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a b s t r a c t

We provide a behavioural logic for configuration structures, a model due to van Glabbeek
and Plotkin which generalises the families of (finite) configurations of event structures.
The logic is a conservative extension of a logic provided by Baldan and Crafa for prime
event structures. We show that logical equivalence can be characterized as a form of
hereditary history preserving bisimilarity. We compare such a notion of bisimilarity with
an equivalence proposed by van Glabbeek in the setting of higher-dimensional automata,
showing that, in general, it is finer, while the two notions coincide in the framework of
general event structures. Finally, we explore how to restrict the general logic to capture a
notion of history preserving bisimilarity.

0. Introduction

Event structures [22] are a classical model in the theory of concurrency. They describe the computation of a system 
in terms of events, which represent the (atomic) execution of computational steps, and dependencies between such events, 
clarifying when events are enabled. They are true concurrent semantic models, where concurrency is captured as a primitive 
notion, generally opposed to the interleaving models, where concurrency of actions is reduced to the non-deterministic 
choice among their possible linearisations.

Various kinds of event structures have been considered in the literature. The most studied event-based model is that of 
prime event structures [11] (PESs, for short), where dependencies between events are expressed in terms of causality, a partial 
order capturing the fact that an event is enabled after some others (its causes) have been executed, and conflict, capturing 
the intuition that some events cannot be executed in the same computation (e.g., because they consume shared resources). 
PESs have been used to provide a true concurrent semantics to a number of formalisms, ranging from Petri nets [11] to 
graph rewriting systems [2] and process calculi [8,20,21]. A survey on the use of such causal models can be found in [23].

In general event structures [22], causality is replaced by an enabling relation between (finite) sets of events and events. 
Binary conflict is sometimes replaced by a consistency predicate, which explicitly describes the sets of events that can 
occur in the same computation. Configuration structures [19] (CSs, for short) can be seen as a further generalisation: a CS is 
simply a set of events with a set of configurations which represent the legal computations. This means that the notion of 
configuration becomes primitive, i.e., it is not induced by relations over events.

When comparing system models, the operational description can be too concrete and behavioural equivalences are nor-
mally introduced to equate system specifications that, although syntactically different, denote the same system behaviour. 
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In particular, true concurrent equivalences over prime event structures have been widely investigated (see, e.g., [16]), 
which take into account in different ways the concurrency features of a computation. Hereditary history preserving (hhp-
)bisimilarity [6], the finest equivalence in the true concurrent spectrum of [16], has been shown to arise as a canonical 
behavioural equivalence when considering partially ordered computations [10]. Coarser equivalences like history preserving 
(hp-)bisimilarity [7,9,15], pomset and step bisimilarity have also been considered. Correspondingly, a number of logics have 
been studied, which represent the logical counterpart of such equivalences, in the sense that two models are equivalent 
if and only if they exactly satisfy the same logical formulae. In particular, some event-based logics have been introduced, 
where formulae include variables which can be bound to events [3,5,12] and formulae predicate about the dependencies 
on such events. The full logic characterises hhp-equivalence, and suitable fragments can be identified corresponding to the 
coarser equivalences.

The mentioned corpus of results smoothly extends to stable event structures [22]; intuitively, these are event structure 
models where causality among events can be always represented in terms of partial orders, possibly not global but defined 
locally to each configuration. Instead, less effort has been devoted to the study of behavioural equivalences and logics on 
general event structures; in this case, the extension is not obvious. The main problem is that causality, which is pivotal in 
many notions and results, is not available for general event structures.

The only attempt at notions of hhp- and hp-bisimilarity for non-stable models that we are aware of were provided 
by [18], in the setting of higher-dimensional automata [13,17]. Such definitions of behavioural equivalences rely on the 
idea of trace homotopy, and they can be instantiated to configuration structures and general event structures, as these 
can be seen as special higher-dimensional automata. However, [18] does not propose any logical characterization for such 
equivalences.

In this paper we focus on CSs and provide a logic to express properties on them. As a by-product, we shall discover that 
the induced logical equivalence coincides with a form of hhp-bisimilarity that is finer than the hhp-bisimilarity proposed in 
[18] and coincides with it for CSs closed under bounded union, which corresponds to general event structures.

The starting point is the observation that a simplified version of the logic L for hhp-bisimilarity in [3,5] can be naturally 
interpreted over configuration structures. The original logic had formulae that predicate about causal dependencies between 
events, and thus would not suite to be used on CSs. Here we consider a simplified version L0 , already studied in [4], where 
one can only quantify events and check their executability. More precisely, the logic has two main operators. The formula 
(a z)ϕ is satisfied in a state when an a-labelled future event exists, which is bound to z and then ϕ (which can refer to z) 
holds. The formula 〈z〉 ϕ says that the event bound to z is enabled in the current state and, after its execution, ϕ holds. As 
an example, consider the CS formed by the configurations ∅, {a}, {b}, {a, c}, {b, c}: here, we have three events (labelled by 
a, b and c) such that a and b are mutually exclusive and either of them enables c. A formula in L0 that describes this 
behaviour is (a x)(b y)(c z)(〈x〉 〈z〉 T ∧ 〈y〉 〈z〉 T ∧ ¬〈x〉 〈y〉 T ∧ ¬〈y〉 〈x〉 T).

We define a semantics for this logic on configuration structures, conservative on the subclass of prime event structures 
(Proposition 1). We show that the logic is expressive enough to capture the property of a (finite bounded) CS to be a (stable) 
event structure (Proposition 2). Furthermore, we show that the logical equivalence induced by L0 corresponds to a form of 
hhp-bisimilarity that we refer to as configuration-based hhp-bisimilarity: two CSs satisfy the same closed formulae in L0 if 
and only if they are configuration-based hhp-bisimilar (Theorem 1).

Configuration based hhp-bisimilarity has a definition similar in spirit to those for prime and stable event structures. 
Roughly, hhp-bisimilarity requires that events of one system are simulated by events of the other system with the same 
causal history and with the “same concurrency” properties, a constraint which is often captured by means of a backtrack-
ing condition: for any two related computations, the computations obtained by backward performing a pair of related 
events must be related too. Since both constraints can be captured by suitably mixing a forward and a backward form of 
bisimilarity, this has no reference to causality and can be adapted to general CSs. We also compare configuration-based 
hhp-bisimilarity with a notion proposed in [18], referred to as path based hhp-bisimilarity, whose definition is based on 
paths and obtained instantiating a notion for higher-dimensional automata. It turns out (Proposition 3) that our notion of 
configuration based hhp-bisimilarity is strictly finer in the setting of CSs, and coincides with the proposal of [18] when 
restricting to CSs that are closed under bounded union (i.e., when the CSs are general event structures).

