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ABSTRACT

When writing pop or hip-hop music, musicians sometimes

sample from other songs and fuse the samples into their

own music. We propose a new task in the symbolic music

domain that is similar to the music sampling practice and a

neural network model named CollageNet to fulfill this task.

Specifically, given a piece of melody and an irrelevant ac-

companiment with the same length, we fuse them into har-

monic two-track music after some necessary changes to the

inputs. Besides, users are involved in the fusion process

by providing controls to the amount of changes along sev-

eral disentangled musical aspects: rhythm and pitch of the

melody, and chord and texture of the accompaniment. We

conduct objective and subjective experiments to demon-

strate the validity of our model. Experimental results con-

firm that our model achieves significantly higher level of

harmony than rule-based and data-driven baseline meth-

ods. Furthermore, the musicality of each of the tracks does

not deteriorate after the transformation applied by Colla-

geNet, which is also superior to the two baselines. 1

1. INTRODUCTION

Recent years witnessed growing interest in symbolic multi-

track music generation with the development of deep neu-

ral networks [1–3]. In particular, generating an accompa-

niment for a given melody has been a topic of interest [4].

Current deep learning models for accompaniment genera-

tion and music arrangement focus on the generation qual-

ity. Only a few methods incorporate user control into the

generation process [5, 6].

In this work, we present a new task in the scope of

multi-track music generation, specifically, music fusion.

1 Code is available at https://github.com/urkax/CollageNet
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Taking multiple unrelated music tracks as input, the task

is to fuse them into a harmonic multi-track music piece,

with some necessary changes to the input tracks; To in-

volve users into the fusion process, users can control how

much and on what aspects each input track can be changed.

This task is similar to the music sampling practice, which

started from hip-hop, and has been influencing pop and

electronic music writing as well [7, 8]: Musicians sam-

ple melodies, rhythmic patterns, or other musical elements

from other songs and fuse them into a new composition

after certain changes [9, 10]. Our proposed task can be

viewed as the first step towards the automation of the sam-

pling practice. This task opens new possibilities in music

arrangement and style fusion, and may lead to many cre-

ative applications involving user interaction into the music

generation process.

In this paper, we concentrate on the fusion of a mono-

phonic melody and an irrelevant polyphonic accompani-

ment with the same length. Specifically, we propose a

neural network model named CollageNet to fuse the two

tracks. We use two pretrained VAEs [11], one for the

melody and the other for the accompaniment. The melody

VAE computes a latent representation that disentangles

pitch and rhythm, while the accompaniment VAE com-

putes a latent representation that disentangles chord and

texture [12, 13]. We then use adversarial training [14, 15]

to train an actor model G to apply necessary transforma-

tions to the latent representations and decode them back

to musical notes, to achieve a harmonic fusion of the two

tracks while preserving a similarity to their original con-

tent. Because the latent representations are disentangled,

the G model allows users to control the amount of changes

along the disentangled musical aspects relatively indepen-

dently by manipulating their corresponding latent vectors.

An example of the input and output of the fusion process

is displayed in Figure 1.

As this is a new task, there is no existing method

to compare with. We therefore design two baselines, a

rule-based method and a data-driven method. Objective

and subjective experiments show that CollageNet signifi-

cantly improves the harmony between the two tracks while
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maintaining the similarities with the original input along

user specified aspects. The achieved level of harmony is

close to that of human-composed songs and is significantly

higher than that of the two baselines. Besides, results also

show that the musicality of each individual track does not

deteriorate after the fusion.

The key contributions of this paper are as follows:

• We put forward a new task on symbolic multi-track

music fusion, which is similar to the music sampling

practice in music writing of modern genres.

• We propose a neural method, which allows users to

control the degree of changes along several disentan-

gled aspects of the input tracks in the fusion process.

• Objective and subjective experiments show that our

proposed method outperforms two baseline methods

in terms of harmony and musical quality.

