
AUTOMATIC PLAYLIST SEQUENCING AND TRANSITIONS

Rachel M. Bittner, Minwei Gu, Gandalf Hernandez, Eric J. Humphrey,
Tristan Jehan, P. Hunter McCurry, Nicola Montecchio

Spotify Inc., USA

ABSTRACT

Professional music curators and DJs artfully arrange and
mix recordings together to create engaging, seamless, and
cohesive listening experiences, a craft enjoyed by audi-
ences around the world. The average listener, however,
lacks both the time and the skill necessary to create compa-
rable experiences, despite access to same source material.
As a result, user-generated listening sessions often lack the
sophistication popularized by modern artists, e.g. tracks
are played in their entirety with little or no thought given to
their ordering. To these ends, this paper presents methods
for automatically sequencing existing playlists and adding
DJ-style crossfade transitions between tracks: the former
is modeled as a graph traversal problem, and the latter as
an optimization problem. Our approach is motivated by
an analysis of listener data on a large music catalog, and
subjectively evaluated by professional curators.

1. INTRODUCTION

DJs are modern artists that carefully select, sort, and com-
bine recordings in order to enhance the music listening ex-
perience over simpler forms, such as albums or playlists.
They traditionally create mixes or sets that flow seamlessly
from one song to the next by sequencing styles, matching
keys and tempos, and smoothly transitioning between mu-
sical ideas. Importantly, the ordering of tracks or samples
and the quality of the transitions between them are funda-
mentally linked: it can be very difficult to create an enjoy-
able transition between songs that significantly differs in
style, tempo, or key. Transitioning between a slow, smooth
jazz piece and a high energy, fast electronic track, for ex-
ample, will likely feel awkward or unnatural and create an
abrupt change in the listening experience.

Though listening to DJ mixes is not a new phenomenon,
modern music streaming services indicate that there is sig-
nificant appetite among users for curating their own sets,
having produced over 2 billion playlists in the last decade
on Spotify alone. 1 To develop a vague sense of how many

1 https://press.spotify.com/us/about/

c© Rachel M. Bittner, Minwei Gu, Gandalf Hernandez, Eric
J. Humphrey,. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Rachel M. Bittner, Min-
wei Gu, Gandalf Hernandez, Eric J. Humphrey,. “Automatic Playlist Se-
quencing and Transitions”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.

users might be aspiring “DJs” in the home or car, we find
that roughly 1% of the public playlists available through
Spotify’s Web API contain “party” in the title. 2 Even
through coarse extrapolation, this suggests that some 20M
playlists are candidates for DJ-style production.

Therefore, given that so many users are actively exer-
cising their curatorial skills, the steady advance of machine
listening technology offers promise that the more technical
challenges of creating a DJ mix could be achieved compu-
tationally. In this paper we focus specifically on the two
hurdles faced in creating a DJ set from a given playlist:
compute an optimal sequencing, and create song-to-song
transitions between sequenced tracks. One of the chal-
lenges of building a model for these two tasks is defining
how to evaluate performance. Because quality of a song
sequence and of a song-to-song transition is highly subjec-
tive, we rely on user studies to evaluate the performance of
our systems.

2. RELATED WORK

Several commercial products (e.g., Serato DJ 3 and Na-
tive Instruments’ Traktor line 4 ) are designed to assist DJs
with digital mixing on a laptop. These are mainly tools
for enthusiasts and professionals who already have experi-
ence in mixing, and as such these tools tend to replicate
with software their original analog counterparts. Auto-
matic audio analysis techniques are sometimes exploited
to let the user sort playlists by tempo and key, however
by design it is up to the DJ to make a final selection and
decide on where to transition: the software’s role is to as-
sist with time-stretching and facilitating the execution of
beat-aligned transitions. This paper is concerned with the
automation of the entire experience, demanding less in-
volvement by the users; examples of commercial software
in this category include Algoriddim DJay 5 , Pacemaker 6 ,
and Serato Pyro 7 .