Finally, we also investigate a notion of configuration-based hp-bisimilarity. We show that, as for the hereditary version, it 
is in general finer than path-based hp-bisimilarity considered in [18] and coincides with it for CSs closed under bounded 
union, i.e., for general event structures (Proposition 4). Finally, we provide a logical characterisation of configuration-based 
hp-bisimilarity, i.e., we isolate a fragment Lh of L0 whose logical equivalence is configuration-based hp-bisimilarity (Theo-
rem 2).

The rest of the paper is structured as follows. In Section 1 we recall the definition of configuration structures. In Section 2
we define the logic L0 on CSs; we show that it conservatively extends the logic of [4] and that it is able to characterize 
whether a CS is a (stable) event structure. In Section 3 we show that the logic induced by L0 can be operationally char-
acterized by a form of hhp-bisimilarity that is finer than the hhp-bisimilarity proposed by [18] for CSs (and coincides with 
it in the setting of general event structures). In Section 4 we start from the hp-bisimilarity from [18], devise an alternative 
definition (that coincides with it in the setting of general event structures) and provide a logical characterization of such an 
equivalence, by isolating a proper sublogic of L0 . In Section 5 we draw some conclusions and directions for future work. To 
streamline reading, a few proofs are relegated to the Appendix.
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Fig. 1. (a): The configuration structure C1 and (b) its transition system.

1. Configuration structures

Configuration structures, introduced in [19], generalise the families of (finite) configurations of event structures.

Definition 1 (Configuration structures). A (labelled) configuration structure (over an alphabet A) is a pair C = (C, l) where C
is a family of finite sets (the configurations) and l : EC → A is a labelling function, where the set of events is defined as 
EC = ⋃

X∈C X .

Intuitively, the events in EC represent possible computational steps, while the elements in C , the configurations, rep-
resent the legal computations. A configuration can evolve into another by executing an event; this is represented by the 
transition relation defined below.

Definition 2 (Transition system). Let C = (C, l) be a configuration structure. For X, X ′ ∈ C , we write X
a−→ X ′ when X ′ = X 	{e}

and l(e) = a. We simply write X −→ X ′ when we are not interested in the label.

A configuration structure C = (C, l) is called rooted when ∅ ∈ C and connected if ∅ −→∗ X , for all X ∈ C . In this paper, 
we shall only consider rooted and connected CSs. C is closed under bounded union if, when X, X ′, Y ∈ C and X, X ′ ⊆ Y , then 
X ∪ X ′ ∈ C . It is stable if additionally it is closed under bounded intersection, i.e., if, when X, X ′, Y ∈ C and X, X ′ ⊆ Y , then 
X ∩ X ′ ∈ C . It can be seen that the family of finite configurations of the general event structures in [22] are exactly the 
configuration structures which are rooted, connected and closed under bounded union. If in addition they are stable, they 
correspond to stable event structures.

In this paper, we will use some graphical conventions to represent CSs. First, we write

e

e1 . . . en

to denote that in every configuration where e occurs, at least one between e1, . . . , en must occur as well. Hence this is a 
form of “disjunctive causality”. In addition, the notation

e e′#

means that, in every configuration where e occurs, e′ cannot occur, and vice versa. In the terminology of event structures, 
this represents a conflict. In order to simplify the pictures, in what follows we shall assume that events with the same label 
are always in conflict. Finally, events will be named by their label, possibly with subscripts.

Example 1. Consider the CS C1 arising from the diagram in Fig. 1a. The configurations are ∅, {a0}, {b0}, {a1}, {b1}, {a0, b0}, 
{a0, b1}, {a1, b0}, {a1, b1}, {a1, c1}, {b1, c1}, {a1, b1, c1}. According to our conventions, the labelling is l(a0) = l(a1) = a, 
l(b0) = l(b1) = b, and l(c1) = c; furthermore, events with the same label are assumed to be in conflict, hence {a0, a1}
and {b0, b1} are not configurations. The transition system associated with C1, as introduced in Definition 2, is depicted in 
Fig. 1b.
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Notice that C1 is rooted, connected and closed under bounded union, hence it represents the set of configurations of 
some event structure. Instead, it is not stable, i.e., it is not closed under bounded intersection: the configurations {a1, c1}
and {b1, c1} are bounded by {a1, b1, c1} but {a1, c1} ∩ {b1, c1} = {c1} is not a configuration.

2. A logic for configuration structures

We shall now present a logic L0 for expressing properties of CSs. Formulae in L0 predicate over existence and exe-
cutability of events in computations. It is a small core of the logic L in [3,5], which was intended for prime event structures, 
where there is a notion of causality and the operators explicitly refer to the dependencies between events. This core has 
been already studied in [4], where it is shown to characterise hhp-bisimilarity on prime event structures. After presenting 
its syntax and semantics, we shall prove that L0 conservatively extends L; moreover, we shall show that it is expressive 
enough for expressing properties of CSs, notably stability.

2.1. Syntax and semantics

Let V be a countable set of variables; notationally, we use letters x, y, z... to range over V , whereas letters a, b, c, ... are 
used to range over the set of actions A.

Definition 3 (Syntax). The logic L0 is defined by the following syntax:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ

T, ∧ and ¬ are standard; disjunction ϕ ∨ψ is defined, as usual, by duality as the formula ¬(¬ϕ ∧¬ψ). The logic has two 
main operators, whose meaning will be formalized in Definition 6, when presenting the semantics of the logic. Intuitively, 
the formula (a z)ϕ is satisfied in a state when an a-labelled future event exists such that, if such event is bound to z, then 
ϕ (which normally refers to z) holds. A formula (a z)ϕ can be seen as a special case of the formula (x, y < a z)ϕ of the 
logic in [3,5], stating that z is causally dependent from (the events bound to) variables x and is not causally dependent 
from (the events bound to) variables y. Since in CSs causality is not a primitive notion, in L0 we use the less informative 
existential operator (a z) of [3,5]. By contrast, the formula 〈z〉 ϕ has the same shape as in [3,5] and it says that the event 
bound to z is enabled in the current state and, after its execution, ϕ holds. The notation for this operator is reminiscent 
of the diamond modality of Hennessy-Milner logic for CCS, but note that it does not have the same existential flavor: it 
just checks whether one specific event, viz. the one bound to variable z, is executable in the current configuration. The 
standard diamond modality rather corresponds to a combined formula (a z)〈z〉 ϕ asking for the existence and executability 
of an event labelled by a (see [5] for the formal correspondence).

The operator (a z) acts as a binder for the variable z. Accordingly, the free variables of a formula ϕ are defined as follows:

fv((a z)ϕ) = fv(ϕ) \ {z} fv(〈z〉ϕ) = fv(ϕ) ∪ {z}
fv(T) = ∅ fv(¬ϕ) = fv(ϕ) fv(ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

Formulae are considered up to α-conversion of bound variables; so we can assume that formulae do not bind the same 
variable multiple times.

