
RETRIEVING MUSICAL INFORMATION FROM NEURAL DATA: HOW
COGNITIVE FEATURES ENRICH ACOUSTIC ONES

Ellie Bean Abrams1,2,3 Eva Muñoz Vidal1,2,3 Claire Pelofi*1,2 Pablo Ripollés*1,2,3

1 Music and Audio Research Laboratory, New York University
2 Center for Language, Music, and Emotion, New York University

3 Department of Psychology, New York University
∗ denotes shared last authorship

{ea84,elm8254,cp2830,pr82}@nyu.edu

ABSTRACT

Various features ± from low-level acoustics, to higher-level

statistical regularities, to memory associations ± contribute

to the experience of musical enjoyment and pleasure. Re-

cent work suggests that musical surprisal, that is, the un-

expectedness of a musical event given its context, may di-

rectly predict listeners’ experiences of pleasure and enjoy-

ment during music listening. Understanding how surprisal

shapes listeners’ preferences for certain musical pieces has

implications for music recommender systems, which are

typically content- (both acoustic or semantic) or metadata-

based. Here we test a recently developed computational

algorithm, called the Dynamic-Regularity Extraction (D-

REX) model, that uses Bayesian inference to predict the

surprisal that humans experience while listening to music.

We demonstrate that the brain tracks musical surprisal as

modeled by D-REX by conducting a decoding analysis on

the neural signal (collected through magnetoencephalogra-

phy) of participants listening to music. Thus, we demon-

strate the validity of a computational model of musical sur-

prisal, which may remarkably inform the next generation

of recommender systems. In addition, we present an open-

source neural dataset which will be available for future re-

search to foster approaches combining MIR with cognitive

neuroscience, an approach we believe will be a key strat-

egy in characterizing people’s reactions to music.

1. INTRODUCTION

Musical surprisal, or, the relative expectations listeners

have of ongoing musical events, is essential in under-

standing humans’ engagement and experience with mu-

sic [1]. Decades of theoretical and experimental work have

defined the study of expectation and surprisal as cogni-

tive processes, often in the context of language process-
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ing [2, 3]. Importantly, this line of inquiry has crucial

implications for the study of music preference and plea-

sure [4,5]. Recent studies have shown that the relationship

between information-theoretic measures such as surprisal,

entropy, or complexity, and enjoyment and pleasure may

be described by an inverted U-shape curve (also referred

to as the Wundt effect) where stimulus enjoyment is en-

hanced with an increase in complexity of the song. But

as surprisal increases to higher levels, its effect becomes

unpleasant [4, 6]. The perceptual measures (e.g. complex-

ity, familiarity/novelty, surprisal) that have been shown to

modulate musical preferences are referred to as collative

variables [7±9]. Supposedly, when other high-level vari-

ables are controlled, collative variables explain a large por-

tion of variance in listeners’ musical preference [8,10] fol-

lowing the aforementioned parabolic function. The "sweet

spot" of this inverse U-shaped curve may shift left or right,

with respect to surprisal measures, depending on factors

such as personality, openness-to-experience, or genre pref-

erences [9, 11]. While most music recommender systems

rely on acoustic (extracted from a user’s music library) and

semantic features (derived from subjective behavioral rat-

ings) to predict listeners’ preferences, the use of cognitive

measures such as music surprisal can remarkably improve

their performance, especially because these are known to

accurately predict musical pleasure. The results presented

here suggest that cognitive neuroscience methods can be

leveraged to elucidate new ways of extracting information

from music and better predict user preferences.

