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Abstract

Refutation systems are systems of formal, syntactic derivations,
designed to derive the non-valid formulas or logical consequences of
a given logic. Here we provide an overview with comprehensive refer-
ences on the historical development of the theory of refutation systems
and discuss some of their applications to philosophical logics.

1 Introduction

The idea of refutation systems goes back to Aristotle’s approach to systematic
rejection of all invalid syllogisms. Aristotle showed that some syllogisms are
invalid by providing suitable examples (in modern terms, counter-models)
demonstrating that they can derive false conclusions from true premises.
Other syllogisms he then rejected by applying some deductive reasoning,
showing that assuming their validity would imply validity of already re-
jected syllogisms. Essentially, he applied the inference rule of Modus Tol-
lens: "If B is rejected and A → B is accepted (valid), then A must be
rejected, too.". This approach worked quite well, enabling Aristotle to clas-
sify most of the invalid syllogisms, though his classification was shown to
be incomplete by Jan Łukasiewicz, but only much later, in the 1st half of
the 20th century. Łukasiewicz embraced Aristotle’s idea and formalised it
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in the concept of refutation system in [Łukasiewicz, 1939] and applied it to
Aristotle’s syllogistic in his seminal book [Łukasiewicz, 1951], though a much
earlier important pre-cursor of the development of his ideas on refutation sys-
tems was [Łukasiewicz, 1921] (see English translation in [Borkowski, 1970]),
where he introduced the notion of formal rejection of a false proposition1.
In [Łukasiewicz, 1951], Łukasiewicz wrote “...Out of the two intellectual acts,
acceptance and rejection of a statement, only the first has been taken into
account in modern formal logic. Gottlob Frege introduced into logic the idea
of assertion, and the sign of assertion (`), accepted afterwards by the authors
of Principia Mathematica. The idea of rejection, however, so far as I know,
has been neglected up to the present day.”
Since Łukasiewicz’s foundational work in [Łukasiewicz, 1951], the concept

of refutation systems has been developing at a slow but steady pace, with
various types of refutation systems being designed both for classical logic
and for a number of non-classical logics, and several technical and conceptual
applications of these have been proposed in the literature.
In this paper we provide a concise, but comprehensively referenced overview

of the literature on refutation systems and discuss some of their applications
to philosophical logics.

2 Refutation systems: basic concepts

2.1 Semantic vs deductive refutability

Consider a logical system L with a given semantics, defining L-validity, and,
more generally, L-logical consequence, both denoted by |=L. Following a
common tradition in non-classical logics, we will often identify the logic L
with the set of its valid formulas.
An L-formula A is (semantically) refutable in L iff it is not valid, i.e. 6|=

A. That is, there is an L-model falsifying A. Likewise, for logical consequence:
Φ 6|= A means that there is an L-model satisfying all formulas in Φ, but
falsifying A.

1As noted in [Wybraniec-Skardowska, 2018], for introducing the concept of formal re-
jection, Łukasiewicz was apparently influenced by Brentano, who was probably the first
to consider on a par the two kinds of judgment, viz. acceptance and rejection, and to use
a pair of symbols, + and −, to syntactically distinguish between them.
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Now, consider also a deductive system D for L, with a derivation relation
`D. Then, for any L-formula A, provability of A in D is denoted `D A. If D
is sound and complete for L, then `D A corresponds to validity |=L A.

However, one can argue that, in general, the matching syntactic notion to
semantical refutability is not non-provability of A, i.e. 0D A. It is rather
the notion of “deductive refutability”, i.e., existence of a formal derivation of
A in a suitable derivation system for L-refutable formulas.
A new symbol is needed for that notion, for which we will use aL, following

Łukasiewicz, where
aL A

means “A is deductively refutable in L”, i.e. “the non-validity of A in L
can be formally derived ”, or “the refutation of A in L is derivable/derived ”.
When the logic L is fixed by the context, we will write simply a.
The above naturally extends to deductive refutations of logical consequences.

Thus, the notion of “(deductive) refutation systems” arises.

2.2 Refutation rules and systems

Pure rule of refutation inference:

a B1, . . . ,a Bn

a C
A typical example is Łukasiewicz’s rule Reverse substitution:

a σ(A)

a A
where σ is a uniform substitution.
The intuitive meaning: if σ(B) is derived as non-valid, then B is derived

as non-valid, too.

Usually, pure refutation rules do not suffice to capture adequately semantic
refutability, so we also consider the following, more general refutation rules.

(Mixed) rule of refutation inference (based on a deductive system D):

`D A1, . . . ,`D Am, a B1, . . . ,a Bn

a C
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The intuitive interpretation: if each Ai is derived by D as valid and each
Bj is derived as non-valid, then C is derived as non-valid.
A typical example is Łukasiewicz’s rule Reverse modus ponens:

` A→ B,a B
a B

A refutation system is a set R of refutation rules. Refutation rules with
no premises are called refutation axioms and we write them simply as a A.
A refutation derivation in R, or just an R-derivation for a formula A, is

a sequence S1, ..., St, where St is a A and every Si is either a refutation axiom
or has the form ` B or is obtained from some preceding formulas by applying
a refutation rule from R. Note that when R contains mixed refutation rules,
then the notion of R-refutability is relativised to the underlying deductive
system D. We now say that a formula A is refutable in R (or, just R-
refutable) iff there is a refutation derivation for A in R.
Given a logical system L, we say that a refutation system R is:

• refutation-sound, or Ł-sound, for L, if only non-valid in L formulae
(more generally, logical consequences) are R-refutable.

• refutation-complete, or Ł-complete, for L, if all non-valid in L
formulae (more generally, L logical consequences) are R-refutable.

These are readily relativised to any fixed set Φ of formulas in L.

3 Refutation systems: an overview

3.1 Beginning and early work on refutation systems

The notion of formal rejection was introduced by Łukasiewicz in his early pa-
per [Łukasiewicz, 1921], but his first publication on formal refutation systems
was [Łukasiewicz, 1939], where he introduced the concept and proposed a
complete refutation system for the classical propositional calculus PL, based
on the refutation rules of reverse substitution and Modus Tollens (reverse
Modus Ponens).
Later, in his seminal book [Łukasiewicz, 1951], Łukasiewicz showed that

Aristotle’s refutation system for syllogisms is "refutationally incomplete",
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i.e. not deriving all non-valid syllogisms. He then added two more non-valid
syllogisms to Aristotle’s system, to make it (refutationally) complete for all
non-valid syllogisms, but not for all non-valid expressions of the language.