Sequential ordering is the primary concern of [6], that
uses an audio similarity metric built on Gaussian models
of MFCCs. However, the approach does not constrain the
problem to a pre-selected set of songs and instead gener-
ates playlists from a large pool. In analyzing the order-

2 https://developer.spotify.com/web-api/
playlist-endpoints/

3 https://serato.com/dj
4 https://www.native-instruments.com/en/

products/traktor
5 https://www.algoriddim.com/
6 https://pacemaker.net/
7 https://seratopyro.com/

442



ing of songs in professionally-made DJ sets, [11] presents
evidence that timbral factors play an important role in se-
quencing. In [3], consideration is given to “tempo trajec-
tories” over time as a way of modeling human DJs’ ability
to structure the rise and fall of energy levels in the music
as the sequence of songs progresses. Ishizaki, et al. [9] fo-
cus on making smooth tempo adjustments to songs with
the goal of minimizing abrupt changes that could cause
listener discomfort. In choosing optimal mixing regions
between two songs, [8] employs section similarity met-
rics derived from chroma information, along with beat and
tempo features. Similarly, [7] proposes a model for mea-
suring the perceptual consonance for different transition
regions given two tracks. In [15], a more complete DJ
simulation method is proposed, which performs song se-
lection, ordering and cross-fading for electronic music. A
closely related problem is the automatic creation of mu-
sical “mash-ups”, for which a number of algorithms have
recently been proposed [5, 12].

3. SEQUENCING

Given a playlist, the goal of a sequencing algorithm is to
order the tracks it contains in a way as to make the music
“flow smoothly” from each song to the next. Cunningham
et al. performed an in-depth study of how individual users
sequence tracks, and concluded that the task is “more of an
art than a science” [4]. Thus, the notion of flow and its at-
tainment is ultimately an aesthetic phenomenon; a DJ may
want the tempo to stay relatively constant or neighboring
songs to be acoustically similar as a function of creative
intent, as illustrated in Figure 1. If songs are to be cross-
faded, proper sequencing can ensure that consecutive pairs
of songs have similar keys and tempos, allowing for less
abrupt transitions. Understandably, the scope of this work
entails a more calculated approach than that of an expert
DJ, and we identify artist-quality sequencing as a broader
aim of this research area. It is important to note that this
problem is related to, but different from the task of gener-
ating playlists, for example as in [2] – in this task we are
given a list of tracks and the task is to reorder them, rather
than to find a list of coherent tracks from a large corpus.

Examples of playlists sequenced using the proposed ap-
proach can be found online. 8 9

3.1 Method

The problem of sequencing tracks lends itself well to be
formulated in a graph theory setting. The central step con-
sists in mapping acoustic features into a Euclidean space so
that songs that are fit to be sequenced next to each other are
also close together in the feature space. Finding a good se-
quencing involves finding the shortest non-repeating path
between all the songs.

