeric antigen receptors (CARs). CARs
are fusion proteins consisting of the antigen-binding domain of an antibody fused with
the signalling component of the TCR complex. Retroviruses or lentiviruses encoding
the CAR can be used to transduce T cells. Transduced T cells can then recognize the
target antigen on the surface of tumor cells with the antibody part of their CAR, and
do not depend on a functional antigen processing machinery and antigen presentation
on MHC (Restifo et al., 2012). CARs have been used successfully with very promising
clinical results for the treatment of hematologic cancers, for example B cell lymphoma
(target antigen CD19) (Kochenderfer et al., 2010), the ability to treat ephitelial solid
cancers however, is limited (Rosenberg and Restifo, 2015).

Immune checkpoint therapy is a treatment approach that radically changed the prin-
cipals of cancer treatment, as cancer cells are not targeted directly, but molecules
regulating T cell activity are targeted (Sharma and Allison, 2015). Tumor cells ex-
ploit immune inhibitory pathways to escape T cell-mediated eradication. Checkpoint
blockade therapies attempt to disrupt these pathways in order to remove the inhibitory
signals that block an effective antitumor T cell response (Sharma and Allison, 2015).
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This approach is often referred to as ”releasing the brakes” on T cells, enabling them
to fight malignancy (Weintraub, 2013), and is also considered one of the most promis-
ing approaches for tackling solid tumors (Bordon, 2015). CTLA-4 is the first immune
checkpoint that was clinically targeted. Ipilimumab, a fully humanized antibody block-
ing CTLA-4, entered clinical trials in late 1990s and tumor regression was observed
in patients with various tumor types: melanoma, renal cell carcinoma, prostate can-
cer, urothelial carcinoma, and ovarian cancer (Sharma and Allison, 2015). A phase
III clinical trial in patients with advanced melanoma demonstrated improved overall
survival, and importantly, durable response was observed in about 20% of the patients
(Hodi et al., 2010; Robert et al., 2011; Schadendorf et al., 2015). Ipilimumab was the
first checkpoint blocking antibody that was approved by the United States Food and
Drug Administration (U.S. FDA). It was approved for the treatment of melanoma in
2011. Tremelimumab is another CTLA-specific antibody that is in development and
undergoing clinical trials at the moment (Ribas et al., 2013).

The PD-1 pathway additionally emerged as a promising target for immune checkpoint
therapy. Antibodies that inhibit the interaction between the receptor PD-1 and its
ligands PD-L1 and PD-L2 have shown promising results in various tumor types. Clini-
cal trials with anti-PD-1 antibodies nivolumab and pembrolizumab demonstrated high
clinical response rates for metastatic melanoma, and it was also shown that there is
a lower incidence of adverse events compared to treatment with ipilimumab. Clinical
efficacy of anti-PD-1 treatments was also shown to be effective in various cancers, in-
cluding renal cell carcinoma, non-small cell lung cancer (NSCLC) and hematological
cancers. Similar to ipilimumab treatment, the clinical response of anti-PD-1 treat-
ments were often shown to be durable. After pembrolizumab treatment yielded an
overall response rate of 26% in advanced melanoma (Robert et al., 2014), it was ap-
proved by the U.S. FDA for treatment of metastatic melanoma in 2014, and was also
approved for NSCLC just recently in October 2015. Nivolumab showed similar clinical
benefits (Sharma and Allison, 2015) and received FDA Approval for melanoma, renal
cell carcinoma, NSCLC, and squamous NSCLC.

As different checkpoint molecules regulate distinct pathways, combination therapies
are of special interest. It was for instance demonstrated in a clinical trial in advanced
melanoma that a combination treatment with ipilimumab and nivolumab results in im-
proved clinical benefit when compared to the single agent treatments (Wolchok et al.,
2013). Other combination treatments that enable the blockade of multiple inhibitory
pathways such as LAG-3 or TIM-3, or combinations of blockade of inhibitory pathways
while promoting stimulatory pathways such as OX40, are also under development (re-
viewed in Melero et al. (2015) and Mahoney et al. (2015)).

Several reports have suggested that cancers with a high mutational load respond best
to immune checkpoint therapy (Bordon, 2015). Snyder et al. reported that a high
mutational load correlated with an improved response to CTLA-4 blockade (Snyder
et al., 2014), and Kvistborg et al. demonstrated that ipilimumab treatment induced a
significant number of newly detected T cell responses (Kvistborg et al., 2014). More
recently, a similar correlation was reported for the number of neoantigens and the
response to pembrolizumab in patients with NSCLC (Rizvi et al., 2015).

22



These reports highlight that the presence and abundance of mutations and neoantigens
they give rise to are crucial to the effect of immunotherapies. An explanation for these
observations is that mutations may give rise to neoantigens that can be targeted by T
cells following their release from inhibition (Bordon, 2015).

1.4.1 Neoantigens in Cancer Immunotherapy

Although checkpoint blockade therapy showed great clinical results and induced
durable results in many patients, it only works in a subset of patients. It was
suggested that these patients lack preexisting antitumor T cell responses, and that
this unfavorable situation can be addressed with therapeutic antitumor vaccination
(Delamarre et al., 2015). Neoantigens are of special interest in this context. They are
superior to other tumor-associated-antigens, because the immune system was not to-
lerized against them during development, and their expression is highly tumor-specific
(Hacohen et al., 2013; Heemskerk et al., 2013). It has been shown in several studies
that neoantigens are not only important targets of checkpoint blockade therapy, but
they can also be used for personalized therepautic vaccines. There is now evidence,
showing that CD8+ T cells that are specific for neoantigens can attack tumor cells
in various cancers (Rizvi et al., 2015; Rooney et al., 2015; Snyder et al., 2014). The
goal of therapeutic vaccination is to enlarge the pool of tumor-specific T cells from
the näıve repertoire, and also to reactivate existing tumor-specific T cells that are in
a dormant or anergic state (van der Burg et al., 2016).

Coulie et al. suggested the following scenario for vaccinated patients who show tumor
regression (Coulie et al., 2014): upon vaccination, a small number of T cells that
are specific against the vaccine-neoepitopes penetrate the tumor, detect their cognate
antigen and eventually kill some tumor cells. As a result, these cytotoxic T cells are
re-stimulated and produce cytokines that focally reverse the local immunosuppressive
environment around. In this now immunostimulatory environment many of the inactive
antitumor T cells that are already present in the tumor are reawakened, and new näıve
antitumor T cells are additionally stimulated. Of note, the newly stimulated T cells
may be directed against various tumor antigen other than the vaccine antigen, which
then provides the numbers of T cells that are required to reject a tumor. These active
T cells possibly can also migrate to other tumor sites and trigger a response there
(Boon et al., 2006). Hence, therapeutic vaccination can not only recruit tumor-specific
T cells from the naive T cell repertoire, but can also reactivate T cells with an existing
reactivity against various antigens, which have been in a dormant or anergic state prior
to vaccination (van der Burg and Melief, 2011).

However, the development of personalized cancer-specific vaccines for application in
patient care still faces several challenges. As generally only few mutations are shared
between patients and the bulk of mutations are patient-specific, one major issue is the
selection of which neoepitopes to include in a therapeutic vaccine. With recent advances
in next-generation-sequencing technologies and the availability of immunoinformatics
tools, it has become feasible to detect potential neoantigens in a tumor sample. In
brief, after whole-genome, whole-exome, and/or whole-transcriptome sequencing, all
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somatic mutations that lead to the formation of novel protein sequences are detected,
and immunoinformatics tools are applied to assess their potential immunogenicty. The
resulting set of potential neoepitopes can then be used to query T cell reactivity against
them. Hence, neoantigen-specific vaccine development requires a personalized approach
based on the genomic information of each individual tumor (Schumacher and Schreiber,
2015). Studies have shown that this approach can successfully be exploited in a clinical
setting (Schumacher and Schreiber, 2015).

Another question for the development of neoantigen-based therapeutic vaccines is what
vaccine platform to use for delivering the neoepitopes to the patient. Several strate-
gies have been proposed including dendritic cells, synthetic peptides, and recombinant
DNA and RNA. Dendritic cell vaccines have the superior capacity to induce effective
T cell responses, and studies have reported successful application of them (Palucka
and Banchereau, 2013; Carreno et al., 2015). However, implantation of dendritic cell
vaccines is highly time and cost consuming. A simpler approach is the usage of long
synthetic peptides or RNA stretches that encode selected neoantigens, which is also a
more feasible approach to implement in the clinic (Delamarre et al., 2015). Peptide
and RNA-based vaccination was shown to elicit potent antitumor responses in mouse
models (Kreiter et al., 2015; Yadav et al., 2014). Synthetic long peptides may espe-
cially be feasible for vaccination purposes, because they mimic the antigenic properties
of a whole protein (van den Boorn and Hartmann, 2013) and they are usually easy to
produce. Additionally, they can be designed in a way that they contain both, neoepi-
topes for CD4+ and CD8+ T cells. If a therapeutic vaccine is going to be administered,
including multiple neoepitopes for both, CD4+ and CD8+ T cells, is of advantage. In
doing so, the likelihood of generating an immune response against at least some of the
neoantigens increases, and the likelihood of the tumor escaping the immune response
by immunoediting decreases.

The selected adjuvant included in a vaccine also plays a major role for therapeutic effi-
cacy, as they strongly influence the immunogenicity of the vaccine. Adjuvants stimulate
the immune system in a more general way and are supposed to enhance the immune
response induced by the administered vaccine. This is of special interest for peptide
vaccines, as some immunogenicity might be lost by using only the epitope part of the
antigen and not the whole antigen (Banday et al., 2015). Adjuvants used in cancer
vaccines include mineral salts such as Alum, oil-in-water emulsions such as Montanide,
and portions of pathogens such as Lipid-A or Bacille Calmette-Guerin (BCG). Many of
these adjuvants activate cells of both, innate and adaptive immunity, such as DCs and
macrophages, by activating toll-like-receptors (TLRs) and enhancing the processing
and presentation of antigens to T cells. In addition, some non-specific immune adju-
vants such as interferons (IFN-a, IFN-b and IFN-g), interleukins (IL-2, IL-7, IL-12 and
IL-21) and GM-CSF have also been used as adjuvants in various cancer vaccines which
are in early clinical stages (Banday et al., 2015). Although long-peptide vaccines in
montanide adjuvant have been effective in clinical trials (van den Boorn and Hartmann,
2013), it was also reported that oil-in-water emulsions adjuvants cause primed T cells
to become sequestered at the vaccination site rather the than tumor site, and that the
injection site turns into a ”graveyard” for T cells (Hailemichael and Overwijk, 2014;
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Hailemichael et al., 2013). However this observation was limited to short peptides and
usage of long peptides induced minimal T cell sequestration at the vaccination site and
superior antitumor activity (Hailemichael and Overwijk, 2014).

Several neoepitope-based anti-cancer vaccines have reached clinical stage. A vaccine
based on a single neoepitope from IDH1 has been shown to induce antitumor immu-
nity mouse models by Platten et al. (Schumacher et al., 2014) and the vaccine is
currently undergoing a phase I clinical trial for grade III-IV gliomas (NCT02454634).
Another concept is to vaccinate with multiple shared neoepitopes known for a dis-
tinct tumor entity (NCT01885702). Personalized neoepitope-targeted trials using
either mutant RNA or mutant peptides as antigens are currently conducted in pa-
tients with melanoma (NCT02035956, NCT01970358) glioblastoma (NCT02149225,
NCT02510950, NCT02287428) and triple-negative breast cancer (NCT02348320,
NCT02316457) (Vormehr et al., 2015). These vaccine trials will not only provide data
about efficacy and safety, but will also provide data for validation and evaluation of
in silico epitope prediction and selection criteria and may increase the accuracy and
efficacy of them.

1.5 Colorectal Cancer

Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality world-
wide and remains the fourth common cause of death from cancer (Fearon, 2011; Singh
et al., 2015). In this section, treatment approaches for CRC, especially immunother-
apeutic strategies, are described, as well as the current understanding of the tumor
microenvironment of CRC.

1.5.1 Treatment Approaches for Colorectal Cancer

The most common treatment for CRC is surgery. In the case of localized tumors
which have not spread outside the colon wall itself (stage I), surgery may completely
eliminate the cancer. When the cancer has invaded the bowel wall and nearby tissue
(stage II) or has invaded nearby lymph nodes (stage III), chemotherapy and radiation
therapy may be administered before or after surgically removing all affected areas
together with the corresponding lymph nodes. Chemotherapy regimens used for CRC
are fluoropyrimidine- and oxaliplatin-based. A diagnosis of stage I-III CRC allows
patients to undergo treatment with a curative intent (Ahn and Goldberg, 2016). A
great proportion of patients, more than 20%, are diagnosed with distant metastases
(stage IV), most commonly in the liver or lung (Brenner et al., 2014). Surgery is often
not applicable for these patients with metastatic disease (Singh et al., 2015). Palliative
chemotherapy for patients with metastatic CRC can improve survival and downsize
metastases in patients with potentially resectable disease (Cunningham et al., 2010).
Although significant progress has been made in the treatment of metastatic CRC,
the 5-year survival remains <12.5% (Siegel et al., 2014), highligting the need for the
development of new treatment approaches (Ahn and Goldberg, 2016).
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Immunotherapy for CRC has been under investigation for many years, but showed lim-
ited clinical efficacy. Many recent scientific approaches broadened our understanding
of the antitumor immune response, so that immunotherapy may also represent a novel
effective treatment approach for metastatic CRC. Current immunotherapies for CRC
include: monoclonal antibodies, checkpoint inhibitors, cancer vaccines, adoptive cell
therapy and oncolytic virus therapy.

The earliest attempts of CRC immunotherapy were in the form of whole-tumor-cell
vaccination, where autologous tumor cells are lysed and re-infused into the patient
together with an immune adjuvant. Several clinical trials have been conducted which
however, showed limited clinical efficacy (reviewed in Markman and Shiao (2015)).
Whole-tumor vaccines are typically poorly immunogenic as, only a small number of
the present antigens are tumor-specific, while a vast majority of antigens in the vac-
cine are shared with normal cells, thus diluting the amount of tumor-specific antigens
(Markman and Shiao, 2015). To circumvent this problem, peptide vaccines were devel-
oped in order to generate an immune response against a specific known tumor antigen.
Peptide vaccines incorporate whole proteins or fragments of proteins that are adminis-
tered together with adjuvants. In CRC, multiple tumor-associated antigens have been
identified and utilized for vaccination, including carcino-embryonic antigen (CEA),
MUC-1, and survivin (Markman and Shiao, 2015). While early trials with peptide
vaccines demonstrated low efficacy due to limited immunogenicity and small numbers
of responding T cells, new strategies to simultaneously boost the immune response
show promise (Markman and Shiao, 2015). One of the more promising approaches to
boost the immune activation is packing the tumor antigens plus co-stimulatory whole
proteins or fragments of proteins that are administered together with adjuvants. Clin-
ical trials have shown that these viral vaccines produce significantly more effective
responses compared to peptide vaccines, however toxicity in form of a cytokine storm
was also reported in several cases (Markman and Shiao, 2015). Another vaccination
approach for CRC is the usage of dendritic cells. Several clinical trials with DCs that
have been pulsed with tumor-specific antigens have been conducted. Since CEA is
expressed in most CRCs, this antigen was utilized for DC vaccines for CRC (Lester-
huis et al., 2006; Morse et al., 2013). Although CEA-specific T cell responses could
be induced with these DC vaccines, survival was not improved significantly (Markman
and Shiao, 2015).

Adoptive cell therapies have also shown some activity in CRC immunotherapy. For
instance, autologous T cells genetically engineered to express a high-affinity murine T
cell receptor against human CEA were administered to refractory CRC patients, and
objective regression was observed in one patient. However, because patients developed
immune colitis, further enrollment of patients was stopped (Parkhurst et al., 2011).
Various trials are in progress using T cells specific for the tumor-associated antigens
NY-ESO-1, MAGEA4, PRAME, Survivin, and SSX in refractory solid tumors, includ-
ing CRC (NCT02239861).

The main advance in the treatment of metastatic CRC has been the addition of tar-
geted therapies (Cunningham et al., 2010). The monoclonal antibodies bevacizumab
(anti-VEGF), panitumumab and cetuximab (anti-EGFR), and regorafenib, dabrafenib,
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and neratenib (kinase inhibitors) showed some clinical efficay as combination therapies
with chemotherapy (Brenner et al., 2014; Ahn and Goldberg, 2016). Recently, the
monoclonal antibody against PD-1, pembrolizumab, created some excitement in the
field of CRC immunotherapy. As mentioned in section 1.4, immune checkpoint therapy
showed great success in a number of patients and cancers. For a long time, these check-
point blockade therapies seemed useless in CRC. Early data suggested limited efficacy
for anti-CTLA-4 treatment in CRC (Chung et al., 2010), and because low expression
of PD-1 was demonstrated in CRC, it was also suggested that anti-PD-1 or anti-PD-L1
therapy might also be inefficient in CRC (Taube et al., 2014). A large phase I trial
evaluating safety and activity of an anti-PD-1 antibody enrolled patients with NSCLC,
prostate, renal-cell and colorectal cancer (Topalian et al., 2012). In this trial, only one
patient with metastatic CRC showed response after treatment. Further investigation of
this patient revealed that this patient was mismatch-repair deficient. Mismatch-repair
deficiency leads the instability of the microsatellites, and as a result, these tumors
contain 10-100 times more somatic mutations than mismatch-repair proficient tumors
(Topalian et al., 2012). It was hypothesized that this high mutational load triggers
response from T cells that have been blocked by PD-1 prior to therapy. To test this
hypothesis, Le at al. conducted a phase II trial to assess the efficacy of the anti-
PD-1 antibody pembrolizumab in mismatch-repair deficient and proficient metastatic
CRC patients (Le et al., 2015). The hypothesis was clearly confirmed in this trial:
patients with mismatch-repair deficiency demonstrated an objective response rate of
40%, whereas no objective response was seen in mismatch-repair proficent patients.

Based on the promising clinical activity of pembrolizumab, several ongoing studies are
investigating various immunotherapeutic agents in several subsets of CRC (reviewed in
Ahn and Goldberg (2016)). It remains to be elucidated, which subsets of CRC patients
respond to certain immunotherapies and predictive biomarkers have to be established.

1.5.2 The Tumor Microenvironment in Metastatic Colorectal
Cancer

The first evidence for a correlation of immune infiltration and survival in CRC patients
was reported in 1987 (Jass et al., 1987). The prognostic value of TILs in CRC was
confirmed by Ropponen et al. (Ropponen et al., 1997): they quantified the TILs in
the tumor stroma and along the invasive margin and demonstrated that the grade of
infiltrating lymphocytes was a predictive factor for disease free and overall survival.
Another study in colon cancer, showed that particularly CD8+ cytotoxic TILs have
an important influence on clinical outcome (Naito et al., 1998), and it became evident
that the specific TIL composition has a crucial role in clinical evolution of CRC (de la
Cruz-Merino et al., 2011). With the emergence of more sophisticated methodology to
deliniate the effects of different immune cell populations and their spatial distribution
within and around cancer lesions, large studies have been conducted and identified
the prognostic role of T cell infiltrates in the center and the invasive margin of the
primary tumor (Halama et al., 2012; Galon et al., 2006). It was furthermore shown
that infiltrating immune cells are heterogeneous and that they accumulate in distinct
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regions and compartments, namely core of the tumor, invasive margin, and adjacent
healthy tissue (Halama et al., 2009a, 2012).

1.6 Motivation

It is now commonly known that the composition of the tumor microenvironment has a
major impact on tumor growth and progression, as well as on response to therapy. It
has been shown that the type and density of tumor-infiltrating immune cells are highly
predictive for disease outcome in various cancers. These studies have also suggested
that a high density of tumor-infiltrating lymphocytes is correlated with mutational
load. One hypothesis in this context is that somatic mutations found in cancer cells
may give rise to neoepitopes that attract and keep lymphocytes at the tumor site
(Schumacher and Schreiber, 2015). Neoepitopes have also been suggested to be crucial
for the outcome of immune checkpoint therapies, as it was reported that cancers with
a high mutational load respond best to checkpoint therapy (Delamarre et al., 2015).
An explanation for this is that mutations give rise to neoepitopes that can be targeted
by T cells once they are released from inhibitory signals.

It has now become evident that effective immunotherapies have to be tailored to the
specific immune setting of each tumor (Smyth et al., 2016). The complex interplay
between the tumor and the immune system has to be systematically analyzed for
characterizing patients and identifying therapies they will most likely benefit from.
This highly personalized approach requires the integrated analysis of numerous tumor
and host factors. Accordingly, the main aim of this PhD project was the establishment
of an integrated analysis pipeline to obtain detailed data about tumor-host interactions,
including analysis of the mutational and neoepitope load, the type and densities of
tumor infiltrating immune cells, the expression of immunological markers, and the
expression of specific cytokines.

This analysis pipeline combines already available genomic and immunomic resources
and adds further depth into the analysis by additional computational pipelines. The
already well established sequencing and somatic mutation detection pipelines that have
been developed in the DKFZ bioinformatics departments (Prof. Roland Eils and Prof.
Benedikt Brors) were integrated with the cytokine profiling and histological analysis
workflows in Professor Jäger’s group (NCT, Medical Oncology). Additional compu-
tational pipelines for HLA genotyping from sequencing data, as well as for epitope
predictions for HLA class I and class II were implemented and included. Taken to-
gether these analysis pipelines provide a broad picture of tumor-host interactions. The
established analysis pipeline allows the rapid and systematic analysis of large patient
cohorts.

Professor Jäger’s group has been collecting CRC liver metastases and systematically
characterizing their immune infiltration and cytokine profiles, as well as the correlation
to clinical outcome (Halama et al., 2011a,b, 2009a, 2010, 2009b). In these studies
it was shown that in general, there are at least two patient groups for each CRC
stage: patients with high infiltrate density and patients with low infiltrate density,
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with the latter having a much worse prognosis (Halama et al., 2012). A patient cohort
including 10 patients with high densities of infiltrating lymphocytes (TIL-high) and
10 patients with low densities (TIL-low) was assembled and provided by Niels Halama
from Professor Jäger’s group for analysis in this study (section 2.1, Figures 1.10 and
1.11). The described integrated analysis pipeline was developed using this patient
cohort.

The analysis pipeline was then used to systematically investigate TIL-high versus TIL-
low CRCmetastases in order to assess the correlation of mutational and neoepitope load
to lymphocyte infiltration and whether additional factors distinguishing the two groups
can be discovered. The results of this analysis provide valuable detailed insights to the
immune setting of CRC liver metastases, which are presented and discussed in this
thesis. The pipeline was also applied in the clinic to conduct case studies with several
patients being treated at the NCT. Two case studies are also exemplarily presented in
this thesis.
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Figure 1.10: Immunohistochemical stainings for CD3 in samples with high
lymphocyte infiltration. Tissue sections of all 20 patients were immunohistochemi-
cally analyzed for their infiltration with T cells by staining the T cell marker CD3. The
stainings were evaluated semi-automatically and the samples were assigned to be highly
or lowly infiltrated accordingly. Each panel shows the CD3 staining of tissue derived
from a TIL-high patient, and the scale bar indicates 5mm. Samples were provided by
Niels Halama (NCT, Medical Oncology).
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Figure 1.11: Immunohistochemical stainings for CD3 in samples with low lym-
phocyte infiltration. Tissue sections of all 20 patients were immunohistochemically
analyzed for their infiltration with T cells by staining the T cell marker CD3. The stain-
ings were evaluated semi-automatically and the samples were assigned to be highly or
lowly infiltrated accordingly. Each panel shows the CD3 staining of tissue derived from
a TIL-low patient, and the scale bar indicates 5mm. Samples were provided by Niels
Halama (NCT, Medical Oncology).
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Figure 1.12: Integrative Analysis Approach. The established integrated analysis
workflow provides a broad picture of the tumor-host interactions by combining data
from analysis of the mutational and neoepitope load, the type and densities of tumor
infiltrating immune cells, the expression of immunological markers, and the expression
of specific cytokines.
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CHAPTER 2

Methods
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Samples were collected and provided for this study by Niels Halama from Professor
Jäger’s group (NCT, Medical Oncology) in collaboration with the Surgery Depart-
ment (University Hospital Heidelberg). All experimental procedures were conducted
by members of Professor Jäger’s group (NCT, Medical Oncology). I implemented the
HLA Typing and Immunoinformatics pipelines, as well as several analysis scripts to
evaluate the obtained data.

2.1 Samples

Table 2.1: Patient IDs and corresponding TIL status

Patient ID TIL status ID Gender Age

Hi-Pat-01 high HLM 64 m 64
Hi-Pat-02 high HLM 61 m 61
Hi-Pat-03 high HLM 39 m 81
Hi-Pat-04 high HLM 50 w 67
Hi-Pat-05 high HLM 54 w 70
Hi-Pat-06 high HLM 30 m 72
Hi-Pat-07 high HLM 55 m 54
Hi-Pat-08 high HLM 56 m 71
Hi-Pat-09 high HLM 31 w 68
Hi-Pat-10 high HLM 71 m 48
Lo-Pat-01 low HLM 37 1 m 72
Lo-Pat-02 low HLM 69 m 72
Lo-Pat-03 low HLM 52 m 68
Lo-Pat-04 low HLM 84 w 50
Lo-Pat-05 low HLM 8-3 w 49
Lo-Pat-06 low HLM 51 m 69
Lo-Pat-07 low HLM 32B m 63
Lo-Pat-08 low HLM 33 m 65
Lo-Pat-09 low HLM 67 w 63
Lo-Pat-10 low HLM 73B m 79

TIL = tumor-infiltrating lymphocyte

Samples from colorectal cancer liver metastases from a cohort of patients with in-
complete resection following palliative chemotherapy was collected previously by Niels
Halama et al. (NCT, Medical Oncology, Jäger) in collaboration with the Surgery De-
partment (University Hospital Heidelberg). Tumor tissue from the metastases, as well
as tissue from the adjacent healthy liver were provided as fresh frozen tissue blocks.

Lymphocyte infiltration densities of the provided samples have already been determined
using immunohistochemistry and and virtual microscopy for quantification, and 10
patients with high and low TIL density were selected, respectively. An overview of the
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patient IDs together with corresponding TIL status is presented in Table 2.1. Complete
clinical data for this patient cohort is available.