Later, Łukasiewicz’s student J. Słupecki showed in [Słupecki, 1955] that no
finite set of refutation axioms would suffice for that. In that work, he pro-
posed an additional refutation rule to make Łukasiewicz’s system complete.
In that work, Słupecki also developed further the concept of refutation sys-
tem, introduced the notions of rejection consequence relation, Ł-decidability,
and Ł-consistency, and solved the problem, posed by Łukasiewicz, of proving
decidability of Aristotle’s Syllogistics. During the 1970s, Słupecki together
with his students Bryll and Wybraniec-Skardowska developed a general sys-
tematic theory of rejected propositions, in the style of Tarski’s theories of con-
sequence relations and deductive systems, see in [Słupecki et al., 1971] and
[Słupecki et al., 1972]. Follow up and related works along that line include
[Staszek, 1971], [Staszek, 1972], and the more recent [Wybraniec-Skardowska, 2016],
where two notions of axiomatic refutation systems, dual to Tarski’s concept
of deductive system for PL were constructed and proved to be equivalent.

A recent comprehensive historical overview and discussion of the early work
on refutation systems by Łukasiewicz, Słupecki and his school can be found
in [Wybraniec-Skardowska, 2018]. For a nice discussion on Łukasiewicz’s de-
velopment of the concept of refutation system see also [Tamminga, 1994].

3.2 Overview of refutation systems in classical logic

In parallel with the fundamental work of Polish school, several other, es-
sentially independent works developing variants of refutation systems for
classical logic were published since the 1960s:

• In [Härtig, 1960] Härtig studied Łukasiewicz’s refutation system for
CPC and established some necessary and sufficient conditions for Ł-
completeness of axiomatic refutation systems for the not-provable for-
mulae in the classical propositional calculus CPC.

• In [Hailperin, 1961] Hailperin, apparently unaware of Łukasiewicz’s no-
tion of refutation system and related work, developed probably the first
explicit axiomatic refutation system for first-order logic FOL, for lan-
guages without equality and function symbols. That system was proved
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there to be sound and complete for falsifiability in finite FOL models.

• Later, in [Staszek, 1971] Staszek considered Łukasiewicz’s refutation
system for Aristotle’s syllogistic and extends it with rules for the quan-
tifiers.

• In [Stahl, 1958] Stahl introduced the notion of ‘opposite system’ for
axiomatic derivation of all logically false (unsatisfiable) sentences of a
given logic and proposed two axiomatizations for such system for CPC.
Later, Morgan in [Morgan, 1973] independently presented a finitely
axiomatized refutation system for all logically false (unsatisfiable) sen-
tences of CPC.

• Independently from all previous work on refutation systems mentioned
so far, Caicedo proposed in [Caicedo, 1978] a finitary formal system for
deriving all non-theorems of CPC, consisting only of pure refutation
rules.

• Later, in [Skura, 1990] Skura proposed a general method for construct-
ing refutation systems with pure refutation rules for sentential logics.

• Another line of relatively independent work started in Japan with Ishi-
moto’s [Ishimoto, 1981], which studied the method of axiomatic rejec-
tion in PL. Inoue discussed and followed on Stahl’s work in [Inoué, 1989]
and Ishimoto’s work in [Inoué, 1989]. In [Inoué, 1990], Inoue stud-
ied unprovability-preserving translations between formal systems for
propositional logic and in [Inoué, 1994] he discussed the atomic for-
mula property of Härtig’s refutation calculus in [Härtig, 1960].

• In [Varzi, 1990], Varzi introduced a simplified Ł-complete refutation
system for PL, based on the single axiom: ⊥, and the two rules of
inference: reverse substitution and replacement of equivalent subfor-
mulas. That system was further refined in [Varzi, 1992].

• In [Kulicki, 2000] and [Kulicki, 2002] Kulicki discusses applications of
axiomatic rejection, for refuting the non-valid syllogisms of Aristotle’s
Syllogistic and, more generally, as syntactic decision procedures.

• [Morgan et al., 2007] presents a sound and complete axiomatic proof
system for deriving for the logical contingencies in PL, that is the PL-
formulas that are both satisfiable and falsifiable.
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Lastly, we note that refutation systems are close in design and purpose to
tableaux-based methods, as both can be used to derive non-validity or sat-
isfiability of the input formula. A number of more syntactically presented
tableau-based methods for FOL have been developed, of which we only men-
tion here some, which relate more explicitly with the concept of deductive
refutation.

• In [Dutkiewicz, 1989] Dutkiewicz developed a tableau-based Ł-complete
refutation system for IPL (also mentioned further).

• In [Bry and Torge, 1998] Bry and Torge present a tableaux-based al-
gorithmic deduction method for FOL, for which they prove that it is
refutation complete for finite satisfiability in FOL. They also discuss
several areas of applications of their methods to computer science, incl.
databases, planning, natural language understanding, program verifi-
cation and theorem proving.

• In [Skura, 2005], Skura introduced ‘invertible reduction rules’, reversing
refutation rules and preserving validity, for IPL.

3.3 Gentzen-style refutation systems

The first constructed refutation systems were of axiomatic type, but gradu-
ally the other classical types of deductive systems, such as tableaux, sequent
calculi, and systems of natural deduction, were adapted as refutation sys-
tems. We mention here those that were constructed for classical logic, while
others, specifically designed for non-classical logics, are discussed further in
this section.

• In [Tiomkin, 1988], Tiomkin constructed a sequent-style refutation cal-
culus for FOL without function symbols and sketched a proof of its
Ł-completeness for the formulas refutable in finite models.