8 https://open.spotify.com/user/rabitt3/
playlist/6a4lxKlqWZwKQgV3VhRMjX

9 https://open.spotify.com/user/rabitt3/
playlist/0Cl1BNwnWxmLkfUn8YQZVS

Original Playlist

Title Artist Tempo

All Star Smash Mouth 104

...Baby One 
More Time

Britney Spears 92

Bills, Bills, Bills Destiny’s Child 127

Every Morning Sugar Ray 109

Genie In A 
Bottle

Christina 
Aguilera

175

I Want It That 
Way

Backstreet 
Boys

99

Livin’ la Vida 
Loca

Ricky Martin 178

Miami Will Smith 108

No Scrubs TLC 92

Smooth Santana, Rob 
Thomas

115

Sequenced by Timbre

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

I Want It That 
Way

Backstreet 
Boys

99

Genie In A 
Bottle

Christina 
Aguilera

175

No Scrubs TLC 92

Bills, Bills, Bills Destiny’s Child 127

Miami Will Smith 108

All Star Smash Mouth 104

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Livin’ la Vida 
Loca

Ricky Martin 178

Sequenced by Tempo & Timbre

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

I Want It That 
Way

Backstreet 
Boys

99

All Star Smash Mouth 104

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Livin’ la Vida 
Loca

Ricky Martin 178

Genie In A 
Bottle

Christina 
Aguilera

175

Bills, Bills, Bills Destiny’s Child 127

No Scrubs TLC 92

Miami Will Smith 108

Sequenced by Tempo

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

No Scrubs TLC 92

I Want It That 
Way

Backstreet 
Boys

99

All Star Smash Mouth 104

Miami Will Smith 108

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Bills, Bills, Bills Destiny’s Child 127

Genie In A 
Bottle

Christina 
Aguilera

175

Livin’ la Vida 
Loca

Ricky Martin 178

Title Artist Tempo Key

All Star Smash Mouth 104 F# major

...Baby One 
More Time

Britney Spears 92 C minor

Bills, Bills, Bills Destiny’s Child 127 B minor

Every Morning Sugar Ray 109 Ab major

Genie In A 
Bottle

Christina 
Aguilera

175 F minor

I Want It That 
Way

Backstreet 
Boys

99 F# minor

Livin’ la Vida 
Loca

Ricky Martin 178 C# minor

Miami Will Smith 108 Bb minor

No Scrubs TLC 92 Ab minor

Smooth Santana, Rob 
Thomas

115 A minor

Figure 1: Example playlist sequencing by tempo and tim-
bre.

3.1.1 Constructing the Feature Space

Several acoustic aspects of a song are exposed so that they
can be combined differently:

• acoustic vectors are created by first using a con-
volutional neural network [16] trained to repro-
duce collaborative-filtering vectors in (R2048). The
acoustic vectors are low dimensional embeddings
(R2048 ⇒ R8) of the output of the convolutional
neural network, where the embedding was trained
to minimize the Euclidean distance between artists.
These features mostly capture the timbral character
of a song.

• key and mode information from the Echonest ana-
lyzer is mapped into points in R3 so that adjacent
keys in the circle of fifths and relative major/minor
keys are equidistant, as pictured in Figure 2: Left.

• tempo (originally in beats per minute estimated from
the Echonest analyzer) is represented in a base-2
logarithmic scale. In certain applications it is de-
sirable to preserve tempo-octave invariance: in that
case tempo is represented as a unit vector whose po-
lar angle is mapped into a tempo octave, as in Fig-
ure 2: Right.

34, 68, 136 bpm
44, 88, 176 bpm

C
G

D

A

E

BF#
C#

Ab

Eb

Bb
F

Cm

Fm

Bbm Ebm G#m
C#m

F#m

Bm

Em
AmDm

Gm

h

h

1

Figure 2: Left: key/mode mapping to Euclidean space.
Right: octave-invariant tempo mapping to Euclidean
space.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 443



A feature vector is finally constructed by concatenating
the above individual feature vectors, each feature is option-
ally weighted according to the application (e.g., in dance
playlist, tempo coherence is important, thus tempo would
have a large weight).

3.1.2 Solution as a Graph Problem

Let us consider the complete symmetric graph in which
each song is associated to a vertex, and edges are weighted
by the Euclidean distance between the corresponding
songs’ features.

A Hamiltonian Path is a path that visits each vertex
in a graph exactly once. The optimal sequencing of a
playlist corresponds to the Shortest Hamiltonian Path in
the (complete) graph, a problem which is unfortunately
NP-Complete (the total cost of an ordering is the sum of all
the weights of the edges in the path). Several approxima-
tion strategies, shown below, have been considered; their
computational cost is dominated by the construction of the
weight matrix, quadratic in the length of the playlist.

A straightforward greedy approximation (which we de-
note by HAM-1) consists of iteratively selecting the closest
non-visited vertex, starting from a given seed vertex. An
improvement (HAM-2) can be made by selecting the clos-
est non-visited vertex from either the tail or the head of the
partial sequencing.