Early theoretical work on bottom-up and top-down pro-

cesses modulating expectations by Leonard Meyer and

Eugene Narmour [12±14] brought about efforts to model

musical prediction, evolving more concretely into explo-

rations of musical tension [15, 16], entropy [17], and the

neural bases of surprisal [18, 19]. Crucially, computa-

tional models may be tested against both subjective be-

havioral and objective neurophysiological measures in or-

der to provide a deeper understanding of whether ± and

how precisely ± information-theoretic measures of music

inform the cognitive processes underlying music percep-

tion and enjoyment. The Information Dynamics of Mu-

sic (IDyOM) model [20] generates variable-order Markov
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probability distributions for each note in a melodic se-

quence by extracting statistics from both a music corpora

and a short-term musical context, thereby incorporating

long-term (top-down) and short-term (bottom-up) musical

regularities. The IDyOM model has been shown to pre-

dict behavioral and physiological markers of listeners’ ex-

pectations [21±25] and has recently been related to brain

activity, showing that melodic expectation is also directly

encoded in the neural signal [26±31]. While IDyOM is

a well-validated, efficient, and widely used computational

model of musical surprisal, it operates only on symbolic

(MIDI) data and requires a training set of stimuli (the long-

term component of the model) to generate predictions.

To circumvent these shortcomings and explore the be-

havioral and neural response to continuous audio signals,

we turn to a computational model of surprisal recently

developed by Skerritt-Davis and Elhilali at Johns Hop-

kins, the Dynamic Regularity Extraction (D-REX) model

[32, 33]. D-REX uses a Bayesian framework to generate

predictions and was originally designed to evaluate pre-

diction errors over time for stochastic sound sequences.

This model is relevant to the MIR community, as it can

be run on any continuous audio input, which broadens its

usability for the analysis of large, diverse collections of

music. Our previous behavioral results have validated D-

REX as predictive of subjective ratings of surprisal, show-

ing that surprisal as calculated by D-REX predicted subjec-

tive behavioral surprisal ratings for 80 music excerpts [34].

Given the important role that prediction plays in musical

pleasure, enjoyment, and engagement [4, 6, 35], D-REX is

used here to explore whether the brain tracks musical sur-

prisal. Concretely, we go beyond subjective behavioral re-

sponses and test whether musical surprisal as calculated by

D-REX is directly represented in an objective neurophysi-

ological signal. Specifically, we present an experimental

work in which we recorded brain activity using magne-

toencephalography (MEG) while twenty participants lis-

tened to musical excerpts. We then relate the neural signal

to the D-REX model output using a decoding algorithm

to determine whether surprisal is represented at the brain

level.

2. DATA COLLECTION AND PROCEDURE

Twenty participants with self-reported normal hearing

completed the experiment (11 female, 24.8 ± 2.9 years

of age). Participants were presented with 30 one-minute-

long musical excerpts (described in Section 3.1) while their

brain activity was recorded using MEG. Participants began

each trial by clicking a button to start playing each musical

excerpt. At the end of each excerpt, participants moved to

the next stage where they provided ratings across five mea-

sures using a 4-point scale (1 lowest to 4 highest): pleasure,

valence, recognition, familiarity, and surprisal.

MEG measures the magnetic fields generated by the

electrical activity of neurons in the brain. Unlike electrical

currents captured by EEG devices, magnetic activity can

pass through the cortex and skull without distortion, re-

sulting in higher spatial resolution [36]. Continuous MEG

data was collected using a 157-channel axial gradiome-

ter system at NYU, at a sampling rate of 1000Hz with an

online low-pass filter of 200Hz. Prior to conducting the

main analysis, MEG data underwent preprocessing, start-

ing with the noise-reduction of the signal using the con-

tinuously adjusted least squares method (CALM) with the

MEG160 software [37]. The data was then exported into

MNE-Python [38] and bad channels (e.g., channels which

saturated during the recording) were removed through vi-

sual inspection and interpolated using a weighted sum of

signals from neighboring channels. An independent com-

ponent analysis (ICA) was fitted on the data using FastICA

in MNE-Python to isolate independent sources of noise

contaminating the channels. Components corresponding

to system noise, heartbeat, and eye-blinks were removed

from the raw recording after inspection of the topogra-

phy and time-course of magnetic activity for each com-

ponent. Finally, epochs were extracted from one second

before stimulus onset to stimulus offset, resulting in 61-

second-long epochs. For an additional data quality check,

we inspected each participant’s auditory response to a set

of randomized 1000Hz tones and 250Hz tones and ob-

served a higher amplitude response to the higher tone, thus

confirming satisfactory data quality.