Independently, a few years later both Bonatti in [Bonatti, 1993]2 and
Goranko in [Goranko, 1994] developed an Ł-complete sequent refuta-
tion calculi for PL, completing Tiomkin’s calculus by including (the

2This reference is imported from other sources, albeit none of the authors has seen this
technical report and it appears to be currently inacessible in the internet.
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same) left- and right-introduction rules for the full propositional lan-
guage. (See also [Bonatti and Varzi, 1995] containing the rules for im-
plication and negation.) The sequent refutation calculus constructed
in [Goranko, 1994] was then extended in the same paper to some im-
portant normal modal logics.

• In [Tamminga, 1994] Tamminga developed a system of natural deduc-
tion for deriving the non-theorems of PL, which he proved to be (Ł-
sound and) Ł-complete. He also presented a subsystem of that system,
Ł-complete for the set of all contradictions of PL and illustrated the
application of both systems with some examples.

• In [Tiomkin, 2013] Tiomkin constructed an Ł-complete sequent calcu-
lus for the contingencies of PL, ie. the propositional formulas that are
neither valid nor contradictory, and also proved cut-elimination and
the subformula property for that calculus.

• In [Carnielli and Pulcini, 2017], the sequent refutation systems of Tiomkin
and Goranko were enriched with two admissible unary cut-rules which
come shaped as reverse Weakenings. Then the authors designed a nor-
malization procedure and studied some related computational proper-
ties.

• In [Pulcini and Varzi, 2019], the authors propounded a proof-nets sys-
tem sound and complete with respect to the set of classically invalid
(right-sided) sequents. They also provided a normalization procedure
that allows for the improvement of the basic computational properties
already studied in [Carnielli and Pulcini, 2017].

3.4 Refutation systems for non-validity in the finite

Ł-complete refutation systems can be naturally associated with logics deter-
mined by effectively definable classes of finite models, as the non-validities in
such logics are effectively enumerable, and therefore possible to capture by
deductive refutation systems. Cases of particular importance are first-order
logic on the class of all finite structures, hereafter denoted FOLfin, as well
as modal and other non-classical logics with finite model property (FMP).
Several such refutation systems have been proposed, including the following.
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• We have already mentioned the axiomatic refutation systems in [Hailperin, 1961]
and in [Bry and Torge, 1998], as well as the sequent refutation calculus
in [Tiomkin, 1988] for FOL without function symbols, each proved to
be Ł-sound and Ł-complete for FOLfin.

• In [Skura, 1991] Skura discussed refutation systems as decision pro-
cedures and in [Skura, 1992] he developed a general method for con-
structing Ł-complete refutation systems for intermediate logics with
the FMP, as well as for some logics without the FMP. Further, in
[Skura, 1994], he extended that method to modal logics with the FMP.

• In [Skura, 2004b] Skura proposed Scott-style refutation rules for the
intermediate logics of finite n-ary trees.

• In [Goranko, 1994] Goranko constructed Ł-complete refutation systems
for several modal logics that are complete for classes of finite (intran-
sitive or transitive) trees.

• In [Goranko and Skura, 2018] Goranko and Skura develop generic refu-
tation systems for modal logics with finite model property and for FOL
theories determined by classes of finite models. In particular, they
construct an Ł-complete refutation system for FOLfin in arbitrary FOL
languages (incl. function symbols).

3.5 Refutation systems for intuitionistic and modal log-
ics

Research on extending refutation systems to non-classical logics began al-
ready with Łukasiewicz, who conjectured in [Łukasiewicz, 1952] that, to de-
rive all intuitionistically non-valid formulae it suffices to add to CPC (a) the
Disjunction Rule (DR):

a A, a B
a A ∨B

This conjecture was refuted later (in 1957) by Kreisel and Putnam, who
showed in [Kreisel and Putnam, 1957] that DR is admissible in a proper ex-
tension of the intuitionistic propositional calculus IPC, now known as Kreisel-
Putnam’s logic, KP = IPC + (¬A→ (B ∨ C))→ (¬A→ B) ∨ (¬A→ C).
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Several complete refutation systems for IPL and its extensions were devel-
oped since then, including:

• In [Scott, 1957] D. Scott constructed an Ł-complete refutation system
for IPL by introducing an infinite family of non-structural refutation
rules (now called Scott-style refutation rules), involvingWajsberg/Mints-
style normal forms. These go back to [Wajsberg, 1938] and [Mints, 1990];
see also [Mints, 1992] for further details.

• In [Skura, 1989], Skura improved Scott’s system by constructing an
Ł-complete refutation system for IPL involving an infinite family of
structural rules.

• In [Dutkiewicz, 1989] Dutkiewicz developed another, tableau-based in-
finitary Ł-complete refutation system for IPL.

• In [Skura, 1992] Skura constructed refutation calculi for some interme-
diate propositional logics.

• Essential connections between refutations and admissibility of rules
have been analysed by Goudsmit in the context of IPL and intermedi-
ate logics in [Goudsmit, 2014] and [Goudsmit, 2015], where using some
techniques for admissible rules he constructs refutation systems (in-
volving structural refutation rules) for the Gabbay - de Jongh logics.

Refutation systems are very close in purpose to counter-model producing
procedures. Of the many and various such methods developed in the liter-
ature, we mention just a few that make that relation explicit and make an
essential use of it.

• In [Pinto and Dyckhoff, 1995] Pinto and Dyckhoff use the contraction-
free sequent calculi LJT for IPL to build (as they say, ‘for expository
reasons’) a sequent ‘Calculus for Refutation of Intuitionistic Proposi-
tions’ CRIP, that is Ł-complete for IPL.

• Related in spirit and purpose is [Goré and Postniece, 2008] where Goré
and Postniece present a cut-free sequent calculus for the bi-intuitionistic
logic, being the union of intuitionistic and dual intuitionistic logic,
which also involves refutation calculi for both. See also the related
in topic [Pinto and Uustalu, 2009].
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• In [Negri, 2014] Negri explores further the duality between proof search
and counter-model search or, more generally, refutation search. She
presents a method for unifying proof search and countermodel construc-
tion that puts together several ideas, incl. sequent calculi with inter-
nalized semantics and Tait-Schütte-Takeuti style completeness proofs,
combined with procedures for effective finite countermodel construc-
tion. The method is applied to a variety of intermediate, modal, and
other non-classical logics.