Empirically, both methods give satisfying results; the
total cost of a HAM-2 sequencing is virtually always lower
(better) than its HAM-1 counterpart, although the seed
track does not end up as the head of the sequencing any-
more (which could be itself a desirable feature). An un-
desirable artifact is the presence of poor track pairings at
the tail of the sequencing for HAM-1 and at both ends for
HAM-2, due to the greedy nature of the algorithm.

A different solution is given by the Shortest Hamil-
tonian Cycle, an NP-complete problem (also known as
the Traveling Salesman Problem) which however admits
a polynomial 2-approximation [13]. The cost is usually
higher than either of the greedy Hamiltonian Path solu-
tions, but the resulting playlist will have smooth transi-
tions, even when repeated in a loop, and is free from the
head and tail artifacts described above.

3.2 Evaluation

To measure the effectiveness of the sequencing algorithm,
we ran a pilot study in which professional curators blindly
compared six sequenced vs. randomly sequenced playlists.
Each of the six playlists contained 30 “Discover Weekly”
playlists. The sequenced version of the playlist was created
using HAM-2 with acoustic vectors as features. For each
of the six playlist pairs, the curators were instructed to (1)
choose which playlist was sequenced better, and (2) list the
pairs of tracks in each playlist that were deemed “abrupt”
when played sequentially.

In the first task, for playlists 1, 2, and 5 the curators
unanimously chose the sequenced playlist over the random
playlist. For playlists 3 and 4, the curators were evenly

split showing no preference, and for playlist 6, half pre-
ferred the sequenced, and half had either no preference or
preferred the random playlist. Table 1 shows the average
number of “abrupt” pairs of tracks across curators for each
playlist. As expected there were more abrupt pairs in the
random versions than in the sequenced versions. This is
particularly drastic for playlist 5, probably due to the wider
range of genres.

Playlist Genres Random Sequenced

1
Folk Pop,
Country 2.8 (1.8) 1.2 (1.3)

2
Underground Hip-Hop,

Funk 3.8 (4.3) 1.2 (1.3)

3
Abstract Hip-Hop,

Indietronica 2.7 (2.0) 3.3 (2.2)

4
Indietronica,
Indie Rock 2.8 (1.9) 2.8 (3.7)

5
Jazz, Classical,

House 9.3 (1.5) 2.7 (1.2)

6
Folk Metal,
Death Metal 4.00 (3.6) 3.50 (2.3)

Average 4.2 (2.5) 2.4 (1.0)

Table 1: Average number of song pairs (out of a total of
29 pairs) marked as “abrupt” across curators. The standard
deviation is indicated in parentheses.

4. TRANSITIONS

Various streaming services provide, as a toggleable fea-
ture, a simple fixed-length crossfading between tracks; this
however does not take content into account. About 95% of
the users of Spotify forgo the option, and use standard end-
to-end playback. To motivate the inclusion of transitions in
a playlist, an A-B test was run on 10% of users of Spotify,
where DJ-curated transitions were added to several popu-
lar playlists for the test group. The results showed that the
percentage of people who returned to the playlists per day
was 1.4 percentage points higher for the test group than
control, suggesting that the listeners enjoyed the playlists
with DJ curated transitions more and were thus more likely
to listen again.

The goal of the algorithm we present is to create inter-
esting DJ-like transitions between pairs of songs, which
could be offered as an enhanced alternative to the existing
crossfade. This involves choosing where in each track the
transition will occur given a fixed transition length (in units
of number of beats).

4.1 Method

Given a pair of tracks and a target transition length, our
method selects transition start and end points in both songs,
and uses this information to render the transition. Transi-
tion locations are restricted to downbeats, and are heavily
weighted to occur on section boundaries, such as at the
intersaection of a verse and a chorus. Additionally, we as-
sume that regions of tracks that have similar timbre and
pitch distributions will yield the smoothest transition. In
this work, we only consider music in quadruple meter.