2.1.1 Case Studies

Two patients with metastatic CRC, who are currently being treated at the NCT and
enrolled in the NCT Precision Oncology Program (NCT POP), were analyzed addi-
tionally to explore further immunotherapeutic options.

2.2 Histological Analysis

Table 2.2: Primary antibodies used for immunohistochemical stainings

Mouse monoclonal antibodies

Protein Lot number Supplier Clone

PDL2 #345503 BioLegend MIH18
PDL1 #329710 BioLegend 29E. 2A3
PD1 #ab52587 Abcam NAT 105
FoxP3 #14-4777 Bioscience 236A/E7
CTLA4 #70-1529 Tonbo Biosciences BNIS
CD3 #NCL-L-CD3-565 Novocastra LN10
CD8 #NCL-L-CD8-4B11 Novocastra 4B11
CD20 #NCL-L-CD20-L26 Novocastra L26
CD68 #ab955 Abcam KP1
CD163 #MCA 1853 AbD Serotec EDHu-1
Ki67 #M7240 Dako MIB-1
HLA I #D226-3 MBL EMR8-5
NKP46 #MAB1850 R&D 195314

Rabbit polyclonal antobodies

Protein Lot number Supplier Clone

aCasp3 #ab2302 Abcam -

Immunohistochemical stainings were performed by Rosa Eurich in Professor Jäger’s
group (NCT, Medical Oncology), as previously described (Halama et al., 2011a).

Tissue sections of all 20 patients were immunohistochemically analyzed for their in-
filtration with T cells (CD3 and CD8), regulatory T cells (Foxp3), B cells (CD20),
NK cells (NKp46), and macrophages (CD68, CD163). The expression of HLA class
I and the immunomodulatory proteins PD-1, PD-L1, PD-L2, CTLA-4 was also eval-
uated immunohistochemically. The used antibodies are listed in Table 2.2. Nuclei
were counterstained with hematoxylin. All processing steps were performed with a
BOND-II autostainer (Leica) according to manufacturers recommendations. Antigen
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detection was performed by a color reaction with 3,3-diamino-benzidine (DAB chro-
mogen, Menarini).

High-precision quantification of cell T cell densities (CD3 and CD8 stainings) was
performed as described previously (Halama et al., 2010, 2009b) using the VIS software
package (Visiopharm). All other stainings were assessed manually .

2.3 Cytokine Profiling

Table 2.3: Quantified cytokines

Protein Gene Symbol Protein Gene Symbol
Eotaxin CCL11 IL-16 IL16
MCP-1 CCL2 IL-17 IL17A
CTACK CCL27 IL-18 IL18
MIP-1a CCL3 IL-1a IL1A
MIP-1b CCL4 IL-1b IL1B
RANTES CCL5 IL-2Ra IL1RN
MCP-3 CCL7 IL-1ra IL2RA
GROalpha CXCL1 IL-2 IL2
IP-10 CXCL10 IL-3 IL3
SDF-1a CXCL12 IL-4 IL4
MIG CXCL9 IL-5 IL5
SCGF-b CLEC11A IL-6 IL6
M-CSF CSF1 IL-7 IL7
GM-CSF CSF2 IL-8 IL8
G-CSF CSF3 IL-9 IL9
FGF basic FGF2 SCF KITLG
HGF HGF LIF LIF
VEGF VEGFA TNF-beta LTA
IFN-alpha2 IFNA2 MIF MIF
IFN-g IFNG b-NGF NGF
IL-10 IL10 PDGF bb PDGFB
IL-12p70 IL12A TNF-a TNF
IL-12p40 IL12B TRAIL TNFSF10
IL-13 IL13
IL-15 IL15

Chemokine and cytokine detection in tissue lysates were performed by Tina Lerchl
in Professor Jäger’s group (NCT, Medical Oncology), and the three compartments
adjacent liver (AM), invasive margin (IM), and liver metastasis (LM) were considered
separately.

Tissue lysates were prepared from frozen material according to the manufacturers in-
structions (BioRad Laboratories). A Luminex100 reader was used to simultaneously
quantify a panel of 48 cytokines (BioRad Laboratories, Bio-Plex Pro Human Cytokine
27-plex (#M500KCAF0Y) and 21-plex (#MF0005KMII)), according to manufacturers
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protocol and the raw data was analyzed using the software BioPlex Manager Version
6.0. The analyzed cytokines are listed in Table 2.3.

2.4 ELISpot Analysis

ELISpot analysis and all preparational steps for the measurement of T cell reactivity
was conducted by Iris Kaiser in Professor Jäger’s group (NCT, Medical Oncology).

2.4.1 Cell Preparation

Ficoll density gradient centrifugation was performed to isolate PBMC. Thereof, T cells
and dendritic cells (DCs) were purified as described previously (Bonertz et al., 2009;
Horn et al., 2013). Briefly, T cells were cultured for 7 days in X-VIVO 20 medium
containing 100 U/ml human rIL-2 (Proleukin, Chiron, Ratingen, Germany), and 60
U/ml human rIL-4 (Promokine, PromoCell, Heidelberg). Afterward, cells were kept
in cytokine-free medium for 12 h and human CD3 T cells were purified using the
Dynabeads untouched human T cell kit (Invitrogen, Darmstadt, Germany). For DC
maturation, adherent cells were cultured for 7 days in X-VIVO 20 medium contain-
ing 560 U/ml human rGM-CSF (Leukine, Berlex, Bayer, Leverkusen, Germany), and
500 U/ml human rIL-4. DCs were enriched using anti-CD56 coupled magnetic beads
(C218, Beckman Coulter, Krefeld, Germany), and anti-CD3 and anti-CD19 Dynabeads
(Invitrogen, Darmstadt, Germany), and pulsed for 18 h with 0.8 g/l test peptides or
IgG. As positive control, 0.1 g/l staphylococcal enterotoxin B (SEB) was used.

2.4.2 Peptides

Peptides were produced by the Peptide Synthesis Facility of the DKFZ. Lyophilized
synthetic peptides were solved in distilled water containing 10 % DMSO. Peptide pu-
rity was >98 %. Peptides were designed to contain the identified immunogenic HLA
restricted T cell epitope. Synthesized human IgG peptides as well as IgG (Kiovig,
Baxalta, Unterschleiheim, Germany) were used as negative control antigens.

2.4.3 IFNγ ELISpot assay

ELISpot assays were done as described previously (Bonertz et al., 2009; Horn et al.,
2013) with modifications. Briefly, peptide-pulsed DCs (2 × 104) were incubated with
autologous T cells (1 × 105) at a 1:5 ratio for 40 h in ELISpot plates (MAHA S45, Mil-
lipore, Eschborn, Germany). All tests were performed in triplicate wells. IFNγ spots
were measured using the automated system CTL ImmunoSpot analyzer (CTLEurope,
Bonn Germany). Spots in the IgG control wells were considered background reactivity.
A reaction against a test peptide was considered a positive response if the spot counts
were significantly higher than the IgG counts (p <0.05 two-sided student’s t-test).

37



2.5 Sequencing and Sequence Analysis

Library preparation and sequencing were performed by the DKFZ Genomics and Pro-
teomics Core Facility. Mapping and analysis of DNA sequence data, i.e. detection of
SNVs, Indels and CNVs, were performed using the well-established analysis pipelines
at the DKFZ Department of Theoretical Bioinformatics (Prof. Roland Eils) and Ap-
plied Bioinformatics (Prof. Benedikt Brors). Sequencing was funded by the DKFZ-
Heidelberg Center for Personalized Oncology (DKFZ-HIPO) through HIPO-034. Se-
quencing of the two patients enrolled in NCT POP was funded through HIPO-021.

The methods for sample preparation ans sequencing are described briefly in this section
for completeness.

2.5.1 DNA Library Preparation and Sequencing

DNA for the whole-exome sequencing were isolated using Qiagen AllPrep DNA/R-
NA/Protein Mini Kit.

Library preparation was performed on the Agilent NGS Workstation (Version F.0,
November 2013) using Agilent SureSelectXT Automation Reagent Kit (G9641B) and
Human All Exon v5 + UTRs.

Paired-end whole-exome sequencing with a read length of 101 bp was performed on
Illumina HiSeq 2000 according to the manufacturer’s protocol. According to the HIPO
guidelines, the sequencing aimed for a coverage of 60x for control and 80x for tumor
samples.

2.5.2 Mapping and Analysis of DNA Sequence Data

Paired-end DNA sequencing reads were mapped to the 1000 genomes phase 2 ref-
erence genome hs37d5 as previously described (Jones et al., 2012), using Burrows-
Wheeler-Aligner (BWA) (version 0.6.2) (Li and Durbin, 2010), and were further pro-
cessed with SAMtools (version 0.1.17) (Li et al., 2009) and Picard tools (version 1.61)
(http://broadinstitute.github.io/picard). For a more detailed description of the map-
ping pipeline, refer to (Jones et al., 2012).

The SNV calling pipeline is based on SAMtools mpileup and bcftools (Li et al., 2009).
In addition to previously described filters to remove artifacts (Jones et al., 2012),
additional filters have been implemented, such as exclusion of variants located in regions
of low mappability. To ensure high confidence for somatic SNVs, several criteria are
being considered. For a more detailed description of used filters and quality criteria,
refer to (Jones et al., 2013). The output is a file in Variant Call Format (VCF), with
some additional columns. One VCF file for each patient was stored for further usage
in the Immunoinformatics Pipeline.

The pipeline for the detection of Indels is based on the tool Platypus (0.5.2) (Rimmer
et al., 2014). Since Platypus was developed to detect variants in normal genomes,
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additional custom filters were added to reliably detect somatic indels in tumor normal
pairs. These filters integrate the genotype likelihood as well as other filter criteria
originally generated by Platypus.

For the detection of copy number variations the according pipeline is based on Varscan2
(Koboldt et al., 2012). As part of the pipeline, usage of Varscan2 was optimized for
large datasets, and a workflow for the automated annotation of genes in the identified
regions is included.

2.5.3 Mutation Validation

Selected SNVs that were detected in the whole-exome sequencing were validated with
PCR amplification and Sanger Sequencing. The procedure was conducted by Claudia
Ziegelmeier and Jin-Ho Lee in Professor Jäger’s group (NCT, Medical Oncology).

Primers were designed using online tool primer-blast (http://www.ncbi.nlm.nih.gov,
11 February 2016, date last accessed) (Ye et al., 2012) and SeqAnalyzer (LaserGene,
DNASTAR, Madison, Wl). Primers were designed to span multiple SNVs in the same
PCR amplicon, if possible. PCR primer oligonucleotides were synthesized by and pur-
chased from Sigma Aldrich (Germany). A list of all used primers are shown in table 2.4.
All PCRs were performed with OptiTaq DNA Polymerase (Roboklon GmbH, Berlin,
Germany) using the standard 20 l mix (for buffer B). Same PCR reaction conditions
were used for all experiments, in exceptional cases 10% DMSO was added to the PCR
mix and extension duration was adjusted. Specificities of PCRs were checked on a
1.5% Agarose gel and PCRs were purified via QIAquick PCR purification Kit (Qiagen
GmbH, Hilden, Germany) and DNA concentrations were measured on the NanoDrop
1000 Spectrophotometer (Peqlab Biotechnologie GmbH, Erlangen, Germany). Samples
with purified DNA concentrations between 10 and 50 ng/l were prepared and sent in
with either the corresponding forward or reversed PCR primers or both for Sanger se-
quencing by the SUPREMErunTM sequencing service (GATC Biotech AG, Konstanz,
Germany).

2.6 HLA Typing Pipeline

The sequence-based HLA typing tool Phlat (Bai et al., 2014) was used to infer the
HLA genotype of each patient from the corresponding WXS sequences.

Here, an analysis pipeline was implemented which runs Phlat for multiple input sample
in parallel and then summarizes the results of all input samples in one combined result
table. This HLA typing pipeline is a collection of custom shell and python scripts.
Required input parameters are the name and location of sequencing read files, sample
ID, and output directory.

First, the FASTQ files which are usually provided in gz or bz2 archives are unpacked
and stored in the output directory (script run gunzip.sh). Next, computing jobs for
each of the input samples are submitted and run in parallel on a computing cluster
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Table 2.4: List of primers used for PCR and validation sequencing of recurring mutations.

Oligo Name Sequence

APC-FW-nc3296-3316 TTTCTCCATACAGGTCACGGG
APC-RV-nc4149-4129 CATGAGTGGGGTCTCCTGAAC
TP53-RV-nc882-863 CTCCCCTTTCTTGCGGAGAT
APC-FW-in-ex1409-1425 TAGGGGGACTACAGGCCATT
APC-RV-intron19 GCGAATGTGAAGCACAGGTT
APC-FW-nc2339-2358 GTCCCAAGGCATCTCATCGT
APC-RV-nc3333-3314 TTCTGAACCATTGGCTCCCC
APC-FW-nc4005-4027 CAGACTGCAGGGTTCTAGTTTAT
APC-RV-nc4360-4339 TAGGTACTTCTCGCTTGGTTTG
APC-FW-intron12 GATAGTCGACCGCCAATCGT
APC-RV-intron13 CAGCACATTGGTACTGAATGCTT
APC-FW-intron13 CAGACACTTCATTTGGAGTACCTTA
APC-RV-intron15 TGGCATTAGTGACCAGGGTT
TP53 FW exon5 TTTGCTGCCGTCTTCCAGTT
TP53 RV exon6 GAGGCCCTTAGCCTCTGTAAG
TP53 FW exon6 AACCCCATGAGATGTGCAAAGT
TP53 RV intron8 GCCGGGGATGTGATGAGAG
TP53 FW intron8.1 CTCTCATCACATCCCCGGC
TP53 FW intron8.2 GGCGGGGAATCTCCTTACTG
APC-intron-20-fw1 TTTGGCACTGTAGTAGCATTTAGG
APC-intron-20-fw2 GAGTGCAGTGGTGCGATTAT
APC-EXON20-RV GCAGATCACAAAGTCAGGAGTAG
KRAS-intron2-fw GCGTCGATGGAGGAGTTTGT
KRAS-intron3-RV GGTCCTGCACCAGTAATATGC

(script run phlat.sh). After all jobs are completed, a script to summarize the results is
invoked (run summary.py). Finally, all temporary files, such as unpacked FASTQ and
HLA alignment files are removed using the script clean up.sh.

The output of the pipeline is a summary table, where the result of all input samples
is listed. In doing so, for each patient the HLA genotype for class I alleles HLA-A,
-B, -C, and class-II allele -DRB1 was compiled. As described in 1.1.2, only HLA-DRB
needs to be considered for HLA class II.

2.7 Immunoinformatics Pipeline

In addition to the HLA typing pipeline, an analysis pipeline to rapidly perform epitope
predictions for large datasets in an automated way was implemented. As part of the
pipeline, the HLA binding prediction tools NetMHCpan (2.8) (Hoof et al., 2009) and
NetMHCIIpan (Andreatta et al., 2015) (3.0) (for HLA class I and II, respectively), as
well as the proteasomal cleavage prediction tool NetChop (3.1) (Kemir et al., 2002) are
used. These tools are publicly available and can be downloaded under academic license
(http://www.cbs.dtu.dk/services/software). Similar to the HLA typing pipeline, this
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Immunoinformatics pipeline is also a collection of custom shell, python and R scripts.
The input files are the VCF file from the SNV calling pipeline and a table with the
HLA genotype. Additional input parameters are sample ID and output directory. An
overview of the pipeline components is illustrated in Figure 2.1.

First, using a Python script (missense to table.py), only missense mutations are ex-
tracted from the VCF file and stored in a tab-delimited table. This table is a condensed
version of the VCF file, only storing relevant information from the VCF, such as the
exact location of the mutation and the gene and protein annotations.

The second part is the retrieval of peptide sequences. Using an R script (get peptides.R)
that utilizes the packages biomaRt (Durinck et al., 2009, 2005), annotate (Gentleman,
2015), and AnnotationDbi (Pages et al., 2015), for each missense SNV the correspond-
ing peptide sequence is retrieved. For this, the RefSeq ID of the mutated gene is
used, as well as the information about the exact amino acid position and consequence
of the mutation, which already have been annotated in the SNV calling pipeline
(using Annovar (Wang et al., 2010)).29mer peptides are generated, in a way that
14 amino acids flank the mutated residue at each side. Both peptides, the mutated
and the wildtype counterpart, are stored. Here, all transcripts of the mutated gene
are considered separately, thereby often multiple peptide sequences for one SNV are
produced. As different transcript sequences can result in different protein sequences,
generated 29mer peptides can also be different, depending on the position of the
mutation. Another R script (get unique peptides.R) is used, to only extract unique
peptides. The output of this part is another tab-delimited table containing all distinct
peptides together with all the transcript and mutation information.

The next part is the HLA binding prediction using the tools NetMHCpan and
NetMHCIIpan, for HLA class I and class II predictions respectively. This part consists
of several steps. As a first step using the peptide table generated during the previous
part, for each sample two FASTA files are generated containing all mutated and
wildtype peptides, respectively (script create fasta files.R). Next, using the script
create netmhc commands.R, the NetMHCpan and NetMHCIIpan commands are cre-
ated: for each sample one shell script containing the commands for all predictions is
automatically generated. Two predictions are run for each allele, one for the mutated
peptides and one for the wildtype ones. A netMHCpan/netMHCIIpan command has
the following format:

netMHCpan −a <HLA a l l e l e > −f <input FASTA f i l e > >> <output f i l e >

The created scripts containing the netMHCpan/netMHCIIpan commands are then sub-
mitted to the computing cluster. After the computing jobs are finished, the netMHC-
pan/netMHCIIpan files are rearranged and stored as tab-delimited files (script for-
mat netmhc files.sh). Finally, for every sample one large epitope table is created (script
epitope table.R) which contains all predicted mutated HLA binders matched with their
wildtype counterpart and all information about the prediction, such as the affinity.

For the predicted HLA class I binders, additionally a proteasomal cleavage prediction
is performed using the tool NetChop. The script run netchop.sh generates a netChop
command, directly runs it in the command line and creates a tab-delimited table con-
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taining the prediction scores for each peptide. These prediction scores are then added
to the epitope table from the previous part using the script add netchop to table.R.
This table epitope table with netchop.csv contains all predicted binders together with
the HLA binding and proteasomal cleavage prediction scores.

The final part of the pipeline is the prioritization and selection of epitopes. After
extensive literature research, three criteria for the selection of epitopes were defined
(also discussed in chapter 4):

• predicted binding affinity of ≤ 500nM

• predicted proteasomal cleavage score of ≥ 0.5

• predicted affinity of mutated peptide is higher than corresponding wild-type pep-
tide

The script rank epitopes.R applies these criteria and generates a new table ranked epitopes.csv
which only contains the peptides which meet the defined criteria.
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Figure 2.1: Components of the Immunoinformatics pipeline. The Immunoinfor-
matics pipeline is a collection of custom shell, python and R scripts. The input data are
a file with the somatic point mutations in Variant Call Format (VCF) from the Single
Nucleotide Variation (SNV) calling pipeline, and a table with the HLA genotype for the
corresponding samples from the HLA Typing pipeline. Parts of the pipeline that have
been implemented by me are shown in red boxes, in green boxes the parts that have been
established at the DKFZ Bioinformatics departments Theoretical Bioinformatics (Prof.
Roland Eils) and Applied Bioinformatics (Prof. Benedikt Brors), are shown, and the
gray boxes indicate the publicly available tools.
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2.8 Downstream Analysis

Custom scripts were used for downstream analysis and plotting of figures using R
programming language (R Core Team, 2014).

The R package ggplot (Wickham, 2009) was used to create all plots.

For the clustering analysis and creation of heatmaps for the cytokine data, the R
package heatmap3 (Zhao et al., 2015) was used. Cytokine expression values were z-
score transformed prior to analysis.

For the pathway enrichment analysis of mutations the Ingenuity Pathway Analysis
(IPA) software was used (http://www.ingenuity.com). IPA performs a gene set en-
richment analysis on an input list of genes and generates a p-value for each canonical
pathway or functional category based on Fisher’s exact test. The p-value reflects the
significance of the enrichment of each pathway for the list of input genes. For each
canonical pathway, IPA also calculates the ratio of the number of genes from the input
list that are annotated to the pathway to the total number of genes annotated to the
pathway.
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CHAPTER 3

Results
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As part of this PhD project, an integrated analysis pipeline to obtain detailed data
about tumor-host interactions was implemented and applied to a dataset of CRC liver
metastases. Samples and experimental procedures were provided by members of Pro-
fessor Jäger’s group (NCT, Medical Oncology), and sequencing was conducted by the
DKFZ Genomics and Proteomics Core Facility.

3.1 Sequencing Data

The minimum sequencing coverage of 60x for control and 80x for tumor samples re-
quired by Hipo was achieved for all samples (Figure 3.1). For some samples, a second
sequencing run had to be performed.

Figure 3.1: Coverage of sequenced samples. For each patient, the sequencing cov-
erage, i.e. read depth, of metastasis (red) and control (turquoise) samples are shown.

3.2 Mutational Landscape

Analysis of the somatic mutation profile revealed a heterogeneous landscape. Only
few SNVs and Indels are shared between patients. Several well-known arm-level CNVs
were found in a number of patients.

3.2.1 Single Nucleotide Variations

The number of somatic SNVs for each patient ranges between 62 and 643, which cor-
responds to a mutation frequency of 0.83 - 8.62 mutations per megabase. When only
somatic SNVs in coding regions (exonic SNVs) are considered, the numbers are lower,
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ranging between 11 and 183. The bulk of the somatic mutations are located in non-
coding regions which are: splicing, ncRNA, intergenic, intronic, upstream/downstream,
and UTR (Table 3.2). Considering exonic SNVs there are again different types, which
are: stopgain, stoploss, missense (nonsynonymous), and synonymous. Here, the ma-
jority of exonic SNVs are the missense ones (Figure 3.4). There are up to 13 stopgain
mutations and only one stoploss mutation occurs in Lo-Pat-10.

The well-known tumor suppressor genes APC and TP53, as well as the oncogene KRAS
are frequently mutated in our patient cohort. Besides from these frequent mutations,
the somatic mutation profiles are quite heterogeneous, with low overlap in mutations
between single patients (Figure 3.2). 1445 different somatic nonsynonymous coding
SNVs were identified, and a total of 1262 genes were found to be somatically mutated.
Three genes are mutated in at least four, 10 genes in at least three, and 122 in at least
two patients.

The gene APC is mutated in 18 of the 20 patients, and TP53 in 13 patients. Of note,
the genes are not always mutated at the same position in each patient. APC, for
instance, is mutated at 15 different positions and TP53 at 10 different positions. Also,
almost all mutations in APC are stopgain mutations. The oncogene KRAS is mutated
in 5 patients and only at the protein-position 12 (Table 3.1 and Figure 3.3).

When comparing the frequencies of missense mutations between the two patient groups
TIL-high and TIL-low, there is no significant difference between the two groups (p =
0.2959, two-sided student’s t-test) (Figure 3.5). The median of the number of missense
mutations is 53 for TIL-high and 52.5 for TIL-low samples.

A set of 57 immune-related genes (Angelova et al., 2015) was further analyzed for
accumulation of mutations. Only two genes were found to harbor missense mutations
and these are individual cases: CD40LG is mutated in Hi-Pat-05 and CD274 (PD-
L1) in Lo-Pat-10. Also, all cytokine and cytokine receptor genes were analyzed for
accumulation of mutations and no recurrent mutations were found.

The mutations in the frequently mutated genes APC, KRAS and TP53 were also vali-
dated via PCR amplification and Sanger Sequencing. In doing so, almost all mutations
were validated, except for the APC mutations in Hi-Pat-03 and Hi-Pat-04. Also when
analyzing the KRAS mutations, the mutations G12D and G12S were detected in Lo-
Pat-03 and Lo-Pat-08, respectively. These mutations have not been detected through
SNV calling on the whole-exome-sequencing data.
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Figure 3.3: Overview of mutations in frequently mutated genes. Distribution,
frequency and type of mutations in the frequently mutated genes APC, KRAS, and TP53
are illustrated. The initial diagram was created using the the tool MutationMapper
(v.1.0.1) (http://www.cbioportal.org/mutation mapper) and modified manually.

Figure 3.4: Frequency of somatic exonic mutations. For each sample, the frequency
of the different types of somatic exonic mutations missense (turquoise), synonymous (red)
and stopgain (yellow) are shown. One stoploss mutation occurs in patient Lo-Pat-10 (not
shown).
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Figure 3.5: Comparison of frequency of somatic missense mutations between
TIL-high and TIL-low samples. Each dot represents the number of somatic missense
mutations in one patient sample. The bars represent the median for the corresponding
patient groups. The difference in the number of somatic missense mutations between
TIL-high and TIL-low samples is not significant in the analyzed patient cohort (p =
0.2959, two-sided student’s t-test).
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Table 3.1: Mutations in frequently mutated genes.