2. RELATED WORK

2.1 Multi-track Music Generation

Multi-track music generation aims at generating music

containing several tracks (parts) with different musical

characters but constituting a pleasing whole. Some re-

search focuses on harmonizing or accompanying a music

track in an offline fashion [16] or an online fashion [17,18],

while others focus on learning the representation of multi-

track music [19–23]. DeepBach was proposed to gener-

ate Bach chorales using a graphical model [20]. Yan et

al. proposed a part-invariant neural model to learn a rep-

resentation of multi-part music [21]. Dong et al. proposed

three models in different scenarios for multi-track genera-

tion using the GAN framework [22]. Simon et al. used a

hierarchical VAE to model multi-track music [23].

2.2 Controllable Music Generation

There has been much attention to controllable genera-

tion in the image domain, such as CVAE [24, 25] and

CGAN [26]. In recent years, there are also growing re-

search interest in controllable symbolic music generation.

Researchers proposed models to control quantifiable low-

level musical attributes like note density, etc. Hadjeres et

al. proposed a constrained method to train a VAE model

with a regularized latent space [27]. Similarly, Pati et al.

used a regularization loss within a mini-batch to train a

controllable VAE model [28]. As for high-level musical

features like musical arousal, Tan et al. proposed Music

FaderNets to control them by sliding the corresponding

low-level attributes. Music FaderNets are trained by first

modelling the low-level attributes and learn the high-level

features through semi-supervised clustering. [29].

2.3 Latent Space Transformations

There have been some studies in the image and text domain

that learn transformations in the latent space. Engel et al.

proposed to impose attributes on generated images through

transformations in the VAE latent space [15]. Similar idea

was applied in music domain for connective fusion [30].

Shen et al. proposed to disentangle textual content from

style by learning a shared content latent space for texts in

different style [31]. Mueller et al. proposed to improve the

input sequence by optimizing its latent vector of VAE [32].

3. PROPOSED METHOD

In this paper, we propose a new user-guided method that

can transform and combine a two-measure-long melody

and an unrelated accompaniment into harmonic two-track

music while maintaining a similarity to their original con-

tent. Specifically, we encode the melody and the accom-

paniment with the encoders of two disentangled VAEs re-

spectively. Then an actor model applies necessary trans-

formations to the pairs of latent representations, and the

decoders of the VAEs decode them back to musical notes.

The actor model G is trained against the critic model D

with adversarial training.

3.1 Model Architecture

Our model is based on the disentangled VAE frame-

work [12, 13], where the encoder takes an input x and

outputs a posterior q(z|x) for the latent vector z to sam-

ple from, and the decoder p(x|z) reconstructs the input.

The latent vector z disentangles different musical aspects,

each of which is encoded by a certain part of the vector.

Given a pair of melody and accompaniment, we use the

encoders of two VAEs to encode each to a latent vector.

Specifically, we use EC2-VAE [12] to encode the melody

input. The disentangled latent vector zmel is a concatena-

tion of a vector for pitch zp and a vector for rhythm zr, i.e.,

zmel = zp ⊕ zr
2 . For the polyphonic accompaniment,

we use the disentangled VAE in [13] to compute the latent

vector zacc, which is a concatenation of a chord vector zc
and a texture vector zt, i.e., zacc = zc ⊕ zt..

After encoding the pair of melody and accompaniment

into latent vectors zmel and zacc, we feed them to the actor

model G which transforms them into another latent vector

pair ẑmel and ẑacc. The actor model applies changes to the

latent vectors to achieve transformations on the music con-

tent and the pair is supposed to be more harmonic. By ap-

plying different amount of changes to different parts of the

latent vectors, the degree of transformations is controlled

along the different music aspects. The inference process is

displayed in Figure 2 (b).

While the encoders and decoders are pre-trained, the

actor model G is trained under an adversarial framework

together with a critic model D. The critic model is a bi-

nary classifier to distinguish positive samples and negative

samples of the latent vectors. The definition of the posi-

tive and negative samples is described in Section 3.2. It is

noted that the D model is not used in the inference process.