We define a derived operator which requires the execution of a set of previously observed (quantified) events. Other 
than being generally useful, this also turns out to be handy for some forthcoming definitions and proofs. Given a finite set 
of variables x ⊆ V , we write 〈x〉 ϕ for the formula inductively defined by

• 〈∅〉 ϕ � ϕ; and
• 〈x〉 ϕ �

∨
z∈x〈z〉〈x \ {z}〉 ϕ , when x �= ∅.

Intuitively, 〈x〉 ϕ states that, from the current state, the events bound to the variables in x can be executed, in some order, 
and then ϕ holds.

The logic L0 is interpreted over CSs. In particular, the satisfaction of a formula ϕ is defined with respect to triples 
(X, F , η), where: X ∈ C is a configuration representing the current state of the computation; F ∈ C represents a reachable 
future state, in a sense clarified below, from X ; and η : V → EC is a function, called environment, that maps the free variables 
of ϕ to events. It is required that X ∪η(fv(ϕ)) ⊆ F , i.e., the future F must include the current state of the computation X and 
also the events bound to variables occurring free in the formula (intuitively, these are the events that have been observed 
before but possibly not yet executed). Additionally, the future F must be reachable from X , using not only forward but also 
backward transitions, which however must preserve events in X ∪ η(fv(ϕ)).

In order to formalise the above condition, we introduce a family of relations over configurations indexed by sets of 
events.
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Fig. 2. Two configuration structures.

Definition 4 (Reachability). Let C = (C, l) be a CS. For a fixed set of events S ⊆ EC , we say that two configurations X, Y ∈ C

are in the relation X −→
S

Y if S ⊆ X −→ . . . −→ Y . The back and forth reachability relation
∗←→
S

is the symmetric and transitive 
closure of −→

S
.

Note that relation −→
S

(and, hence, ∗←→
S

) is reflexive, at least when restricted to the configurations including S . Intuitively, 

X
∗←→
S

Y means that, from configuration X , it is possible to reach the configuration Y by adding or removing events, via the 
forward or backward transitions which become available along the way, but never removing the events in S . For example, 
by looking at Fig. 1b, we have that {a1, b1} −−→{a1} {a1, b1, c1}, that {a1, b1, c1} ∗←−→{a1} {a1, c1} and that {a1, b1, c1} ∗←−→{a1}
{a1, b0}: the first relation holds thanks to the forward c-step from the two configurations; the second one holds thanks 
to the backward b-step from the two configurations; finally, the third one holds because {a1, b1, c1} can move backward 
to {a1} (via the b- and c-labelled transition, in either order) and {a1} can move forward to {a1, b0} (via the b-labelled
transition). Note that in these transitions we only traverse configurations that contain the event a1 , as prescribed by the 
subscript of ←−→{a1} .

We can now formalise the notion of legal triple, characterising the triples complying with the requirements hinted at 
above.

Definition 5 (Legal triple). Given a CS C , let EnvC denote the set of all environments, i.e., of functions η : V → EC . Given a 
formula ϕ in L0 , a triple (X, F , η) ∈ C × C × EnvC is legal for ϕ if there exists F ′ ∈ C such that X −→ . . . −→ F ′ ∗←−−−−−→

X∪η(fv(ϕ))
F . 

We write ltC(ϕ) for the set of legal triples for ϕ in C .

We omit the subscripts and write Env and lt(ϕ) when the CS C is clear from the context. The notion of a legal triple is 
conceptually similar to that of a legal pair considered for PESs in [4] (a formal definition is provided later in Definition 9), 
where a legal pair is a pair (X, η) such that events in the current configuration and those planned, i.e., bound by η to free 
variables in ϕ , are not in conflict with each other. For general CSs, there is no explicit conflict between events. Events can 
be enabled in different ways and different enablings can be incompatible, in the sense that their union is not included in a 
configuration. For instance, in the CS of Fig. 2a, event d can be enabled by either {a, b, c} or by {c} and the two enablings 
are incompatible because, roughly speaking, they occur along conflictual computations (visibly on diverging paths). For this 
reason, when planning events in the future, like d, we have also to plan the future computation it will be in. For instance, 
in the CS at hand, the triple ({c}, {a, b, c, d}, η[x �→ d]) is not legal for the formula 〈x〉 T, since {c} −→∗ {c} ∪ η[x �→ d](x) =
{c, d}, but then {c, d} can reach {a, b, c, d} only by retracting c and d, i.e., more precisely {c, d} ∗←−→{c,d} {a, b, c, d} fails. It 

can be seen that, actually, all triples ({c}, {a, b, c, d}, η) are not legal independently of η and the formula, since {c} can 
reach {a, b, c, d} only by retracting c.

In general, the fact that a triple is legal depends also on the environment and the free variables of the formula. Consider, 
for instance, the CS in Fig. 2b and let, as in the figure, X = {a}, F = {c, e, a, d} and ϕ = 〈x〉 T. Then (X, F , η[x �→ e]) is legal 
for ϕ . In fact X ∪ η[x �→ e](fv(ϕ)) = {a, e}. Moreover X −→∗ F ′ = {a, b, c, e} and F ′ ∗←−→ F . Instead, (X, F , η[x �→ d]) is not 
{a,e}
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legal for the same formula ϕ , since X −→∗ F ′′ = {a, b, c, d}, i.e., X can reach a state including X ∪ η[x �→ d](fv(ϕ)) = {a, d}, 
but then it is not the case that F ′′ ∗←−→{a,d} F .

Definition 6 (Semantics). Let C be a CS. The denotation in C of a formula ϕ , written { |ϕ| }C(⊆ C × C × EnvC), is inductively 
defined as follows:

{|T|}C = lt(T)

{|ϕ1 ∧ ϕ2|}C = {|ϕ1|}C ∩ {|ϕ2|}C ∩ lt(ϕ1 ∧ ϕ2)

{|¬ϕ|}C = lt(ϕ) \ {|ϕ|}C

{|(a z)ϕ|}C = {(X, F , η) ∈ lt((a z)ϕ) | ∃ F ′ ∈ C . F
∗←−−−−−−−−→

X∪η(fv((a z)ϕ))
F ′

∧ ∃ e ∈ F ′ \ X . l(e) = a
∧ (X, F ′, η[z �→ e]) ∈ {|ϕ|}C}

{|〈z〉 ϕ|}C = {(X, F , η) ∈ lt(〈z〉 ϕ) | X
l(η(z))−−−→ X ∪ {η(z)}

∧ (X ∪ {η(z)}, F , η) ∈ {|ϕ|}C}
When (X, F , η) ∈ { |ϕ| }C , we say that the CS C satisfies the formula ϕ in the configuration X with planned future F and en-
vironment η, and we write C, X, F |=η ϕ . For closed formulae, we write C |= ϕ , when there exists η such that C, ∅, ∅ |=η ϕ .

In words, the formula (a z) ϕ holds in (X, F , η) when the future F of the configuration X can reach (via back and forth 
transitions) another future F ′ containing an a-labelled event e which, once bound to z, makes the formula ϕ satisfiable. The 
formula 〈z〉 ϕ states that the event bound to z is currently enabled, hence it can be executed producing a new configuration 
which satisfies the formula ϕ .