• In [Fiorentini and Ferrari, 2017] Fiorentini and Ferrari employ Maslov’s
inverse method (a saturation based theorem proving technique using
forward proof-search strategy) to develop a ‘forward unprovability cal-
culus’ FRJ for IPL. They show how to extract a Kripke counter-model
for a formula from a derivation of the formula in FRJ.

Other works on refutation systems, specifically for modal logics include:

• The first Ł-complete refutation system for modal logic was the one for
S5 constructed by Słupecki and Bryll in [Słupecki and Bryll, 1973].

• In [Goranko, 1994] (see also [Goranko, 1991]) Goranko constructed Ł-
complete axiomatic and sequent-style refutation systems for several
important modal logics, incl. K, T, K4, GL, S4Grz and others.

• In [Skura, 1995] Skura constructed a refutation system for S4 and
proved its Ł-completeness by using algebraic methods. Further, in
[Skura, 1996], he presented Scott-style refutation rules for S4. In [Skura, 2002],
he also constructed Scott-style refutation rules for K4. Recently, in
[Skura, 2019b] Skura explored the relationship between tableaux and
refutations in S4. See also his related works [Skura, 1994], [Skura, 1999],
and the monograph on refutation systems for modal logics [Skura, 2013],
where, refutation systems and constructions of counter-models from
syntactic refutations for several specific modal logics are described.

• In [Fiorentini, 2015] Fiorentini introduces a refutation calculus RS4 for
the modal logic S4 with the subformula property, by using a contraction-
free sequent calculus GS4 for S4 with the same property, and shows how
to generate an S4-model of any formula refuted by that calculus.
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• As already mentioned earlier, refutation systems are very close in pur-
pose to counter-model producing procedures. In addition to the ear-
lier mentioned works exploring that relation, we now also mention
[Garg et al., 2012], where Garg et al present a novel countermodel-
producing syntactic decision procedure, based on backwards search in
labeled sequent calculi, that applies to several intuitionistic and classi-
cal multi-modal logics, thus also obtaining new decidability results.

• One topic not explicitly mentioned yet is the application of algebraic
semantics and algebraic methods for the construction and analysis of
refutation systems for non-classical logics. Such methods have been ap-
plied in [Skura, 1989], [Skura, 1992], [Skura, 1994], [Skura, 1995]. and,
more recently, in [Citkin, 2013], where Citkin uses Jankov-style for-
mulas to construct refutation rules and systems. These ideas were
developed further in [Citkin, 2015b] and [Citkin, 2015a].

3.6 Refutation systems for other non-classical logics

Refutation systems have been developed for several other non-classical logics,
too, including the following.

• In [Bonatti, 1996] Bonatti developed sequent refutation calculi for de-
fault and autoepistemic logics. Following his approach, Egly and Tom-
pits constructed in [Egly and Tompits, 1997] a similar sequent refuta-
tion calculus for the intuitionistic default logic. Later, in [Bonatti and Olivetti, 2002],
the authors extended Bonatti’s work to sequent refutation calculi for
propositional nonmonotonic logics.

• In [Sochacki, 2007] Sochacki studied axiomatic rejection in the implication-
negation fragment of Łukasiewicz’s many-valued logic. Later, in [Sochacki, 2011],
he constructed refutation systems for Finn’s 3-valued ‘nonsense-logic’.
See also [Sochacki, 2010] for a general reference on his related work.

• [Kulicki, 2012], presented a complete axiomatisation of the quantifier-
free fragment of Leśniewski’s Ontology, called there a "pure calculus of
names", by employing the method of axiomatic rejection.
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• In [Oetsch and Tompits, 2011] Oetsch and Tompits developed Gentzen-
type refutation systems for three-valued logics and proposed applica-
tions of them for disproving strong equivalence.

• In [Berger and Tompits, 2013] Berger and Tompits constructed an ax-
iomatic rejection system for the description logic ALC.

• Several refutation calculi and related systems for paraconsistent logics
have also been developed: In [Skura, 2017a] Skura used ideas from
refutation systems, discussed further here, in Section 5.1.1 to prove
that Segerberg’s logic JE ′EQ

1 is the greatest paraconsistent extension
of Johansson’s logic.

In [Pulcini and Varzi, 2018], Pulcini and Varzi observed that any de-
cidable logic which semantically circumscribes a set of truth-functional
contingent formulas, classical propositional logic in primis, allows for
a refutational counterpart which is paraconsistent. The authors stress
this observation to draw some philosophical remarks about the notion
of paraconsistency.

In [Trybus, 2018], Trybus developed a method for constructing maxi-
mal paraconsistent logics, motivated by ideas from refutation systems.

Other applications to paraconsistent logics can be found in [Skura, 2004a],
also mentioned in Section 3.7 and used further in this paper, in Section
5.1.1.

• In [Skura, 2017b], Skura constructs Scott-style refutation rules for Wans-
ing’s nonmonotonic logic and uses them to provide an efficient decision
procedure for that logic.

3.7 Systems combining proofs and refutations

Another important line of research on refutation systems is the idea of build-
ing systems of deduction combining proofs and refutations on a par. Here
are several references exploring that idea.

• The idea of developing combined derivation systems for proofs and
refutations was discussed at the end of [Goranko, 1994], where some
hybrid refutation rules for such systems were suggested. That idea has
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recently been further developed by designing and exploring combined
(‘hybrid’) proof/refutation systems of natural deduction for classical
and intuitionistic logic.

• The idea is also close to the ‘complementary systems’ for sentential
logics proposed in [Bonatti and Varzi, 1995].

• In [Skura, 2004a], Skura studies symmetric inference systems (that is,
pairs of inference systems), that can be used for characterizing maximal
non-classical logics with certain properties. The method is also applied
there to paraconsistent logics.

• In [Wybraniec-Skardowska and Waldmajer, 2011] Wybraniec-Skardowska
and Waldmajer explore the general theory of deductive systems em-
ploying the two dual consequence operators, the standard logical con-
sequence, inferring validities, and the refutation consequence, inferring
non-validities.

• In [Caferra and Peltier, 2008] Caferra and Peltier, motivated by poten-
tial applications to automated reasoning, take a unifying perspective
on accepting or rejecting propositions by deriving them from other,
already accepted or rejected propositions.