444 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



A symmetric crossfade, depicted in Figure 3, is ar-
guably the most basic kind of transition: t

(A)
1 and t

(B)
1

denote the fade out start and end points in track 1, and
t
(A)
2 and t

(B)
2 denote the fade in start and end points in

track 2; the duration of the transition region, the interval
[t
(A)
i , t

(B)
i ], for track 1 and 2 need not be equal.

Figure 3: Sample crossfade transition. t(A)
1 and t

(B)
1 mark

the start and end points of the fade out for track 1. Sim-
ilarly, t(A)

2 and t
(B)
2 mark the start and end points of the

fade in for track 2.

4.1.1 Features

Unless otherwise stated, each of the following features are
computed for each track using the Echo Nest Analyzer,
which is largely based on [10]. Let b be a list of es-
timated beat positions in seconds. Given the beat posi-
tions of each track, we compute several different types of
event locations, each on the same time grid as the estimated
beats. Let M be the set of indices of b which are down-
beats. Similarly, let S be the set of indices of b which
are section boundaries, and D be indices which are “drop”
points. Section boundaries are computed using the method
described in [14], and the “drop” point estimation is de-
scribed in Section 4.1.2.

When choosing transition points, not all beats are cre-
ated equal: the best transition points occur at strong struc-
tural boundaries. Each type of event location has a dif-
ferent level of structural significance in the track. The
strongest structural boundaries, if they exist, are at the drop
points. The next strongest points are section boundaries,
followed by downbeats. Ideally, all drop points are section
boundaries, and all section boundaries are downbeats, but
this may not be the case.

In addition to these event locations, we compute several
beat-synchronous features. Let N be the number of beats.
Timbre features T are a (12 x N ) matrix describing the
spectral shape of each beat, and the chroma features C are
a (12 x N ) matrix giving the pitch class distribution for
each beat. Loudness features ` and “vocalness” features v
give the loudness and probability of vocals for each beat,
and are each size (1 x N ). Intuitively, transition regions
with low loudness can often sound awkward and abrupt,
and when vocals are present we risk overlapping vocals
with the other track, or cutting over mid-sentence.

4.1.2 Drop Point Estimation

The goal in drop point estimation is to find the points in a
track where the “drop” happens. The term “drop” is typ-
ically used in the context of specific types of electronic
dance music, and refers to the point(s) in time where a
drastic change in the song occurs following a large build.
In our context, we are looking for points in a song where
an exceptionally interesting event occurs. Rather than take
a content-based solution similar to [17], we use a crowd-
sourced approach following from the work described in
P. Lamere’s blog 10 . Lamere computes the points where
users moved (scrubbed) the playhead while listening to a
track. Typically users tend to move the playhead towards
the most interesting points in the track. Figure 4 (top)
shows an example of the aggregated playhead scrubbing
data (blue) for Skrillex: “First of the Year”. The large
peak occurring around 66 seconds accurately marks the
first big drop, and the second smaller peak around 145 sec-
onds marks the second big drop.

To identify these peak locations, we use a standard peak
picking approach from the onset detection literature [1]:
an adaptive threshold (shown in green) is computing us-
ing a median filter, then a detection function subtracts the
adaptive threshold from the normalized scrub ratio and se-
lects its peaks, as shown in Figure 4 (bottom). Choosing
the closest downbeat that occurs before each resulting peak
gives us our final drop index D. Note that in Figure 4 there
is a small peak near the start of the track which is not a
significant musical point. We correct for this by removing
peaks that occur within the first 15 seconds of the track.

Figure 4: Drop point estimation intermediate steps for
Skrillex: “First of the Year (Equinox)”. Top: Normal-
ized scrub ratio and adaptive threshold. Bottom: Detec-
tion function and detected drop points. The first peak in
the detection function is not a drop point because it occurs
within the first 15 seconds of the track.