An environment η is a total function, but it can be shown that the semantics of a formula ϕ only depends on the value 
of the environment on the free variables fv(ϕ). In particular, for closed formulae the environment is irrelevant. Moreover, it 
can be easily seen that α-equivalent formulae have the same semantics.

As an example, consider the formula ϕ = (a x) (b y) 〈x〉 〈y〉 ¬(c z) T, requiring the existence of two events, labelled a
and b respectively, such that, after executing them, there will be no c-labelled event in any possible future. Such formula 
is satisfied by the CS C1 in Fig. 1, by binding the variable x to the event a1 and variable y to b0 . Also the formula 
ψ = (a x) (b y) (〈x〉 (c z) T ∧ 〈y〉 ¬(c w) T), stating that there is a c in the future of a but not in that of b, is satisfied by C1, 
with the same bindings as before. Actually, the existence of a c in the future of some events can be expressed even before 
executing them. In fact, we could have used the formulae ϕ′ = (a x) (b y) ¬(c z) 〈x〉 〈y〉 T and ψ ′ = (a x) (b y) ((c z) 〈x〉 T ∧
¬(c w) 〈y〉 T) instead of the previous ones, with the same results on C1.

A simple property of the semantics is that formulae are equally satisfied (or unsatisfied) by triples containing the same 
state and different, but related, futures. This can be easily proved by induction on the formula.

Lemma 1 (Reschedulable futures). Let C be a CS and ϕ a formula of L0 . Given an environment η ∈ Env and configurations X, F1, F2 ∈
C such that (X, F1, η) ∈ lt(ϕ) and F1

∗←−−−−−→
X∪η(fv(ϕ))

F2 , then C, X, F1 |=η ϕ iff C, X, F2 |=η ϕ .

Proof. We start by observing that, for all (X, F1, η) ∈ lt(ϕ) and F1
∗←−−−−−→

X∪η(fv(ϕ))
F2, we know that (X, F2, η) ∈ lt(ϕ), by defini-

tion of legal triples. Then, we proceed by induction on the shape of the formula ϕ . We discuss only some interesting cases 
and a single direction, the other being symmetric.

ϕ = (a z)ψ : Assume that C, X, F1 |=η (a z)ψ . By definition of the semantics, we know that there are F ′ ∈ C and e ∈ F ′ \
X such that l(e) = a, F1

∗←−−−−−−−−→
X∪η(fv((a z)ψ))

F ′ and C, X, F ′ |=η[z �→e] ψ . Since by hypothesis F1
∗←−−−−−−−−→

X∪η(fv((a z)ψ))
F2, by 

transitivity we also have that F2
∗←−−−−−−−−→

X∪η(fv((a z)ψ))
F ′ . Then, again by definition of the semantics, we can immediately 

conclude that C, X, F2 |=η (a z)ψ , since we already know that (X, F2, η) ∈ lt((a z)ψ).

ϕ = 〈z〉 ψ : Assume that C, X, F1 |=η 〈z〉 ψ . By definition of the semantics, we know that X
l(η(z))−−−→ X ∪ {η(z)} = X ′ and 

C, X ′, F1 |=η ψ . This also means that (X ′, F1, η) ∈ lt(ψ). Observing that X ∪ η(fv(〈z〉 ψ)) = X ′ ∪ η(fv(ψ)), we im-

mediately deduce that F1
∗←−−−−−−→

X ′∪η(fv(ψ))
F2. Then, by inductive hypothesis, we obtain that C, X ′, F2 |=η ψ . Again 

by definition of the semantics, we can conclude that C, X, F2 |=η 〈z〉 ψ , since we already know that (X, F2, η) ∈
lt(〈z〉ψ). �
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2.2. Comparison with the logic in [4]

We now show that the semantics of L0 defined in this paper, when restricted to prime event structures, is equivalent to 
the semantics defined in [4]. To this aim, we first recall the notion of PESs and the original definition of the semantics of 
L0 over PESs.

Definition 7 (Prime event structures [11]). A (labelled) prime event structure (PES, for short) over an alphabet A is a tuple 
E = (E, <, #, l) such that

• E is a set of events;
• < ⊆ E × E is the causality relation, i.e. a strict partial order such that, for all e ∈ E , the set �e� = {e′ : e′ < e} is finite;
• # ⊆ E × E is the conflict relation, i.e. an irreflexive and symmetric relation such that, for all e, e′, e′′ ∈ E , if e < e′ and

e#e′′ , then e′#e′′;
• l : E →A is the labelling function.

Computations in a PES are naturally captured by the notion of configuration.

Definition 8 (Consistent set, configurations). Let E = (E, <, #, l) be a PES. A finite set of events X ⊆ E is called consistent if, for 
all e, e′ ∈ X , we have that ¬(e#e′). It is called configuration if in addition, when e, e′ ∈ E , e′ < e and e ∈ X , then e′ ∈ X . The 
set of configurations of E is denoted CE .

It can be seen that for a PES E = (E, <, #, l) the pair (CE , l) is a CS closed under intersection and bounded union. 
Conversely, every CS C = (C, l) closed under intersection and bounded union corresponds to a PES E(C) � (EC, <, #, l)
where, for all e, e′ ∈ EC :

• e < e′ when ∀ X ∈ C , if e′ ∈ X , then e ∈ X ;
• e#e′ when � X ∈ C such that {e, e′} ⊆ X .

By the definition above and the properties of C , it can be seen that < is a partial order over EC , and # is irreflexive, 
symmetric, and hereditary with respect to <. The set of causes of an event e, defined by �e� = {e′ ∈ EC | e′ ≤ e}, is the 
smallest configuration of C including e, which is guaranteed to be unique since C is closed under intersection.

In [4], given a PES E = (E, <, #, l), the satisfaction of a formula ϕ is defined in L0 with respect to pairs (X, η), where 
X ∈ CE and η : V → E maps the free variables of ϕ to events. Similarly to L0 , the semantics uses a notion of legality for 
such pairs.

Definition 9 (Legal pair). Let E be a PES. Given a formula ϕ of L0 , a pair (X, η) ∈ CE × EnvE is legal for ϕ if X ∪ η(fv(ϕ)) is 
a consistent set of events. We write lpE (ϕ) for the set of legal pairs for ϕ .

Then, the semantics is defined as follows.