3. STIMULI

The musical stimuli used here have been previously used to

validate D-REX as a predictor of behavioral subjective rat-

ings of surprisal using different genres of music (classical

and elevator music) [34]. Classical stimuli were taken from

a list of musical excerpts rated by 65 participants for pleas-

antness in a previous study [39]. The other music stim-

uli were selected from a range of sources, including songs

from Muzak Orchestra’s Stimulus Progression albums, as

well as more contemporary elevator music compositions

(see Supplementary Table S1 1 for a list of stimuli). The

most interesting minute (highest accumulated surprisal) of

each piece was selected using a shifting window of 60s

across D-REX’s surprisal output, so that any results show-

ing lower correlations with brain activity would not simply

be due to choosing a particularly unsurprising minute of

the piece (see [34]). All excerpts were normalized to 70dB

using Praat and python’s AudioSegment package, and the

sound faded 3s in 3s out.

4. MODELING MUSICAL SURPRISE

4.1 Acoustic Features

D-REX takes as input a set of acoustic features, which

can be extracted using any existing MIR techniques. In

our case, we extracted features using the NSL Auditory-

Cortical Matlab Toolbox developed by the Neural Systems

Laboratory at the University of Maryland. The toolbox is

an implementation of a cortical model of sound process-

ing, and outputs an estimate of sound as it is represented

1 Supplementary materials may be downloaded at https://osf.
io/dbm49/.
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Figure 1. Simplified schematic of D-REX model. The

model collects parameter estimates from run-lengths 0 un-

til memory constraint m and generates a prediction for the

next observation. At xt+1, the model updates its run-length

beliefs and parameter estimates. The output of the model

used in the current project is surprisal St+1.

at various stages of the auditory pathway. We followed

the same procedure as detailed in Huang and Elhilali [40],

where each acoustic waveform was processed through log-

spaced asymmetrical cochlear filters (from 255 Hz to 10.3

KHz). A cortical, or multi-resolution spectrotemporal rep-

resentation was then generated for a 4-D output (scale-rate-

time-frequency). Rate and scale refer to the two band-

widths (temporal and spectral, respectively) which char-

acterize the filter making up the typical spectrotemporal

receptive field of an auditory neuron [41]. Time and fre-

quency refer to the dimensions of a sound’s spectrogram.

Fifteen features were extracted from the resulting auditory

cortical representation, including average spectral energy,

average rate energy, average scale energy, bandwidth, av-

erage bark loudness, pitch value, pitch salience (harmonic-

ity), spectral brightness, spectral flatness, spectral irreg-

ularity, maximum rate (maximum of temporal variations

along each frequency channel), maximum scale (maximum

of the spread of spectral energy along the logarithmic fre-

quency axis), centroid rate (centroid of temporal variations

along each frequency channel), centroid scale (centroid of

the spread of spectral energy along the logarithmic fre-

quency axis), and centroid rate using absolute value of rate

(see Supplementary Table S2 and [40] for a complete list

of how features were extracted) [34, 40].

4.2 Surprisal Output: Dynamic Regularity Extraction

(D-REX) Model

D-REX uses Bayesian sequential prediction with percep-

tual constraints, such as memory (m) and observation

noise (n) to model the brain processes which govern

expectation-realization over time in response to sound se-

quences (as depicted in Figure 1) [32, 33]. Memory m

represents the working memory constraints of the listener,

determining the maximum previous time points included

in context hypotheses for the next time point. Observa-

tion noise n consists of adding independent Gaussian noise

with zero-mean and a constant variance n2 to the input.