10 http://musicmachinery.com/2015/06/16/
the-drop-machine/

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 445



4.1.3 Selecting Transition Points

The procedure for selecting transition points between track
1 (T1) and track 2 (T2) of length n beats is outlined in
Algorithm 1. The functions beats and features are
described in Section 4.1.1.

Let t1 and t2 be the set of transition point candidates
from which t

(A)
1 and t

(A)
2 will be selected. Since we are

given a transition duration (in units of number of beats),
t
(B)
1 and t

(B)
2 can be determined from the values of t(A)

1

and t
(A)
2 . Initially, we set t1 = M1 and t2 = M2.

We prune these sets to ensure that the transition points
happen in reasonable portions of the track, removing ob-
vious “bad” regions. The pruning is performed using the
following rules:

• t
(B)
1 occurs before the fade out, t(A)

2 is after the fade in

• t
(B)
1 occurs within the last 25% of the track, t(A)

2 occurs
within the first 20% of the track.

After pruning, the remaining points in t1 and t2 are con-
sidered valid candidates. These pruned sets are the output
of the candidates function.

For each pair of points in t1 and t2, we compute pair-
wise comparisons along a series of different features over
the entire overlapping region. For a transition of length
n beats, the overlapping region begins at beats i and j,
and ends at beats i + n and j + n. In Algorithm 1 be-
ginning at line 9, we use the notation T1[i : in] to denote
features within the region beginning at beat i and ending at
beat in. Let Λ be the combined transition point cost ma-
trix, where one axis represents the beat indices of track 1
and the second of track 2. Let Λx be the transition cost
matrix for a particular feature comparison x. For timbre
and chroma features, we compute ΛT and ΛC as the Eu-
clidean distance between the features directly (Algorithm 1
lines 9, 10). Λ` (line 11) is computed as the sum of the av-
erage inverse loudness for each track, giving regions that
are loud in both tracks a low transition cost. Similarly, Λv

is the sum of the average “vocalness” probability, to assign
transitions that both have vocals a high cost. Finally, we
penalize transitions that do not end on a drop or a second
boundary in both tracks (lines 13, 14), with a score of 2 if
neither track’s region ends on a boundary, and a score of 1
if only one track’s region ends on a boundary.

Each feature’s individual cost matrix Λx is standardized
so that the minimum cost is 0 and the maximum cost is 1.
The final cost matrix Λ is computed as a weighted sum of
each feature’s cost matrix after standardization. An exam-
ple of each of feature’s standardized matrix is shown in
Figure 5, and the weighed combination is shown in Fig-
ure 6. The final transition points t(A)

1 and t
(B)
2 are chosen

as the times corresponding to the minimum cost entry in
Λ.

4.2 Rendering Transitions

Transitions are rendered such that the beats in the two
tracks occur at the same time. In virtually every case, the

Algorithm 1 Picking Transition Points

1: procedure TRANSITION-POINTS(T1, T2, n)
2: b1 ← beats(T1), b2 ← beats(T2)
3: T1, C1, `1, v1,M1, D1, S1 ← features(T1,b1)
4: T2, C2, `2, v2,M2, D2, S2 ← features(T2,b2)
5: t1 ← candidates(T1,M1, S1, D1, `1)
6: t2 ← candidates(T2,M2, S2, D2, `2)
7: for i ∈ t1, j ∈ t2 do
8: in ← i + n jn ← j + n
9: ΛT [i, j]← norm(T1[i : in]− S2[j : jn])

10: ΛC [i, j]← norm(C1[i : in]− C2[j : jn])
11: Λ`[i, j]← avg (2− (`1[i : in] + `2[j : jn]))
12: Λv[i, j]← avg(v1[i : in]) + avg(v2[j : jn])
13: ΛD[i, j]← 1in /∈D1

+ 1jn /∈D2

14: ΛS [i, j]← 1in /∈S1
+ 1jn /∈S2

15: end for
16: Λ← [ΛT ,ΛC ,Λ`,Λv,ΛD,ΛS ]
17: for k ∈ Λ do
18: k ← standardize(k)
19: end for
20: Λ← weightedAvg(ΛT ,ΛC ,Λ`,Λv,ΛD,ΛS)
21: i∗, j∗ ← argmin(Λ)