Gene PID
Protein
Change

Mutation
Type

Chrom
Position

Ref
Allele

Var
Allele

APC Lo-Pat-04 E268X stopgain SNV 5:112137048 G T
APC Lo-Pat-01 R302X stopgain SNV 5:112151261 C T
APC Lo-Pat-02 R499X stopgain SNV 5:112162891 C T
APC Hi-Pat-01 R805X stopgain SNV 5:112173704 C T
APC Hi-Pat-03 R876X stopgain SNV 5:112173917 C T
APC Hi-Pat-02 C914Y missense SNV 5:112174032 G A
APC Hi-Pat-02 C914W missense SNV 5:112174033 T G
APC Hi-Pat-09 E984X stopgain SNV 5:112174241 G T
APC Hi-Pat-06 Q1035X stopgain SNV 5:112174394 C T

APC
Hi-Pat-08,
Hi-Pat-04

R1114X stopgain SNV 5:112174631 C T

APC Lo-Pat-01 K1170X stopgain SNV 5:112174799 A T
APC Lo-Pat-06 Q1291X stopgain SNV 5:112175162 C T
APC Hi-Pat-10 E1317X stopgain SNV 5:112175240 G T
APC Hi-Pat-03 Q1338X stopgain SNV 5:112175303 C T
APC Hi-Pat-05 Q1367X stopgain SNV 5:112175390 C T

APC
Lo-Pat-07,
Lo-Pat-03

Q1378X stopgain SNV 5:112175423 C T

KRAS Hi-Pat-01 G12A missense SNV 12:25398284 C G
KRAS Lo-Pat-07 G12V missense SNV 12:25398284 C A

KRAS
Hi-Pat-06,
Hi-Pat-09

G12D missense SNV 12:25398284 C T

KRAS Hi-Pat-10 G12S missense SNV 12:25398285 C T

TP53
Lo-Pat-05,
Hi-Pat-09

R282W missense SNV 17:7577094 G A

TP53
Lo-Pat-09,
Hi-Pat-06

R273C missense SNV 17:7577121 G A

TP53 Hi-Pat-02 F270L missense SNV 17:7577130 A G

TP53
Lo-Pat-04,
Hi-Pat-05

R248Q missense SNV 17:7577538 C T

TP53 Lo-Pat-07 Y236C missense SNV 17:7577574 T C
TP53 Hi-Pat-08 C229X stopgain SNV 17:7577594 A T
TP53 Lo-Pat-02 S215R missense SNV 17:7578206 T G
TP53 Lo-Pat-06 R213X stopgain SNV 17:7578212 G A
TP53 Lo-Pat-10 R196X stopgain SNV 17:7578263 G A
TP53 Hi-Pat-03 V173M missense SNV 17:7578413 C T
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3.2.2 Indels

91 different somatic coding indels in 77 different genes were detected in the analyzed
samples. Of these indels, 69 are frameshift mutations (35 deletions and 34 insertions),
and 17 are non-frameshift mutations (12 deletions and 5 insertions). Again, the onco-
gene APC is frequently affected in 11 patients, and TP53 is affected in two patients
(Table 3.3). The remaining 77 genes are only affected in single patients.

Table 3.3: Indels in frequently mutated genes

Gene PID
Protein
Change

Mutation
Type

Chrom
Position

Ref
Allele

Var
Allele

APC Lo-Pat-01 D1297fs fs del 5:112175180 GA G
APC Lo-Pat-02 1397del fs del 5:112175479 TGA T
APC Lo-Pat-04 S1411fs fs del 5:112175523 GT G
APC Hi-Pat-01 E1554fs fs ins 5:112175951 G GA
APC Lo-Pat-09 S1395fs fs ins 5:112175475 G GT
APC Hi-Pat-04 1327del fs del 5:112175270 TCA T
APC Hi-Pat-05 L1302fs fs del 5:112175195 CT C

APC
Hi-Pat-06,
Hi-Pat-09

P1439fs fs del 5:112175605 AC A

APC Hi-Pat-07 S1426fs fs del 5:112175568 GC G
APC Hi-Pat-08 A1485fs fs del 5:112175745 CT C
TP53 Lo-Pat-01 131-132del non-fs del 17:7578534 CTTG C
TP53 Lo-Pat-03 L62fs fs del 17:7578266 TA T

3.2.3 Copy Number Variations

Detailed analysis of CNVs was reported comprehensively elsewhere (Network, 2012; Xie
et al., 2012) and was not in the scope of this study. Instead, here the focus was on the
comparative analysis of the TIL-high and TIL-low groups, and on deletions and amplifi-
cations of cytokine and cytokine-receptor genes (Consortium), and immunomodulatory
genes (Angelova et al., 2015).

Several arm-level changes were detected, which are known to be frequent in CRC
patients (Network, 2012). These include amplifications of 7p and q, 8q, 13q, 20p and
q, and deletion of arms 8p, 17p, 18p and q (Figure 3.6). Additionally, several focal
amplifications and deletions in oncogenes as well as in tumor suppressor genes were
found. According to our data, there are no copy number changes, which are distinct
in the two patient groups TIL-high and TIL-low. However, if the number of events are
considered, some differences between the two groups TIL-high and TIL-low become
apparent (Figure 3.7). While the difference in the number of arm-level aberrations
between TIL-high and TIL-low samples is not significant (p = 0.16, two-sided student’s
t-test) the difference in the number of focal aberrations between TIL-high and TIL-low
samples was found to be significant (p = 0.03, two-sided student’s t-test).
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Next, chromosomal alterations on the gene level were analyzed, i.e. it was investigated
which genes are frequently affected by amplifications or deletions and if they are over-
represented in one of the two patient groups. About 700 were found to be significantly
more amplified in the TIL-high group (p ≤ 0.01, two-sided student’s t-test). Inter-
estingly, no genes were found to be significantly more deleted. Analysis of the 702
overrepresented genes for pathway enrichment using the ClueGo tool, showed that no
pathway is significantly enriched.

Again, the focus was on the set of immunomodulatory genes and investigated, whether
any of them is among the genes that are significantly more often amplified in the TIL-
high group. As a result, three immunomodulatory genes were found to be more often
amplified in the TIL-high group:

• FOXP3 (amplified in 7 TIL-high and 0 TIL-low patients)

• CYBB (amplified in 6 TIL-high and 0 TIL-low patients)

• Phex (amplified in 8 TIL-high and 2 TIL-low patients)

Also, all cytokine and cytokine receptor genes were analyzed for accumulation of am-
plifications and no gene was found to be significantly more amplified.

3.2.4 Pathway Enrichment Analysis of Mutations

For the pathway enrichment analysis of mutations the Ingenuity Pathway Analysis
(IPA) software was used.

In both groups, several cancer-related pathways are in the top 10 enriched pathways,
non of which correspond to colorectal cancer, but to other cancers instead.

In the TIL-low group, two immune-associated pathways are in the top 10 enriched
pathways, namely ”acute phase response signaling” and ”PI3K signaling in B lympho-
cytes”. These pathways are highly enriched in the TIL-low group, when compared to
the TIL-high group: the -log(p-value) of ”acute phase response signaling” is 3.11 in
TIL-low, compared to 0.78 in TIL-high, and for ”PI3K signaling in B lymphocytes”,
2.33 in TIL-low, compared to 0.77 in TIL-high.

Next, only immune-associated pathways were considered for enrichment analysis and
the results were visualized in a heatmap using IPA’s comparison analysis feature (Figure
3.9). In this analysis, several other immune pathways become apparent that are more
significantly effected in one of the two patient groups. The pathways ”NF-κB activation
by viruses” and ”IL-2 signaling” for instance are more affected in the TIL-high group.
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Figure 3.6: Copy number variations. Arm-level copy number changes for the 20
patients are shown. A red cell indicates a loss (deletion) whereas a blue cell indicates a
gain (amplification) of the corresponding chromosome arm in the corresponding patient
sample.
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Figure 3.7: Comparison of frequency of copy number changes between TIL-
high and TIL-low samples. Each dot represents the number of copy number changes in
one patient sample. The bars represent the median for the corresponding patient groups.
(a) number of chromosomal aberrations affecting a whole chromosome arm (b) number
of focal chromosomal aberrations. The difference in the number of focal aberrations
between TIL-high and TIL-low samples was found to be significant (p = 0.03, two-sided
student’s t-test)
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Figure 3.8: Top enriched canonical pathways. Ingenuity Pathway Analysis (IPA)
software was used to characterize the lists of mutated genes for the TIL-high and TIL-low
patients. Shown are the top 10 canonical pathways that are enriched for mutations, (a)
in the TIL-high group, (b) in the TIL-low group. The blue bars represent the p-value,
which indicates the significance of the enrichment of input genes in each pathway. The
orange squares represent the the ratio of the number of genes from the input list that
were annotated to the pathway, to the total number of genes annotated to the pathway.
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Figure 3.9: Comparative analysis of top enriched immune-associated canonical
pathways. Ingenuity Pathway Analysis (IPA) software was used to detect pathways that
are significantly enriched for mutations in the TIL-high and TIL-low patients. For both
patient groups, enrichment analysis was first performed separately, and IPA calculated
a p-value for each pathway, which indicates the significance of the enrichment of input
genes. For this comparative analysis, only immune-associated canonical pathways were
considered. The heatmap shows the pathways, were a significant difference in enrichment
was detected between the two patient groups.
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3.3 HLA Typing

Sequence-based HLA typing was performed to retrieve class I alleles HLA-A,-B,-C,
and class II allele HLA-DR. For all patients, sufficient coverage of the HLA loci was
provided. An overview of the HLA genotype for each patient is shown in Table 3.4.
Of note, several patients have some homozygous HLA alleles. A total of 54 different
class I alleles are present in the analyzed patient cohort: 16 HLA-A, 22 HLA-B, and 16
HLA-C. For HLA class II, 18 different HLA-DRB1 alleles are present in the analyzed
patient cohort.

The HLA typing accuracy using Phlat was also validated using sequencing data from
two patients who are being treated at the NCT and HLA genotyping data is available
from conventional PCR-based typing techniques. For all six HLA class I alleles, the
genotypes obtained with Phlat were consistent with the experimentally derived geno-
types in both patients. For the two HLA class II alleles,in one patient the results were
consistent and in the other patient one allele was typed differently. In summary, for
HLA class I Phlat achieved 100% accuracy, and 75% for HLA class II in the analyzed
two patients

3.4 Epitope Landscape

All 1445 somatic coding SNVs were considered for allele-specific HLA Class I and HLA
Class II epitope predictions as described in Section 2.

3.4.1 HLA Class I Epitopes

A total of 1962 peptides of length 9-11aa were predicted to bind with high to interme-
diate affinity (IC50 ≤ 500nM) to one of the analyzed HLA class I allele. The number
of predicted binders for each patient ranges between 7 and 229. When only predicted
binders, which also were predicted to be cleaved by the proteasome are considered,
these numbers drop for about 10% - 50% and range between 4 and 158. Comparing
the predicted binders with the corresponding wild-type peptides shows that in about
25% - 40% of the cases the wild-type peptide was also a predicted binder with a higher
affinity than the mutated peptide. Hence, after filtering for cleaved and stronger bind-
ing mutated peptides, about 50% of the initial predicted binders remain and are being
considered as epitopes here (Figure 3.11).

Comparing the HLA class I epitope frequencies between TIL-high and TIL-low samples
shows that the numbers are scattered in a range between 22 and 106 for the TIL-high
samples, and between four and 107 for the TIL-low samples (Figure 3.12). The median
is 47 for the TIL-high samples and 60.5 for the TIL-low samples. Statistically, there is
no significant difference (p = 0.925, two-sided student’s t-test).
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Table 3.4: HLA genotype of patients.

PID HLA Class I Alleles
HLA Class II

Alleles

Lo-Pat-01
A*01:81
A*02:01

B*52:01
B*73:01

C*15:05
DRB1*04:05
DRB1*15:02

Lo-Pat-02
A*02:01
A*66:01

B*41:02
B*51:01

C*15:02
C*17:01

DRB1*04:04
DRB1*03:03

Lo-Pat-03
A*02:01
A*24:02

B*08:01
B*35:02

C*07:02
C*04:01

DRB1*01:01

Lo-Pat-04
A*02:01
A*32:01

B*41:01
B*38:01

C*17:01
C*12:03

DRB1*03:01
DRB1*13:01

Lo-Pat-05
A*01:81
A*30:02

B*40:01
B*07:02

C*07:02
C*03:04

DRB1*11:01
DRB1*15:01

Lo-Pat-06
A*23:01
A*29:02

B*44:03
B*35:01

C*04:01
DRB1*14:54
DRB1*15:02

Lo-Pat-07
A*24:02
A*23:01

B*35:03 C*04:01
DRB1*04:03
DRB1*14:54

Lo-Pat-08
A*25:01
A*32:01

B*14:01
B*39:01

C*07:02
C*08:02

DRB1*07:01
DRB1*14:54

Lo-Pat-09 A*24:02
B*39:01
B*44:02

C*12:03
C*16:04

DRB1*11:04
DRB1*11:01

Lo-Pat-10
A*01:01
A*03:26

B*35:01
B*08:01

C*07:01
C*04:01

DRB1*01:01
DRB1*03:01

Hi-Pat-01
A*25:01
A*24:02

B*38:01
B*15:01

C*03:04
C*12:03

DRB1*04:01
DRB1*01:01

Hi-Pat-02
A*24:02
A*03:01

B*13:02
B*07:02

C*06:02
C*07:02

DRB1*07:01
DRB1*15:01

Hi-Pat-03
A*01:01
A*02:01

B*08:01
B*15:01

C*04:01
C*07:01

DRB1*04:04
DRB1*03:01

Hi-Pat-04
A*26:01
A*01:22

B*57:01
B*27:05

C*06:02
C*01:02

DRB1*01:01
DRB1*04:02

Hi-Pat-05
A*33:01
A*01:01

B*08:01
B*14:02

C*08:02
C*07:01

DRB1*13:02
DRB1*01:02

Hi-Pat-06
A*02:01
A*11:01

B*07:02
B*15:01

C*01:02
C*07:02

DRB1*07:01
DRB1*13:01

Hi-Pat-07
A*31:01
A*30:04

B*49:01
B:35:01

C*08:01
C:07:01

DRB1*01:01
DRB1*13:02

Hi-Pat-08
A*26:01
A*24:02

B*07:02
B*35:02

C*07:02
C*04:01

DRB1*11:42
DRB1*07:01

Hi-Pat-09
A*23:01
A*01:01

B*33:03
B*08:01

C*07:01
C*02:02

DRB1*03:01
DRB1*13:02

Hi-Pat-10
A*24:02
A*32:01

B*13:02
B*44:02

C*05:01
C*08:02

DRB1*04:01
DRB1*01:02

Correlation analysis of the number of predicted HLA class I binders and the number
of mutations showed a significant correlation (Spearman’s rho = 0.634, p = 0.002)
(Figure 3.10).
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Figure 3.10: Correlation of number of mutations and number of predicted
HLA class I binders. For each patient, the frequency of predicted HLA class I binders
is plotted against the number of mutations. TIL-high samples are indicated in red, TIL-
low samples in turquoise. The correlation was found to be significant (Spearman’s rho
= 0.634, p = 0.002).

Figure 3.11: Frequency of predicted HLA class I binders. For each sample, the
frequency of peptides predicted to be bound by one of the patients’ HLA Class I molecules
(turquoise), the frequency of peptides that are also predicted to be cleaved (red), and the
frequency of those peptides, where the mutated peptide was predicted to bind stronger
than the wildtype (yellow), are illustrated.

3.4.2 HLA Class II Epitopes

For HLA Class II only the DRB1 alleles were considered (see Section 2). As a result, a
total of 7848 peptides of length 9-15aa were predicted to bind with high to intermediate
affinity (IC50 ≤ 500nM) to one of the analyzed HLA class II allele. As described in
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Figure 3.12: Comparison of HLA class I epitope frequencies between TIL-high
and TIL-low samples. Each dot represents the number of predicted epitopes, as pre-
dicted by netMHCpan and netChop for HLA class I binding prediction and proteasomal
cleavage prediction, respectively, in one patient sample. The bars represent the median
for the corresponding patient groups. The difference in the number of HLA class I epi-
topes between TIL-high and TIL-low samples is not significant in the analyzed patient
cohort (p = 0.925, two-sided student’s t-test).

Section 1, one HLA class II binding core can have different flanking residues, resulting
in multiple HLA class II binding peptides. The total number of distinct binding cores
is 2986, hence much lower than the number of binding peptides. A detailed overview of
comparing the total number of predicted binding peptides and binding cores for each
analyzed patient is shown in Figure 3.13.

Comparing the numbers of HLA class I binders versus HLA class II binders shows that
the analyzed 18 HLA class II alleles bind 4-fold more peptides than the analyzed 54
class I alleles (1.5-fold, when only binding cores are considered).

Comparing the HLA class II epitope frequencies between TIL-high and TIL-low samples
shows that the numbers are scattered in a range between 15 and 299 for the TIL-low
samples, and between 122 and 624 for the TIL-high samples (Figure 3.14). The median
is 238 for the TIL-high samples and 178.5 for the TIL-low samples. Statistically, there
is no significant difference (p = 0.0561, two-sided student’s t-test).
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Figure 3.13: Frequency of peptides predicted to be bound by HLA class II.
For each sample, the frequency of peptides predicted to be bound by one of the patient’s
HLA Class II molecule (turquoise) and the corresponding frequency of distinct binding
cores (red) are illustrated.

3.4.3 Shared Epitopes

Analogous to the mutational landscape, the epitope landscape is also very heteroge-
neous and there is no epitope which is frequently shared between patients. Even if
a subset of patients have the same mutation, they do mostly not result in the same
epitopes because of different HLA alleles.

APC for instance is mutated in 18 patients, however except for one mutation, all
mutations are stopgain mutations which do not generate new epitopes.

TP53 in contrast, has some missense mutations that are shared between two patients.
The mutation R282W for instance is shared between patients Lo-Pat-05 and Hi-Pat-09,
however the HLA genotype of these patients is completely different (Table 3.4) and the
mutation does not generate a shared neoepitope. The mutation R248Q is also shared
between two patients: Lo-Pat-04 and Hi-Pat-05. These patients also have a different
HLA genotype, nevertheless, the mutation generates several shared neoepitopes which
are bound by different HLA alleles. The peptide MNQRPILTI for instance, is bound
by HLA alleles DRB1*13:01, DRB1*01:02, and HLA-B*14:02.

Similarly, the KRAS mutation G12A is shared between Hi-Pat-01 and Hi-Pat-10, and
a shared neoepitope is generated for HLA alleles DRB1*01:01 and DRB1*01:02.

In fact, it occurs quite frequently that a peptide is bound by multiple HLA alleles.
More than 1400 peptides are bound by two or more HLA alleles, and more than 300
by three or more alleles. The peptide YSLSLGALF for instance, which is generated
by the mutation L157F in the gene GCGR, was predicted to be bound seven different
HLA alleles. This mutation however occurs only in patient Hi-Pat-10 and all seven
HLA alleles correspond to this patient.
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Figure 3.14: Comparison of HLA class II epitope frequencies between TIL-
high and TIL-low samples. Each dot represents the number of predicted HLA class
II epitopes, as predicted by netMHCIIpan for HLA class II binding prediction, in one
patient sample. The bars represent the median for the corresponding patient groups.
The difference in the number of HLA class II epitopes between TIL-high and TIL-low
samples is not significant in the analyzed patient cohort (p = 0.0561, two-sided student’s
t-test).

3.4.4 Immunogenic Mutations

Not all mutations generate a peptide which is bound by HLA. Mutations that result
in at least one neoepitope are referred to as immunogenic mutations. In our patient
cohort, the number of immunogenic mutations ranges between two and 62 for TIL-low
patients and between 28 and 76 for TIL-high patients (Figure 3.16). In TIL-low pa-
tients and average of 63% of mutations are immunogenic, while in TIL-high samples
an average of 70% of mutations are immunogenic. Comparing the frequencies of im-
munogenic mutations between the two patient groups showed no significant difference
(p = 0.3243, two-sided student’s t-test).
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Figure 3.15: Frequency of all missense mutations compared to immunogenic
mutations. For each sample, the frequency of all missense mutations (turquoise) are
shown and compared to those mutations, which generate at least one epitope (immuno-
genic mutation, in red).

3.5 Histological Analysis

Immunohistochemical stainings were performed for selected immunomodulatory pro-
teins. The qualitative evaluation of the stainings is shown in Table 3.5. All samples
were infiltrated by macrophages, as indicated by the CD68 stainings. The HLA stain-
ings were almost all found to be heterogeneous, indicating that not all cells express
HLA. Similarly, the expression of FOXP3, PD-1 and PD-L2 were found to be mainly
weak and heterogeneous. PD-L2 in contrast is expressed strongly in several samples.

3.6 Cytokine Analysis

To examine the associations between cytokine expression, TIL-status and neoepitope
load, unsupervised hierarchical clustering analysis was performed separately for each
compartment. In the heatmaps for adjacent liver and invasive margin the patients are
divided into two main clusters of 10 patients each, which mainly correspond to the TIL-
status. Only Hi-Pat-01 and Lo-Pat-07 do not cluster according to their TIL-status, as
Hi-Pat-01 is clustered together with TIL-low patients, and Lo-Pat-07 with TIL-high
patients. The heatmap for the liver metastasis looks slightly different; although the
patients are still clustered in two main clusters, the clusters are not of the same size
and the correspondence to the TIL-status is not given as clearly as for the other two
compartments (Figure 3.17). No clustering of patients with high neoepitope load was
detected.

When clustering of the cytokines is considered, various smaller clusters of cytokines are
apparent, and it is noticeable that there are several cytokines which are expressed at a
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Figure 3.16: Comparison of immunogenic SNV frequencies between TIL-high
and TIL-low samples. Each dot represents the number of mutations, which generate at
least one epitope (immunogenic mutation), in one patient sample. The bars represent the
median for the corresponding patient groups. The difference in the number immunogenic
mutations between TIL-high and TIL-low samples is not significant in the analyzed
patient cohort (p = 0.3242, two-sided student’s t-test).

higher level in patients from the TIL-high group. To further investigate the variance of
cytokine expression between the two groups TIL-high and TIl-low, statistical testing
was performed: for each cytokine and each compartment, data of all TIL-high and TIL-
low patients were pooled, respectively, and significant differential expression between
the two groups was assessed using a two-sided student’s t-test. 12 cytokines were found
to be overexpressed in the TIL-high group in at least two compartments: SDF-1a
(CXCL12), MIG (CXCL9), MCP-3 (CCL7), IL-17, IFNg, IL-13, IL-7, IL-4, GM-CSF,
HGF, CCL27, and TRAIL (Figure 3.18). Additionally, the following cytokines were
found to be overexpressed in the TIL-high group in one compartment:

• IP-10 (CXCL10)in AL (p = 0.0326)

• b-NGF in IM (p = 0.0174)

• GROalpha (CXCL1) in AL (p = 0.0264)

• IL-2 in AL (p = 0.0161)
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Table 3.5: Immunohistochemical staining for immunomodulatory proteins.

PID CD68 HLA FOXP3 PD-1 PD-L1 PD-L2

Hi-Pat-01 +++ +/- + +/- + +
Hi-Pat-02 +++ ++/- + +/- + +
Hi-Pat-03 ++ +/- + + +++ (+)
Hi-Pat-04 +++ +/- (+) + (intra) - +
Hi-Pat-05 +++ ++/- (+) + +++ +/-
Hi-Pat-06 ++/+++ +/- + + +++ (+)
Hi-Pat-07 +++ ++/- + + + +/-
Hi-Pat-08 ++/+++ ++/- + + +++ +/-
Hi-Pat-09 NA NA NA + + (+)
Hi-Pat-10 ++/- + + +/- (+) +
Lo-Pat-01 ++ +/- + + (+) + (intra)
Lo-Pat-02 ++ +/- + + (intra) + +/-
Lo-Pat-03 ++ ++ + + + +
Lo-Pat-04 ++ ++/- (+) (+) + (+)
Lo-Pat-05 ++/+++ ++/- + +/- + +/-
Lo-Pat-06 ++ +/- + (+) + (+)
Lo-Pat-07 ++ +/- + + + (+)
Lo-Pat-08 + +/- + + - +/-
Lo-Pat-09 +++ ++/- + + (intra) + +
Lo-Pat-10 ++ ++/- (+) + + + (intra)

(+) very weak staining; +, weak staining; ++, intermediate staining;
+++, strong staining; +/- heterogeneous staining;
intra, intratumoral staining; NA, no staining available

• IL-9 in AL (p = 0.0476)

• Eotaxin (CCL11) in AL (p = 0.0036)

• G-CSF in AL (p = 0.0429)

• PDGFbb in LM (p = 0.0446)

IL-5 is the only cytokine that is overexpressed in the TIL-low group at the invasive
margin (p = 0.04).

As it has been reported previously that mutations in KRAS and TP53 can have an
impact on cytokine expression, this was also investigated and the cytokine expression
in patients with mutations were compared to patients without mutations in KRAS and
TP53. Of note, TP53 is mutated in 13 patients and KRAS in 5 patients, so the groups
with and without mutation are not exactly of comparable size. Cytokine expression at
the invasive margin was not found to be significantly altered in patients with mutations
in KRAS or TP53. Some differences were detected in cytokine expression levels in the
liver metastasis: in patients with KRAS mutations, the expression of the cytokines
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RANTES, MIP-1b, LIF, and IL-16 is significantly reduced (p <0.05 two-sided student’s
t-test).
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Figure 3.18: Cytokines significantly overexpressed in patients with high lym-
phocyte infiltration. Detailed description on following page.
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Figure 3.18: (Figure on previous page.) Cytokine detection was performed on tissue
lysates of the 20 patients for a panel of 48 cytokines. For each cytokine and each com-
partment, data of all TIL-high and TIL-low patients were pooled, respectively, and sig-
nificant overexpression between the two groups was assessed using a two-sided student’s
t-test. Shown are the 12 cytokines, were a significant overexpression was detected in at
least two compartments. AL, adjacent liver; IM, invasive margin; LM, liver metastasis;
TIL, tumor-infiltrating lymphocyte. *, p <0.05; **, p <0.01; ***, p <0.001; two-sided
student’s t-test.
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3.7 Case Studies

Two patients with metastatic CRC, which are currently being treated at the NCT
could be analyzed in more detail due to continued availability of tumor sample and
fresh blood.

HLA typing from the corresponding WXS sequences revealed an HLA genotype of
A*02:01, A*29:05, B*07:02, B*18:01, C*07:01 (homozygous) for patient B8G6 and
A*03:01, A*68:01, B*27:05, B*44:02, C*02:02, C*07:04 for patient VF77.

64 somatic-coding SNVs were detected in patient B8G6, 54 of them being somatic
exonic missense mutations. In patient VF77 109 somatic coding mutations were found,
100 of them being somatic exonic missense mutations. Of note, driver mutations for
CRC were detected in both patients: a stopgain mutation in APC and a missense
mutation in TP53 were detected in patient B8G6, whereas a KRAS missense mutation
was detected in patient VF77.

HLA class I and class II epitope predictions were conducted as described above. For
patient B8G6 35 class I and 61 class II epitopes, for patient VF77 128 class I and
346 class II epitopes were predicted. As RNA sequencing data was available for these
patients, I filtered for mutations that were also detected in the RNA sequences. This
filtering left 17 class I and 157 class II epitopes for patient B8G6, and 29 class I and
185 class II epitopes for patient VF77.