The model takes as input a continuous feature over time

xt extracted directly from the waveform as described in

Section 4.1. From each feature, the model predicts the dis-

tribution for the next time point xt+1 given previous ones

x1:t. Concretely, previous context is estimated after col-

lecting local statistics θ̂, which correspond to the sample

mean and sample variance of the input. Predictions for

future time-points are based on these statistical representa-

tions of previous events:

P (xt+1, |x1:t) = P (xt+1|θ̂t) (1)

The model assumes the parameters θ can change at any

time. A run represents the number of time points between

change points of θ. Thus, the model generates multiple hy-

potheses by gathering statistics across runs and integrates

over all possible run lengths (rt) to predict the observation

at the next time point:

P (xt+1, |x1:t) =
∑

rt

P (xt+1|rt, xt−rt+1:t)P (rt|x1:t)

(2)

The output of interest is surprisal, St+1, which refers to

how well the new observation was predicted by the model.

Specifically, it is the mismatch between the observation

xt+1 and its predictive probability in bits:

St+1 = − logP (xt+1|x1:t) (3)

As conveyed in Eqn (3), surprisal is inversely related to the

event’s probability: an event with low probability has high

surprisal, an event with high probability has low surprisal,

and an event with a probability of 1 has zero surprisal.

The D-REX model in this case takes a matrix of fea-

tures (the 15 extracted features described in Section 4.1)

and calculates surprisal as above separately across each

feature vector. Then, D-REX combines all the outputs by

getting the product of predictive probability (described in

Eqn (3)) across features for a summary measure of joint

surprisal. In our analysis, we use Surprisal to refer to joint

surprisal, that is, the summary measure of surprisal across

all 15 feature inputs (as in [34, 40]).

5. ANALYSIS

5.1 Decoding Method: Temporal Response Function

To decode acoustic (e.g., envelope) and cognitive (e.g.,

surprisal) features from the neural data, we used

a Temporal Response Function (TRF) approach [42].

This decoding algorithm (https://github.com/

mickcrosse/mTRF-Toolbox) describes the linear

mapping of stimuli features onto a set of channels of neu-

ral activity. In this context, the input consists of the time-

series collected at each MEG electrode n sampled at times

t = 1, ...T . The assumption is made that the neural

response at some time-point r(t, n) can be described as

the convolution of a specific stimulus feature s(t) with a

channel-specific kernel wn, as described in Eqn (4):
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r(t, n) = (s ∗ wn)(t) + ε(t, n) (4)

where ϵ(t, n) is the residual noise at each channel that is

not explained by the model. The kernel wn, thus, is es-

sentially a filter that describes the linear transformation of

the stimulus feature into the neural response. Its weights

are estimated for a specified range of time lags, τ , rela-

tive to the instantaneous occurrence of the stimulus fea-

ture s(t), in order to capture the typical input-output activ-

ity of interest. In the context of auditory processing, the

range of time lags over which to estimate w(τ, n) should

be those used to capture the neural components of an au-

ditory Event-Related Potential (ERP; e.g. -100-600 ms).

Therefore, the weight at τ 100, for instance, describes how

one unit of change in amplitude of a given input feature

affects the neural response 100 ms later [43].

The weights w(τ, n) are estimated by minimizing the

unexplained residual response ϵ(t, n), in this case by mini-

mizing the difference (in terms of mean-squared error) be-

tween the actual neural response, r(t, n), and the predicted

r̂(t, n) response:

min ε(t, n) =
∑

t

[r(t, n)− r̂(t, n)]2 (5)

Concretely, this is achieved using ridge regression. This

decoding method takes into account the high auto-

correlation property of continuous stimuli such as mu-

sic, thus avoiding the temporal smearing that would result

from less sophisticated decoding approach, such as cross-

correlation. We can interpret the continuous weights w(n)
for each τ as a modeled-ERP: a marker of the feature en-

coding into the neural data.

To summarize, the modeled-ERPs we will discuss de-

scribe the linear transformation of the stimulus feature into

the neural response, and it can provide insights into the dy-

namics of the neural response to this specific feature [42].