22: t
(A)
1 , t

(A)
2 ← b1[i∗],b2[j∗]

23: return t
(A)
1 , t

(A)
2

24: end procedure

tempos are not perfectly in sync, each beat is timestretched
such that the tempo slowly changes from the tempo of track
1 to the tempo of track 2. For an N beat transition, if the
nth beat in track 1 has duration d1 and the beat in track 2
has duration d2, the total duration of the new nth beat is
dout = N−n

N d1 + n
N d2. To achieve this, the nth beat in

track 1 is time stretched by a factor of d1/dout, and the nth

beat in track 2 by d2/dout.

4.3 Evaluation

A selection of rendered transitions were evaluated by sub-
jective human review. We randomly picked 48 pairs of
tracks from a selection of popular music across multiple
dance genres, using tempo constraints when picking the
tracks to make sure the tempo difference between pairs was
no more than 5 bpm.

For each of the pairs, we asked four professional cura-
tors to listen to the transition all the way through at least
once and rate the quality. For subjective measurement, the
overall quality is described as Good (3), OK (2) and Bad
(1). Additionally, curators were asked to describe any po-
tential problems they noticed within the transitions, such as
“beats do not align” or “key clash”. The results are shown
in Tables 2 and 3, respectively.

A fairly large number (15%) of transitions were marked
as “Bad” because the “beats do not align”. Since we con-
strain transitions to align along estimated beats, we con-
clude that the “beats do not align” transitions occur as a re-
sult of errors in the beat estimation algorithm. Transitions
labeled as “transitioning mid-vocals” are also likely a re-
sult of errors in our vocal activity detection algorithm. In

446 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



Figure 5: Transition matrices for each feature for a pair of songs. The x-axis show beat indices in Track 1, and the y-axis
for Track 2. Many index pairs have no score because they are not part of the set of candidates. Dark blue points indicate
good transition pairs for the feautre, while red indicates a poor pair. In this example, no drops were detected, so ΛD is a
uniform matrix.

Figure 6: Weighted combination Λ of the individual fea-
ture matrices in Figure 5.The x-axis show beat indices in
Track 1, and the y-axis for Track 2. The point with the
lowest cost is circled in green.

Rating Percentage
3 - Good 64.13%
2 - OK 28.26%
1 - Bad 7.61%

Average (Std) Rating 2.56 (0.38)

Table 2: Average percentage of quality rating for all track
pairs and average rating of song pairs in rendered transition
test set. The standard deviation is indicated in parentheses.

Reason Percentage
Beats do not align 15.22%
Not on downbeat 2.17%

Key clash 0%
Awkward transition points 2.17%

Transitions mid-vocals 6.52%
Contrasting Songs 4.34%

Table 3: Average percentage of song pairs marked as the
stated reason for bad quality transitions by curators.

both of these cases, as beat tracking and vocal activity de-
tection algorithms improve, these transition quality issues
should be mitigated. An interesting finding is that “key
clash” is not marked as problematic by any of the curators
for a single transition in either transition types.

5. CONCLUSIONS

This paper has presented systems for automatically se-
quencing and generating DJ-style transitions for a playlist
of songs. Both systems were evaluated with the help of
professional curators. Beat and downbeat tracking errors
were found to be the primary bottleneck in the subjective
performance of automated transitions.

A possible alternative approach for tackling the se-
quencing and transitioning problems entails the usage of
Machine Learning approaches. Given a large number of
(carefully curated) playlists and transition points between
them, one might attempt to directly learn the mapping of
low-level audio representation of recordings into their op-
timal sequencing and transitions. Such an methodology
is certainly fascinating, and represents in fact a future re-
search direction. However, the experiments above prove
how just a few interpretable features are suitable for this
problem to a remarkable extent. We chose then to inves-
tigate an approach that is heuristic in nature, but whose
particular behavior can be customized by the user in an
extremely intuitive manner (e.g., weighting acoustic sim-
ilarity more than key and tempo might be preferred when
constructing a playlist for a radio show, while the reverse
is true in the case of a dancing playlist).