For patient B8G6 six short peptides of 9-11 amino acids containing class I epitopes
(HD-Pep-274 - HD-Pep-279) were selected, together with the corresponding wildtype
peptides (HD-Pep-280 - HD-Pep-285), as well as long peptides of length 29 which
also contain those epitopes together with several flanking amino acids (HD-Pep-286 -
HD-Pep-291), and also three long peptides of length 29 containing class II epitopes
(HD-Pep-292 - HD-Pep-294) were selected (Table 3.6). For patient VF77 eight long
peptides of length 29 containing both, class I and class II epitopes (HD-Pep-303, HD-
Pep-304, HD-Pep-307, HD-Pep-309) were selected, one class I epitope (HD-Pep-306),
and three class II epitopes (HD-Pep-305, HD-Pep-308, HD-Pep-310), together with the
corresponding wildtype peptides (HD-Pep-312 - HD-Pep-319). These peptides were
synthesized and analyzed for existing T cell reactivity via ELISpot assays with blood
from the corresponding patient.

Quantitative data of the ELISpot assays are shown in Figure 3.18. In both patients,
most of the peptides showed significantly higher spot counts than the IgG control and
it can be considered that these peptides elicit a T cell response. In patient B8G6,
all mutated peptides had higher spot counts compared to the corresponding wildtype
peptide, whereas in patient VF77, only one mutated peptide had higher spot counts
than its corresponding wildtype counterpart.

The expression of immunological markers was analyzed using the RNA sequencing data
and compared to IHC stainings of the respective proteins (Table 3.7).
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(a) ELISpot results of patient B8G6

(b) ELISpot results of patient VF77

Figure 3.18: ELISpot results of case studies. Peripheral blood dendritic cells were
incubated without peptides (DC), and also pulsed with mutated and corresponding wild-
type peptides (HD-Pep), as well as with a negative control antigen (IgG), and incu-
bated with autologous T cells. As positive control AdV-CMV and SEB were used (data
not shown). ELISpot assays were performed in triplicates. Shown are the quantitative
ELISpot results, indicating mean spot numbers +- SD for each tested peptide. (a) pa-
tient B8G6, (b) patient VF77. Red line shows spot numbers of negative control antigen
IgG (considered background). *, the spot numbers are significantly higher in test wells
compared with spot numbers of the negative control antigen IgG (p ≤ 0.05, two-sided
student’s t-test).
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Table 3.7: Comparison of expression levels assessed by RNA-Seq and IHC

Patient VF77 Patient B8G6
Gene RPKM TPM Staining Gene RPKM TPM Staining
CD3 2.61 6.18 +/- CD3 5.57 13.28 +/-
CD8 1.26 2.98 + CD8 0.9 2.15 +/-
CD20 0.06 0.13 + PDL1 0.45 1.07 (+)
PDL1 0.70 1.67 - CTLA4 0.51 1.21 +/-
CTLA4 0.51 1.2 ++ PD1 0.44 1.05 +/-
MHC1 895.46 2117.88 +/- PDL2 1.72 4.1 (+)
PD1 0.48 1.14 +/-
PDL2 1.23 2.91 +/-

(+) very weak staining; +, weak staining; ++, intermediate staining;
+++, strong staining; +/- heterogeneous staining
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CHAPTER 4

Discussion
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Cancer immunotherapies have recently shown outstanding clinical results in a number
of patients across various tumor types. However, currently only a fraction of patients
responds to immunotherapy and it is a major concern to understand why. The com-
position of the tumor microenvironment was shown to have an important impact on
tumor growth and progression, as well as on response to therapy. Integrated analysis
of multiple tumor and host factors is a promising approach which may help to identify
patients who are most likely to benefit from immunotherapy.

Factors that should be considered in an integrated analysis include the mutational and
neoepitope landscape, the type and densities of tumor infiltrating immune cells, the
expression of immunological markers, and the expression of specific cytokines. In or-
der to efficiently analyze the complex data, as part of this PhD project an integrated
analysis pipeline was established that combines already available genomic and immu-
nomic resources and adds further depth into the analysis by additional computational
pipelines.

The established analysis pipeline was then used to investigate how lymphocyte infil-
tration is correlated to mutational and neoepitope load in metastatic lesions of CRC
and also to uncover additional factors that might drive lymphocyte infiltration. The
pipeline was additionaly applied in the clinic to conduct case studies, which paved the
way for the development of clinical studies.

4.1 Neoepitope prediction and prioritization

The developed computational pipelines employ publicly available immunoinformatics
tools for sequencing-based HLA typing and HLA class I and II binding prediction. Im-
munoinformatics has established itself as a cornerstone in the research and development
of cancer immunotherapies. Immunoinformatics tools are mainly used in the context
of neoepitope research, for instance to analyze the abundance and effect of neoepitopes
in a certain setting of tumor diseases, or also for the development of neoepitope-based
vaccines.

Thanks to the advancements in high-throughput sequencing of cancer genomes and
established downstream analysis pipelines, it is now possible to rapidly detect and
analyze neoepitopes in large patient cohorts. Immunoinformatics tools were used in
many studies to analyze large-scale cancer sequencing data in order to predict neoepi-
topes and identify epitopes with clinical relevance or to select candidates for clinical
application (Rizvi et al., 2015; Rooney et al., 2015; Khalili et al., 2012; Gubin et al.,
2014).

These studies have used different combinations of tools and applied different criteria
to prioritize the set of neoepitopes, including gene expression levels, predicted bind-
ing affinity, comparison to wildtype binding affinities, structural properties, and the
position of the mutated residue within the HLA binding groove. The ideal criteria
for neoepitope prioritization remain to be controversial, as it is not known yet which
combinations of criteria are most suitable to detect effective neoepitopes.
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The selection of the epitope prediction tool and the definition of criteria for neoepitope
prioritization were also one of the first issues discussed for our study. As netMHCpan
(Nielsen et al., 2007) was repeatedly shown to be the best-performing tool in several
benchmarking studies (Trolle et al., 2015), this tool was chosen for HLA class I binding
prediction for our study.

Additionally, we decided to use three criteria for epitope prioritization:

• predicted binding affinity of ≤ 500nM

• predicted proteasomal cleavage score of ≥ 0.5

• predicted affinity of mutated peptide is higher than corresponding wild-type pep-
tide

The only criteria common to all studies is the prioritization of neoepitopes with strong
binding affinities (Rizvi et al., 2015; Rooney et al., 2015; Gubin et al., 2014; Yadav
et al., 2014). For our study, the cut-off of 500nM was used, which is commonly used
across various studies. It was also suggested previously that different HLA alleles
bind their peptides with different affinities and that each allele has a unique threshold.
However, a large-scale study on the peptide binding repertoire of various HLA class I
alleles showed that 500nM is a suitable universal threshold for HLA-binding prediction
(Paul et al., 2013).

The second prioritization is to only use neoepitopes that were predicted to be cleaved by
the proteasome. Although presentation of peptides on HLA is the bottleneck in antigen
processing and presentation, previous steps in the antigen processing machinery also
have a major impact on the peptide repertoire that is presented on HLA and should
be considered for neoepitope prioritization.

The third prioritization criteria used in our study is that only facilitating epitopes
were considered, i.e. mutated peptides which have stronger binding affinities than
their corresponding wildtype counterpart. This filter reduced the number of potential
neoepitope candidates drastically (Figure 3.11). The peptide binding affinity mainly
depends on the properties of the amino acids located at the so-called anchor positions
of the HLA peptide binding groove (Fruci et al., 1993). Hence, the binding affinity of
neoepitopes with mutations in anchor positions will most likely differ from the binding
affinity of the wildtype peptide, while mutations in non-anchor positions most likely
have no effect on binding affinity. Mutations in anchor positions can increase the
binding affinity of a peptide, but, depending on the specific amino acid change, can
also decrease the affinity. Interestingly, it has been indicated in several studies that
facilitating neoepitopes are more effective in eliciting specific T cell responses (Mat-
sushita et al., 2012; Khalili et al., 2012). The theory behind this is that if HLA binding
affinity of a peptide is increased due to a mutation, this may translate into increased
presentation of the mutant peptide, because during the loading of peptides on HLA,
competition between the mutated and wildtype peptides can occur and the peptide
with the stronger affinity is advantageous in this scenario (van der Burg et al., 1996;
Busch and Pamer, 1998; Khalili et al., 2012).
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Another useful filter is to prioritize neoepitopes which originated from a highly ex-
pressed gene, as it was shown that peptides derived from abundant transcripts are
more likely to be presented by HLA class I (Fortier et al., 2008; Granados et al., 2012;
Yadav et al., 2014). Unfortunately, no expression data was available for the CRC liver
metastases dataset used in this study. This filter was included into the immunoinfor-
matics analysis pipeline as an additional option. Mutations at the DNA level are not
always transcribed to RNA, and it also occurs that the mutated gene is not expressed
at all. If a mutation was detected in DNA sequences, it does not necessarily occur in
the RNA sequences, as demonstrated in the data of the two case studies. Filtering out
mutations that were not detected in the RNA-Seq data removed more than half of the
potential neoepitopes.

Another point to take into account is that many peptides which elicit a T cell response
are not produced by the antigen-processing machinery, but by peptidases and other en-
zymes (Parmentier et al., 2010; Kessler et al., 2011). Also, the proteasome composition
of the cell is crucial for antigen processing: different proteasomes can result from dif-
ferent combinations of subunits, and it has been reported that several tumor antigens
are produced by only one specific type of proteasome (Morel et al., 2000; Schultz et al.,
2002; Chapiro et al., 2006; Guillaume et al., 2012). Additionally, proteasomes can splice
peptide fragments that are located in distance in the parental protein, and generate
novel stretches of amino acids, which might be highly tumor-specific (Hanada et al.,
2004; Vigneron et al., 2004). The contribution of these alternatively produced antigens
to tumor immunogenicity has not been analyzed yet in a comprehensive manner and
remains to be elucidated.

As all epitope prediction algorithms were developed using data on pathogen-derived
epitopes and not with tumor-specific data, it was also suggested that they might not
be suitable to analyze tumor neoepitopes. Duan et al. analyzed neoantigens in a
transplantable mouse tumor model and argued that those neoantigens display very
different properties from viral antigens, and that a specific approach is required to
successfully detect tumor neoepitopes (Duan et al., 2014). However, this approach
was not able to identify neoantigens that have previously been proven to induce tumor
rejection (Gubin et al., 2014), and the proposed approach by Duan et al. is not widely
accepted (Schumacher and Schreiber, 2015).

Another interesting hypothesis was suggested by Snyder at al. (Snyder et al., 2014).
They analyzed the neoantigen repertoire in melanoma patients receiving the anti-
CTLA-4 antibody ipilimumab and showed that the neoantigens in patients with a
long-term clinical benefit were enriched for a set of tetrapeptide motives. The hypoth-
esis behind this observation was that neoepitope-specific T cells preferentially recognize
a subset of mutated peptides. However, this observation could not be confirmed by
others as the neoantigens identified in other studies did not show the bias toward the
tetrapeptide signature (Schumacher et al., 2015).

In conclusion, the improvement of the efficiency of neoepitope identification and se-
lection is still an ongoing challenge, and researches have suggested several parameters
for prioritization of neoepitopes. Additionally, there are still some unknown aspects
about the antigen processing and presentation in tumor cells. The availability of more

79



experimental cancer-specific data and also a better understanding of the biochemical
properties of effective neoepitopes will improve the prediction and selection of appro-
priate neoepitopes (Delamarre et al., 2015).

4.1.1 HLA class II Neoepitopes

For a long time, researchers focused mainly on HLA class I epitopes recognized by CD8+

cytotoxic T cells when analyzing neoepitopes for cancer immunotherapy. However,
there is increasing evidence that recognition of HLA class II neoepitopes by CD4+ T
helper cells occurs in cancer, and that their interaction is required to further boost the
activity of CD8+ T cells targeting neoantigens (Delamarre et al., 2015; Kreiter et al.,
2015; Linnemann et al., 2015).

Tran et al. published a case report where measurable tumor regression was demon-
strated in a patient with metastatic choloangiocarcinoma (Tran et al., 2014). In this
study, CD4+ T cells that were specific for a HLA class II neoepitope were expanded
ex vivo and re-infused to the patient. These success of this approach underscores the
potential clinical relevance of HLA class II neoantigens.

Sahin et al. conducted a study in mouse models of melanoma, lung, and colon cancer
and identified more than 500 mutations in each tumor (Kreiter et al., 2015). They
chose to focus on 50 random mutations and the corresponding HLA class I neoepitopes.
Surprisingly, they found that about 20% of the mutations triggered an immune response
which is most frequently mediated by CD4+ T cells. Apparently, HLA class II molecules
on antigen-presenting cells present these neoepitopes, and CD4+ T cells recognize them
and induce an antitumor response. They then incorporated 10 neoepitopes in mRNA
vaccines and vaccinated the mice. It was demonstrated that the T cells were capable of
eliminating even established, growing tumors, causing the mice to live longer. To test
the efficacy of vaccines based on HLA class II neoepitopes, Sahin and colleagues are
currently running two phase I clinical trials, in patients with melanoma (NCT02035956)
and triple-negative breast cancer (NCT02316457).

In fact, neoantigen-specific CD4+ T cells were shown to augment the clonal expansion
of neoantigen-specific CD8+ T cells (Wong et al., 2008). Moreover, the CD4+ T cells
in the tumor microenvironment facilitate infiltration by tumor-specific CD8+ T cells,
augmenting their antitumor activity (Bos and Sherman, 2010). Thus, CD4+ T cell
activity helps to amplify the CD8+ T cell response in both initiation and effector phase
of an immune response following vaccination, and enhancing CD4+ T cell activity
should not be underestimated when designing therapeutic cancer vaccines (van den
Boorn and Hartmann, 2013).

Due to the open binding groove and the resulting higher diversity of HLA class II epi-
topes, prediction algorithms are not as accurate as for HLA class I epitopes (Backert
and Kohlbacher, 2015). Nevertheless, using the HLA class II epitope prediction algo-
rithm NetMHCIIpan, neoepitopes could be detected that augmented T cell response in
mice (Kreiter et al., 2015). HLA class II binding predictions using NetMHCIIpan was
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also included in our study and is included as part of the immunoinformatics analysis
pipeline.

4.2 Sequencing-based HLA Typing

To apply epitope prediction tools, knowledge of the HLA genotype is required. As in
many clinical applications sequencing data of a patient is already available, costs for
experimentally determining the HLA genotype can be avoided by using computational
tools. Several tools for NGS-based HLA typing emerged (Boegel et al., 2012; War-
ren et al., 2012; Kim and Pourmand, 2013; Bai et al., 2014). The accuracy of these
sequencing-based HLA typing tools is still being critically discussed and is not yet
fully convincing (Backert and Kohlbacher, 2015). One of the most recent tools, Phlat
(Bai et al., 2014), was chosen for HLA typing from the exome-sequencing data of our
patient cohort. Phlat was shown over a comprehensive set of benchmarking data from
both RNA and DNA to achieve a high accuracy of 92%-95% at four-digit resolution,
outcompeting most of the existing methods (Bai et al., 2014). We also assessed the
accuracy of Phlat on two patients where HLA genotyping data was available from con-
ventional PCR-based typing techniques. For these two patients, Phlat achieved 100%
accuracy for HLA class I typing, and 75% for HLA class II.

More recently, Shukla and colleagues performed a comparative analysis of various tools
on over 250 samples, and found their own tool PolySolver together with the tool Op-
tiType (Szolek et al., 2014) to be the most accurate tools for HLA class I inference,
out competing Phlat and other previous tools in sensitivity, precision, and accuracy
(Shukla et al., 2015). The used dataset for benchmarking consists of 253 samples with
known HLA genotypes from the HapMap projects (Consortium, 2003). As a matter of
fact, many of the sequencing-based HLA typing tools have been trained and developed
using this exact dataset. Due to the time and cost consuming nature of conventional
PCR-based HLA typing methods, there is a lack of appropriate training and bench-
marking datasets. Availability of additional large-scale datasets will reveal the true
accuracy and value of sequencing-based HLA typing tools. Another issue is that due
to the higher complexity of the genomic locus of HLA class II, the inference of the
HLA class II genotype with sequencing-based HLA typing tools remains to be limited
(Backert and Kohlbacher, 2015).

4.3 The local microenvironment of CRC liver

metastases

4.3.1 Mutational landscape

Analysis of somatic mutations and chromosomal aberrations in our patient cohort
showed alterations that are well-known and have been reported repeatedly for colorectal
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cancer (Network, 2012) and therefore will not be discussed here. Importantly, no
mutation was found to be specific for one of the groups TIL-high and TIL-low.

One aim of this study was to analyze the correlation of the number of mutations with
lymphocyte infiltration, as several studies have reported a strong correlation in various
tumor types (Lu and Robbins, 2015; Brown et al., 2014; Rooney et al., 2015). The
presence of CD8+ T cells in cancer lesions was shown to be higher in tumors with a high
mutational burden, and it was also shown that treatment efficacy of immunotherapies
is associated with a higher number of somatic mutations (Rizvi et al., 2015; Snyder
et al., 2014).

In our study, the previously reported strong correlation between mutational load and
lymphocyte infiltration could not be confirmed. As shown in Figure 3.5, the median
number of missense mutations is equal in the two groups. Nevertheless, when the
mutational load of the samples from the two groups are considered in detail, a trend
can be detected. In fact, the samples with the highest mutational burden (Hi-Pat-02,
Hi-Pat-05, Hi-Pat-08) are from the TIL-high group, and the samples with the lowest
mutational burden (Lo-Pat-03, Lo-Pat-08) are from the TIL-low group. We observed a
similar picture when predicted neoepitopes or the number of immunogenic mutations
were considered (Figures 3.12, 3.14, 3.16). Although no significance was detected, a
trend can be observed, mainly because the bottom outliers are from the TIL-low group
and the top outliers are from the TIL-high group.

Considering our results, the obvious question is how the discordance between our results
and previous reports on a strong correlation between mutational/neoepitope load and
lymphocyte infiltration can be explained.

Numerous studies that have reported a positive correlation of mutational and/or
neoepitope load with lymphocyte infiltration and/or prognosis in various cancer
patients, were mainly based on assessing the lymphocyte infiltration from RNA-Seq
data. Brown et al. defined the CD8+ infiltration defined as the abundance of CD8A
transcripts (Brown et al., 2014), and Rooney et al. assessed the activity of lympho-
cytes by combining the mRNA expression of granzyme B and perforin (Rooney et al.,
2015). Although these types of studies allow the analysis of huge amounts of data,
they should be handled with some caution, as high abundance of transcripts may not
translate to high abundance of protein. Recently, a large-scale study on proteogenomic
characterization of colorectal cancer revealed that mRNA level is not always correlated
to protein level (Zhang et al., 2014).

4.3.2 Shared epitopes

The peptide repertoire presented on HLA is largely determined by the structure of
the peptide binding groove 1.1. It is expected that the HLA molecules having similar
grooves might present similar/overlapping peptides. These peptides are referred to as
promiscuous binders (Sturniolo et al., 1999). In a large-scale study the HLA peptide
binding data from the IEDB was analyzed which revealed that an unexpectedly large
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fraction of HLA ligands (>50%) bind two or more HLA molecules, often across HLA
supertypes or even loci (Rao et al., 2011).

In fact, we made a similar observation in our patient cohort as it occurs quite frequently
that a peptide is bound by multiple HLA alleles. More than 1400 peptides are bound
by two or more HLA alleles, and more than 300 by three or more alleles. The peptide
YSLSLGALF for instance, which is generated by the mutation L157F in the gene
GCGR, was predicted to be bound by seven different HLA alleles. This mutation
however occurs only in patient Hi-Pat-10 and all seven HLA alleles that bind the
epitope correspond to this patient. Accordingly, the occurrence of shared epitopes
is a combinatorial question, involving the patient’s HLA genotype and the mutation.
However, as the frequency of shared mutations is quite low to begin with, the frequency
of shared epitopes is expected to be much lower.

These findings underline the necessity of a personalized approach for neoepitope-based
immunotherapies.

4.3.3 Alterations in immune-related genes

It was reported previously that inactivation of HLA class I molecules is a frequent
mechanism, of immune evasion in several cancers (Schumacher and Schreiber, 2015).
Loss of HLA reduces the ability of cancer cells to present antigens to T cells and
therefore leads to failure of peptide-based cancer vaccination, for instance. Loss of
HLA can occur through mutations in HLA genes or through downregulation of those
genes. Abnormal expression of HLA class I molecules in tumor cells is a frequent event
which can occur as total loss of class I molecules or partial loss of specific haplotypes
or alleles (Cabrera et al., 2007). In colorectal cancer beta2-microglobulin seems to be
especially affected in this context, as Cabrera et al. reported frequent downregulation
of this molecule in microsatellite instable CRC (Cabrera et al., 2003), and Tikidzhieva
et al. reported that beta2-microglobulin is mutated in about 30% of microsatellite
instable CRC patients (Tikidzhieva et al., 2012). We analyzed the expression of HLA
class I molecules in our patient cohort and found that HLA is expressed in all patients,
as weak to intermediate stainings were observed in the immunohistochemical analysis
3.5. Of note, the stainings were found to be heterogeneous, indicating that not all cells
express HLA uniformly.

Immunomodulatory genes, as well as cytokines and cytokine receptors were addition-
ally analyzed for accumulation of mutations, but no recurrent mutations were found. A
PD-L1 mutation was detected in Lo-Pat-10; nevertheless, according to the immunohis-
tochemical analysis a weak PD-L1 expression is evident in this patient. Similarly, we
also analyzed if these genes of interest are frequently affected by chromosomal instabil-
ity, i.e. amplifications or deletions. The regulatory T cells marker FOXP3 was found
to be amplified in seven TIL-high but no TIL-low patients. However, this amplification
does not seem to translate in elevated protein expression, as very weak to weak stain-
ings were observed in all patients, regardless if they harbor a FOXP3 amplification or
not.
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Taken together, the immunomodulatory pathways do not seem to be affected by single
alterations on the genomic level. Furthermore, the few detected genomic changes do not
seem to translate into altered protein expression, as indicated by immunohistochemical
staining analysis.

4.3.4 Pathways enriched for mutations

As a next step, pathway enrichment analysis was performed with the set of mutated
genes for the TIL-high and low groups separately (section 3.2.4. The results clearly
show that there are differences in affected pathways between the two groups. Interest-
ingly, in the TIL low group two immune-associated pathways are in the top 10 enriched
pathways, namely ”acute phase response signaling” and ”PI3K signaling in B lympho-
cytes”, and according to the Ingenuity Pathway Analysis (IPA) tool, these pathways
are enriched in the TIL-low group when compared to the TIL-high group.

Although IPA suggests a higher enrichment of mutations relevant for these pathways in
the TIL-low group compared to the TIL-high group, a closer look at the mutated genes
revealed a different picture. For instance, in the TIL-low group 14 genes associated
with acute phase response are mutated, whereas in the TIL-high group nine genes are
mutated, with the genes FN1, PIK3CA and KRAS being mutated in both groups.
Hence, the enrichment was found to be not very consistent with the pathway models
and was not further considered.

Of note, from the sequencing data alone it is not possible to sufficiently assess the effect
of a somatic mutation in cancer yet. It remains thus unclear whether the mutation
activates or impairs the protein function, or has any function at all. There are several
tools developed to predict the functional effects of single nucleotide polymorphisms;
however, a benchmark study assessing the performance of 15 predictors revealed that
no algorithm is able to sufficiently accurately predict the effects of missense mutations
in cancer (Martelotto et al., 2014).

4.3.5 Association of HLA allele and neoepitope load

High mutational load does not necessarily lead to a high neoepitope load as neoepitope
presentation also depends on the specific HLA genotype. It is known that because
of the different binding preferences of different HLA molecules, there is variation in
peptide-repertoire diversity, meaning that some HLA alleles can bind a more diverse
set of peptides compared to other HLA alleles (Yanover and Bradley, 2011). We have
also made this observation, as for instance the patient with the highest amount of mu-
tations, patient Hi-Pat-05, does not have the highest amount of predicted neoepitopes.
Additionally, patient Lo-Pat-07 has the second lowest number of predicted epitopes,
despite having a relatively high number of mutations. Lo-Pat-07 is the only patient who
has homozygous HLA-B and HLA-C alleles; hence it seems obvious that the peptide
diversity is smaller for this patient.
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In fact, the role of HLA in resistance or susceptibility to cancer is not well under-
stood yet. Only few studies report association between HLA genotype and prognosis
in cancer patients. In the US two HLA Class II genes, HLA DQB*03032 and HLA
DRB1*11, have been identified that may have a protective role in human breast can-
cer in Caucasians (Chaudhuri et al., 2000). Also in cervical cancer, DQB1*0602 and
DRB1*1501, are associated with the presence of cancer in Hispanic patients, whereas
HLA alleles, DRB1*1301 and *1302, were reported to protect against cancer induced
by HPV infection (Garca-Corona et al., 2004).

With the recently appreciated relevance of neoepitopes for cancer immunotherapy, HLA
genotyping has become a routine step in several clinical applications. The availability
of large scale HLA genotyping and clinical data of cancer patients will allow the analysis
of the correlation between HLA genotype and prognosis.

4.3.6 Microenvironment

Data from primary tumors identified the cytokines CXCL10, CXCL9, and CX3CL1 to
be the key factors for lymphocyte recruitment, but it was reported that this cytokine
regulation is weakened in the metastatic setting (Halama et al., 2011a). These reports
are in line with our findings: MIG (CXCL9) is indeed significantly elevated at the
invasive margin in the TIL-high group (p = 0.02), and IP-10 (CXCL10) is not signif-
icantly elevated at the invasive margin. Instead, a set of 12 cytokines were found to
be significantly higher expressed in the TIL-high group when compared to the TIL-low
group: SDF-1a (CXCL12), MIG (CXCL9), MCP-3 (CCL7), IL-17, IFNg, IL-13, IL-7,
IL-4, GM-CSF, HGF, CCL27, and TRAIL.