As such, a modeled-ERP’s shape may reveal cognitive pro-

cesses usually observed through ERP analyses, such as the

P1 and P2 components [43]. This method presents a use-

ful alternative to averaging across segments of the neural

response to derive ERP profiles from continuous signals,

which is not precise nor informative enough. Speech en-

velope [44±46], phonemes [47, 48], semantics [49], and

more recently, musical syntax [46] have been successfully

decoded from brain data using TRF modeling [46±51].

5.2 Decoding Model Input

The decoding analysis was conducted twice using two dif-

ferent inputs: a purely acoustic signal (the first derivative

of the amplitude envelope of the audio) and a cognitive

signal (the surprisal D-REX output). The amplitude en-

velope of music carries modulations occurring in the 2-

10 Hz range that capture the temporal patterns of critical

rhythmic information [52]. Consistent results demonstrate

a reliable cortical tracking of the music envelope [46, 53].

Therefore, we first conducted the decoding analysis using

the envelope information, as a baseline for cortical track-

ing of low-level acoustical features [51, 53]. The broad-
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Figure 2. Example of decoding model input. (A) The first

derivative of the envelope for one excerpt. (B) Surprisal as

calculated using D-REX and indexed at each onset. Shuf-

fled surprisal, shown in grey, is used for the null model.

band amplitude envelope was extracted using the Hilbert

transform for each individual excerpt. The obtained signal

was low-pass filtered at 30 Hz and down-sampled at 100

Hz. Then, the first derivative Envelope’ was extracted (see

Figure 2A), as it is well-known to enhance stimulus-neural

response mapping when using linear system identification

methods [54].

The decoding analysis was then conducted using the

Surprisal signal as input. Because the D-REX output is

a smooth, continuous signal that does not constitute a

good input for a TRF-based decoding method [42, 54], we

used onset information to extract surprisal values associ-

ated with note onsets. From the Envelope’, we extracted

onset indexes by selecting indexes of amplitudes above a

threshold determined individually for each excerpt. We

then used the resulting onset vector to index Surprisal val-

ues (see Figure 2B), which resulted in a discrete, onset-

based Surprisal signal.

5.3 Decoding Model Output

The modeled-ERP is estimated on a portion of the stim-

ulus and neural data, and tested on an unseen part of the

data through a leave-one-out cross-validation method. To

evaluate the performance of the model in predicting neu-

ral data from stimulus features, a Pearson’s correlation is

then computed between the actual neural data (averaged

across participants, which is typical for this type of exper-

iment [51, 55]) and the data predicted by the convolution

s ∗ wn. Thus, r-values are obtained for each channel and

each musical piece and are then averaged across pieces to

obtain one average r-value per channel. The distribution

of these r-values is indicative of how well the particular

feature used to obtain the modeled-ERP is encoded in the

brain. For a visual representation of the flow of data pro-

cessing, refer to Figure 3.
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Figure 3. Diagram depicting the flow of the music to neu-

ral mapping described above.

6. RESULTS

The TRF decoding method capture the neural response to

a feature (e.g. Envelope’ or Surprisal) and informs us as

to how well it is represented in the neural data. Here, this

is evaluated by estimating a modeled-ERP that describes

the mapping, at each channel, between a set of input fea-

tures and the neural data. A correlation between predicted

data obtained from the modeled-ERP and actual data is

then computed as a marker of how well a feature is rep-

resented in the brain activity. Here we conducted two anal-

yses to characterize the encoding of surprisal as modeled

by D-REX in the neural data: we first tested the hypothe-

sis that the encoding of surprisal was significantly different

from its baseline, by computing a null model of Surprisal

encoding and comparing the obtained r-value distribution

between the null and the real model. Second, we sought to

gain insight from the specific shape of the modeled-ERP

by comparing it to the one obtained using the Envelope’.