3.2 Training

Firstly, we pre-train the two VAEs for melodies and accom-

paniments. They are specially designed to learn a seman-

2 ⊕ denotes for concatenation
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Figure 1. Example fusion result of CollageNet. An irrelevant pair of melody and accompaniment (left) is fused into a

more harmonic pair while similarities to the input tracks are maintained. The control parameters are set to cmp = 0, cmr =
1, cac = 0.8, cat = 0, so that rhythm of melody and chord of accompaniment are more preserved, while pitch of melody

and texture of accompaniment are more altered. The bar lines are for clear visualization, not musically meaningful.

tically disentangled latent space, but fundamentally, they

are both trained to maximize the evidence lower bound

(ELBO) [12,13]. The posterior q(z|x) of VAE is trained to

be close to the prior p(z), which is the standard normal dis-

tribution. We obtain prior samples utilized for adversarial

training by sampling latent vectors from p(z).
Afterwards, we adversarially train the G and D mod-

els in the latent space. The training diagram is given in

Figure 2 (a). Our dataset consists of two-track music seg-

ments, each of which has a monophonic melody track and

a polyphonic accompaniment track. Suppose there are N

music segments {x
(i)
mel, x

(i)
acc}Ni=1, with the i-th melody seg-

ment indicated as x
(i)
mel and the i-th accompaniment seg-

ment indicated as x
(i)
acc. We define a pair of melody and

accompaniment with the same data index as a harmonic

pair {x
(i)
mel, x

(i)
acc}, and define the set of harmonic pairs as

the harmonic pair set Ωh. To create disharmonic pairs ac-

cordingly, we randomly pick a melody x
(i)
mel and an ac-

companiment x
(j)
acc from the dataset with different data in-

dexes (i 6= j). The disharmonic pair is indicated as

{x
(i)
mel, x

(j)
acc}, and the disharmonic pair set is denoted as

Ωdh.

As discussed in Section 3.1, the D model is trained to

distinguish between positive samples and negative sam-

ples. Positive samples are latent vectors of the harmonic

pairs, indicated as {zmel, zacc} ∼ Ωz
h. Negative sam-

ples include: (1) latent vectors of the disharmonic pairs

{zmel, zacc} ∼ Ωz
dh, (2) latent vectors sampled from prior

{zmel, zacc} ∼ p(z), and (3) latent vectors produced by

the actor model G(zmel, zacc). Following [15], we intro-

duce the shorthand:

Lc=1(zmel, zacc) , − log(D(zmel, zacc)),

Lc=0(zmel, zacc) , −(1− log(D(zmel, zacc))).
(1)

The training loss of the critic model D is as follows:

LD = E
{zmel,zacc}∼Ωz

h

[Lc=1(zmel, zacc)]

+ E
{zmel,zacc}∼Nz

[Lc=0(zmel, zacc)]

+ E
{zmel,zacc}∼Nz

[Lc=0(G(zmel, zacc))],

where Nz = Ωz
dh ∪ p(z).

(2)

The actor model G is trained to transform disharmonic

latent vector pairs into a more harmonic pair. In other

words, it is trained to fool the D model. For simplic-

ity, we omit user control for this subsection, and we have:

{ẑmel, ẑacc} = G(zmel, zacc). The outputs {ẑmel, ẑacc}
are expected to be close to the inputs {zmel, zacc} to pre-

serve a similarity on musical content. Therefore, the train-

ing loss of the actor model G consists of both an adversar-

ial loss LGa and a distance loss LGd. The adversarial loss

is:

LGa = E
{zmel,zacc}∼Nz

[Lc=1(G(zmel, zacc))]. (3)

The distance loss is to constrain the distance between the

output and the input of the G model. For clarity, we define

a distance function ρ(ẑ, z) , 1
dz

‖ 1
σ̄2
z

log(1 + (ẑ − z)2)‖1

for two latent vectors z and ẑ in R
dz . The σ̄z is the av-

eraged scale of distribution q(z|x) over the training set:

σ̄z = 1
N

∑
n σz(xn). We scale the distance penalty by the

reciprocal of σ̄2
z because latent vector dimensions with a

smaller average scale contribute more to the identity of de-

coded data samples x [15]. Ignoring user control here, the

distance loss is defined as follows:

LGd = ρ(ẑmel, zmel) + ρ(ẑacc, zacc),

where {ẑmel, ẑacc} = G(zmel, zacc).
(4)

The loss of the G model is the sum of these two parts, with

distance penalty scaled by λ:

LG = LGa + λLGd. (5)

3.3 User Control

As discussed in Section 3.1, the latent vectors of melodies

and accompaniments are disentangled into shorter vec-

tors related to particular musical aspects. Specifically,

zmel = zp ⊕ zr, and zacc = zc ⊕ zt. Users can control

the amount of changes along these four musical aspects

during the fusion process. To achieve that, aside from

{zmel, zacc}, the input of the G model is extended with

four scalars cmp, cmr, cac, cat ∈ [0, 1]. These scalars re-

spectively control pitch and rhythm of melodies, chord and

texture of accompaniments.
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Figure 2. The training diagram of the G and D model and

the inference diagram. The qm(z|x) and pm(x|z) are the

encoder and decoder of the VAE for melodies. The qa(z|x)
and pa(x|z) are from the VAE for accompaniments.

To impose such constraints on the G model, we ran-

domly sample the scalars from the standard uniform distri-

bution U(0, 1) for each data sample during training. The

distance penalty of latent vectors is scaled by the corre-

sponding scalars. Therefore, the distance loss in Eqn (4)

becomes:

L′
Gd = cmp · ρ(ẑp, zp) + cmr · ρ(ẑr, zr)

+cac · ρ(ẑc, zc) + cat · ρ(ẑt, zt),

where {ẑp ⊕ ẑr, ẑc ⊕ ẑt} =

G(zp ⊕ zr, zc ⊕ zt, cmp, cmr, cac, cat).

(6)

After being trained with distance loss L′
Gd, the actor

model G can respond differently to the control input. For

instance, if the user adjusts cmp to a large value, then the

G model will produce ẑp close to the input zp. Thus the

pitch feature of the melody will hardly change after the

transformation.

3.4 Implementation Details

For the disentangled VAEs, we use the same settings as

original papers [12, 13], except that for EC2-VAE we do

not use conditional information. The data representation

for melodies and accompaniments also follow the VAE pa-

pers. Both the G and D model take in latent vectors zmel

and zacc. Different from [30], we sample from q(z|x)
to get latent vectors. Before concatenation, each of zmel

and zacc are passed through linear layers and ReLU ac-

tivation. Then the concatenated vector is passed through

8-layer blocks made up of linear layers with 1024 outputs,

ReLU activation, and dropout layers with rate of 0.5. For

the output of the G model, we use the gate mechanism fol-

lowing [15]. The G and D models are trained using the

Adam optimizer [33], with learning rate of 3e-5, β1 of 0,

and β2 of 0.9.

4. EXPERIMENTS

4.1 Dataset

We use the POP909 dataset [34], which contains melodies

of 909 popular songs. Professional musicians composed

piano accompaniments for them. We choose the songs

with the time signature of 4/4 and randomly split them into

80%:10%:10% for training, validation, and test sets. Then

we extract 8-beat long segments from them with a stride of

1 beat. We randomly select 40k segments for the training

set, 5k segments for the validation set and 5k for the test

set. We quantize time to 16th notes, so each segment is 32

steps long and we augment the training data by transposing

them to all 12 keys.

4.2 Baseline Methods

As this is a new task, there is no existing methods to com-

pare with. Therefore, we design a data-driven method and

a rule-based method as baselines.