• In [Goré and Postniece, 2008] Goré and Postniece combine derivations
and refutations to obtain cut-free complete systems for bi-intuitionistic
logic.

• In [Negri, 2013], Negri explores the duality of proofs and countermodels
in labelled sequent calculi, further developed in the already discussed
[Negri, 2014].

• Likewise, in [Fiorentini and Ferrari, 2018], Fiorentini and Ferrari ex-
plore the duality between unprovability and provability in forward
proof-search for intuitionistic propositional logic, following on their pre-
vious, already mentioned work [Fiorentini and Ferrari, 2017].

3.8 Further general references on refutation systems

More recent further general references on the theory of refutation systems
include the following.
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• A general theory of refutation systems, involving the concept of multiple-
conclusion (or Scott-style) consequence relation is presented in [Skura, 2009],

• An introduction to refutation systems, describing and discussing a va-
riety of concepts, methods, and tools connected with them, is provided
in [Skura, 2011b].

• A general method for proving completeness with respect to refutation
rules involving certain normal forms is presented in [Skura, 2011a].

• The relationship between refutations, tableaux, and counter-models
constructions in classical logic is discussed in [Skura, 2016].

4 Refutation systems vs deductive systems

Here we discuss and compare briefly refutation systems with some of the main
types of traditional deductive systems, viz. tableaux and sequent calculi.
We also outline the closely related idea of ‘inverse refutation systems’. For
axiomatic refutation systems we refer the reader e.g. to [Skura, 2011b] and
for natural deduction style refutation systems – to [Tamminga, 1994].

4.1 Tableaux vs refutation systems

Refutation systems and tableau systems3 are naturally related, as both are
used to establish falsifiability of the input formula. If tableaux are regarded
as satisfiability testing procedures then, as noted in [Skura, 2016], tableaux
and refutation systems are complementary. Still, there are some clear dis-
tinctions, both conceptual and technical, which we discuss here.
Tableau procedures are typically used as proof-search procedures : if there

is a closed tableau for ¬A, then A is proved. When terminating, they can
also be used as validity/satisfiability testing decision procedures : if there is
no closed tableau for ¬A, then a (usually finite) counter-model for A can be
constructed from open and saturated tableaux for ¬A. Note however, that,
unlike tableaux (which are derivations in an object language), such model
constructions are done on a meta-logical level.

3For background on tableau methods for non-classical logics we refer the reader to
[Goré, 1999]).
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A typical (pure) refutation rule is of the form

a A1, ...,a Am

a A

meaning that if every Ai is (derived as) non-valid, then so is A.
If we turn such a rule around (bottom-up), by contraposition we obtain an

inverse refutation rule, preserving validity:

` A
` A1 | ... | ` Am

meaning that if A is (derived as) valid, then so is some Ai. (Rules of this kind
were introduced in [Skura, 2005, Skura, 2011b].) Using them will facilitate
our further discussion.
In a tableau procedure, in order to prove the validity of A, one assumes

that A is non-valid, hence ¬A is satisfiable. Starting with ¬A as input, one
then applies (satisfiability preserving) tableau rules, the purpose of which
is to search systematically for a satisfying truth-assignment (more generally,
satisfying model) for the input formula ¬A. The aim, however, is to show that
this is not possible, by eventually producing a closed tableau: a finite tree in
which every branch ends with (the unsatisfiable) ⊥. If such a closed tableau
is constructed, it means that ¬A cannot be satisfied. This contradiction with
the initial assumption implies that A is valid.
Dually, in a refutation procedure, in order to refute A, we can assume that A

is valid. Then, by applying (validity preserving) branching inverse refutation
rules as above we aim to obtain a finite tree in which every branch ends with
a refutation axiom (which is non-valid). If such a tree is constructed, this is
a contradiction with the initial assumption, implying that A is non-valid.
Thus, tableau systems (as proof procedures) and refutation systems (as

refutation procedures) can be regarded as mutually dual calculi, and they
can be studied by using similar formal tools. We illustrate that in the next
subsection.

4.2 Inverse refutation systems

Given finite sets X, Y, Z of (modal) formulae, we define:
2X := {2A : A ∈ X}, X −→ Y :=

∧
X →

∨
Y .
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When Y = {C} ∪ Z, we may write simply X −→ C,Z.
Note that an application of an inverse refutation rule to a formula produces

m ≥ 1 immediate successors. These successors can be written just as a set Ψ,
representing a multiple-conclusion list B1 | ... | Bk, where Ψ = {B1, ..., Bk}.
An inverse refutation tree for a formula A is a finite tree with root

labelled by A, whose nodes have labels containing formulas. That tree is ex-
panded by applying inverse refutation rules to the node labels, and the labels
of the leaves (end nodes) are refutation axioms, specifically defined for the
system. An inverse refutation system DR consists of a set of refutation
axioms and a set of inverse refutation rules. A formula A is refutable in an
inverse refutation system DR iff there is an inverse refutation tree for A in
DR. A system DR is Ł-complete for a logic L iff we have: A 6∈ L iff A is
refutable in DR.

For example, in modal logic, complete inverse refutation systems can be
obtained by reformulating the refutation systems involving normal forms
in [Skura, 2002, Skura, 2013]. Roughly speaking, such an inverse refutation
system for a normal modal logic L contains two rules: MP and a characteristic
inverse refutation rule RL. (In fact, usually the whole MP is not necessary,
but a few specific cases of MP are sufficient (see [Skura, 2013]). For a concrete
example, the characteristic rule for the basic modal logic K looks as follows
(cf. [Lemmon and Scott, 1977, p.46], [Goranko, 1994], [Skura, 1999]).
(RK):

` 2Φ −→ C,2Ψ

{` Φ −→ B : B ∈ Ψ}
where C is a 2-free formula that is not (valid) in CL.
It seems that the meta-logical constructions of counter-models for K from

open tableaux (see [Goré, 1999]) and our syntactic refutations (which are for-
mal derivations) are different descriptions of essentially the same procedure.
Both terminate because the number of modal connectives is reduced in each
step.
However, in other logics, the procedures may generally be different, for

the following reasons. The rule RK (mirroring the modal model construc-
tion) is not a sound refutation rule for any proper extension of K, as it
suffices to refute every formula that is not in K. So, new refutation rules
must be provided for other modal logics. It seems that, in transitive logics
like S4, refutation rules must be restricted to Mints-style normal forms (cf.