Definition 10 (PES semantics). Let E be a PES. The denotation in E of a formula ϕ , written | [ϕ] |E (⊆ CE × EnvE ), is inductively 
defined as follows:

|[T]|E = CE × EnvE

|[ϕ1 ∧ ϕ2]|E = |[ϕ1]|E ∩ |[ϕ2]|E ∩ lpE (ϕ1 ∧ ϕ2)

|[¬ϕ]|E = lpE (ϕ) \ |[ϕ]|E

|[(a z)ϕ]|E = {(X, η) ∈ lpE ((a z)ϕ) | ∃ e ∈ E \ X . l(e) = a
∧ X ∪ {e} ∪ η(fv(ϕ) \ {z}) consistent
∧ (X, η[z �→ e]) ∈ |[ϕ]|E }

|[〈z〉 ϕ]|E = {(X, η) | X
l(η(z))−−−→ X ∪ {η(z)} ∧ (X ∪ {η(z)}, η) ∈ |[ϕ]|E }

When (X, η) ∈ | [ϕ] |E , we say that the PES E satisfies the formula ϕ in the configuration X and environment η.

We now show that the semantics introduced in Definition 6 for the logic L0 and the one reviewed in Definition 10 for 
the core of the logic L are actually the same, when the former is interpreted over PESs. The proof is in Appendix A.1. Recall 
that PESs are the subclass of CSs which are closed under intersection and bounded union (see [19]); therefore, we restrict 
to such CSs.
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Proposition 1 (Logics over PESs). Let C be a CS closed under intersection and bounded union, and ϕ be a formula of L0 . For all 
configurations X, F ∈ C and environment η ∈ EnvC such that (X, F , η) ∈ lt(ϕ), it holds C, X, F |=η ϕ iff (X, η) ∈ | [ϕ] |E(C) , where 
E(C) is the PES corresponding to C .

2.3. Expressiveness of L0

We now show that the property of being closed under bounded union, respectively intersection (and, thus, stability), can 
be expressed as a logical formula, at least for finite CSs. In order to simplify the writing, let (_ x)ϕ , with x = x1 . . . xn , denote 
the formula 

∨
a1..an∈An (a1 x1) . . . (an xn)ϕ .

Given a finite CS C , with |EC | = n, consider the following formula of L0:

ψC �
∧

x,y,w �=∅

x,y,z,w pairwise disjoint
|x|+|y|+|z|+|w|≤n

¬(_ x) (_ y) (_ z) (_ w)

(
〈x ∪ z〉T ∧ 〈y ∪ z〉T ∧ 〈x ∪ y ∪ z ∪ w〉T ∧ ¬〈x ∪ y ∪ z〉T

)

Such a formula requires that, for every pair of non-empty sets of variables (represented by x∪ z and y ∪ z respectively, hence 
with intersection z) which correspond to configurations of C (expressed by the first two conjuncts inside the parentheses), 
if their union x ∪ y ∪ z is included in some configuration (viz., x ∪ y ∪ z ∪ w in the formula), then x ∪ y ∪ z itself is also 
a configuration of C (expressed via the fourth conjunct). Notice that the satisfaction of the third conjunct, requiring the 
executability of all the events bound to the variables in x, y, z and w , implies that the corresponding four sets of events 
are pairwise disjoint. Thus, no event is required to be executed multiple times in the fourth conjunct, which would then 
inadvertently hold. Thereby, C satisfies ψC if and only if C is closed under bounded union.

Closure under bounded intersection can be characterised in a similar way via the formula

θC �
∧

x,y,z �=∅

x,y,z,w pairwise disjoint
|x|+|y|+|z|+|w|≤n

¬(_ x) (_ y) (_ z) (_ w)

(
〈x ∪ z〉T ∧ 〈y ∪ z〉T ∧ 〈x ∪ y ∪ z ∪ w〉T ∧ ¬〈z〉T

)

In this case, the two configurations will be those bound to the variables in x ∪ z and y ∪ z, respectively, so that z is their 
intersection. Indeed, for the same reason mentioned above, the events bound to x, y and z are ensured to be pairwise 
disjoint. Then, it is enough to check that, for every such configurations, their intersection is itself a configuration, which is 
required, similarly to before, via the last conjunct inside the parentheses.

The properties of ψC and θC are collected in the following result, whose proof is immediate:

Proposition 2. A CS C is an event structure if C |= ψC ; furthermore, C is stable if also C |= θC .

Example 2. Let us now consider the CS C1 given in Example 1, which is clearly finite, with |EC1 | = 5. The formula

ψC1 � ¬(_ x)(_ y)(_ w)(〈x〉T ∧ 〈y〉T ∧ 〈xyw〉T ∧ ¬〈xy〉T)

∧ ¬(_ x)(_ y)(_ z)(_ w)(〈xz〉T ∧ 〈yz〉T ∧ 〈xyzw〉T ∧ ¬〈xyz〉T)

∧ ¬(_ x)(_ y)(_ z1z2)(_ w)(〈xz1z2〉T ∧ 〈yz1z2〉T ∧ 〈xyz1z2 w〉T ∧ ¬〈xyz1z2〉T)

∧ ¬(_ x)(_ y)(_ w1 w2)(〈x〉T ∧ 〈y〉T ∧ 〈xyw1 w2〉T ∧ ¬〈xy〉T)

∧ ¬(_ x)(_ y)(_ z)(_ w1 w2)(〈xz〉T ∧ 〈yz〉T ∧ 〈xyzw1 w2〉T ∧ ¬〈xyz〉T)

∧ ¬(_ x)(_ y)(_ w1 w2 w3)(〈x〉T ∧ 〈y〉T ∧ 〈xyw1 w2 w3〉T ∧ ¬〈xy〉T)

∧ ¬(_ x)(_ y1 y2)(_ w)(〈x〉T ∧ 〈y1 y2〉T ∧ 〈xy1 y2 w〉T ∧ ¬〈xy1 y2〉T)

∧ ¬(_ x)(_ y1 y2)(_ z)(_ w)(〈xz〉T ∧ 〈y1 y2z〉T ∧ 〈xy1 y2zw〉T ∧ ¬〈xy1 y2z〉T)

∧ ¬(_ x)(_ y1 y2)(_ w1 w2)(〈x〉T ∧ 〈y1 y2〉T ∧ 〈xy1 y2 w1 w2〉T ∧ ¬〈xy1 y2〉T)

∧ ¬(_ x)(_ y1 y2 y3)(_ w)(〈x〉T ∧ 〈y1 y2 y3〉T ∧ 〈xy1 y2 y3 w〉T ∧ ¬〈xy1 y2 y3〉T)

∧ ¬(_ x1x2)(_ y)(_ w)(〈x1x2〉T ∧ 〈y〉T ∧ 〈x1x2 yw〉T ∧ ¬〈x1x2 y〉T)

∧ ¬(_ x1x2)(_ y)(_ z)(_ w)(〈x1x2z〉T ∧ 〈yz〉T ∧ 〈x1x2 yzw〉T ∧ ¬〈x1x2 yz〉T)

∧ ¬(_ x1x2)(_ y)(_ w1 w2)(〈x1x2〉T ∧ 〈y〉T ∧ 〈x1x2 yw1 w2〉T ∧ ¬〈x1x2 y〉T)

∧ ¬(_ x1x2)(_ y1 y2)(_ w)(〈x1x2〉T ∧ 〈y1 y2〉T ∧ 〈x1x2 y1 y2 w〉T ∧ ¬〈x1x2 y1 y2〉T)

∧ ¬(_ x x x )(_ y)(_ w)(〈x x x 〉T ∧ 〈y〉T ∧ 〈x x x yw〉T ∧ ¬〈x x x y〉T)
1 2 3 1 2 3 1 2 3 1 2 3
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requiring closure under bounded union, as defined above, is satisfied by C1. In fact, C1 is closed under bounded union, 
since there is no pair of configurations such that their union is included in some other configuration but it is not itself 
one.