The data-driven baseline is derived from the proposed

method. It also trains a critic model D to distinguish be-

tween harmonic pairs and disharmonic pairs. However,

different from the proposed method, the D model in the

data-driven baseline is pre-trained without the terms in-

volving G. During the inference process, we use the

pre-trained D model to implement gradient optimiza-

tion GradientDescent(zmel, zacc;Lc=1(zmel, zacc)). In

other words, we optimize the inputs zmel and zacc to max-

imize the output of the pre-trained D model. We use the

Adam optimizer [33] and the learning rate of 0.005 for both

zmel and zacc.

The rule-based baseline applies revisions to the pitches

and onsets of the melodies. According to music theory, to

create a harmonic accompaniment for a melody, their notes

should be on the same scale [35]. Besides, they need to be

composed of matched rhythm. To fuse a pair of unrelated

melody and accompaniment, the rule-based baseline tries

to make their pitch class histogram similar and put their

notes on the same onsets. At the same time, the revisions

should be minor to preserve the identity of the inputs. The

rule-based baseline only changes the input melody. For

every note of the melody, we find the closest pitch class

of the accompaniment notes. If the pitch distance is be-

low the threshold of one semitone, we change the melody

pitch to that pitch class. For example, if the pitch classes of

the accompaniment notes are { C, E, F}, and a note of the

melody is C#4. The closest pitch class is C, and the dis-

tance is below the pitch threshold of one semitone, then we

change the C#4 to C4. As for rhythm, we move the notes

of the melody to the same onsets of the accompaniment if

the time distance is under the onset threshold of two steps.

Besides, there is a 20% chance that a note retains even if it

is changeable.

4.3 Evaluation of Harmony

We aim to fuse disharmonic pairs of melodies and accom-

paniments into harmonic pairs. In this subsection, we eval-

uate the level of harmony of the outputs of CollageNet and
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harmony rate ρ(ẑmel, zmel) ρ(ẑacc, zacc)

Ωdh 10.10% - -

Data-driven baseline 61.70% 1.12 1.36

Rule-based baseline 67.27% 1.28 -

CollageNet-vanilla 92.59% 0.98 1.75

CollageNet (λ = 0.1) 92.71% 0.92 1.89

CollageNet (λ = 0.5) 89.58% 0.69 1.56

CollageNet (λ = 1.0) 89.56% 0.66 1.35

CollageNet (λ = 2.0) 84.58% 0.52 1.27

Table 1. Harmony rates of the disharmonic test set

Ωdh, and output from CollageNet (with different distance

penalty λ) and two baseline methods, which take data from

Ωdh as inputs. Besides, the average latent space distances

of melodies and accompaniments between the outputs ẑ

and inputs z of the methods are also reported.

baseline methods. It is hard to design exhaustive metrics

to evaluate the level of harmony. We use both the deep-

learning model and musical statistics to evaluate the level

of harmony.

We train a deep-learning evaluation model to discrimi-

nate between harmonic pairs and disharmonic pairs. The

evaluation model uses a PianoTree encoder [36] to encode

the polyphonic accompaniments, and a bidirectional GRU

to encode the monophonic melodies. Then the encoded

vectors are concatenated and passed through a multilayer

perceptron (MLP) to produce a score between 0 and 1 for

each pair of samples. The binary cross-entropy loss is used

to train the evaluation model with the data from Ωh and

Ωdh. After training, the accuracy is about 90% in the test

set. We define harmony rate as the proportion of samples

identified as positive by the evaluation model.

The harmony rates of the four methods are displayed in

Table 1. The latent space distances ρ(ẑ, z) between outputs

ẑ and inputs z of the methods are also displayed. We report

the results of CollageNet with different distance penalty λ.

In addition to CollageNet and two baselines, we also eval-

uate Collagenet-vanilla, which utilizes vanilla VAEs [36]

instead of disentangled VAEs. According to the results,

CollageNet can produce music with higher harmony rates

while making fewer changes to the inputs. Besides, with

a higher distance penalty, the performance of CollageNet

degrades slightly, and the latent space distances reduce. It

is noted that CollageNet and CollageNet-vanilla achieve

comparable harmony rates, but the disentangled VAEs in

CollageNet provides user control in the fusion process as

described in Section 3.3 and validated in Section 4.5.