17



[Skura, 2013]). But it is in these logics that refutation systems really make
a difference because they provide refutations that, at least in some cases,
are simpler than the tableau counter-model constructions (cf. [Skura, 2013,
p.125]). Also, unlike tableau procedures for transitive logics, our refutation
procedures are reduction procedures; in each step the rank of the Mints-style
normal form (a specified natural number) is reduced, so our procedures are
cycle-free.
Finally, we remark that counter-models can be obtained directly from in-

verse refutation trees, by removing the nodes to which MP was applied and
extracting a suitable valuation from the normal forms involved. For details.
see [Skura, 2002, Skura, 2013, Skura, 2017a]. A more detailed analysis of the
relationship between refutation systems and tableau systems (illustrated by
S4) is given in [Skura, 2019b].

4.3 Gentzen-style sequent refutation systems

4.3.1 The antisequent system LK for classical propositional logic

We use capital Greek letters Γ,∆, . . . to stand for finite multisets of formulas
[A1, A2, . . . , An]. To simplify our notation, we write Γ, A and Γ,∆ to mean
the multisets Γ ] [A] and Γ ] ∆, respectively. If Γ = A1, A2 . . . , An, then∧

Γ ≡ A1 ∧ A2 ∧ · · · ∧ An and
∨

Γ ≡ A1 ∨ A2 ∨ · · · ∨ An. With LK we refer
to Gentzen’s sequent calculus for classical propositional logic, as introduced
in [Gentzen, 1935, Szabo, 1969].
Refutational counterparts of ordinary sequent systems are often called in

the literature antisequent systems. Antisequents are usually written as Γ a ∆
and they differ from standard sequents à la Gentzen insofar as they are
intended to affirm their own invalidity. In semantical terms, affirming Γ a ∆
corresponds to say that there is a valuation v such that v(

∧
Γ→

∨
∆) = 0.

Notice that, in spite of the use of the inverted turnstile symbol a, the validity
of Γ a ∆ — i.e. the invalidity of Γ ` ∆ and so its unprovability in LK —
does not necessarily imply the validity of its mirror image ∆ ` Γ. For a very
simple example, the sequent p ` q is invalid, therefore the antisequent p a q
is valid, but the sequent q ` p is classically invalid as well.
The first antisequent system for classical logic was constructed by Tiomkin

in [Tiomkin, 1988]. The propositional part of Tiomkin’s calculus consists in
one refutation axiom scheme together with left- and right-introduction rules

18



for negation and disjunction. The refutation axiom scheme allows the user
to introduce any antisequent Γ a ∆ provided that Γ and ∆ are two disjoint
multisets of atoms (example: p, q a t). Thus, the empty antisequent ‘a ’ is
readily provable in the system as a limit case of the refutation axiom wherein
Γ = ∆ = ∅. As noted in Section 3.3, antisequent calculi for the full language
of PL were independently constructed a few years later in [Goranko, 1994]
and (reportedly) in [Bonatti, 1993].
From now on we will write LK to refer to the full antisequent system, as

formulated in [Goranko, 1994] (cf. Figure 1). Notice that LK’s logical rules
are all unary so that LK-proofs turn out to be simple chains of antisequents.
From semantic viewpoint, logical rules are designed in a way that the very
valuation that falsifies the premise, also falsifies the conclusion. In Figure 2
we give an example of a LK-derivation ending in the truth-functional contin-
gency (p→ q)→ (¬p→ q).
In general we have that:

• LK proves a A if and only if A is not a tautology.

• LK proves A a if and only if A is not a contradiction.

Therefore, by combining the two previous points, we can conclude that LK
proves both a A and A a if and only if A is a truth-functional contingency
[Tiomkin, 2013].
In [Carnielli and Pulcini, 2017], the authors observed how LK logical rules

can be algorithmically generated by a bottom-up reading of the tableau rules
for classical logic once: (i) formulas labelled as true are placed on the left-
hand side of the sequent symbol, (ii) formulas labelled as false are placed
on the right-hand side, and (iii) context variables are added on both sides
of the sequents. The guiding idea is that branching tableau rules gener-
ate two distinct LK logical rules, whereas non-branching rules generate a
single LK logical rule. This procedure is similar to the one employed in
[D’Agostino, 1999] to derive the rules of sequent systems for classical logic
dealing with implicit structural rules (cfr. Kleene’s system G4 or its variant
G3 [Kleene, 1967, Negri et al., 2008]) from tableau rules.
As an illustrative example, consider the tableau rules for classical conjunc-

tion. First, consider the case in which the formula A ∧B is true, namely:
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Axiom:

ax.
Γ a ∆ where Γ and ∆ are two finite multisets of atoms s.t. Γ ∩∆ = ∅

Logical rules:

Γ, A,B a ∆
∧ a

Γ, A ∧B a ∆

Γ a ∆, A a ∧RΓ a ∆, A ∧B
Γ a ∆, B a ∧LΓ a ∆, A ∧B

Γ, A a ∆ ∨R aΓ, A ∨B a ∆

Γ, B a ∆ ∨L aΓ, A ∨B a ∆

Γ a A,B,∆
a ∨

Γ a A ∨B,∆

Γ a A,∆ →aRΓ, A→ B a ∆

Γ, B a ∆ →aLΓ, A→ B a ∆

Γ, A a B,∆
a→

Γ a A→ B,∆

Γ a A,∆
¬ a

Γ,¬A a ∆

Γ, A a ∆
a ¬

Γ a ¬A,∆

Figure 1: The LK sequent calculus.

ax.a q, p, p
¬ a¬p a q, p →aRp→ q,¬p a q
a→

p→ q a ¬p→ q
a→a (p→ q)→ (¬p→ q)

Figure 2: An example of a LK-proof.
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T : A ∧B

T : A

T : B

In this case we proceed by putting all the true formulas on the left-hand side
of the antisequent symbol, distinguishing the conclusions from the premises
as follows: A,B a

A ∧B a
. Then we add context variables on both sides so as

to finally achieve the following LK rule:

Γ, A,B a ∆
∧ a.