On the other hand, C1 does not satisfy the formula θC1 . In fact, by taking x = (x), y = (y), z = (z) and w = ε , we 
can bind x to the event a1 and y to b1 , which, paired with z bound to c1 , form the two configurations {a1, c1} and 
{b1, c1}, respectively, that are both included in the configuration {a1, b1, c1}. However, the intersection z corresponds to 
the singleton {c1} which is not a configuration. Hence, the conjunct of θC1

¬(_ x)(_ y)(_ z)(〈xz〉T ∧ 〈yz〉T ∧ 〈xyz〉T ∧ ¬〈z〉T)

turns out to be false, and this fact falsifies θC1 ; indeed, C1 is not closed under bounded intersection. This shows also that 
C1 is not stable, as already mentioned in Example 1.

3. Logics and bisimilarities

We shall now discuss the equivalence induced by L0 , that holds whenever two arbitrary CSs C1 and C2 satisfy the
same set of L0-formulae. In particular, we shall prove that such an equivalence coincides with a form of hereditary history 
preserving bisimilarity [6] (hhp-bisimilarity, for short). As usual, this result holds only for image-finite CSs, that are those 
structures (C, l) such that, for every X ∈ C and a ∈A, the set of configurations reachable from X via a is finite.

Remark. In the rest of the paper, all CSs will be implicitly assumed to be image-finite.

We first introduce a notion of hhp-bisimilarity (called configuration-based hhp-bisimilarity, chhpb for short), that strongly 
resembles the standard notion of hhp-bisimilarity for prime event structures. Then, we prove that chhpb coincides with the 
equivalence induced by L0 . Finally, we relate our notion of hhp-bisimilarity with one introduced in [18] (that we call path-
based hhp-bisimilarity, phhpb for short): in particular, the two notions coincide if we work with CSs closed under bounded 
union (i.e., general event structures); otherwise chhpb is strictly finer than phhpb.

3.1. Configuration-based hhp-bisimilarity

We start by defining forward and backward bisimulations as bisimulations between CSs where we record the correspon-
dence between events that simulate each other. Some ideas are similar to [1], which however worked on stable CSs and 
relied on the causality relation defined over configurations. Since for general CSs no causality can be defined, several notions 
have to be changed; in particular, configuration isomorphism is simply a set bijection that respects labelling.

Definition 11 (Forward and backward bisimulations on CSs). Given two CSs C1 and C2, let I(C1, C2) = {(X1, f , X2) | X1 ∈ C1 ∧
X2 ∈ C2 ∧ f : X1 → X2 isomorphism} be the set of (label-respecting) isomorphisms between configurations of C1 and 
C2.

A forward (fw-)bisimulation is R ⊆ I(C1, C2) such that, if (X1, f , X2) ∈ R and X1
a−→ X ′

1, then there exists X ′
2 such that

X2
a−→ X ′

2 and (X ′
1, f

′, X ′
2) ∈ R with f = f ′|X1 , and vice versa starting from X2.

A backward (bw-)bisimulation is R ⊆ I(C1, C2) such that, if (X1, f , X2) ∈ R and X ′
1

a−→ X1, then there exists X ′
2 such that

X ′
2

a−→ X2 and (X ′
1, f

′, X ′
2) ∈ R with f ′ = f |X ′

1
, and vice versa starting from X2.

Similarly to what happens for prime event structures, forward and backward bisimulation can be suitably combined to 
obtain a form of hhp-bisimilarity.

Definition 12 (Configuration-based hhp-bisimulation). Let C1 and C2 be configuration structures. A configuration-based heredi-
tary history preserving bisimulation (chhpb) is a relation R that is both a fw- and a bw-bisimulation. We say that C1 and C2
are configuration-based hhp-bisimilar, and write C1 ∼hhb C2, if there exists a chhpb R such that (∅, ∅, ∅) ∈ R .

We can now prove that the logical equivalence induced by L0 coincides with chhpb.

Theorem 1 (Logic for hhp). Let C1 and C2 be CSs. Then C1 ∼hhb C2 iff, for all ϕ ∈L0 closed, C1 |= ϕ ⇔ C2 |= ϕ .

Proof. (⇐). We first introduce some notation. We fix a surjective environment η : V → EC1 . Then, given an event e ∈ EC1 , 
we write xe to denote a fixed distinguished variable such that η(xe) = e. Similarly, for a configuration X = {e1, . . . , en}, we 
denote by xX the corresponding set of variables {xe1 , . . . , xen }.
9



Assume that, for all ϕ closed in L0 , it holds C1 |= ϕ iff C2 |= ϕ . Let R ⊆ I(C1, C2) be defined as

R = {(X, f , Y ) ∈ I(C1,C2) | ∀ϕ ∈L0. fv(ϕ) ⊆ xX ⇒ (C1,∅, X |=η ϕ iff C2,∅, Y |= f ◦η ϕ)}
We show that R is a chhpb between C1 and C2, i.e., R is both a fw-bisimulation and a bw-bisimulation such that (∅, ∅, ∅) ∈
R .

We start by showing that R is a fw-bisimulation, which we do by contradiction. So, suppose that (X, f , Y ) ∈ R and, 
without loss of generality, that X

a−→ X ′ , but for all transitions Y
a−→ Y ′ , we have (X ′, f [e �→ e′], Y ′) /∈ R where e ∈ X ′ \ X

and e′ ∈ Y ′ \ Y . Since f [e �→ e′] is still an isomorphism, this can only happen because there exists a formula ϕ such that 
fv(ϕ) ⊆ xX ′ , C1, ∅, X ′ |=η ϕ and C2, ∅, Y ′ �|= f [e �→e′]◦η ϕ (or vice versa, that is analogous, and so omitted).

Note that there must be at least one such transition Y
a−→ Y ′ , otherwise we would have C1, ∅, X |=η (a xe)〈xX 〉 〈xe〉 T and 

C2, ∅, Y �|= f ◦η (a xe)〈xX 〉 〈xe〉 T, contradicting the fact that (X, f , Y ) ∈ R .