Finally, this work has focused on specific genres of mu-
sic – namely “party” music. The constraints we imposed
may not be necessary or sufficient for other genres of mu-
sic, for example rap. However, the same framework could
be applied substituting different features in the optimiza-
tion problem. The exploration of how to apply this model
to other genres is left as future work.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 447



6. REFERENCES

[1] Juan Pablo Bello, Laurent Daudet, Samer Abdallah,
Chris Duxbury, Mike Davies, and Mark B Sandler. A
tutorial on onset detection in music signals. Speech and
Audio Processing, IEEE Transactions on, 13(5):1035–
1047, 2005.

[2] Shuo Chen, Josh L Moore, Douglas Turnbull, and
Thorsten Joachims. Playlist prediction via metric em-
bedding. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 714–722. ACM, 2012.

[3] Dave Cliff. Hang the DJ: Automatic sequencing and
seamless mixing of dance-music tracks. HP LABORA-
TORIES TECHNICAL REPORT HPL, 104, 2000.

[4] Sally Jo Cunningham, David Bainbridge, and Annette
Falconer. ’more of an art than a science’: Supporting
the creation of playlists and mixes. In ISMIR, pages
240–245, 2006.

[5] Matthew EP Davies, Philippe Hamel, Kazuyoshi
Yoshii, and Masataka Goto. Automashupper: Au-
tomatic creation of multi-song music mashups.
IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), 22(12):1726–1737, 2014.

[6] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and
Gerhard Widmer. Playlist generation using start and
end songs. In ISMIR, pages 173–178, 2008.

[7] Roman B Gebhardt, Matthew EP Davies, and Bern-
hard U Seeber. Psychoacoustic approaches for har-
monic music mixing. Applied Sciences, 6(5):123,
2016.

[8] Tatsunori Hirai, Hironori Doi, and Shigeo Morishima.
Musicmixer: Computer-aided dj system based on an
automatic song mixing.

[9] Hiromi Ishizaki, Keiichiro Hoashi, and Yasuhiro Tak-
ishima. Full-automatic dj mixing system with optimal
tempo adjustment based on measurement function of
user discomfort. In ISMIR, pages 135–140, 2009.

[10] Tristan Jehan. Creating music by listening. PhD thesis,
Massachusetts Institute of Technology, 2005.

[11] Thor Kell and George Tzanetakis. Empirical analy-
sis of track selection and ordering in electronic dance
music using audio feature extraction. In ISMIR, pages
505–510, 2013.

[12] Chuan-Lung Lee, Yin-Tzu Lin, Zun-Ren Yao, Feng-Yi
Lee, and Ja-Ling Wu. Automatic mashup creation by
considering both vertical and horizontal mashabilities.
In ISMIR, pages 399–405, 2015.

[13] Shen Lin and Brian W Kernighan. An effective heuris-
tic algorithm for the traveling-salesman problem. Op-
erations research, 21(2):498–516, 1973.

[14] B. McFee and D. P. W. Ellis. Analyzing song structure
with spectral clustering. In ISMIR, 2014.

[15] Jaume Parera. Dj codo nudo: a novel method for
seamless transition between songs for electronic music.
Master’s thesis, Universitat Pompeu Fabra, Barcelona,
2016.

[16] Aaron Van den Oord, Sander Dieleman, and Benjamin
Schrauwen. Deep content-based music recommenda-
tion. In Advances in Neural Information Processing
Systems, pages 2643–2651, 2013.

[17] Karthik Yadati, Martha Larson, Cynthia CS Liem, and
Alan Hanjalic. Detecting drops in electronic dance mu-
sic: Content based approaches to a socially significant
music event. In ISMIR, pages 143–148, 2014.

448 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017