These elevated cytokines are mainly associated with lymphocyte recruitment, however
they do not show a clear pattern specific for any subpopulation, as cytokines produced
by Th1 T cells, as well as cytokines produced by Th2 T cells are overexpressed: while
IFNg is produced by Th1 T cells, IL-4 and IL-13 are produced by Th2 T cells. Hence,
interestingly both, protumorigenic as well as antitumorigenic factors are overexpressed
in the TIL-high group.

Several of the elevated cytokines, such as CXCL12, CXCL9, CCL7, IL-13, and GM-CSF
are mainly produced by macrophages and are associated with leukocyte and lympho-
cyte recruitment. In our analyzed patient cohort, immunohistochemical stainings for
the macrophage marker CD68 revealed the presence of macrophages at the invasive
margin of all analyzed samples. However, the density of macrophages in the TIL-high
group seems to be higher than in the TIL-low group, as almost all CD68 stainings
were strong in the TIL-high group, whereas only intermediate staining was observed
in the TIL-low group (Table 3.5). Hence, the presence of more macrophages in the
TIL-high group could explain the overexpression of several cytokines. Macrophages
that infiltrate a tumor are often called tumor-associated macrophages (TAMs). The
function of TAMs is controversial as there is growing evidence showing that they have
both, protumorigenic as well as antitumorigenic properties (Bingle et al., 2002). Pro-
fessor Jäger’s group just recently conducted a study showing that in metastatic CRC
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macrophages play a major role in producing tumor-promoting factors (Niels Halama
et al., in press).

The cytokines IFNg and TRAIL are both significantly elevated in all compartments
in the TIL-high group, indicating functional activity of the infiltrating T cells. Addi-
tionally, according to the immunohistochemical analysis, PD-L1 seems to be expressed
in all samples. Interestingly, four samples were found to express PD-L1 strongly, and
these are all TIL-high samples: Hi-Pat-03, Hi-Pat-05, Hi-Pat-06, and Hi-Pat-08. As
the PD-1 signaling cascade contributes to T cell exhaustion, a strong prevalence of
PD-L1 might indicate that the present lymphocytes in these highly infiltrated sam-
ples are already exhausted and their antitumor activity is weakened or even absent.
These patients might especially benefit from PD-1 and PD-L1 blockade therapy as it
was reported that presence of PD-L1 is correlated with response to therapy (Patel and
Kurzrock, 2015).

4.4 Further applications of the developed analysis

pipeline

The analysis pipeline developed in this study adds valuable information to the anal-
ysis of cancer patient data and the exploration of additional treatment options. The
pipeline is already being used to assess the immunogenicity of tumor samples from sev-
eral large cohorts of patients with rare cancers, which have not been analyzed in this
manner previously. These studies will reveal the potential immunogenicity of those tu-
mor entities and provide new insights on whether immunotherapy would be feasible for
affected patients. Additionally, the pipeline is being applied to samples from patients
with refractory or rare cancers to explore new therapeutic strategies. The obtained de-
tailed data about tumor-host interactions may provide information on clinical outcome
and help identify patients who are most likely to benefit from immunotherapy. The
developed pipelines nicely complement the available genomics pipelines. The pipelines
are fast and robust and have been nicely integrated into the clinical setting. From the
point where the whole-exome-sequencing data is available, prioritized epitope lists can
be generated within 48 hours.

4.4.1 Case studies

We applied our analysis workflow and performed immunomic profiling of an extremely
rare metastatic neuroendocrine tumor of the rectum. This analysis, for the first time,
provides comprehensive details about the immunogenicity and microenvironment of a
neuroendocrine tumor. A manuscript describing this case report is currently in revision
for publication in Oncoimmunology.

In this thesis, two case studies of patients with metastatic colorectal cancer have been
included to demonstrate and discuss the application of the analysis pipeline (section
3.7). The HLA typing pipeline was used with the whole- exome-sequencing data of
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the patients to infer the corresponding HLA genotypes. Subsequently, the epitope pre-
diction and selection pipeline was used to select suitable candidates to include in a
potential therapeutic vaccine. We then synthesized selected peptides containing HLA
class I or class II epitopes, or both, and analyzed them for existing T cell reactivity via
ELISpot assays with blood from the corresponding patient. For patient B8G6 short
peptides (9mers) only containing the predicted neoepitope, as well as long peptides
(29mers), which have the neoepitope centered and additional flanking amino acids on
each side, were analyzed in the ELISpot assay. All mutated short peptides showed
significantly higher spot counts than the IgG control and it can be considered that
these peptides elicit a T cell response. Also, all mutated peptides had higher spot
counts compared to the corresponding wildtype peptide. These results indicate that
there is a preexisting T cell response against all of the analyzed neoepitopes, and that
they elicit stronger T cell responses than their wildtype counterparts. These peptides
would be ideal candidates for therapeutic vaccination aiming to boost and reactivate
T cells specific for them. Interestingly, when the spot counts of the short mutated
peptides are compared to spot counts of the corresponding long peptides, it is striking
that the long peptides have lower counts. Surprisingly, the long peptides seem less
reactive when compared to the short peptides, although they contain the exact same
predicted neoepitope. An explanation for this might be that the long peptides are not
processed as expected, and that the predicted neoepitope is not presented properly on
HLA. For patient VF77 only long peptides, containing mainly both, predicted HLA
class I and class II epitopes, were synthesized and tested. Here, the spot counts of all
tested peptides, mutated and wildtype, strongly exceeded the counts of the IgG con-
trol, indicating strong T cell reactivity. Also, almost all wildtype peptides had stronger
spot counts than the corresponding mutated peptides, although the predicted affinities
of the mutated peptides were all stronger. However, a vaccination with mutated pep-
tides would lead to an oversaturation with them, so that they may be presented more
frequently increasing the chance of specific T cells detecting the presented neoepitopes,
boosting the neoepitope-specific T cell response.

For a long time, it was controversially discussed among researchers whether enhance-
ment of an existing T cell response or generation of de novo responses is clinically
relevant for an effective tumor vaccine (Fritsch et al., 2014). Carreno et al. recently
reported that neoepitope vaccination not only can amplify existing CD8+ T cell re-
sponses but also can produce responses that might have been silent prior to vaccination
(Carreno et al., 2015; Delamarre et al., 2015). Thus, even if no T cell reactivity was
seen for certain neoepitopes in the ELISpot assays, vaccination with them might still
generate potent antitumor T cell responses.

If a therapeutic vaccine is going to be administered, including multiple neoepitopes,
for both CD4+ and CD8+ T cells, is of advantage. In doing so, the likelihood of
generating an immune response against at least some of the neoantigens increases, and
the likelihood of the tumor escaping the immune response by immunoediting decreases.

Case studies like these were conducted with several patients. In doing so, a working
logistics for the clinical setting was established, and the results provided insights into
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the feasibility of the approach. Based on these findings, clinical studies with neoepitope-
based vaccines are already in development in Professor Jäger’s group.

4.5 Conclusion and Outlook

We analyzed the correlation of the number of mutations and the number of neoepitopes
with lymphocyte infiltration. We could not confirm the strong correlation that was
reported previously numerous times. However, a trend can be observed in a way
that the TIL-high group seems to be enriched for mutations and neoepitopes, but
no statistical significance was detectable. Instead, the cytokine expression profiles as
well as the expression of some immunomodulatory proteins are clearly distinct. These
results indicate that the immune contexture at the metastatic lesion seems to be the
driving force for lymphocyte infiltration instead of mutations and neoepitope landscape.

It might be a concern that the analyzed cohort sizes are too small to yield a significant
difference. However, if the relationship between mutation/neoepitope load and lym-
phocyte infiltration was pivotal, it should also be evident even in a small patient cohort.
Differences in the microenvironment in contrast, are clearly evident and statistically
significant even in the analyzed small patient cohort. Of note, it is a highly challenging
endeavor to conduct all the different analyses as we did in this study. Apart from the
technical and logistical challenge, acquisition of an appropriate amount of patient sam-
ples with sufficient quality is another big hurdle. Hence, assembly of a bigger patient
cohort was not easily possible but is being considered to further validate and underline
the results presented here. Here, we performed an explorative study which provides
valuable detailed insights to the immune setting of CRC liver metastases and builds
the basis for a prospective study.

In the past few years, the microenvironment has received much attention, as a wealth
of evidence was reported to support the critical role of the composition of the microen-
vironment on tumor growth and progression (Smyth et al., 2016). A recent study by
Mlecnik and colleagues even postulated that the microenvironment seems to be the
cause for metastasis formation (Mlecnik et al., 2016). Our results also clearly highlight
the importance of the microenvironment. It hast to be kept in mind that the presence
of neoantigens does not necessary induce T cell reactivity. It is known that human tu-
mors vary substantially in the composition of their microenvironment, and this is most
likely to influence the ability of T cells to respond to mutated antigens (Schumacher
and Schreiber, 2015).

It has now been appreciated that cancer immunotherapies have to be tailored to the
microenvironment (Smyth et al., 2016). Here we have established an integrated anal-
ysis workflow which provides detailed information about tumor-host interactions. The
obtained data about the genomic and immunomic setting will be highly valuable for
characterizing patients systematically and identifying therapies they will most likely
benefit from.
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Supplemental Tables

Cytokine Data

Tables with raw data of cytokine measurements.

CSV tables of cytokine measurements, formated according to the different compart-
ments and sample IDs used in this work.

Table with calculates p-values (two-sided student’s t-test) for all cytokines, assessing
the significance between TIL-high and TIL-low samples.

Epitope Prediction

Epitope tables for all patients as produced by the immunoinformatics pipeline.

Other

Selected epitopes of the two patients from the case studies, that have been tested in
ELISpot assays.

ID Mapping, Overview of all used sample IDs in this work.

Supplemental Figures

Cytokine Plots

Scatterplots for each cytokine, comparing concentrations in TIL-high and TIL-low,
separately for each compartment adjacent liver (AL), invasive margin (IM), and liver
metastasis (LM).

Stainings

Images of all performed immunohistochemical stainings of CD3, CD8, CD68, FOXP3,
HLA, PD-1, PD-L1, PD-L2
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ELISpot Data

Overview of ELISpot data of the two patients from the case studies, including images
of ELISpot plates and measured spot counts of each well.
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HLA Typing Pipeline

Collection of scripts that are required to run the tool Phlat for sequencing-based HLA
typing.

run gunzip.sh: uncompress the fastq files, as required by Phlat. Required parameters
are the locations of the compressed fastq files and the output directory.

run phlat.sh: run Phlat for sequencing-based HLA typing. Required parameters are
the locations of the fastq files and the output directory.

run summary.sh: format the output of Phlat into a csv table. Required parameter
is the output directory, where Phlat output files are located.

clean up.sh: delete all temporary files. Required parameter is the output directory,
where Phlat output files are located.

run hlatyping: run the whole pipeline combining all scripts above. Parameters for
input and output files have to be defined in this file.

The pipeline is run for a number as samples (PIDs) as follows:

sh run h la typ ing PID1 PID2 . . .

Immunoinformatics Pipeline

Collection of scripts that are required to run the Immunoinformatics Pipeline for rapidly
performing HLA class I and class II epitope predictions, proteasomal cleavage predic-
tions, and filtering and prioritizing the predicted epitopes.

1. Extract and format missense mutations

As input, a VCF with single nucleotide variations (SNVs) is required. From this VCF,
all missense SNVs are extracted and formated in a CSV table.

Scripts: 01-1 missense to table.py, 01-2 format missense.R

2. Retrieve peptide sequences

For each missense mutation extracted in step 1, all peptide sequences are retrieved,
and mutated and wildtype peptides are stored in a CSV table.

Scripts: 02-1 get peptides.R, 02-2 get unique peptides.R
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3. Perform epitope predictions

Fasta files that are required as input for netMHCpan and netMHCIIpan are generated
for all peptides from step 2 and epitope predictions are performed. Subsequently, the
output files are formated as CSV tables.

Scripts: 03 run epitope prediction.sh, 03-1 create fasta files.R,

03-2 create netmhc commands.R, 03-3 format netmhc files.sh

4. Create epitope table combining predictions for all alleles

For each patient, all predicted HLA class I and class II epitopes are combined in one
table, respectively, and predictions for mutated and wildtype peptides are matched.

Scripts: 04-1 epitope table classI.R 04-2 epitope table classII.R

5. Perform proteasomal cleavage predictions

Proteasomal cleavage prediction is performed using NetChop for each predicted HLA
class I binder, and the prediction score is added to the epitope table created in step 4.

Scripts: 05-1 run netchop.sh, 05-2 add netchop to table.R

6. Filter and prioritize predicted epitopes

Epitopes are filtered and ranked according to their prediction scores, and the final
output table with ranked epitopes is generated.

Scripts: 06-1 rank epitopes classI.R, 06-2 rank epitopes classII.R

run immuno pipeline.sh runs the whole pipeline with all the steps above for a num-
ber of samples (PIDs). Parameters for input and output files have to be defined in this
file.

The command to run the pipeline is as follows:

sh run immuno pipel ine PID1 PID2 . . .
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D. Sturm, J. Gronych, B. Lasitschka, S. Schmidt, H. Seker-Cin, H. Witt, M. Sultan, M. Ralser, P. A.
Northcott, V. Hovestadt, S. Bender, E. Pfaff, S. Stark, D. Faury, J. Schwartzentruber, J. Majewski,
U. D. Weber, M. Zapatka, B. Raeder, M. Schlesner, C. L. Worth, C. C. Bartholomae, C. von Kalle,
C. D. Imbusch, S. Radomski, C. Lawerenz, P. van Sluis, J. Koster, R. Volckmann, R. Versteeg,
H. Lehrach, C. Monoranu, B. Winkler, A. Unterberg, C. Herold-Mende, T. Milde, A. E. Kulozik,
M. Ebinger, M. U. Schuhmann, Y.-J. Cho, S. L. Pomeroy, A. von Deimling, O. Witt, M. D. Taylor,
S. Wolf, M. A. Karajannis, C. G. Eberhart, W. Scheurlen, M. Hasselblatt, K. L. Ligon, M. W.
Kieran, J. O. Korbel, M.-L. Yaspo, B. Brors, J. Felsberg, G. Reifenberger, V. P. Collins, N. Jabado,
R. Eils, P. Lichter, S. M. Pfister, and I. C. G. C. P. T. P. . Recurrent somatic alterations of FGFR1
and NTRK2 in pilocytic astrocytoma. Nat Genet, 45(8):927–932, Aug 2013. doi: 10.1038/ng.2682.
URL http://dx.doi.org/10.1038/ng.2682.

J. A. Joyce and J. W. Pollard. Microenvironmental regulation of metastasis. Nat Rev Cancer, 9(4):
239–252, Apr 2009. doi: 10.1038/nrc2618. URL http://dx.doi.org/10.1038/nrc2618.

E. Karosiene, M. Rasmussen, T. Blicher, O. Lund, S. Buus, and M. Nielsen. NetMHCIIpan-3.0,
a common pan-specific MHC class II prediction method including all three human MHC class
II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 65(10):711–724, Oct 2013. doi:
10.1007/s00251-013-0720-y. URL http://dx.doi.org/10.1007/s00251-013-0720-y.

Y. Kawakami, S. Eliyahu, C. H. Delgado, P. F. Robbins, K. Sakaguchi, E. Appella, J. R. Yannelli,
G. J. Adema, T. Miki, and S. A. Rosenberg. Identification of a human melanoma antigen recognized
by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U
S A, 91(14):6458–6462, Jul 1994.

C. Kemir, A. K. Nussbaum, H. Schild, V. Detours, and S. Brunak. Prediction of proteasome cleavage
motifs by neural networks. Protein Eng, 15(4):287–296, Apr 2002.

J. H. Kessler, S. Khan, U. Seifert, S. Le Gall, K. M. Chow, A. Paschen, S. A. Bres-Vloemans, A. de
Ru, N. van Montfoort, K. L. M. C. Franken, W. E. Benckhuijsen, J. M. Brooks, T. van Hall, K. Ray,
A. Mulder, I. I. N. Doxiadis, P. F. van Swieten, H. S. Overkleeft, A. Prat, B. Tomkinson, J. Neefjes,
P. M. Kloetzel, D. W. Rodgers, L. B. Hersh, J. W. Drijfhout, P. A. van Veelen, F. Ossendorp, and
C. J. M. Melief. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T
cell epitopes. Nat Immunol, 12(1):45–53, Jan 2011. doi: 10.1038/ni.1974. URL http://dx.doi.

org/10.1038/ni.1974.

J. S. Khalili, R. W. Hanson, and Z. Szallasi. In silico prediction of tumor antigens derived from
functional missense mutations of the cancer gene census. Oncoimmunology, 1(8):1281–1289, Nov
2012. doi: 10.4161/onci.21511. URL http://dx.doi.org/10.4161/onci.21511.

H. J. Kim and N. Pourmand. HLA typing from RNA-seq data using hierarchical read weighting
[corrected]. PLoS One, 8(6):e67885, 2013. doi: 10.1371/journal.pone.0067885. URL http://dx.

doi.org/10.1371/journal.pone.0067885.

K. Ko, S. Yamazaki, K. Nakamura, T. Nishioka, K. Hirota, T. Yamaguchi, J. Shimizu, T. Nomura,
T. Chiba, and S. Sakaguchi. Treatment of advanced tumors with agonistic anti-GITR mAb and its
effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med, 202(7):885–891,
Oct 2005. doi: 10.1084/jem.20050940. URL http://dx.doi.org/10.1084/jem.20050940.

102

http://dx.doi.org/10.1038/nature11284
http://dx.doi.org/10.1038/ng.2682
http://dx.doi.org/10.1038/nrc2618
http://dx.doi.org/10.1007/s00251-013-0720-y
http://dx.doi.org/10.1038/ni.1974
http://dx.doi.org/10.1038/ni.1974
http://dx.doi.org/10.4161/onci.21511
http://dx.doi.org/10.1371/journal.pone.0067885
http://dx.doi.org/10.1371/journal.pone.0067885
http://dx.doi.org/10.1084/jem.20050940


K. S. Kobayashi and P. J. van den Elsen. NLRC5: a key regulator of MHC class I-dependent immune
responses. Nat Rev Immunol, 12(12):813–820, Dec 2012. doi: 10.1038/nri3339. URL http://dx.

doi.org/10.1038/nri3339.

D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A. Miller, E. R. Mardis,
L. Ding, and R. K. Wilson. VarScan 2: somatic mutation and copy number alteration discovery in
cancer by exome sequencing. Genome Res, 22(3):568–576, Mar 2012. doi: 10.1101/gr.129684.111.
URL http://dx.doi.org/10.1101/gr.129684.111.

J. N. Kochenderfer, Z. Yu, D. Frasheri, N. P. Restifo, and S. A. Rosenberg. Adoptive transfer of
syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can
eradicate lymphoma and normal B cells. Blood, 116(19):3875–3886, Nov 2010. doi: 10.1182/
blood-2010-01-265041. URL http://dx.doi.org/10.1182/blood-2010-01-265041.

E. Kondo, K. Koda, N. Takiguchi, K. Oda, K. Seike, M. Ishizuka, and M. Miyazaki. Preoperative
natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon
cancer. Dig Surg, 20(5):445–451, 2003. doi: 72714. URL http://dx.doi.org/72714.

T. Kouo, L. Huang, A. B. Pucsek, M. Cao, S. Solt, T. Armstrong, and E. Jaffee. Galectin-3 Shapes
Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion
of Plasmacytoid Dendritic Cells. Cancer Immunol Res, 3(4):412–423, Apr 2015. doi: 10.1158/
2326-6066.CIR-14-0150. URL http://dx.doi.org/10.1158/2326-6066.CIR-14-0150.

S. Kreiter, M. Vormehr, N. van de Roemer, M. Diken, M. Lwer, J. Diekmann, S. Boegel, B. Schrrs,
F. Vascotto, J. C. Castle, A. D. Tadmor, S. P. Schoenberger, C. Huber, z. Treci, and U. Sahin.
Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 520(7549):
692–696, Apr 2015. doi: 10.1038/nature14426. URL http://dx.doi.org/10.1038/nature14426.

M. F. Krummel and J. P. Allison. CD28 and CTLA-4 have opposing effects on the response of T cells
to stimulation. J Exp Med, 182(2):459–465, Aug 1995.

P. Kvistborg, D. Philips, S. Kelderman, L. Hageman, C. Ottensmeier, D. Joseph-Pietras, M. J. P. Wel-
ters, S. van der Burg, E. Kapiteijn, O. Michielin, E. Romano, C. Linnemann, D. Speiser, C. Blank,
J. B. Haanen, and T. N. Schumacher. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+
T cell response. Sci Transl Med, 6(254):254ra128, Sep 2014. doi: 10.1126/scitranslmed.3008918.
URL http://dx.doi.org/10.1126/scitranslmed.3008918.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biol, 10(3):R25, 2009. doi: 10.1186/
gb-2009-10-3-r25. URL http://dx.doi.org/10.1186/gb-2009-10-3-r25.

D. T. Le, J. N. Uram, H. Wang, B. R. Bartlett, H. Kemberling, A. D. Eyring, A. D. Skora, B. S. Luber,
N. S. Azad, D. Laheru, B. Biedrzycki, R. C. Donehower, A. Zaheer, G. A. Fisher, T. S. Crocenzi,
J. J. Lee, S. M. Duffy, R. M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner,
R. H. Hruban, L. D. Wood, N. Cuka, D. M. Pardoll, N. Papadopoulos, K. W. Kinzler, S. Zhou,
T. C. Cornish, J. M. Taube, R. A. Anders, J. R. Eshleman, B. Vogelstein, and L. A. Diaz, Jr.
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 372(26):2509–2520,
Jun 2015. doi: 10.1056/NEJMoa1500596. URL http://dx.doi.org/10.1056/NEJMoa1500596.

W. J. Lesterhuis, I. J. M. de Vries, D. H. Schuurhuis, A. C. I. Boullart, J. F. M. Jacobs, A. J. de Boer,
N. M. Scharenborg, H. M. H. Brouwer, M. W. M. M. van de Rakt, C. G. Figdor, T. J. Ruers, G. J.
Adema, and C. J. A. Punt. Vaccination of colorectal cancer patients with CEA-loaded dendritic
cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol, 17(6):974–980, Jun 2006. doi:
10.1093/annonc/mdl072. URL http://dx.doi.org/10.1093/annonc/mdl072.

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 26(5):589–595, Mar 2010. doi: 10.1093/bioinformatics/btp698. URL http:

//dx.doi.org/10.1093/bioinformatics/btp698.

103

http://dx.doi.org/10.1038/nri3339
http://dx.doi.org/10.1038/nri3339
http://dx.doi.org/10.1101/gr.129684.111
http://dx.doi.org/10.1182/blood-2010-01-265041
http://dx.doi.org/72714
http://dx.doi.org/10.1158/2326-6066.CIR-14-0150
http://dx.doi.org/10.1038/nature14426
http://dx.doi.org/10.1126/scitranslmed.3008918
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1056/NEJMoa1500596
http://dx.doi.org/10.1093/annonc/mdl072
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698


H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin,
and . G. P. D. P. S. . The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25
(16):2078–2079, Aug 2009.

C. Linnemann, M. M. van Buuren, L. Bies, E. M. E. Verdegaal, R. Schotte, J. J. A. Calis, S. Behjati,
A. Velds, H. Hilkmann, D. E. Atmioui, M. Visser, M. R. Stratton, J. B. A. G. Haanen, H. Spits,
S. H. van der Burg, and T. N. M. Schumacher. High-throughput epitope discovery reveals frequent
recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med, 21(1):81–85, Jan 2015.
doi: 10.1038/nm.3773. URL http://dx.doi.org/10.1038/nm.3773.

P. S. Linsley, J. L. Greene, W. Brady, J. Bajorath, J. A. Ledbetter, and R. Peach. Human B7-1
(CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4
receptors. Immunity, 1(9):793–801, Dec 1994.

E. J. Lipson, W. H. Sharfman, S. Chen, T. L. McMiller, T. S. Pritchard, J. T. Salas, S. Sartorius-
Mergenthaler, I. Freed, S. Ravi, H. Wang, B. Luber, J. D. Sproul, J. M. Taube, D. M. Pardoll,
and S. L. Topalian. Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting
allogeneic melanoma cell vaccine administered in the adjuvant setting. J Transl Med, 13:214, 2015.
doi: 10.1186/s12967-015-0572-3. URL http://dx.doi.org/10.1186/s12967-015-0572-3.

H. M. Long, G. Parsonage, C. P. Fox, and S. P. Lee. Immunotherapy for Epstein-Barr virus-associated
malignancies. Drug News Perspect, 23(4):221–228, May 2010. doi: 10.1358/dnp.2010.23.4.1439500.
URL http://dx.doi.org/10.1358/dnp.2010.23.4.1439500.

Y.-C. Lu and P. F. Robbins. Cancer immunotherapy targeting neoantigens. Semin Immunol, Nov
2015. doi: 10.1016/j.smim.2015.11.002. URL http://dx.doi.org/10.1016/j.smim.2015.11.002.

K. M. Mahoney, P. D. Rennert, and G. J. Freeman. Combination cancer immunotherapy and new
immunomodulatory targets. Nat Rev Drug Discov, 14(8):561–584, Aug 2015. doi: 10.1038/nrd4591.
URL http://dx.doi.org/10.1038/nrd4591.

J. L. Markman and S. L. Shiao. Impact of the immune system and immunotherapy in colorectal
cancer. J Gastrointest Oncol, 6(2):208–223, Apr 2015. doi: 10.3978/j.issn.2078-6891.2014.077.
URL http://dx.doi.org/10.3978/j.issn.2078-6891.2014.077.

L. G. Martelotto, C. K. Ng, M. R. De Filippo, Y. Zhang, S. Piscuoglio, R. S. Lim, R. Shen, L. Nor-
ton, J. S. Reis-Filho, and B. Weigelt. Benchmarking mutation effect prediction algorithms using
functionally validated cancer-related missense mutations. Genome Biol, 15(10):484, 2014. doi:
10.1186/s13059-014-0484-1. URL http://dx.doi.org/10.1186/s13059-014-0484-1.