Although the deep-learning model evaluates more com-

prehensively, it is agnostic. Inspired by [37, 38], we adopt

several musical statistics to evaluate the level of harmony

of each pair of melody and accompaniment. Firstly, we

extract several features from both melodies and accompa-

niments. PCH is the pitch class histogram with 12 bins.

OH is the onset histogram with 32 bins corresponding to

32 time steps. RE is the rhythm pattern, a 32-dimensional

vector denoting states of every time step, including onsets,

holding states of any pitch, and rests. The PCH feature

reveals the pitch pattern of melodies and accompaniments,

while OH and RE reveal the rhythm pattern. For PCH and

PCH OH
RE↑

KLD↓ OA↑ KLD↓ OA↑

Ωh 0.96 0.578 2.171 0.471 0.643

Ωdh 5.02 0.292 4.522 0.299 0.457

Data-driven baseline 2.69 0.397 3.421 0.377 0.531

Rule-based baseline 1.91 0.459 1.831 0.464 0.662

CollageNet 1.38 0.588 2.228 0.476 0.612

Table 2. The musical statistics averaged over datasets

for harmony evaluation. The Ωh is the harmonic test set.

Two baseline methods and CollageNet take data from the

disharmonic test set Ωdh as inputs. The arrows indicate a

better direction.

OH, we calculate the Kullback-Leibler Divergence (KLD)

and Overlapping Area (OA) between the melody and ac-

companiment of each pair. For RE, we calculate the ratio

of the same pattern between the melody and accompani-

ment. The average values of these statistics are in Table 2.

According to the results, the outputs of the three methods

get closer to the harmonic test set Ωh than inputs from

Ωdh. CollageNet is significantly better in most metrics.

The rule-based baseline is better than the data-driven base-

line because it directly optimizes these metrics.

4.4 Evaluation of Music Quality

To fuse a pair of unrelated melody and accompaniment,

CollageNet and baseline methods change the inputs. The

fusion process may destroy the musicality of each of the in-

put tracks. Thus, we compare several musical statistics be-

tween created datasets and the original dataset to evaluate

the quality of transformed melodies and accompaniments

respectively. The datasets whose statistics are closer to the

test set are more similar to human-made music [37]. Dif-

ferent from Section 4.3 where the comparison is between

each pair of melody and accompaniment, the comparison

happens between two datasets in this subsection.

We calculate PC (pitch count), PI (pitch interval), and

IOI (inter-onset-interval) as in [37] from melodies and ac-

companiments respectively. Table 3 shows the results. Ex-

cept for CollageNet and baseline methods, we also calcu-

late the statistics of music generated by VAEs. The VAEs

generate music by sampling latent vectors from the prior

p(z) and decoding them to musical notes. According to

the results, although the rule-based baseline outperforms

the data-driven baseline in Table 1 and Table 2, its outputs

are very different from the real data. As for CollageNet,

the musicality of melodies and accompaniments does not

deteriorate after the transformation. The musical statistics

of CollageNet are closest to the test set.

4.5 Subjective Experiment

We implement subjective experiments to evaluate Colla-

geNet and the rule-based baseline methods. Before the

test, we ask the subjects three questions following [18]:

Do you master any musical instruments? Have you re-

ceived vocal training before? Have you learned music the-

ory systematically before?
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melody accompaniment

PC PI IOI PC IOI

test set 10.7 0.024 3.1 31.6 2.02

VAE -0.30 +0.054 +0.05 -3.7 +0.00

Data-driven baseline -0.99 +0.099 +0.33 -2.3 +0.14

Rule-based baseline -1.33 +0.102 +0.33 - -

CollageNet -0.10 +0.010 +0.03 -1.2 +0.01

Table 3. The average musical statistics of melodies and

accompaniments in the test set Ωh. For four methods, we

report the difference of their outputs from the test set. The

rule-based baseline does not alter accompaniments.