Γ, A ∧B a ∆

When we focus, instead, on the case in which A ∧B is taken to be false, we
have to consider the following branching rule

F : A ∧B

F : A F : B

which is expected to produce two different logical rules, one for each branch.
Consider, for instance, the left-most branch, the one claiming the falsity of
the first conjunct. In this case we rewrite the rule as follows: a A .

a A ∧B
Then we add contexts variables on both sides so as to get the following logical
rule:

Γ a ∆, A a ∧R.Γ a ∆, A ∧B
Each of the other logical rules can be obtained by applying the procedure in
the same way.
Two interesting facts are worth observing at this point of our discussion.

The first is that LK is paraconsistent, in the sense that, for any truth-
functional contingency A, LK proves both the antisequents a A and a ¬A.
This peculiarity of the calculus has been emphasised in [Pulcini and Varzi, 2018]
to draw some philosophical remarks and reflect light on the logical nature of
the notion of paraconsistency, cf. [Priest, 2002, Carnielli and Coniglio, 2016].
The other fact is that LK can be classified as a substructural logic insofar as
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it can be proved sound and complete with respect to the set of invalid se-
quents without resorting to the structural rules Weakening and Contraction,
neither explicitly nor implicitly.

4.3.2 Cut-elimination and related computational properties.

As is well-known, there are two ways to formulate the cut-rule. The context-
mixing version is termed multiplicative cut:

Γ ` ∆, A Γ′, A ` ∆′
;

Γ,Γ′ ` ∆,∆′ (MC)

whereas the context-sharing rule is called additive cut:

Γ ` ∆, A Γ, A ` ∆ .
Γ ` ∆

(AC)

In presence of the structural rules Weakening and Contraction, the two
versions MC and AC can be easily proved to be equivalent. However, as
already observed, the LK calculus is a completely substructural system and so
this equivalence cannot be imported from the affirmative to the refutational
side. As a matter of fact, whereas the additive version proves admissible
in LK (namely, adding AC to the LK sequent calculus does not entail new
provable antisequents), its multiplicative counterpart is not. The following
is an easy counterexample to the admissibility of MC in LK.

p a q q a p
MC

p ` p

Tiomkin proposes the two following ‘hybrid’ structural rules that he calls
“cuts for the unprovability” [Tiomkin, 1988].

Γ a ∆ Γ ` ∆, A

Γ, A a ∆

Γ a ∆ Γ, A ` ∆

Γ a ∆, A

The problem with these rules is that they do not violate the subformula
property so, from a strict proof-theoretic point of view, they can be hardly
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defined as ‘cuts’ for all intent and purposes: where is the cut-formula? what
is to be cut?
As shown in [Carnielli and Coniglio, 2016], the additive cut, though admis-

sible, is unnecessarily general for LK, in the sense that it can be replaced by
the two following simpler unary cuts.

Γ, A a ∆
a cut

Γ a ∆

Γ a ∆, A
cut a

Γ a ∆

Once these rules are added to the system, AC turns out not only admissible,
but also trivially derivable.
In [Carnielli and Pulcini, 2017], the authors provide a fully syntactical proof

of cut-elimination, i.e., any antisequent provable by means of a proof that
resorts to cut applications is also provable by means of a cut-free proof.
Such a result is, of course, implicit in the completeness proof provided, for
instance, in [Tiomkin, 1988]. However, the fact of focussing on the dynam-
ics of a normalization procedure instead of dealing with the static concept
of cut-redundancy provides the full setting for the study of the computa-
tional properties of LK. In particular, the normalization procedure outlined
in [Carnielli and Pulcini, 2017] has been shown to enjoy the weak normaliza-
tion property as well as the uniqueness of the normal form. Computational
properties related to normalization in LK have been further optimized in
[Pulcini and Varzi, 2019] by resorting to the proof-nets technique.
In the traditional terminology of proof theory, a proof is said to be analytic

in case any formula displayed in the proof is a subformula of some formula
among those displayed in the end-sequent. To take an example, the proof
presented in Figure 2 is analytic. In both LK and LK, cut-elimination im-
plies the fact that any provable (anti)sequent is provable analytically, i.e., by
means of an analytic proof. However, in LK, analyticity does not necessar-
ily imply simplicity since cut-elimination may increase the size of LK-proofs.
On the contrary, the implementation of cut-elimination in the complemen-
tary system LK always returns one of the simplest proofs (intended as the
shortest) for any provable antisequent [Carnielli and Pulcini, 2017].
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5 Some applications to non-classical logics

5.1 Defining non-classical logics via refutability

5.1.1 Positive and non-negative ways of defining a logic

Propositional logics are usually defined in a positive way, as the least sets
of formulas containing certain given formulas (axioms, deemed a priori ac-
ceptable/valid) and closed under given inference rules (usually, uniform sub-
stitution SUB, MP, and possibly others). However, non-classical logics are
often motivated by negative requirements saying that certain principles are
not acceptable, hence any formulas that formalise or imply them should be
rejected. For example, Intuitionistic Logic can be obtained from some sys-
tems of Classical Logic CL by rejecting the law of excluded middle (LEM)
p ∨ ¬p. Or, paraconsistent logics (see [Skura, 2004a]) can be obtained from
CL by rejecting the law of explosion:

(XP) ¬p→ (p→ q)

A positive way to define such a logic would be to:

1. Specify a set POS of formulas (axioms) that we regard as acceptable.

2. Ensure that the rejected law is not derivable from POS by the inference
rules.

3. Define the new logic as the least set of formulas containing POS and
closed under the inference rules.

In [Skura, 2004a], a new, ‘non-negative’ method of defining a logic was
introduced. It can be described as follows.

• In addition to POS, specify a set NEG of rejected formulas.

• Make sure that no A ∈ NEG is derivable from POS.

• Define the set Ref(POS,NEG) (of refutable formulas) as follows:

A ∈ Ref(POS,NEG) iff some B ∈ NEG is derivable from A by using
POS and the inference rules.
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• Define the new logic to be the set of non-refutable formulas (that is,
the complement −Ref(POS,NEG) of Ref(POS,NEG).