H. Matsushita, M. D. Vesely, D. C. Koboldt, C. G. Rickert, R. Uppaluri, V. J. Magrini, C. D. Arthur,
J. M. White, Y.-S. Chen, L. K. Shea, J. Hundal, M. C. Wendl, R. Demeter, T. Wylie, J. P. Allison,
M. J. Smyth, L. J. Old, E. R. Mardis, and R. D. Schreiber. Cancer exome analysis reveals a
T-cell-dependent mechanism of cancer immunoediting. Nature, 482(7385):400–404, Feb 2012. doi:
10.1038/nature10755. URL http://dx.doi.org/10.1038/nature10755.

I. Melero, W. W. Shuford, S. A. Newby, A. Aruffo, J. A. Ledbetter, K. E. Hellstrm, R. S. Mittler, and
L. Chen. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established
tumors. Nat Med, 3(6):682–685, Jun 1997.

I. Melero, D. M. Berman, M. A. Aznar, A. J. Korman, J. L. Prez Gracia, and J. Haanen. Evolving
synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer, 15(8):
457–472, Aug 2015. doi: 10.1038/nrc3973. URL http://dx.doi.org/10.1038/nrc3973.

M. Meyerson, S. Gabriel, and G. Getz. Advances in understanding cancer genomes through second-
generation sequencing. Nat Rev Genet, 11(10):685–696, Oct 2010. doi: 10.1038/nrg2841. URL
http://dx.doi.org/10.1038/nrg2841.

104

http://dx.doi.org/10.1038/nm.3773
http://dx.doi.org/10.1186/s12967-015-0572-3
http://dx.doi.org/10.1358/dnp.2010.23.4.1439500
http://dx.doi.org/10.1016/j.smim.2015.11.002
http://dx.doi.org/10.1038/nrd4591
http://dx.doi.org/10.3978/j.issn.2078-6891.2014.077
http://dx.doi.org/10.1186/s13059-014-0484-1
http://dx.doi.org/10.1038/nature10755
http://dx.doi.org/10.1038/nrc3973
http://dx.doi.org/10.1038/nrg2841


B. Mlecnik, M. Tosolini, P. Charoentong, A. Kirilovsky, G. Bindea, A. Berger, M. Camus, M. Gillard,
P. Bruneval, W.-H. Fridman, F. Pags, Z. Trajanoski, and J. Galon. Biomolecular network recon-
struction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroen-
terology, 138(4):1429–1440, Apr 2010. doi: 10.1053/j.gastro.2009.10.057. URL http://dx.doi.

org/10.1053/j.gastro.2009.10.057.

B. Mlecnik, G. Bindea, A. Kirilovsky, H. K. Angell, A. C. Obenauf, M. Tosolini, S. E. Church, P. Maby,
A. Vasaturo, M. Angelova, T. Fredriksen, S. Mauger, M. Waldner, A. Berger, M. R. Speicher,
F. Pags, V. Valge-Archer, and J. Galon. The tumor microenvironment and Immunoscore are critical
determinants of dissemination to distant metastasis. Sci Transl Med, 8(327):327ra26, Feb 2016. doi:
10.1126/scitranslmed.aad6352. URL http://dx.doi.org/10.1126/scitranslmed.aad6352.

A. Moll, A. Hildebrandt, H.-P. Lenhof, and O. Kohlbacher. BALLView: a tool for research and educa-
tion in molecular modeling. Bioinformatics, 22(3):365–366, Feb 2006. doi: 10.1093/bioinformatics/
bti818. URL http://dx.doi.org/10.1093/bioinformatics/bti818.

S. Morel, F. Lvy, O. Burlet-Schiltz, F. Brasseur, M. Probst-Kepper, A. L. Peitrequin, B. Monsarrat,
R. Van Velthoven, J. C. Cerottini, T. Boon, J. E. Gairin, and B. J. Van den Eynde. Processing
of some antigens by the standard proteasome but not by the immunoproteasome results in poor
presentation by dendritic cells. Immunity, 12(1):107–117, Jan 2000.

M. A. Morse, D. Niedzwiecki, J. L. Marshall, C. Garrett, D. Z. Chang, M. Aklilu, T. S. Crocenzi,
D. J. Cole, S. Dessureault, A. C. Hobeika, T. Osada, M. Onaitis, B. M. Clary, D. Hsu, G. R. Devi,
A. Bulusu, R. P. Annechiarico, V. Chadaram, T. M. Clay, and H. K. Lyerly. A randomized phase
II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1
compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann
Surg, 258(6):879–886, Dec 2013. doi: 10.1097/SLA.0b013e318292919e. URL http://dx.doi.org/

10.1097/SLA.0b013e318292919e.

K. Murphy, P. Travers, M. Walport, and C. Janeway. Janeway’s Immunobiology. Number Bd. 978,Nr.
0-4129 in Janeway’s Immunobiology. Garland Science, 2008. ISBN 9780815341239. URL https:

//books.google.de/books?id=-SNrAAAAMAAJ.

Y. Naito, K. Saito, K. Shiiba, A. Ohuchi, K. Saigenji, H. Nagura, and H. Ohtani. CD8+ T cells
infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res,
58(16):3491–3494, Aug 1998.

J. Neefjes, M. L. M. Jongsma, P. Paul, and O. Bakke. Towards a systems understanding of MHC
class I and MHC class II antigen presentation. Nat Rev Immunol, 11(12):823–836, 2011. doi:
10.1038/nri3084. URL http://dx.doi.org/10.1038/nri3084.

C. G. A. Network. Comprehensive molecular characterization of human colon and rectal cancer.
Nature, 487(7407):330–337, Jul 2012. doi: 10.1038/nature11252. URL http://dx.doi.org/10.

1038/nature11252.

M. Nielsen, C. Lundegaard, T. Blicher, K. Lamberth, M. Harndahl, S. Justesen, G. Rder, B. Peters,
A. Sette, O. Lund, and S. Buus. NetMHCpan, a method for quantitative predictions of peptide
binding to any HLA-A and -B locus protein of known sequence. PLoS One, 2(8):e796, 2007. doi:
10.1371/journal.pone.0000796. URL http://dx.doi.org/10.1371/journal.pone.0000796.

M. Nielsen, O. Lund, S. Buus, and C. Lundegaard. MHC class II epitope predictive algorithms.
Immunology, 130(3):319–328, Jul 2010. doi: 10.1111/j.1365-2567.2010.03268.x. URL http://dx.

doi.org/10.1111/j.1365-2567.2010.03268.x.

H. Pages, M. Carlson, S. Falcon, and N. Li. AnnotationDbi: Annotation Database Interface, 2015. R
package version 1.24.0.

105

http://dx.doi.org/10.1053/j.gastro.2009.10.057
http://dx.doi.org/10.1053/j.gastro.2009.10.057
http://dx.doi.org/10.1126/scitranslmed.aad6352
http://dx.doi.org/10.1093/bioinformatics/bti818
http://dx.doi.org/10.1097/SLA.0b013e318292919e
http://dx.doi.org/10.1097/SLA.0b013e318292919e
https://books.google.de/books?id=-SNrAAAAMAAJ
https://books.google.de/books?id=-SNrAAAAMAAJ
http://dx.doi.org/10.1038/nri3084
http://dx.doi.org/10.1038/nature11252
http://dx.doi.org/10.1038/nature11252
http://dx.doi.org/10.1371/journal.pone.0000796
http://dx.doi.org/10.1111/j.1365-2567.2010.03268.x
http://dx.doi.org/10.1111/j.1365-2567.2010.03268.x


K. Palucka and J. Banchereau. Dendritic-cell-based therapeutic cancer vaccines. Immunity, 39(1):38–
48, Jul 2013. doi: 10.1016/j.immuni.2013.07.004. URL http://dx.doi.org/10.1016/j.immuni.

2013.07.004.

D. M. Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 12
(4):252–264, Apr 2012. doi: 10.1038/nrc3239. URL http://dx.doi.org/10.1038/nrc3239.

M. R. Parkhurst, J. C. Yang, R. C. Langan, M. E. Dudley, D.-A. N. Nathan, S. A. Feldman, J. L.
Davis, R. A. Morgan, M. J. Merino, R. M. Sherry, M. S. Hughes, U. S. Kammula, G. Q. Phan,
R. M. Lim, S. A. Wank, N. P. Restifo, P. F. Robbins, C. M. Laurencot, and S. A. Rosenberg.
T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer
but induce severe transient colitis. Mol Ther, 19(3):620–626, Mar 2011. doi: 10.1038/mt.2010.272.
URL http://dx.doi.org/10.1038/mt.2010.272.

N. Parmentier, V. Stroobant, D. Colau, P. de Diesbach, S. Morel, J. Chapiro, P. van Endert, and B. J.
Van den Eynde. Production of an antigenic peptide by insulin-degrading enzyme. Nat Immunol,
11(5):449–454, May 2010. doi: 10.1038/ni.1862. URL http://dx.doi.org/10.1038/ni.1862.

S. P. Patel and R. Kurzrock. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy.
Mol Cancer Ther, 14(4):847–856, Apr 2015. doi: 10.1158/1535-7163.MCT-14-0983. URL http:

//dx.doi.org/10.1158/1535-7163.MCT-14-0983.

S. Paul, D. Weiskopf, M. A. Angelo, J. Sidney, B. Peters, and A. Sette. HLA class I alle-
les are associated with peptide-binding repertoires of different size, affinity, and immunogenic-
ity. J Immunol, 191(12):5831–5839, Dec 2013. doi: 10.4049/jimmunol.1302101. URL http:

//dx.doi.org/10.4049/jimmunol.1302101.

S. Piconese, B. Valzasina, and M. P. Colombo. OX40 triggering blocks suppression by regulatory T cells
and facilitates tumor rejection. J Exp Med, 205(4):825–839, Apr 2008. doi: 10.1084/jem.20071341.
URL http://dx.doi.org/10.1084/jem.20071341.

K. Polyak, I. Haviv, and I. G. Campbell. Co-evolution of tumor cells and their microenvironment.
Trends Genet, 25(1):30–38, Jan 2009. doi: 10.1016/j.tig.2008.10.012. URL http://dx.doi.org/

10.1016/j.tig.2008.10.012.

S. A. Quezada, L. Z. Jarvinen, E. F. Lind, and R. J. Noelle. CD40/CD154 interactions at the interface
of tolerance and immunity. Annu Rev Immunol, 22:307–328, 2004. doi: 10.1146/annurev.immunol.
22.012703.104533. URL http://dx.doi.org/10.1146/annurev.immunol.22.012703.104533.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

N. T. Rajat K. De, editor. Immunoinformatics (Methods in Molecular Biology). Humana Press, 2014.
ISBN 1493911147. URL 10.1007/978-1-4939-1115-8.

J. C. Ramos and I. S. Lossos. Newly emerging therapies targeting viral-related lymphomas. Curr
Oncol Rep, 13(5):416–426, Oct 2011. doi: 10.1007/s11912-011-0186-8. URL http://dx.doi.org/

10.1007/s11912-011-0186-8.

X. Rao, I. Hoof, A. I. C. A. F. Costa, D. van Baarle, and C. Kemir. HLA class I allele promiscuity
revisited. Immunogenetics, 63(11):691–701, Nov 2011. doi: 10.1007/s00251-011-0552-6. URL
http://dx.doi.org/10.1007/s00251-011-0552-6.

N. P. Restifo, M. E. Dudley, and S. A. Rosenberg. Adoptive immunotherapy for cancer: harnessing
the T cell response. Nat Rev Immunol, 12(4):269–281, Apr 2012. doi: 10.1038/nri3191. URL
http://dx.doi.org/10.1038/nri3191.

106

http://dx.doi.org/10.1016/j.immuni.2013.07.004
http://dx.doi.org/10.1016/j.immuni.2013.07.004
http://dx.doi.org/10.1038/nrc3239
http://dx.doi.org/10.1038/mt.2010.272
http://dx.doi.org/10.1038/ni.1862
http://dx.doi.org/10.1158/1535-7163.MCT-14-0983
http://dx.doi.org/10.1158/1535-7163.MCT-14-0983
http://dx.doi.org/10.4049/jimmunol.1302101
http://dx.doi.org/10.4049/jimmunol.1302101
http://dx.doi.org/10.1084/jem.20071341
http://dx.doi.org/10.1016/j.tig.2008.10.012
http://dx.doi.org/10.1016/j.tig.2008.10.012
http://dx.doi.org/10.1146/annurev.immunol.22.012703.104533
http://www.R-project.org/
10.1007/978-1-4939-1115-8
http://dx.doi.org/10.1007/s11912-011-0186-8
http://dx.doi.org/10.1007/s11912-011-0186-8
http://dx.doi.org/10.1007/s00251-011-0552-6
http://dx.doi.org/10.1038/nri3191


A. Ribas, R. Kefford, M. A. Marshall, C. J. A. Punt, J. B. Haanen, M. Marmol, C. Garbe, H. Gogas,
J. Schachter, G. Linette, P. Lorigan, K. L. Kendra, M. Maio, U. Trefzer, M. Smylie, G. A. McArthur,
B. Dreno, P. D. Nathan, J. Mackiewicz, J. M. Kirkwood, J. Gomez-Navarro, B. Huang, D. Pavlov,
and A. Hauschild. Phase III randomized clinical trial comparing tremelimumab with standard-of-
care chemotherapy in patients with advanced melanoma. J Clin Oncol, 31(5):616–622, Feb 2013.
doi: 10.1200/JCO.2012.44.6112. URL http://dx.doi.org/10.1200/JCO.2012.44.6112.

A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. F. Twigg, W. G. S. C. , A. O. M. Wilkie,
G. McVean, and G. Lunter. Integrating mapping-, assembly- and haplotype-based approaches for
calling variants in clinical sequencing applications. Nat Genet, 46(8):912–918, Aug 2014. doi:
10.1038/ng.3036. URL http://dx.doi.org/10.1038/ng.3036.

N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, W. Lee, J. Yuan,
P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. Ibrahim, C. Bruggeman, B. Gasmi,
R. Zappasodi, Y. Maeda, C. Sander, E. B. Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher,
and T. A. Chan. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade
in non-small cell lung cancer. Science, 348(6230):124–128, Apr 2015. doi: 10.1126/science.aaa1348.
URL http://dx.doi.org/10.1126/science.aaa1348.

C. Robert, L. Thomas, I. Bondarenko, S. O’Day, J. Weber, C. Garbe, C. Lebbe, J.-F. Baurain,
A. Testori, J.-J. Grob, N. Davidson, J. Richards, M. Maio, A. Hauschild, W. H. Miller, Jr,
P. Gascon, M. Lotem, K. Harmankaya, R. Ibrahim, S. Francis, T.-T. Chen, R. Humphrey,
A. Hoos, and J. D. Wolchok. Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med, 364(26):2517–2526, Jun 2011. doi: 10.1056/NEJMoa1104621. URL
http://dx.doi.org/10.1056/NEJMoa1104621.

C. Robert, A. Ribas, J. D. Wolchok, F. S. Hodi, O. Hamid, R. Kefford, J. S. Weber, A. M. Joshua,
W.-J. Hwu, T. C. Gangadhar, A. Patnaik, R. Dronca, H. Zarour, R. W. Joseph, P. Boasberg,
B. Chmielowski, C. Mateus, M. A. Postow, K. Gergich, J. Elassaiss-Schaap, X. N. Li, R. Ian-
none, S. W. Ebbinghaus, S. P. Kang, and A. Daud. Anti-programmed-death-receptor-1 treatment
with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison
cohort of a phase 1 trial. Lancet, 384(9948):1109–1117, Sep 2014. doi: 10.1016/S0140-6736(14)
60958-2. URL http://dx.doi.org/10.1016/S0140-6736(14)60958-2.

J. Robinson and S. G. Marsh. The IMGT/HLA sequence database. Rev Immunogenet, 2(4):518–531,
2000.

J. Robinson, J. A. Halliwell, H. McWilliam, R. Lopez, P. Parham, and S. G. E. Marsh. The
IMGT/HLA database. Nucleic Acids Res, 41(Database issue):D1222–D1227, Jan 2013. doi:
10.1093/nar/gks949. URL http://dx.doi.org/10.1093/nar/gks949.

M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, and N. Hacohen. Molecular and genetic properties
of tumors associated with local immune cytolytic activity. Cell, 160(1-2):48–61, Jan 2015. doi:
10.1016/j.cell.2014.12.033. URL http://dx.doi.org/10.1016/j.cell.2014.12.033.

K. M. Ropponen, M. J. Eskelinen, P. K. Lipponen, E. Alhava, and V. M. Kosma. Prognostic value
of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol, 182(3):318–324, Jul 1997.
doi: 3.0.CO;2-6. URL http://dx.doi.org/3.0.CO;2-6.

S. A. Rosenberg and N. P. Restifo. Adoptive cell transfer as personalized immunotherapy for human
cancer. Science, 348(6230):62–68, Apr 2015. doi: 10.1126/science.aaa4967. URL http://dx.doi.

org/10.1126/science.aaa4967.

C. E. Ruby, W. L. Redmond, D. Haley, and A. D. Weinberg. Anti-OX40 stimulation in vivo en-
hances CD8+ memory T cell survival and significantly increases recall responses. Eur J Immunol,
37(1):157–166, Jan 2007. doi: 10.1002/eji.200636428. URL http://dx.doi.org/10.1002/eji.

200636428.

107

http://dx.doi.org/10.1200/JCO.2012.44.6112
http://dx.doi.org/10.1038/ng.3036
http://dx.doi.org/10.1126/science.aaa1348
http://dx.doi.org/10.1056/NEJMoa1104621
http://dx.doi.org/10.1016/S0140-6736(14)60958-2
http://dx.doi.org/10.1093/nar/gks949
http://dx.doi.org/10.1016/j.cell.2014.12.033
http://dx.doi.org/3.0.CO;2-6
http://dx.doi.org/10.1126/science.aaa4967
http://dx.doi.org/10.1126/science.aaa4967
http://dx.doi.org/10.1002/eji.200636428
http://dx.doi.org/10.1002/eji.200636428


C. E. Rudd, A. Taylor, and H. Schneider. CD28 and CTLA-4 coreceptor expression and signal
transduction. Immunol Rev, 229(1):12–26, May 2009. doi: 10.1111/j.1600-065X.2009.00770.x.
URL http://dx.doi.org/10.1111/j.1600-065X.2009.00770.x.

K. Sakuishi, L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson. Targeting
Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp
Med, 207(10):2187–2194, Sep 2010. doi: 10.1084/jem.20100643. URL http://dx.doi.org/10.

1084/jem.20100643.

E. Sato, S. H. Olson, J. Ahn, B. Bundy, H. Nishikawa, F. Qian, A. A. Jungbluth, D. Frosina, S. Gnjatic,
C. Ambrosone, J. Kepner, T. Odunsi, G. Ritter, S. Lele, Y.-T. Chen, H. Ohtani, L. J. Old, and
K. Odunsi. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T
cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 102
(51):18538–18543, Dec 2005. doi: 10.1073/pnas.0509182102. URL http://dx.doi.org/10.1073/

pnas.0509182102.

D. Schadendorf, F. S. Hodi, C. Robert, J. S. Weber, K. Margolin, O. Hamid, D. Patt, T.-T. Chen,
D. M. Berman, and J. D. Wolchok. Pooled Analysis of Long-Term Survival Data From Phase II
and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol, 33(17):
1889–1894, Jun 2015. doi: 10.1200/JCO.2014.56.2736. URL http://dx.doi.org/10.1200/JCO.

2014.56.2736.

D. A. Schaer, J. T. Murphy, and J. D. Wolchok. Modulation of GITR for cancer immunotherapy.
Curr Opin Immunol, 24(2):217–224, Apr 2012. doi: 10.1016/j.coi.2011.12.011. URL http://dx.

doi.org/10.1016/j.coi.2011.12.011.

R. D. Schreiber, L. J. Old, and M. J. Smyth. Cancer immunoediting: integrating immunity’s roles in
cancer suppression and promotion. Science, 331(6024):1565–1570, Mar 2011. doi: 10.1126/science.
1203486. URL http://dx.doi.org/10.1126/science.1203486.

E. S. Schultz, J. Chapiro, C. Lurquin, S. Claverol, O. Burlet-Schiltz, G. Warnier, V. Russo, S. Morel,
F. Lvy, T. Boon, B. J. Van den Eynde, and P. van der Bruggen. The production of a new MAGE-3
peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp
Med, 195(4):391–399, Feb 2002.

T. Schumacher, L. Bunse, S. Pusch, F. Sahm, B. Wiestler, J. Quandt, O. Menn, M. Osswald,
I. Oezen, M. Ott, M. Keil, J. Bal, K. Rauschenbach, A. K. Grabowska, I. Vogler, J. Diekmann,
N. Trautwein, S. B. Eichmller, J. Okun, S. Stevanovi, A. B. Riemer, U. Sahin, M. A. Friese,
P. Beckhove, A. von Deimling, W. Wick, and M. Platten. A vaccine targeting mutant IDH1 in-
duces antitumour immunity. Nature, 512(7514):324–327, Aug 2014. doi: 10.1038/nature13387.
URL http://dx.doi.org/10.1038/nature13387.

T. N. Schumacher and R. D. Schreiber. Neoantigens in cancer immunotherapy. Science, 348(6230):
69–74, Apr 2015. doi: 10.1126/science.aaa4971. URL http://dx.doi.org/10.1126/science.

aaa4971.

T. N. Schumacher, C. Kesmir, and M. M. van Buuren. Biomarkers in cancer immunotherapy. Cancer
Cell, 27(1):12–14, Jan 2015. doi: 10.1016/j.ccell.2014.12.004. URL http://dx.doi.org/10.1016/

j.ccell.2014.12.004.

R. H. Schwartz. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in
interleukin-2 production and immunotherapy. Cell, 71(7):1065–1068, Dec 1992.

L. Senovilla, E. Vacchelli, J. Galon, S. Adjemian, A. Eggermont, W. H. Fridman, C. Sauts-Fridman,
Y. Ma, E. Tartour, L. Zitvogel, G. Kroemer, and L. Galluzzi. Trial watch: Prognostic and predictive
value of the immune infiltrate in cancer. Oncoimmunology, 1(8):1323–1343, Nov 2012. doi: 10.4161/
onci.22009. URL http://dx.doi.org/10.4161/onci.22009.

108

http://dx.doi.org/10.1111/j.1600-065X.2009.00770.x
http://dx.doi.org/10.1084/jem.20100643
http://dx.doi.org/10.1084/jem.20100643
http://dx.doi.org/10.1073/pnas.0509182102
http://dx.doi.org/10.1073/pnas.0509182102
http://dx.doi.org/10.1200/JCO.2014.56.2736
http://dx.doi.org/10.1200/JCO.2014.56.2736
http://dx.doi.org/10.1016/j.coi.2011.12.011
http://dx.doi.org/10.1016/j.coi.2011.12.011
http://dx.doi.org/10.1126/science.1203486
http://dx.doi.org/10.1038/nature13387
http://dx.doi.org/10.1126/science.aaa4971
http://dx.doi.org/10.1126/science.aaa4971
http://dx.doi.org/10.1016/j.ccell.2014.12.004
http://dx.doi.org/10.1016/j.ccell.2014.12.004
http://dx.doi.org/10.4161/onci.22009


A. Sette, L. Adorini, S. M. Colon, S. Buus, and H. M. Grey. Capacity of intact proteins to bind to
MHC class II molecules. J Immunol, 143(4):1265–1267, Aug 1989.

K. S. Sfanos, T. C. Bruno, A. K. Meeker, A. M. De Marzo, W. B. Isaacs, and C. G. Drake. Human
prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate, 69(15):1694–1703,
Nov 2009. doi: 10.1002/pros.21020. URL http://dx.doi.org/10.1002/pros.21020.

V. Shankaran, H. Ikeda, A. T. Bruce, J. M. White, P. E. Swanson, L. J. Old, and R. D.
Schreiber. IFNgamma and lymphocytes prevent primary tumour development and shape tu-
mour immunogenicity. Nature, 410(6832):1107–1111, Apr 2001. doi: 10.1038/35074122. URL
http://dx.doi.org/10.1038/35074122.

P. Sharma and J. P. Allison. The future of immune checkpoint therapy. Science, 348(6230):56–61,
Apr 2015. doi: 10.1126/science.aaa8172. URL http://dx.doi.org/10.1126/science.aaa8172.

C. J. Sherr. Principles of tumor suppression. Cell, 116(2):235–246, Jan 2004.

W. W. Shuford, K. Klussman, D. D. Tritchler, D. T. Loo, J. Chalupny, A. W. Siadak, T. J. Brown,
J. Emswiler, H. Raecho, C. P. Larsen, T. C. Pearson, J. A. Ledbetter, A. Aruffo, and R. S.
Mittler. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to
the amplification in vivo of cytotoxic T cell responses. J Exp Med, 186(1):47–55, Jul 1997.

S. A. Shukla, M. S. Rooney, M. Rajasagi, G. Tiao, P. M. Dixon, M. S. Lawrence, J. Stevens, W. J.
Lane, J. L. Dellagatta, S. Steelman, C. Sougnez, K. Cibulskis, A. Kiezun, N. Hacohen, V. Brusic,
C. J. Wu, and G. Getz. Comprehensive analysis of cancer-associated somatic mutations in class
I HLA genes. Nat Biotechnol, 33(11):1152–1158, Nov 2015. doi: 10.1038/nbt.3344. URL http:

//dx.doi.org/10.1038/nbt.3344.

R. Siegel, C. Desantis, and A. Jemal. Colorectal cancer statistics, 2014. CA Cancer J Clin, 64(2):
104–117, 2014. doi: 10.3322/caac.21220. URL http://dx.doi.org/10.3322/caac.21220.

S. Sierro, P. Romero, and D. E. Speiser. The CD4-like molecule LAG-3, biology and therapeutic
applications. Expert Opin Ther Targets, 15(1):91–101, Jan 2011. doi: 10.1517/14712598.2011.
540563. URL http://dx.doi.org/10.1517/14712598.2011.540563.

P. P. Singh, P. K. Sharma, G. Krishnan, and A. C. Lockhart. Immune checkpoints and immunotherapy
for colorectal cancer. Gastroenterol Rep (Oxf), 3(4):289–297, Nov 2015. doi: 10.1093/gastro/gov053.
URL http://dx.doi.org/10.1093/gastro/gov053.