6.1 Cortical Encoding of Surprisal

To properly baseline the encoding of features, the distribu-

tion of Pearson’s correlation r-values obtained by decod-

ing surprisal was tested against a distribution of r-values

obtained by shuffling each song’s surprisal and conduct-

ing the same decoding analysis on this shuffled surprisal.

A significant enhancement of r-values obtained from the

real model, as compared to the null one, would confirm

that surprisal as predicted by D-REX is significantly en-

coded in the neural data. In practice, we examined the sta-

tistical difference between the Pearson’s r-values for each

MEG channel resulting from a real Surprisal model and its

baseline. The real model was constructed using the Sur-

prisal signal (plotted for one song in Figure 2B) as input to

the TRF. The baseline model was obtained by shuffling the

Surprisal values attributed to each onset over 100 permuta-

tions (one permutation is illustrated in Figure 2B).

For each electrode, we obtained an r-value by conduct-

ing a TRF analysis on the neural data averaged across par-

ticipants, using either the real Suprisal input or a shuffled

version of it (averaged over 100 permutations). We thus

obtained one r-value for each channel and each musical

piece, and the values obtained were consistent with previ-

ous reported musical stimuli encoding [46, 51]. We aver-

aged these values across musical pieces and obtained two

distributions of r-values (e.g. real and null model) for each

channel, plotted in Figure 4D. They reveal that r-values

obtained from the real model were higher, which was con-

firmed by a paired t-test where r-values for each MEG

channel (t(156) = 16.25; p < .001, ds = 1.29).

6.2 Higher-Level Processing

The second analysis consisted of examining the particular

shape of modeled-ERPs obtained from the Envelope’ and

the Surprisal model, to gain insight into the differences in

neural responses elicited by the two features. After av-

eraging participants’ neural data, the Envelope’ and Sur-

prisal modeled-ERPs were estimated for each individual

MEG channel and each musical excerpt, and then aver-

aged across musical excerpts. One modeled-ERP per MEG

channel was thus obtained (see Figure 4A and 4B). As

expected, both modeled-ERPs exhibit typical auditory re-

sponses at [50-100] ms and [150-200] ms [43]. However,

the modeled-ERPs obtained from the Surprisal input ex-

hibit an amplitude peak at around 350 ms. To statistically

evaluate differences between the responses to the Enve-

lope’ and the Surprisal inputs, we first computed the abso-

lute value of the difference Surprisal-Envelope’ (z-scored).

This difference signal is plotted in Figure 4C. The signifi-

cant peaks were assessed over the entire signal ([-100-600]

ms) using a series of t-tests that were conducted on each in-

dividual time sample, using the distribution of values over

channels at each time point. The shaded grey areas on the

x-axis indicate significance corrected for multiple compar-

isons (FDR correction, p < .05). This analysis revealed

significant differences for the two main auditory compo-

nents (at [50-100] ms and [150-200] ms). This may reflect

the fact that the Surprisal signal was obtained by modulat-

ing values at note onsets, while the Envelope’ model used

a more continuous signal, yielding a more attenuated early

modeled response. The third significant peak that occurs

at around 350 ms indicates an enhanced neural response

in the modeled-ERP obtained from the Surprisal. This re-

sponse resembles a P3 response, a well-characterized, con-

sistent, and reliable neurophysiological marker of syntac-

tic processing in both the music [56,57] and language [58]

domains.