We denote the subjects who answer yes to any of these

questions as trained, other subjects as not-trained. We in-

vite 38 people to complete the survey. Among them, 20

people are trained and 18 people are not-trained.

Each subject listens to 16 randomly shuffled and anony-

mous music pieces, comprising of 4 pieces from the dishar-

monic pair set Ωdh, 4 pieces from outputs of the rule-

based baseline, 4 pieces from outputs of CollageNet, and

4 pieces from the harmonic pair set Ωh. Therefore, 142

pieces of each kind of data are evaluated in total. The mu-

sic pieces are rendered using violin for melodies and pi-

ano for accompaniments. The subjects rate the harmony of

these pieces on a 5-point scale where “1” indicates “dishar-

monic” and “5” indicates “harmonic”. They are told to

concentrate on the coherence of melodies and accompani-

ments. Figure 3 (a) illustrates the average harmony score.

The outputs of CollageNet are rated as more harmonic than

the rule-based baseline.

Then each subject is asked to listen to four pieces of

melodies from outputs of the rule-based baseline, outputs

of CollageNet, and Ωh each; four pieces of accompani-

ments from outputs of CollageNet and Ωh each (the rule-

based baseline does not revise accompaniments). They

judge whether each piece is composed by humans or gen-

erated by machine. Figure 3 (b) illustrates the average per-

centage of pieces rated as human-made by the subjects.

Although the rule-based baseline can fuse the disharmonic

inputs, nearly half of the output melodies of the rule-based

baseline are regarded as machine-made. CollageNet pro-

duces both harmonic and high-quality music. Such obser-

(a) harmony score
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(b) human-made percentage
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Figure 3. Average harmony score for two-track segments

from four datasets are displayed. And human-made per-

centage are calculated for melodies and accompaniments

respectively, which are from three datasets. The scores of

trained subjects and not-trained subjects are displayed.
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n
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re

       
 

Figure 4. All similarity scores on a 5-point scale given by

subjects for melodies and accompaniments. The melodies

and accompaniments are produced by CollageNet with dif-

ferent user control cmel&acc. Each circle represents all the

songs with the specific melody score and accompaniment

score. The size of the circles indicates the number of the

songs, and the color of the circles indicates the average

cmel&acc of the songs.

vation is consistent with the conclusions of Section 4.4.

To demonstrate the validity of CollageNet’s user con-

trol, the subjects listen to the output melodies and ac-

companiments respectively of CollageNet with sliding user

control inputs. And the subjects rate the similarity of each

output melody and accompaniment to the inputs. We de-

fine the term cmel&acc = cmp = cmr = 1− cac = 1− cat.

Each subject rates two groups of songs, with each group

consists of six melodies and accompaniments produced

with different cmel&acc sliding from 0 to 1. The scores

are on a 5-point scale where “1” indicates “similar” and

“5” indicates “different”. Figure 4 displays all the scores.

As the cmel&acc increases, the output melodies are consid-

ered more similar to the input, while the output accompa-

niments are the opposite.

5. CONCLUSION

In this paper, we presented a new task and a neural ap-

proach on multi-track music fusion, which is similar to the

music sampling practice. Specifically, given an unrelated

pair of melody and accompaniment of the same length, the

proposed approach fuses them to produce harmonic two-

track music while maintaining their musical identity. Be-

sides, users can control the magnitude of changes along

disentangled musical aspects. We conducted objective and

subjective experiments and compared the proposed ap-

proach with rule-based and data-driven baseline methods.

Experimental results showed that the proposed method

achieved significantly higher level of harmony than that of

baselines, with musically high-quality outputs.

For future work, CollageNet can be extended to arbi-

trary tracks and longer music pieces. Besides, similar ideas

and systems can be explored in the audio domain.
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