M. J. Smyth, S. F. Ngiow, A. Ribas, and M. W. L. Teng. Combination cancer immunotherapies
tailored to the tumour microenvironment. Nat Rev Clin Oncol, 13(3):143–158, Mar 2016. doi:
10.1038/nrclinonc.2015.209. URL http://dx.doi.org/10.1038/nrclinonc.2015.209.

A. Snchez-Fueyo, J. Tian, D. Picarella, C. Domenig, X. X. Zheng, C. A. Sabatos, N. Manlongat,
O. Bender, T. Kamradt, V. K. Kuchroo, J.-C. Gutirrez-Ramos, A. J. Coyle, and T. B. Strom. Tim-
3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological
tolerance. Nat Immunol, 4(11):1093–1101, Nov 2003. doi: 10.1038/ni987. URL http://dx.doi.

org/10.1038/ni987.

A. Snyder, V. Makarov, T. Merghoub, J. Yuan, J. M. Zaretsky, A. Desrichard, L. A. Walsh, M. A.
Postow, P. Wong, T. S. Ho, T. J. Hollmann, C. Bruggeman, K. Kannan, Y. Li, C. Elipenahli,
C. Liu, C. T. Harbison, L. Wang, A. Ribas, J. D. Wolchok, and T. A. Chan. Genetic basis for
clinical response to CTLA-4 blockade in melanoma. N Engl J Med, 371(23):2189–2199, Dec 2014.
doi: 10.1056/NEJMoa1406498. URL http://dx.doi.org/10.1056/NEJMoa1406498.

109

http://dx.doi.org/10.1002/pros.21020
http://dx.doi.org/10.1038/35074122
http://dx.doi.org/10.1126/science.aaa8172
http://dx.doi.org/10.1038/nbt.3344
http://dx.doi.org/10.1038/nbt.3344
http://dx.doi.org/10.3322/caac.21220
http://dx.doi.org/10.1517/14712598.2011.540563
http://dx.doi.org/10.1093/gastro/gov053
http://dx.doi.org/10.1038/nrclinonc.2015.209
http://dx.doi.org/10.1038/ni987
http://dx.doi.org/10.1038/ni987
http://dx.doi.org/10.1056/NEJMoa1406498


J. Straeter, U. Hinz, C. Hasel, U. Bhanot, G. Mechtersheimer, T. Lehnert, and P. Mueller. Impaired
CD95 expression predisposes for recurrence in curatively resected colon carcinoma: clinical evidence
for immunoselection and CD95L mediated control of minimal residual disease. Gut, 54(5):661–665,
May 2005. doi: 10.1136/gut.2004.052696. URL http://dx.doi.org/10.1136/gut.2004.052696.

T. Sturniolo, E. Bono, J. Ding, L. Raddrizzani, O. Tuereci, U. Sahin, M. Braxenthaler, F. Gallazzi,
M. P. Protti, F. Sinigaglia, and J. Hammer. Generation of tissue-specific and promiscuous HLA
ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol, 17(6):
555–561, Jun 1999. doi: 10.1038/9858. URL http://dx.doi.org/10.1038/9858.

M. Sznol and L. Chen. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of
advanced human cancer–response. Clin Cancer Res, 19(19):5542, Oct 2013. doi: 10.1158/1078-0432.
CCR-13-2234. URL http://dx.doi.org/10.1158/1078-0432.CCR-13-2234.

A. Szolek, B. Schubert, C. Mohr, M. Sturm, M. Feldhahn, and O. Kohlbacher. OptiType: preci-
sion HLA typing from next-generation sequencing data. Bioinformatics, 30(23):3310–3316, Dec
2014. doi: 10.1093/bioinformatics/btu548. URL http://dx.doi.org/10.1093/bioinformatics/

btu548.

J. M. Taube, A. Klein, J. R. Brahmer, H. Xu, X. Pan, J. H. Kim, L. Chen, D. M. Pardoll, S. L.
Topalian, and R. A. Anders. Association of PD-1, PD-1 ligands, and other features of the tumor
immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res, 20(19):5064–5074,
Oct 2014. doi: 10.1158/1078-0432.CCR-13-3271. URL http://dx.doi.org/10.1158/1078-0432.

CCR-13-3271.

A. Tikidzhieva, A. Benner, S. Michel, A. Formentini, K.-H. Link, W. Dippold, M. von Knebel Doe-
beritz, M. Kornmann, and M. Kloor. Microsatellite instability and Beta2-Microglobulin mutations
as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer, 106(6):1239–1245,
Mar 2012. doi: 10.1038/bjc.2012.53. URL http://dx.doi.org/10.1038/bjc.2012.53.

R. Todd and D. T. Wong. Oncogenes. Anticancer Res, 19(6A):4729–4746, 1999.

S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, J. D.
Powderly, R. D. Carvajal, J. A. Sosman, M. B. Atkins, P. D. Leming, D. R. Spigel, S. J. Antonia,
L. Horn, C. G. Drake, D. M. Pardoll, L. Chen, W. H. Sharfman, R. A. Anders, J. M. Taube,
T. L. McMiller, H. Xu, A. J. Korman, M. Jure-Kunkel, S. Agrawal, D. McDonald, G. D. Kollia,
A. Gupta, J. M. Wigginton, and M. Sznol. Safety, activity, and immune correlates of anti-PD-1
antibody in cancer. N Engl J Med, 366(26):2443–2454, Jun 2012. doi: 10.1056/NEJMoa1200690.
URL http://dx.doi.org/10.1056/NEJMoa1200690.

N. Toussaint and O. Kohlbacher. Towards in silico design of epitope-based vaccines. Expert Opin
Drug Discovery, 4(10):1047–1060, 2009.

E. Tran, S. Turcotte, A. Gros, P. F. Robbins, Y.-C. Lu, M. E. Dudley, J. R. Wunderlich,
R. P. Somerville, K. Hogan, C. S. Hinrichs, M. R. Parkhurst, J. C. Yang, and S. A. Rosen-
berg. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with ep-
ithelial cancer. Science, 344(6184):641–645, May 2014. doi: 10.1126/science.1251102. URL
http://dx.doi.org/10.1126/science.1251102.

T. Trolle, I. G. Metushi, J. A. Greenbaum, Y. Kim, J. Sidney, O. Lund, A. Sette, B. Peters, and
M. Nielsen. Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics,
31(13):2174–2181, Jul 2015. doi: 10.1093/bioinformatics/btv123. URL http://dx.doi.org/10.

1093/bioinformatics/btv123.

S. J. Turley, V. Cremasco, and J. L. Astarita. Immunological hallmarks of stromal cells in the tumour
microenvironment. Nat Rev Immunol, 15(11):669–682, Nov 2015. doi: 10.1038/nri3902. URL
http://dx.doi.org/10.1038/nri3902.

110

http://dx.doi.org/10.1136/gut.2004.052696
http://dx.doi.org/10.1038/9858
http://dx.doi.org/10.1158/1078-0432.CCR-13-2234
http://dx.doi.org/10.1093/bioinformatics/btu548
http://dx.doi.org/10.1093/bioinformatics/btu548
http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/10.1038/bjc.2012.53
http://dx.doi.org/10.1056/NEJMoa1200690
http://dx.doi.org/10.1126/science.1251102
http://dx.doi.org/10.1093/bioinformatics/btv123
http://dx.doi.org/10.1093/bioinformatics/btv123
http://dx.doi.org/10.1038/nri3902


J. G. van den Boorn and G. Hartmann. Turning tumors into vaccines: co-opting the innate immune
system. Immunity, 39(1):27–37, Jul 2013. doi: 10.1016/j.immuni.2013.07.011. URL http://dx.

doi.org/10.1016/j.immuni.2013.07.011.

P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, A. Knuth,
and T. Boon. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human
melanoma. Science, 254(5038):1643–1647, Dec 1991.

S. H. van der Burg and C. J. M. Melief. Therapeutic vaccination against human papilloma virus
induced malignancies. Curr Opin Immunol, 23(2):252–257, Apr 2011. doi: 10.1016/j.coi.2010.12.
010. URL http://dx.doi.org/10.1016/j.coi.2010.12.010.

S. H. van der Burg, M. J. Visseren, R. M. Brandt, W. M. Kast, and C. J. Melief. Immunogenicity
of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J
Immunol, 156(9):3308–3314, May 1996.

S. H. van der Burg, R. Arens, F. Ossendorp, T. van Hall, and C. J. M. Melief. Vaccines for established
cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer, Mar 2016. doi:
10.1038/nrc.2016.16. URL http://dx.doi.org/10.1038/nrc.2016.16.

M. D. Vesely and R. D. Schreiber. Cancer immunoediting: antigens, mechanisms, and implications
to cancer immunotherapy. Ann N Y Acad Sci, 1284:1–5, May 2013. doi: 10.1111/nyas.12105. URL
http://dx.doi.org/10.1111/nyas.12105.

M. D. Vesely, M. H. Kershaw, R. D. Schreiber, and M. J. Smyth. Natural innate and adaptive immunity
to cancer. Annu Rev Immunol, 29:235–271, 2011. doi: 10.1146/annurev-immunol-031210-101324.
URL http://dx.doi.org/10.1146/annurev-immunol-031210-101324.

N. Vigneron, V. Stroobant, J. Chapiro, A. Ooms, G. Degiovanni, S. Morel, P. van der Bruggen,
T. Boon, and B. J. Van den Eynde. An antigenic peptide produced by peptide splicing in the
proteasome. Science, 304(5670):587–590, Apr 2004. doi: 10.1126/science.1095522. URL http:

//dx.doi.org/10.1126/science.1095522.

N. Vigneron, V. Stroobant, B. J. Van den Eynde, and P. van der Bruggen. Database of T cell-defined
human tumor antigens: the 2013 update. Cancer Immun, 13:15, 2013.

D. S. Vinay and B. S. Kwon. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther, 11(5):
1062–1070, May 2012. doi: 10.1158/1535-7163.MCT-11-0677. URL http://dx.doi.org/10.1158/

1535-7163.MCT-11-0677.

A. M. Vlad, J. C. Kettel, N. M. Alajez, C. A. Carlos, and O. J. Finn. MUC1 immunobiology: from
discovery to clinical applications. Adv Immunol, 82:249–293, 2004. doi: 10.1016/S0065-2776(04)
82006-6. URL http://dx.doi.org/10.1016/S0065-2776(04)82006-6.

R. H. Vonderheide and M. J. Glennie. Agonistic CD40 antibodies and cancer therapy. Clin Cancer
Res, 19(5):1035–1043, Mar 2013. doi: 10.1158/1078-0432.CCR-12-2064. URL http://dx.doi.

org/10.1158/1078-0432.CCR-12-2064.

M. Vormehr, M. Diken, S. Boegel, S. Kreiter, z. Treci, and U. Sahin. Mutanome directed cancer
immunotherapy. Curr Opin Immunol, 39:14–22, Dec 2015. doi: 10.1016/j.coi.2015.12.001. URL
http://dx.doi.org/10.1016/j.coi.2015.12.001.

C. Wang, G. H. Y. Lin, A. J. McPherson, and T. H. Watts. Immune regulation by 4-1BB and 4-1BBL:
complexities and challenges. Immunol Rev, 229(1):192–215, May 2009. doi: 10.1111/j.1600-065X.
2009.00765.x. URL http://dx.doi.org/10.1111/j.1600-065X.2009.00765.x.

111

http://dx.doi.org/10.1016/j.immuni.2013.07.011
http://dx.doi.org/10.1016/j.immuni.2013.07.011
http://dx.doi.org/10.1016/j.coi.2010.12.010
http://dx.doi.org/10.1038/nrc.2016.16
http://dx.doi.org/10.1111/nyas.12105
http://dx.doi.org/10.1146/annurev-immunol-031210-101324
http://dx.doi.org/10.1126/science.1095522
http://dx.doi.org/10.1126/science.1095522
http://dx.doi.org/10.1158/1535-7163.MCT-11-0677
http://dx.doi.org/10.1158/1535-7163.MCT-11-0677
http://dx.doi.org/10.1016/S0065-2776(04)82006-6
http://dx.doi.org/10.1158/1078-0432.CCR-12-2064
http://dx.doi.org/10.1158/1078-0432.CCR-12-2064
http://dx.doi.org/10.1016/j.coi.2015.12.001
http://dx.doi.org/10.1111/j.1600-065X.2009.00765.x


K. Wang, M. Li, and H. Hakonarson. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res, 38(16):e164, Sep 2010. doi: 10.1093/nar/gkq603.
URL http://dx.doi.org/10.1093/nar/gkq603.

R. L. Warren, G. Choe, D. J. Freeman, M. Castellarin, S. Munro, R. Moore, and R. A. Holt. Derivation
of HLA types from shotgun sequence datasets. Genome Med, 4(12):95, 2012. doi: 10.1186/gm396.
URL http://dx.doi.org/10.1186/gm396.

R. A. Weinberg. The Biology of Cancer, 2nd Edition. Garland Science, 2013. ISBN 0815342209.

K. Weintraub. Drug development: Releasing the brakes. Nature, 504(7480):S6–S8, Dec 2013. doi:
10.1038/504S6a. URL http://dx.doi.org/10.1038/504S6a.

E. J. Wherry, S.-J. Ha, S. M. Kaech, W. N. Haining, S. Sarkar, V. Kalia, S. Subramaniam, J. N.
Blattman, D. L. Barber, and R. Ahmed. Molecular signature of CD8+ T cell exhaustion during
chronic viral infection. Immunity, 27(4):670–684, Oct 2007. doi: 10.1016/j.immuni.2007.09.006.
URL http://dx.doi.org/10.1016/j.immuni.2007.09.006.

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.

J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, N. H.
Segal, C. E. Ariyan, R.-A. Gordon, K. Reed, M. M. Burke, A. Caldwell, S. A. Kronenberg, B. U.
Agunwamba, X. Zhang, I. Lowy, H. D. Inzunza, W. Feely, C. E. Horak, Q. Hong, A. J. Korman,
J. M. Wigginton, A. Gupta, and M. Sznol. Nivolumab plus ipilimumab in advanced melanoma. N
Engl J Med, 369(2):122–133, Jul 2013. doi: 10.1056/NEJMoa1302369. URL http://dx.doi.org/

10.1056/NEJMoa1302369.

S. B. J. Wong, R. Bos, and L. A. Sherman. Tumor-specific CD4+ T cells render the tumor environment
permissive for infiltration by low-avidity CD8+ T cells. J Immunol, 180(5):3122–3131, Mar 2008.

S.-R. Woo, M. E. Turnis, M. V. Goldberg, J. Bankoti, M. Selby, C. J. Nirschl, M. L. Bettini, D. M.
Gravano, P. Vogel, C. L. Liu, S. Tangsombatvisit, J. F. Grosso, G. Netto, M. P. Smeltzer, A. Chaux,
P. J. Utz, C. J. Workman, D. M. Pardoll, A. J. Korman, C. G. Drake, and D. A. A. Vignali. Immune
inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral
immune escape. Cancer Res, 72(4):917–927, Feb 2012. doi: 10.1158/0008-5472.CAN-11-1620. URL
http://dx.doi.org/10.1158/0008-5472.CAN-11-1620.

T. Xie, G. D’ Ario, J. R. Lamb, E. Martin, K. Wang, S. Tejpar, M. Delorenzi, F. T. Bosman, A. D.
Roth, P. Yan, S. Bougel, A. F. Di Narzo, V. Popovici, E. Budinsk, M. Mao, S. L. Weinrich,
P. A. Rejto, and J. G. Hodgson. A comprehensive characterization of genome-wide copy number
aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS One, 7(7):
e42001, 2012. doi: 10.1371/journal.pone.0042001. URL http://dx.doi.org/10.1371/journal.

pone.0042001.

M. Yadav, S. Jhunjhunwala, Q. T. Phung, P. Lupardus, J. Tanguay, S. Bumbaca, C. Franci, T. K.
Cheung, J. Fritsche, T. Weinschenk, Z. Modrusan, I. Mellman, J. R. Lill, and L. Delamarre.
Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing.
Nature, 515(7528):572–576, Nov 2014. doi: 10.1038/nature14001. URL http://dx.doi.org/10.

1038/nature14001.

C. Yanover and P. Bradley. Large-scale characterization of peptide-MHC binding landscapes with
structural simulations. Proc Natl Acad Sci U S A, 108(17):6981–6986, Apr 2011. doi: 10.1073/
pnas.1018165108. URL http://dx.doi.org/10.1073/pnas.1018165108.

M. Yasunaga, Y. Tabira, K. Nakano, S. Iida, N. Ichimaru, N. Nagamoto, and T. Sakaguchi. Accelerated
growth signals and low tumor-infiltrating lymphocyte levels predict poor outcome in T4 esophageal
squamous cell carcinoma. Ann Thorac Surg, 70(5):1634–1640, Nov 2000.

112

http://dx.doi.org/10.1093/nar/gkq603
http://dx.doi.org/10.1186/gm396
http://dx.doi.org/10.1038/504S6a
http://dx.doi.org/10.1016/j.immuni.2007.09.006
http://had.co.nz/ggplot2/book
http://dx.doi.org/10.1056/NEJMoa1302369
http://dx.doi.org/10.1056/NEJMoa1302369
http://dx.doi.org/10.1158/0008-5472.CAN-11-1620
http://dx.doi.org/10.1371/journal.pone.0042001
http://dx.doi.org/10.1371/journal.pone.0042001
http://dx.doi.org/10.1038/nature14001
http://dx.doi.org/10.1038/nature14001
http://dx.doi.org/10.1073/pnas.1018165108


J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T. L. Madden. Primer-BLAST: a
tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13:134,
2012. doi: 10.1186/1471-2105-13-134. URL http://dx.doi.org/10.1186/1471-2105-13-134.

M. Yoshimoto, G. Sakamoto, and Y. Ohashi. Time dependency of the influence of prognostic factors
on relapse in breast cancer. Cancer, 72(10):2993–3001, Nov 1993.

B. Zhang, J. Wang, X. Wang, J. Zhu, Q. Liu, Z. Shi, M. C. Chambers, L. J. Zimmerman, K. F.
Shaddox, S. Kim, S. R. Davies, S. Wang, P. Wang, C. R. Kinsinger, R. C. Rivers, H. Rodriguez,
R. R. Townsend, M. J. C. Ellis, S. A. Carr, D. L. Tabb, R. J. Coffey, R. J. C. Slebos, D. C. Liebler,
and N. C. I. C. P. T. A. C. . Proteogenomic characterization of human colon and rectal cancer.
Nature, 513(7518):382–387, Sep 2014. doi: 10.1038/nature13438. URL http://dx.doi.org/10.

1038/nature13438.

S. Zhao, Y. Guo, Q. Sheng, and Y. Shyr. heatmap3: An Improved Heatmap Package, 2015. URL
http://CRAN.R-project.org/package=heatmap3. R package version 1.1.1.

L. Zitvogel, O. Kepp, and G. Kroemer. Immune parameters affecting the efficacy of chemotherapeutic
regimens. Nat Rev Clin Oncol, 8(3):151–160, Mar 2011. doi: 10.1038/nrclinonc.2010.223. URL
http://dx.doi.org/10.1038/nrclinonc.2010.223.

113

http://dx.doi.org/10.1186/1471-2105-13-134
http://dx.doi.org/10.1038/nature13438
http://dx.doi.org/10.1038/nature13438
http://CRAN.R-project.org/package=heatmap3
http://dx.doi.org/10.1038/nrclinonc.2010.223


CHAPTER 7

Manuscript

114



1 

 

Identification of immunotherapeutic targets by genomic profiling of 
rectal NET metastases 

 

Zeynep Kosaloglu1,2, Inka Zörnig2, Niels Halama2, Iris Kaiser2, Ivo Buchhalter3, Niels Grabe2, 
Roland Eils3,4, Matthias Schlesner3, Andrea Califano5, Dirk Jäger1,2 

 

1 Clinical Cooperation Unit “Applied Tumor Immunity”, National Center for Tumor Diseases 
(NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany 

2 Department of Medical Oncology, National Center for Tumor Diseases (NCT) and 
University Hospital Heidelberg, Heidelberg, Germany 

3 Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 
Heidelberg, Germany 

4 Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and 
Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, 
Germany  

5 Department of Biomedical Informatics, Department of Systems Biology, Center for 
Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, 
Columbia University, New York, USA 

 

  



2 

 

Abstract 

Neuroendocrine tumors (NETs) of the gastrointestinal tract are a rare and heterogeneous 

group of neoplasms with unique tumor biology and clinical management issues. While 

surgery is the only curative treatment option in patients with early stage NETs, the optimal 

management strategy for patients with advanced metastatic NETs is unknown. Based on the 

tremendous success of immunotherapeutic approaches, we sought to investigate such 

approaches in a case of metastatic rectal NET. Here, we apply an integrative approach using 

various computational and experimental methods to explore several aspects of the tumor-host 

immune interactions for immunotherapeutic options. Sequencing of six different liver 

metastases revealed a quite homogenous set of mutations, and further analysis of these 

mutations for immunogenicity revealed few neo-epitopes with preexisting T cell reactivity, 

which can be used in therapeutic vaccines. Staining for immunomodulatory proteins and 

cytokine profiling showed that the immune setting is surprisingly different, when compared to 

liver metastases of colorectal cancer for instance. Taken together, our results highlight the 

broad range and complexity of tumor-host immune interaction and underline the value of an 

integrative approach. 

 

Keywords: immunotherapy, neoantigens, neo-epitopes, bioinformatics, NGS, IHC, cytokines,  

tumor microenvironment, vaccination, tumor immunology, integrated analysis 

Abbreviations: NET, neuroendocrine tumor; WGS, whole-genome-sequencing; RNA-Seq, RNA-

sequencing; SNV, single nucleotide variation; indel, short insertion or deletion; HLA, human 

leukocyte antigen; RPKM, reads per kilobase per million reads 
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Introduction  

Neuroendocrine tumors (NETs) represent an extremely heterogeneous group of tumors. NETs 

develop from neuroendocrine cells at various primary organ sites and are grouped according 

to their origin: the foregut, the midgut, and hindgut 1.  The majority of NETs are found 

throughout the intestinal tract, most commonly in the pancreas. NETs of the colon and rectum 

are rare, comprising less than 1 percent of colon and rectal cancers, and rectal NETs constitute 

about 19 percent of all gastrointestinal NETs 2, 3.  

Despite the considerable advances made in recent decades, the genetic and molecular 

determinants of NET tumor biology remain poorly characterized. Pathological features found 

in many  NETs are poor differentiation, distinctive expression of neuroendocrine markers and 

the ability to secrete bioactive peptides 4.  

NETs present a wide spectrum of malignancies from relatively indolent to highly aggressive 

variants. The prognosis for high-grade poorly differentiated neuroendocrine carcinomas 

however is generally poor, as most patients have metastatic disease at the time of diagnosis, 

whereas patients with low-grade NETs have a rather favorable prognosis 2. The low incidence 

of neuroendocrine carcinomas coupled with their variable clinical manifestation was a major 

barrier to investigation, and advances in the treatment of NETs have been slow. Optimal 

treatment of NETs has been widely debated and remains to be controversial. Response to 

chemotherapy has been traditionally poor for low grade NETs with an unfavorable benefit-to-

risk ratio. When feasible, surgical removal of malignant tissue is the primary treatment option 

for NETs and offers the best prognosis 5, 6.  

Due to the highly heterogeneous nature of most NETs, a personalized treatment strategy 

might be an appropriate approach and it has been suggested, that genome-wide screening for 

mutations may reveal new data that can be used for a more appropriate treatment selection 7. 
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Furthermore, immunotherapies such as vaccinations against neoantigens and checkpoint 

blockade therapies have shown dramatic success in a number of tumor entities (for a review 

see refs. 8 and 9), and it has been suggested, that immunotherapy in NETs provides 

opportunities for future advances 1. However it is largely unclear how the setup of the 

immunological microenvironment in metastatic NET is and especially how diverse these 

mutations and immunological setups can be between different metastatic lesions. 

In this study, we characterized the genomic features of an individual metastatic NET of the 

rectum, by whole-genome and RNA-sequencing analysis (WGS and RNA-Seq) of six 

metastatic lesions. It has been repeatedly shown, that individual, tumor-specific mutations 

found in the genome of cancer patients provide a superior source of immunogenic targets. 

Mutation-derived epitopes, so called neo-epitopes, are expressed in a highly tumor-specific 

manner, and are also expected to overcome central tolerance. We identified several neo-

epitopes in the tumor samples, which are suitable candidates for peptide- or RNA- based 

vaccines. We furthermore characterized the immunological features of the tumor by assessing 

the density of lymphocyte infiltration into the metastatic site, as well as the expression of 

immunomodulatory proteins, as it is known, that these can be indicators for disease 

progression and immunotherapy outcome. We also measured existing immune responses 

against several predicted neo-epitopes from the peripheral blood of the same patient. 

Here, we present a unique dataset covering different aspects of tumor immunology. Our data 

gives a comprehensive insight into the immune setting of a metastatic NET of the rectum, and 

nicely demonstrates our integrative analysis-workflow for the prediction of mutation-derived 

neo-epitopes and profiling of the immunological tumor microenvironment leading to the 

identification of suitable immunotherapeutic target molecules. 
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Results 

 

3.1 Somatic mutations 

A total of 15 non-synonymous somatic coding SNVs and 4 indels were detected in the WGS 

data, which are also expressed according to the RNA-Seq data. Mutations in 11 genes were 

found in all of the six liver metastases, and additional two mutations were found in the 

majority of the liver metastases. One mutation was detected in two samples and the remaining 

five mutations were unique to one sample (Figure 1 and Table 3). 

3.3 Epitopes 

For the prediction of neo-epitopes we only considered expressed SNVs and indels that were 

present in the majority of samples. Hence, 13 mutations were considered. As a result, nineteen 

peptides from eight mutated genes were predicted to bind with high to intermediate affinity to 

one of the patient‘s HLA alleles (Table 4). Seven peptides were predicted to bind to HLA-A, 

fourteen to HLA-C, and no peptides were predicted to bind to HLA-B.  

Thirteen of the mutated peptides have better predicted binding affinities compared to the 

cognate wild type peptide. Seven mutated/wild type peptide pairs have comparable predicted 

binding affinities, and for one peptide, the wild type peptide has a better affinity than the 

mutated counterpart. Two mutated peptides were predicted to bind by both HLA-C08 and 

HLA-C03. 