7. CONCLUSIONS

The central goal of the current project was to determine

whether musical surprisal, a high-level, cognitive measure,

enhances decoding performance of neural signal above and

beyond what may be explained by acoustic features alone,

thus showing that the human brain is tracking statistical

regularities as modeled by D-REX. By validating D-REX,

a computational model which simulates musical surprisal

not from symbolic stimuli (e.g., MIDI) but directly from

any audio file, we provide a valuable tool that can integrate

perceptual and cognitive musical components relevant to
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Figure 4. Results of decoding analysis. (A) The modeled-

ERPs for each channel from the decoding model using En-

velope’ (the acoustic feature) as input. The weights for

each channel are averaged across songs. (B) The modeled-

ERPs for each channel from the decoding model using Sur-

prisal (the cognitive feature) as input. (C) The absolute

values of the Surprisal - Envelope’ (z-scored) signals aver-

aged across channels over time. Shaded areas around the

curve indicate SEM over channels. Grey bars on the x-axis

represent time windows during which a significant differ-

ence between the two averaged modeled-ERPs was found

(p < .005, FDR-corrected). (D) Violin plots of r-value dis-

tributions for the real and baseline (i.e. shuffled) Surprisal

models. Each dot corresponds to the r-value for one MEG

channel.

recommender systems. Additionally, we provide an open-

source database of neural data (twenty participants listen-

ing to 30 one minute long musical excerpts along with the

audio files for these excerpts) with an excellent temporal

resolution (at a sampling frequency of 1000 Hz) that can

be used to further investigate the neural correlates of music

processing. 2 In this paper, we used a decoding method to

validate a Bayesian algorithm, D-REX, which models the

continuous surprisal experienced by listeners during music

listening. By describing a music-to-neural mapping be-

tween music stimuli and MEG data, we demonstrate that

D-REX is an effective model to explain brain signals above

and beyond mere acoustical features, capturing neural re-

sponses indicative of higher-level processing.

Our analysis also highlights a specific time window of

2 https://osf.io/dbm49/

auditory processing in the musical domain which is cru-

cial to higher-level mechanisms involved in music listen-

ing. In the modeled-ERP derived from the Surprisal in-

put (see Figure 4B), there is a significant peak around 350

ms, which undoubtedly evokes the P3 ERP [59, 60]. This

ERP is implicated in syntax processing and context updat-

ing operations in both language [58] and music process-

ing [56,57]. This further suggests that D-REX is capturing

higher-level expectations generated by gathering statistics

over time from acoustic information.

In the context of music listening, a recorded neural sig-

nal may be conceptualized as ªa mid-level representation

of the original music piece that has been heavily distorted

by two consecutive black-box filtersÐthe brain and the

[MEG] equipmentº [61]. However, while the brain does

extract and represent the acoustic features contained in the

musical excerpt, it also combines them to generate purely

cognitive components, such as surprisal. In this experi-

ment, we extract musical features and interface them with

a cognitive model which abstracts beyond acoustic features

into the psychological domain. Importantly, this cogni-

tive model represents a measure which is one of the many

factors predicting individual music preference and plea-

sure [4, 6]. Thus, we show that combining music infor-

mation retrieval with cognitive neuroscience is an optimal

way to measure people’s responses to music.

8. FUTURE DIRECTIONS

8.1 Further Validation of D-REX Model

The current analysis was executed using joint surprisal,

which is a summary measure across all 15 extracted acous-

tic features. Though our results show that D-REX joint

surprisal is effectively encoded in the neural data recorded

during music listening, it is possible that surprisal across

specific features, such as pitch value or harmonicity, may

be more relevant to cognitive aspects of music listening.

Also, these representations may differ across participants.

Thus, it is worth exploring across which dimensions sur-

prisal is better represented. In addition, the present study

used Western musical genres for listeners to validate D-

REX, but future work may expand this exploration to non-

Western genres.

8.2 Music Recommender Systems

This project presents a new line of inquiry for music rec-

ommender systems, which have typically been content-

based (using extracted auditory features or subjective se-

mantic ratings) or user-item/metadata-based [62]. Given

the aforementioned inverse U-relationship between music

surprisal and musical preferences, D-REX may be used

to characterize individuals’ musical corpora and, compiled

with other variables, efficiently predict liking for new mu-

sic. More broadly, we propose that harnessing cognitive

neuroscience methods is potentially fruitful in improving

and generating new methods for recommender systems by

including cognitively relevant outcomes such as surprisal

[4, 6].
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