Metaphorically speaking, in the positive approach we want to keep in what
is good, and in the ‘non-negative’ approach we want to keep out what is bad.
We now briefly discuss two examples of non-classical logics obtained from

CL in the non-negative way.

5.1.2 Paraconsistent logics

Let FOR(→,∧,∨,⊥) be the set of all formulas generated from the set VAR
of propositional variables by the binary connectives→,∧,∨ and the constant
⊥ (falsum). We define ¬A := A→ ⊥.
We take as POS the axioms of Positive Logic, i.e. the fragment of the intu-

itionistic logic IPL with the connectives →,∧,∨ (cf. e.g. [Odintsov, 2008]).
As NEG we take {XP}.
Johansson’s logic J (cf. [Odintsov, 2008] is the least set of formulas of

FOR(→,∧,∨,⊥) containing POS and closed under SUB and MP. We note
that adding XP to J results in IPL.
For any A ∈ FOR, the symbol JA denotes the extension of J with the

additional axiom A, i.e. the least set of formulas containing J ∪ {A} and
closed under uniform substitution and MP. For example, the logic JE, where

(E) p ∨ (p→ q) (the extended law of excluded middle)

is called “the logic of classical refutability" (see [Odintsov, 2008]).

Then, by using some results in [Skura, 2004a, Skura, 2017a] and in [Odintsov, 2008],
it can be shown that

−Ref(POS,NEG) = JE.

As an interesting corollary, we obtain the following. Let L be an (axiomatic)
extension of J. We say that L is a paraconsistent analogue of CL iff L ⊆ CL
and XP 6∈ L. (Hence, L ⊂ CL.) It turns out that −Ref(POS,NEG) is the
greatest paraconsistent analogue of CL (see [Skura, 2004a, Corollary 3.2]).

5.1.3 Implicational relevance logics

A logic L is said to have the variable-sharing property (VSP) if
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A→ B is non-valid in L, whenever A and B share no variables.

For instance, relevance logics are logics with the VSP (see [Anderson and Belnap, 1975]).
The VSP is readily presented as a negative property. It turns out (see

[Skura, 2019a]) that, in a large class of implicational logics (i.e. logics with→
as the only logical connective), the VSP is equivalent to the simpler property
that the following formula PP, regarded as unacceptable in relevance logics,
is non-valid:

(PP) p→ (q → p) (Positive Paradox)

We now take the axioms of the implicational fragment R→ of the relevance
logic R as POS and {PP} (or all formulas A→ B, where A and B share no
variables) as NEG.
Characterizing the set −Ref(POS,NEG) turns out to be a hard technical

problem (see [Skura, 2019a] for some open problems). However, extending
the basic logic to RMO>

→, defined below, makes the task feasible.
Let FOR(→,>) be the set of all formulas generated from VAR by the con-

nective→ and the constant >. The logicRMO>
→ is defined as the least set of

formulas in FOR(→,>) closed under the rules SUB and MP, and containing
the following axioms (cf. [Avron, 1984, Avron, 1990], [Dunn and Restall, 2002]).

• p→ >
• p→ (p→ p)

• (p→ q)→ ((q → r)→ (p→ r))

• (p→ (q → r))→ (q → (p→ r))

• (p→ (p→ q))→ (p→ q)

Consider the logical matrix (see [Skura, 2019a] for details)

3 := ({−1, 0, 1}, {0, 1},→),

where the set of designated values is {0, 1} and x→ y = max(−x, y) if x ≤ y;
else x→ y = min(−x, y). A valuation in the matrix 3 is a function v from
VAR to {−1, 0, 1} extended with v(>) = 1 and v(A→ B) = v(A)→ v(B).
We say that a formula A is valid in 3, denoted A ∈ V al(3), iff v(A) ∈ {0, 1}

for every valuation v. We remark that RMO>
→ ⊆ V al(3), and PP 6∈ V al(3).
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Let us now take as POS the set of axioms of RMO>
→ listed above, and as

NEG we take {PP}. Then, as shown in [Skura, 2019a], we have:

−Ref(POS,NEG) = V al(3).

Also, let L be an axiomatic extension of RMO>
→. We say that L is a

relevant analogue of CL iff L ⊆ CL and PP 6∈ L. (Thus, L ⊂ CL.) It
follows that −Ref(POS,NEG) is the greatest relevant analogue of CL (see
[Skura, 2004a, Corollary 3.2]).

6 Concluding remarks

Refutation systems are not yet explored nearly as deep as traditional logical
deductive systems, and there is an abundance of related open questions and
potential applications, in addition to those discussed in the present paper.
We only briefly mention here one such application, viz. to provide a recur-
sive axiomatization of the non-validities of a logic that may not be (known
to be) recursive axiomatizatizable, but the non-validities of which are known
to be effectively enumerable. A prime example is FOLfin, for which sev-
eral Ł-complete refutation systems proposed in the literature (referenced in
Section 3.4) illustrate the idea. More generally, recursive axiomatizatizable
Ł-complete refutation systems exist for any logic or theory that is defined in
terms of an effectively enumerable class of finite models. For some generic
results of that type see [Goranko and Skura, 2018].
A well-known example of a logic with no known (and, possibly not exist-

ing) recursive axiomatization is Medvedev’s logic of finite problems, for which
a surprisingly simple Ł-complete refutation system (though, employing de-
duction in Kreisel-Putnam’s logic KP) was designed in [Skura, 1992]. There
are, however, many less-known such logical systems waiting for Ł-complete
refutation systems to be designed for them; just one example is the interval
temporal logic of reflexive subinterval relation over the integers, proved to be
(surprisingly) undecidable in [Marcinkowski and Michaliszyn, 2011], while it
has the finite model property by definition, and therefore an effectively enu-
merable set of non-validities.

In conclusion, the inherent importance and potential of the idea of refu-
tation systems is yet to be unravelled. That idea is still waiting for new,
sufficiently convincing applications that would attract the attention of the
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wider logic community and would eventually properly address Łukasiewicz’s
concern about the disparity between deductive acceptance and rejection of
a logical statement, raised in [Łukasiewicz, 1951]. Discovering such applica-
tions is the so far main challenge in that field.
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