A frameshift deletion in the gene OBSL1 generates a novel peptide of 28 amino acids. In 

these peptide, nine 8-11mer peptides were predicted to bind with high to intermediate affinity 

to one of the patient‘s HLA alleles. Three peptides were predicted to bind both HLA-A03 and 

HLA-A33. 
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For the mutated genes with predicted epitopes, we also calculated the RPKM values from the 

normal and tumor RNA-Seq data to assess change in gene expression. For six of these eight 

genes, namely ADAM9, MAT2A, RABEP1, SLC11A2, SMARCA1, and OBSL1, gene 

expression is increased in the tumor, with ADAM9 and OBSL1 being highly over-expressed 

in the tumor with a fold change of over 2. 

3.4 ELISPOT 

To asses weather there are T cells in the patient’s peripheral blood that are reactive against the 

predicted neo-epitopes, we conducted IFNȖ ELISpot assays. As negative control, DCs were loaded 

with human IgG and antigen-specific T cell reactivity was assumed if spot numbers in triplicate test 

wells significantly exceeded those of control wells. An overview image of the IFNȖ ELISpot plate 

with patient-derived cells and quantitative data of this plate presented in Figure 2. 

The peptides MAT2A-mt3, MAT2A-wt3, RAPEP1-mt, RABEP1-wt, SERPINF2-wt3, OBSL1-

neoORF3 showed higher spot numbers when compared to the spot counts of control wells, indicating 

that there are reactive T cells in the peripheral blood against the tested peptides.  

 

3.5 Immunohistochemistry and Cytokine analysis 

In order to assess, whether epitope presentation is altered, we analyzed HLA class I 

expression in all samples. Interestingly, a uniform HLA class I expression among all samples 

could be detected in our immunohistochemical stainings. T cell and B cell numbers at the 

metastatic sites are generally very low, and even absent in many parts of the analyzed 

metastases.  Not surprisingly, cell numbers for NK cells are also generally low. Concordant 

with the low infiltration of effector T cells, PD-1 and PD-L1 are also only found in low levels 

in the analyzed tissues. 
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The metastatic tissue LM6 was used for the analysis of 50 cytokines and chemokines. Protein 

concentrations of the analyzed cytokines were found to be quite low and the measured 

cytokines do not reflect a Th1 or Th2 cytokine profile. Only a small subset of cytokines, 

namely MIF, VCAM-1 and ICAM-1, are expressed in a significant concentration, compared 

to normal adjacent liver (Figure 3).  

Discussion 

NETs of the gastrointestinal tract are a rare and heterogeneous group of neoplasms with a unique 

tumor biology and clinical management issues. While surgery is the only curative treatment option in 

patients with early stage NETs, the optimal management strategy for patients with advanced metastatic 

NETs is unknown. Based on the tremendous success of immunotherapeutic approaches, we sought to 

investigate such approaches in a case of metastatic rectal NET. 

As known from studies on other NET types, the total number of somatic mutations is low 

compared to other tumor entities. In our case, between thirteen and fifteen expressed 

mutations were detected in each sample and 19 distinct mutations were found in all samples 

together. 

Comparing the mutated genes from all liver metastases, it is striking that the overlap between 

them is quite large. A set of 13 mutations can be found nearly in all analyzed liver metastasis 

samples, regardless of their spatial and temporal differences.  In cancer it is usually observed 

that the tumors acquire more mutations with disease progression, and emerging evidence 

suggests that genetic abnormalities vary substantially between metastases or even within a 

single tumor mass, indicating intratumor heterogeneity 10-12. Determining the impact of such 

clonal structures still requires future studies. Intratumoral heterogeneity has important 

consequences for personalized-medicine approaches. Several clinical observations of different 

tumor types have shown variability in response to therapy that can occur between metastases 
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or within a single tumor mass 13-16. This variability may be explained by the emergence of 

genomically distinct clones of malignant cells. 

We could not observe any major clonal variation in the metastases of this rectal NET patient, 

as there is a striking overlap of mutated genes. This may be due to the indolent nature of 

neuroendocrine tumors compared to their adenocarcinomatous counterparts. Thirteen 

mutations are shared among nearly all analyzed metastases. This fact alone indicates a central 

role of these genes in disease progression. Exploring the molecular functions of these mutated 

genes revealed some insights which may indicate a role in tumorigenesis. 

HSPG2 encodes the protein perlecan which is a large multidomain proteoglycan that binds 

and cross-links cell surface molecules. Due to its many interactions, perlecan plays essential 

roles in multiple biological activities, such as vascularization and angiogenesis, and might 

hence contribute to disease progression in this patient 17.  It was suggested, that the protein 

encoded by SMARCA1, also called SNF2L, may play a role in DNA damage, growth 

inhibition and apoptosis of cancer cells 18, 19. Thus, we can assume that a non-synonymous 

mutation in SMARCA1 could contribute positively to tumorigenesis. Another interesting 

mutated gene is SERPINF 2. This gene encodes a member of the serpin family of serine 

proteases and the proper function of this gene has a major role in regulating the blood clotting 

pathway. Mutations of SERPINF2 are characterized by severe hemorrhage, which was also 

observed in metastasis LM6 in our case. 

Mutated antigens greatly contribute to the immunogenicity of human tumors. A single 

nucleotide variation can potentially lead to the production of various new antigenic peptides 

(neoantigens) that can be recognized by autologous T cells. Additionally, so called neoORF 

antigens can be generated by frameshifting insertions or deletions, which are supposed to be 

completely novel and were also shown to be recognized by autologous T cells 20-22.  
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These neoantigens are highly attractive as immunotherapeutic targets as they are expected to 

overcome central tolerance, and their expression is tumor-specific 23, 24. On the basis of animal 

model data, proof-of-principle for the feasibility to identify T cell reactivity against patient-

specific neoantigens through the exploitation of genome data was obtained 25, 26. It was also 

shown in numerous studies in mouse models that vaccination with predicted neoantigens 

results in increased tumor control 25, 27-29. In subsequent studies in humans it has then been 

demonstrated that tumor sequencing data can also be exploited in a clinical setting, and that 

neoantigens serve as tumor rejection antigens 28, 30-33.  

As no standard treatment for metastatic NETs was established yet, and because NETs are 

known to be highly heterogeneous and unique regarding the genomic landscape, we suggest, 

that a personalized treatment strategy, targeting patient-specific neoantigens, might be an 

appropriate approach.  

The generation of such personalized immunotherapeutics requires time, as several steps like 

sequencing, data analysis, in vitro analysis, and agent production are very time consuming, 

which makes it inapplicable for some patients with end-stage tumors. Due to the slow 

progression rate of most NETs, this problem might not apply for NET patients. We found that 

intratumoral heterogeneity is very limited in our case, which is also favorable for a 

personalized therapy. 

As reconfirmed in this work, NETs acquire a relatively small number of mutations, in our 

case only 15 expressed non-synonymous somatic coding SNVs and 4 indels were detected.  

Epitope prediction on peptides containing these SNVs and on neoORF peptides generated by 

frameshift indels, revealed 28 epitopes that bind with high to intermediate affinity to one of 

the patient‘s HLA allele. We then synthesized these predicted neoantigens together with the 

corresponding wildtype peptides and conducted IFNȖ ELISpot assays using the patient’s 

peripheral blood to asses if there are T cells that are reactive against them. Our results showed 
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preexisting T cell responses against some of the tested peptides. Interestingly, peptides with 

predicted high binding affinities did not show T cell reactivity in our ELISpot analysis. Only 

the RABEP1 mt and wt peptides which are considered strong binders with a binding affinity 

of < 50nM, elicited a T cell response in the ELISpot. The wildtype peptide was predicted to 

bind slightly stronger, and this is also reflected in the ELISpot results, with the wildtype 

peptide having higher spot counts. The fact that the RABEP1 wildtype peptide also triggers T 

cell reactivity makes the RABEP1 mutated neo-epitope not suitable for therapeutic 

vaccination as it might cause auto-reactivity. MAT2A-mt3 is another epitope that showed T 

cell reactivity in the ELISpot. This neo-epitope was predicted to bind weakly with a binding 

score of 270nM, whereas the wildtype counterpart MAT2A-wt3 was predicted to be a non-

binder. The spot numbers in the ELISpot for MAT2A-wt3 were also not high enough to be 

considered significant, however the difference to the spot counts of MAT2A-mt3 is not as 

obvious as the predicted binding affinities. Nevertheless, MAT2A-mt3 can be considered as a 

suitable neo-epitope for therapeutic vaccination. When looking at the neoORF epitopes 

generated through a frameshift-mutation in OBSL1, there are several neo-epitopes with high 

binding affinities. In the ELISpot however, only one neo-epitope, OBSL1-neoORF3 which 

has an intermediate predicted binding affinity of 188nM, showed T cell reactivity. NeoORF 

epitopes are ideal candidates for therapeutic vaccination as there is no wildtype counterpart to 

those epitopes. In our case the OBSL1 gene is additionally overexpressed in the tumor which 

makes the neo-epitopes harbored in this gene even better candidates. 

Using the predicted neoantigens, synthetic vaccines may be produced and administered to the 

patient. Such therapeutic vaccines are supposed to aid in tumor control. ELISpot analysis for 

immunogenicity of the predicted neoantigens revealed two neo-epitopes as suitable candidates 

for therapeutic vaccination, MAT2A-mt3 and OBSL1-neoORF3. Although, there seem to be 

no reactive T cells against the majority of the predicted neoantigens in the patient’s peripheral 
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blood, antitumor immunity could be induced/boosted with therapeutic vaccination. It is 

currently still unknown, whether enhancement of an existing T cell response or generation of 

de novo responses is clinically relevant for an effective tumor vaccine 33. If a therapeutic 

vaccine is going to be administered, immunization with multiple neoantigens is of advantage. 

In doing so, the likelihood of generating an immune response against at least some of the 

neoantigens increases, and the likelihood of the tumor escaping the immune response by 

immunoediting decreases.  Another option for the therapeutic usage of the patient-specific 

neoantigen repertoire is to create neoantigen-specific lymphocyte products in vitro, like for 

example, the adoptive transfer of ex-vivo-activated autologous T cells and natural killer cells. 

The immunohistochemical stainings for CD3, CD20 and NKp46 showed that the lymphocyte 

numbers at the metastatic lesions are generally low. In line with this, staining for the 

modulatory molecules PD-1 and the corresponding ligand PD-L1 showed that these molecules 

are not prominent as well. Tumeh and colleagues have recently shown in melanoma patients, 

that the success of checkpoint blockade therapy against PD-1 depends on existing CD8+ T 

cells that are negatively regulated by PD-1/PD-L1 34. Based on these findings, immune 

checkpoint therapy targeting PD-1 and its ligands seems not to be a suitable therapy option for 

our NET patient.  

Compared to data from colorectal cancer liver metastases 35, 36 the cell densities of effector 

cells are dramatically low. In line with the clinical findings for low-proliferative NETs this 

low infiltrating indicates a low chance of responding to chemotherapy. The ELISpot data 

suggest that there is preexisting T cell reactivity against some neoantigens, showing 

interaction between tumor cells and the immune system, but apparently this interaction is not 

sufficient to allow higher infiltration of effector cells. An alternative explanation is the 

existence of other inhibitory signals that prevent effector T cell influx at the metastatic site. 
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The cytokine landscape of the metastatic sites shows a general absence of classical 

immunological effects within the microenvironment. Comparing the data to findings from 

metastatic colorectal cancer 37 it is clear that there is not much immune activation present in 

this metastatic NET. MIF, VCAM-1 and ICAM-I appear to be elevated due to the presence of 

tumor cells and are most likely observed in this context. It has been shown previously, that 

MIF expression is dramatically increased in hepatic metastases of colorectal cancer patients, 

and there are numerous studies suggesting a direct role of MIF in tumor pathogenesis and 

progression in different tumor entities 38. Furthermore, anti-MIF therapeutics such as 

neutralizing anti-MIF antibodies have been shown to have a significant effect on tumor 

growth in colorectal cancer 38, an option which might also apply to this case of metastatic 

NET. 

Together, our results highlight the broad range and complexity of different levels of tumor-

host immune interactions in a case of metastatic NET of the rectum. Using our integrative 

workflow, we have investigated various immunotherapeutic options and can suggest 

promising approaches for this patient. Given the tremendous success of immunotherapy, such 

an integrative approach incorporating many aspects of the tumor-host immune setting, can be 

a valuable option for complex cases where no standard treatment is available.  
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Materials and Methods 

 

2.1 Patient sample 

A 51-year-old Caucasian male was diagnosed with a rectal tumor in 2010. Pathology 

evaluation revealed a well differentiated neuroendocrine tumor of the rectum. The patient 

underwent surgery in 2010 where the primary tumor and some liver metastases were resected, 

and subsequently most of the liver metastases were removed in 2012. 

Several OCT embedded fresh-frozen samples from a liver metastasis resected in 2010 (LM1) 

were analyzed using whole-genome and RNA-Sequencing (WGS and RNA-Seq). 

Additionally, OCT embedded fresh-frozen samples from five additional, distinct liver 

metastases resected in 2012 (LM2-LM6) were analyzed using WGS and RNA-Seq (Table 1). 

Whole-blood and healthy liver samples were used as germline control sequences. 

Using the patient’s blood, PCR-based HLA typing was performed (Table 2). 

The patient underwent leukapheresis and 10 mL of the leukapheresis product was used for 

ELISpot analysis. 

2.2 Sequence data analysis 

Sequence read pairs from whole-genome sequencing were mapped and aligned to the 1000 

genomes phase 2 reference genome hs37d5 as previously described 39, using Burrows-

Wheeler-Aligner (BWA) (version 0.6.2), and were processed with SAMtools (version 0.1.17) 

and Picard tools (version 1.61). 

Somatic single nucleotide variants (SNVs) were identified in the aligned sequences using an 

in-house analysis pipeline based on SAMtools mpileup and bcftools, as described previously 

39. 



14 

 

Short insertions and deletions were called using an in-house pipeline based on platypus (0.5.2) 

40. Since platypus was developed to detect variants in normal genomes, additional custom 

filters were added to reliably detect somatic indels in tumor normal pairs. These filters 

integrate the genotype likelihood as well as other filter criteria originally generated by 

platypus. All calls were annotated with annovar 41 using the gencode reference (v17). All 

somatic high confidence indels that fall into a coding gene or a splice site were extracted and 

visually inspected. 

RNA sequencing read pairs were mapped to the NCBI human reference genome build 37.2 

using Tophat (version 2.0.4). For tumor samples where both DNA and RNA sequencing data 

were available, candidate DNA variant positions were annotated with RNA information as 

described previously 42. Briefly, a candidate DNA variant was called expressed if one high-

quality RNA read containing the same variant was present. RNA-Seq data was also used to 

assess gene expression levels in means of the reads per kilobase per million reads (RPKM) 

measure.  

 

2.3 Epitope Prediction 

We used computational methods to predict the immunogenicity of non-synonymous tumor-

specific mutations which were detected in the sequencing data. More precisely, HLA class I 

binding prediction was performed on amino acid peptides containing the non-synonymous 

mutations, and on peptides containing the corresponding reference residue. As T-cell 

recognition of peptides is crucially dependent on the ability of the HLA molecule to 

effectively bind the peptide, comparison of predicted binding affinities of the mutated and 

reference peptides can be used to assess the immunogenicity of the mutation and to detect 

neo-epitopes.  
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For peptide-HLA binding affinity prediction, we chose the NetMHCcons method which was 

developed at the Technical University of Denmark 43. NetMHCcons is a consensus method 

for MHC class I predictions, integrating the three state-of-the-art methods NetMHC, 

NetMHCpan and PickPocket 44-46. Depending on how much training data is available for the 

HLA allele of interest, one of the three methods or a combination of them is used to give the 

most accurate prediction.  

For each non-synonymous mutation, peptides of length 8-11 that contain the mutated residue 

were extracted from the corresponding protein sequence, and stored in Fasta files to be used 

as input files for the prediction algorithm. All possible combinations of peptide length and 

mutation position were considered. Analogously, Fasta files containing the reference peptides 

were generated. Novel tumor-specific peptides which were generated by frameshift insertions 

or deletions were also analyzed with NetMHCcons. These so called neoORF antigens are 

supposed to be highly immunogenic, as they provide longer, completely novel stretches of 

tumor-specific antigens. 

Both, the mutated and reference sequences were submitted to the NetMHCcons 1.0 Server for 

each HLA allele of the patient, in order to perform allele-specific HLA class I binding 

predictions. The results of the prediction are IC50 values given in nanomolar (nM) affinity 

values. Peptides with less than 50 nM are considered as strong-binding, and those with less 

than 500 nM as weak-binding. Peptides with more than 500 nM are considered as non-

binders. 

2.4 ELISPOT 

  

Cell preparation 
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10 mL of leukapheresis product was freshly used for the analysis. Ficoll density gradient 

centrifugation was performed using 50 mL Leucosep tubes (Greiner Bio-One, Kremsmünster, 

Austria) to isolate PBMC.The median PBMC obtained was 1 × 108. Thereof, T cells and 

dendritic cells (DCs) were purified as described previously47, 48. Briefly, T cells were cultured 

for 7 days in X-VIVO 20 medium containing  100 U/mL human rIL-2 (Proleukin, Chiron, 

Ratingen, Germany), and 60 U/mL human rIL-4 (Promokine, PromoCell, Heidelberg). 

Afterward, cells were kept in cytokine-free medium for 12 h and human CD3 T cells were 

purified using the Dynabeads untouched human T cell kit (Invitrogen, Darmstadt, Germany). 

For DC maturation, adherent cells were cultured for 7 days in X-VIVO 20 medium containing 

560 U/ml human rGM-CSF (Leukine, Berlex, Bayer, Leverkusen, Germany), and 500 U/mL 

human rIL-4. DCs were enriched using anti-CD56 coupled magnetic beads (C218, Beckman 

Coulter, Krefeld, Germany), and anti-CD3– and anti-CD19– Dynabeads (Invitrogen, 

Darmstadt, Germany), and pulsed for 18 h with 0.8 µg/µL test peptides or IgG. As positive 

control, 0.1 µg/µL staphylococcal enterotoxin B (SEB) was used. 

Peptides 

Peptides were produced by the Peptide Synthesis Facility of the DKFZ. Lyophilized synthetic 

peptides were solved in distilled water containing 10 % DMSO. Peptide purity was >98 %. 

Peptides were designed to contain the identified immunogenic HLA restricted T cell epitope. 

Synthesized human IgG peptides as well as IgG (Kiovig, Baxalta, Unterschleißheim, 

Germany) were used as negative control antigens. 

 

IFNȖ ELISpot assay 

ELISpot assays were done as described previously 47, 48 with modifications. The assay was 

carried out in X-VIVO 20 medium, which has been pretested for ELISpot performance in 
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comparative testing with other media. On day 1, ELISpot plates (MAHA S45, Millipore, 

Eschborn, Germany) were washed with PBS and coated with 1ȝL per well of anti- IFNȖ 

antibody. The plate was stored overnight at 4°C. 

Peptide-pulsed DCs (2 × 104) were incubated with autologous T cells (1 × 105) at a 1:5 ratio 

for 40 h in ELISpot plates. All tests were performed in triplicate wells. Internal established 

operating procedures of an exploratory research laboratory were used for ELISpot testing. 

 IFNȖ spots were measured using the automated system CTL ImmunoSpot analyzer 

(CTLEurope, Bonn, Germany). Each well was subjected to a manual quality control and was 

reviews by an independent scientist. Counting parameters were established using the IgG 

control wells obtaining a high signal-to-noise ratio. Spots induced by the control peptide 

(human IgG) were considered as background reactivity. A reaction against a test peptide was 

considered a positive response according to predefined criteria if the spot counts were 

significantly (p < 0.05) higher than the IgG counts according to a permutation test using the 

difference in means as the test statistic. Raw data is accessible upon request. 

 

 

2.5 Immunohistochemistry and Cytokine Detection 

Multiple FFPE blocks of metastatic tissue were immunohistochemically analyzed for their 

infiltration with T cells (CD3e), B cells (CD20) and NK cells (NKp46), and evaluated as 

previously described 37. HLA class I expression was also evaluated by immunohistochemical 

staining. 

Tissue lysates were prepared from frozen material and were used for cytokine detection, as 

previously described 37. 
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Figure 1 
Mutational landscape of all analyzed liver metastases.  Whole-Genome-Sequencing and Whole-
Transcriptome-Sequencing was performed on six different liver metastases as well as on healthy liver 
tissue and whole-blood of the same patient. Single nucleotide variations (SNVs) as well as indels 
(short insertions or deletions) were detected in each of the sequences. A grey cell indicates a somatic 
mutation in the corresponding gene and metastasis, an asterisk indicates an indel. 
  
Figure 2 
Overview of IFN-Ȗ ELISpot data for all tested neo-epitopes and controls with patient-derived 
cells.  Peripheral blood dendritic cells (DCs) were pulsed with mutated and corresponding wildtype 
peptides as well as negative control antigen (human IgG), and incubated with autologous T cells. 
ELISpot assays were performed in triplicates. 
(A) Triplicate wells from IFN-Ȗ ELISpot analysis of all tested peptides. 
(B) Summary of ELISpot data showing mean spot number + SD for each tested peptide.  
An asterisk indicates significantly higher spot numbers in test wells compared with spot numbers of 
negative control antigen.  
 
Figure 3 
Cytokine Profile. Cytokines concentrations were measured in tissue lysates of a liver metastasis. 
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Table 1 Overview of analyzed samples 

 

 

 

 

 

 

 

 

Table 2 HLA genotype of the patient 

HLA Allele 1 Allele 2 

HLA-A *03:02 *33:01 

HLA-B *14:02 *55:01 

HLA-C *03:03 *08:02 

 

 

 

 

 

 

 

 

 

 

 

Sample 
Year of 
surgery 

Information 
Detected 
mutations 

LM1 2010 NA 14 

LM2 2012 
piece of tumor from a 2cm lesion 

from posterior segment 2, left lobe 
13 

LM3 2012 
piece of tumor from a 2cm lesion 

from the left lobe of the liver, 
segment 4 

14 

LM4 2012 
piece of tumor from a 3cm lesion 

from the right lobe of the liver, 
segment 4 

13 

LM5 2012 
piece of tumor from a 1cm lesion 
from the right lobe of the liver (i.e. 

close to the edge of the liver). 
15 

LM6 2012 

piece of tumor from the 8cm major 
lesion from the right lobe of the liver 
(i.e. close to the middle of the liver)  

note:  this lesion was largely 
hemorrhagic 

14 
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Table 3 Overview of detected mutations 

 

 

 

 

 

 

 

Gene Chr Pos Ref Alt classification 

#of 
affected 
samples Affected Samples 

Epitopes 
Predicted 

SLC11A2 12 51382161 T C 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 1 

HSPG2 1 22150143 G T 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 1 

CCSER1 4 92519846 A G 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 0 

BAZ2A 12 57003963 C G 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 0 

DET1 15 89074654 C A 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 0 

SERPINF2 17 1655979 G A 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 4 

RABEP1 17 5264636 G T 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 1 

SMARCA1 X 128599617 C G 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 2 

MAT2A 2 85770808 G T 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 3 

ADAM9 8 38880677 G A 
nonsynonymous 
SNV 6 LM1;LM2;LM3;LM4;LM5;LM6 5 

OBSL1 2 220416342 GC G frameshift deletion 6 LM1;LM2;LM3;LM4;LM5;LM6 9 

PRKDC 8 48701554 G GT frameshift insertion 5 LM1;LM2;LM3;LM4;LM6 0 

ENDOG 9 131581121 C T 
nonsynonymous 
SNV 5 LM1;LM3;LM4;LM5;LM6 5 

POLR1B 2 113333084 A AGATCG frameshift insertion 2 LM1;LM6 NA 

SPAG6 10 22705558 C T 
nonsynonymous 
SNV 1 LM2 NA 

CDKN1C 11 2905268 G A 
nonsynonymous 
SNV 1 LM3 NA 

SF3B3 16 70582330 C T 
nonsynonymous 
SNV 1 LM5 NA 

ZC3H18 16 88690471 G A splicing 1 LM5 NA 

RIMBP2 12 130926721 GC G frameshift deletion 1 LM5 NA 
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Table 4 Overview of predicted neo-epitopes 

 Mutated Wildtype   

 
Gene: 

Mutation Peptide ID 
Affinity 

(mt) Peptide ID 
Affinitiy 

(wt) HLA 
Gene expression 

fold change 

 
ADAM9: 
M249I 

ADAM9-mt1 
37.92 

ADAM9-wt1 
33630.31 A33 

2.21 

ADAM9-mt2 
16.3 

ADAM9-wt2 
14.56 C08 

ADAM9-mt3 461.65 ADAM9-wt3 13.56 C03 

12.61 13.56 C08 

ADAM9-mt4 
37.81 

ADAM9-wt4 
37.61 C08 

ENDOG: 
P53L 

ENDOG-mt1 
311.03 

ENDOG-wt1 
25109.54 C03 

-0.16 

ENDOG-mt2 
479.1 

ENDOG-wt2 
663.31 C08 

ENDOG-mt3 
377.91 

ENDOG-wt3 
28319.21 A33 

ENDOG-mt4 
179.12 

ENDOG-wt4 
19563.17 C03 

HSPG2: 
N4323K 

HSPG2-mt 
443.88 

HSPG2-wt 
36429.09 A03 -0,1 

MAT2A 
K367N 

MAT2A-mt1 
261.59 

MAT2A-wt1 
39619.11 A33 

1.44 

MAT2A-mt2 
18.67 

MAT2A-wt2 
44256.9 A33 

MAT2A-mt3 
270.22 

MAT2A-wt3 
47740.48 A33 

RABEP1: 
S410I 

RAPEP1-mt 
49.63 

RAPEP1-wt 
47.75 C08 0.59 

SERPINF2: 
D204N 

SERPINF2-mt1 279.13 SERPINF2-wt1 533.92 C03 

-2.48 

338.95 533.92 C08 

SERPINF2-mt2 
412.08 

SERPINF2-wt2 
843.61 C03 
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