Furthermore, since C1 and C2 are image-finite, there are finitely many transitions Y
l(ei)−−→ Yi = Y ∪ {ei}, indexed by i ∈

{1, . . . , h}, complying with the previous conditions. For each i ∈ {1, . . . , h}, call f i the corresponding isomorphism defined by 
f i = f [e �→ ei]. Then, by the assumption above, we know that there is a formula ψ i such that fv(ψ i) ⊆ xX ′ , C1, ∅, X ′ |=η ψ i

and C2, ∅, Yi �|= f i◦η ψ i .
Now consider the formula

θ = (a xe)

⎛
⎝〈xX 〉 〈xe〉T ∧

∧
i∈{1,...,h}

ψ i

⎞
⎠

By hypothesis, it is easy to see that C1, ∅, X |=η θ . However, for every i ∈ {1, . . . , h}, we know that C2, ∅, Yi �|= f i◦η ψ i , and 
since f i ◦ η = f [e �→ ei] ◦ η = ( f ◦ η)[xe �→ ei], we have that C2, ∅, Yi �|=( f ◦η)[xe �→ei ] ψ i . Observe that, for all F

∗←→
Y

Y such 
that ei ∈ F \ Y for some i ∈ {1, . . . , h}, and C2, ∅, F |=( f ◦η)[xe �→ei ] 〈xX 〉 〈xe〉 T, we must have that C2, Yi, F |=( f ◦η)[xe �→ei ] T
since f (η(xX )) ∪ {ei} = Y ∪ {ei} = Yi . By definition of the semantics this requires that (Yi , F , ( f ◦ η)[xe �→ ei]) ∈ lt(T), which 
in turn requires that Yi

∗←→
Yi

F . Thus, recalling that fv(ψ i) ⊆ xX ′ = xX ∪ {e}, from the fact that C2, ∅, Yi �|=( f ◦η)[xe �→ei ] ψ i , 

by Lemma 1 we deduce that also C2, ∅, F �|=( f ◦η)[xe �→ei ] ψ i . But then, by definition of the semantics, we would have that 
C2, ∅, Y �|= f ◦η θ contradicting the fact that (X, f , Y ) ∈ R . Thus, we can conclude that R is a fw-bisimulation. Moreover, 
observe that (∅, ∅, ∅) ∈ R , since by hypothesis C1 |= ϕ iff C2 |= ϕ for all ϕ closed in L0 .

It remains to show that R is also a bw-bisimulation. Let (X, f , Y ) ∈ R . Observe that, for every transition X ′ l(e)−−→ X , by 
definition of the semantics, we have that C1, ∅, X |=η 〈xX ′ 〉 〈xe〉 T, since X ′ ∈ C1. Then, by definition of R , we must also 

have that C2, ∅, Y |= f ◦η 〈xX ′ 〉 〈xe〉 T. It follows that f (X ′) = Y ′ l(e)−−→ Y and f |X ′ : X ′ → Y ′ is still an isomorphism. Now, 
by contradiction, suppose that (X ′, f |X ′ , Y ′) /∈ R . Then, there must be a formula ψ such that fv(ψ) ⊆ xX ′ , C1, ∅, X ′ |=η ψ

and C2, ∅, Y ′ �|= f |X ′ ◦η ψ . Since fv(ψ) ⊆ xX ′ , X ′ −→ X and f |X ′ (η(xX ′ )) = f (η(xX ′ )) = Y ′ (hence clearly X ′ ∗←−−−→
η(fv(ψ))

X and 

Y ′ ∗←−−−−−→
f (η(fv(ψ)))

Y ), by Lemma 1 we would have that C1, ∅, X |=η ψ and C2, ∅, Y �|= f ◦η ψ . But this would contradict the fact 

that (X, f , Y ) ∈ R , since fv(ψ) ⊆ xX ′ ⊂ xX . And so we conclude that R is a bw-bisimulation, hence R is a chhpb.

(⇒). Assume that we have a chhpb R between C1 and C2. We prove that, for all ϕ in L0 , it holds C1 |= ϕ iff C2 |= ϕ . 
Actually, we show that, for every configuration X ∈ C1, triple (F , f , G) ∈ R , formula ϕ ∈L0 and environment η ∈ EnvC1 such 
that (X, F , η) ∈ lt(ϕ) (hence X ⊆ F ), it holds C1, X, F |=η ϕ if and only if C2, f (X), G |= f ◦η ϕ . Observing that environments 
are irrelevant when fv(ϕ) = ∅, this is enough since by hypothesis (∅, ∅, ∅) ∈ R and clearly (∅, ∅, η) ∈ lt(ϕ), implying that 
C1 and C2 would satisfy the same closed formulae of L0 .

First of all, observe that, for all X ∈ C1 and (F , f , G) ∈ R such that (X, F , η) ∈ lt(ϕ), by definition of legal triple we 
know that there exists F1 ∈ C1 such that X −→ . . . −→ F1

∗←−−−−−→
X∪η(fv(ϕ))

F . Since (F , f , G) ∈ R , which is both a fw- and bw-

bisimulation, there must exist a configuration F2 ∈ C2 such that F2
∗←−−−−−−−−−→

f (X)∪ f (η(fv(ϕ)))
G and (F1, g, F2) ∈ R , for some g s.t. 

g|X∪η(fv(ϕ)) = f |X∪η(fv(ϕ)) , and thus also f (X) −→ . . . −→ F2; this means that ( f (X), G, f ◦ η) ∈ lt(ϕ) and (X, f |X , f (X)) ∈ R , 
since g|X = f |X .

Keeping that in mind, we proceed by induction on the shape of the formula ϕ . We discuss only some cases and a single 
direction, the other being symmetric.

ϕ = ψ1 ∧ ψ2: Assume that C1, X, F |=η ψ1 ∧ ψ2. By definition of the semantics, we know that C1, X, F |=η ψ1 and 
C1, X, F |=η ψ2. Then, by inductive hypothesis we have that C2, f (X), G |= f ◦η ψ1 and C2, f (X), G |= f ◦η ψ2. 
Since, as observed above, ( f (X), G, f ◦ η) ∈ lt(ψ1 ∧ ψ2), again by definition of the semantics, we conclude that 
C2, f (X), G |= f ◦η ψ1 ∧ ψ2.
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ϕ = (a z)ψ : Assume that C1, X, F |=η (a z)ψ . By definition of the semantics, we know that there are F1 ∈ C1 and 
e ∈ F1 \ X such that l(e) = a, F

∗←−−−−−−−−→
X∪η(fv((a z)ψ))

F1 and C1, X, F1 |=η[z �→e] ψ (hence (X, F1, η[z �→ e]) ∈ lt(ψ)). 

Since by hypothesis (F , f , G) ∈ R , we deduce that also (F1, g, g(F1)) ∈ R for some g s.t. g|X∪η(fv((a z)ψ)) =
f |X∪η(fv((a z)ψ)) . This also means that G ∗←−−−−−−−−−−−−→

f (X)∪ f (η(fv((a z)ψ)))
g(F1). Then, by inductive hypothesis, we have that 

C2, g(X), g(F1) |=g◦(η[z �→e]) ψ . Since g ◦ (η[z �→ e]) = (g ◦ η)[z �→ g(e)], we can rewrite the previous statement 
as C2, g(X), g(F1) |=(g◦η)[z �→g(e)] ψ . Moreover, since the semantics of ψ depends only on the value of the en-
vironment on its free variables, g|X∪η(fv((a z)ψ)) = f |X∪η(fv((a z)ψ)) and fv(ψ) ⊆ fv((a z)ψ) ∪ {z}, we actually have 
that C2, f (X), g(F1) |=( f ◦η)[z �→g(e)] ψ . Recalling that G ∗←−−−−−−−−−−−−→

f (X)∪ f (η(fv((a z)ψ)))
g(F1), e ∈ F1 \ X and g(X) = f (X), thus 

g(e) ∈ g(F1) \ f (X), and since, as already observed, ( f (X), G, f ◦η) ∈ lt((a z)ψ), by definition of the semantics we 
conclude that C2, f (X), G |= f ◦η (a z)ψ .

ϕ = 〈z〉 ψ : Assume that C1, X, F |=η 〈z〉 ψ . By definition of the semantics, we know that X
l(η(z))−−−→ X ∪ {η(z)} = X ′ and

C1, X ′, F |=η ψ (hence (X ′, F , η) ∈ lt(ψ)). Then, by inductive hypothesis, we have that C2, f (X ′), G |= f ◦η ψ . More-

over, as observed above, (X ′, f |X ′ , f (X ′)) ∈ R . Since X
l(η(z))−−−→ X ′ , there must exist a transition f (X) 

l(η(z))−−−→ f (X ′) =
f (X) ∪ { f (η(z))}. Therefore, by definition of the semantics we can conclude that C2, f (X), G |= f ◦η 〈z〉 ψ , since, 
using again the observation above, we know that ( f (X), G, f ◦ η) ∈ lt(〈z〉ψ). �

3.2. Comparing hhp-bisimilarities

A notion of hhp-bisimilarity for CSs was introduced in [18], as an instance of the notion defined in the general context 
of higher dimensional automata. We now compare that equivalence with chhpb; to this aim, we first recall the definition of 
[18], that relies on the notions of paths and traces.

Definition 13 (Paths and traces). Let C be a configuration structure. Given X ∈ C , a path starting from X is a sequence of 
events π = e1 . . . en such that X

a1−→ X ∪ {e1} a2−→ . . .
an−→ X ∪ {e1, . . . en}, where ai = l(ei) for every i. The sequence a1 . . .an is 

called the trace of π and denoted tr(π); furthermore, set(π) � {e1, . . . , en}.

The adjacency relation
k←→ between paths is inductively defined as follows: if X −→ X ∪ {e1} −→ X ∪ {e1, e2} and X −→

X ∪ {e2} −→ X ∪ {e1, e2}, then e1e2
0←→ e2e1; if π k←→ π ′ , then π1ππ2

|π1|+k←−−→ π1π
′π2. We write π1 ←→ π2 to intend that

π1
k←→ π2, for some k, and we denote by ←→∗ the reflexive and transitive closure of ←→.

The set of paths in C starting from ∅ is denoted by paths(C).

For instance, for the CS C1 of Example 1, two possible paths are a1c1b1 and a1b1c1 , and the corresponding traces are 
acb and abc. Note also that a1c1b1

1←→ a1b1c1 .

Definition 14 (Path-based hhp-bisimulation). Given two CSs C1 and C2, a path-based hereditary history preserving bisimulation
(shortened as phhpb) between them is a symmetric relation R ⊆ paths(C1) × paths(C2) such that:

1. (ε, ε) ∈ R (the empty paths are related);
2. if (π1, π2) ∈ R , then tr(π1) = tr(π2);

3. if (π1, π2) ∈ R and π1
k←→ π ′

1, then there exists π ′
2 such that π2

k←→ π ′
2 and (π ′

1, π
′
2) ∈ R;

4. if (π1, π2) ∈ R and π1e1 ∈ paths(C1), then there exists e2 such that (π1e1, π2e2) ∈ R;
5. if (π1e1, π2e2) ∈ R , then (π1, π2) ∈ R .

We say that C1 and C2 are path-based hereditary history preserving bisimilar if there exists a phhpb R relating them.

We are now ready to formally relate the two notions of hhp-bisimilarity seen so far. The proof of this result is in 
Appendix A.2.

Proposition 3 (Chhp- vs phhp-bisimilarity). If two CSs are chhp-bisimilar, then they are phhp-bisimilar; the converse holds if the two 
CSs are closed under bounded union.

Notice that closure under bounded union is fundamental to have that the two notions coincide. Indeed, without such a 
property, chhpb is an equivalence strictly finer than phhpb, as the following example shows.
11



Example 3. Let us now consider the CSs C and C′ , whose transition systems are, respectively, depicted at left and right 
below:

{a,b,c} {a1,b1,c1} {a2,b2,c2}

{a,b} {b,c} {a1,b1} {b2,c2}

{a} {c} {a1} {c2}

∅ ∅

c a c a

b b b b

a c a c

They are phhpb, as testified by the relation (on paths)

R = {(ε, ε), (a,a1), (c,c2), (ab,a1b1), (cb,c2b2), (abc,a1b1c1), (cba,c2b2a2)}.
By contrast, they are not chhpb because configuration {a, b, c} of C cannot be related to any configuration of C′: indeed, 
{a, b, c} of C can perform two backwards step, one labelled with c and the other one with a, whereas no configuration of 
C′ has this property. Notice that C is not closed under bounded union: {a} and {c} are bounded by {a, b, c}, but {a, c} is 
not a configuration.

We believe that both phhp-bisimilarity and chhp-bisimilarities can be seen as natural hhp-like equivalences in the setting 
CSs. Phhp-bisimilarity is based on the idea of viewing the state of a computation as a trace up to adjacency, a fact that allows 
us to switch only events that can be executed in any order. This justifies the seemingly strange fact that, in the example 
above, after the trace abc that leads ∅ to configuration {a, b, c} in C , event a cannot be “retracted” in the back-and-forth 
bisimulation game. Chhp-bisimilarity, instead, identifies the state of computations with configurations, hence it allows to 
retract event a from {a, b, c}. This also appears quite a natural choice, in line with the set-based nature of CSs.

4. History preserving bisimilarity

If we confine phhpb to just extending and commuting events in traces, we obtain a coarser notion of equivalence that
in [18] has been named history preserving bisimulation. We recall here its formal definition:

Definition 15 (Path-based hp-bisimulation). Given two CSs C1 and C2, a path-based history preserving bisimulation (shortened 
as phpb) between them is a symmetric relation R ⊆ paths(C1) × paths(C2) that satisfies points 1–4 of Definition 14. We say 
that C1 and C2 are path-based history preserving bisimilar if there exists a phpb R relating them.

We now look for a configuration-based counterpart of this definition and a fragment of the logic L0 whose logical 
equivalence coincides with it.

Definition 16 (Configuration-based hp-bisimulation). Let C1 and C2 be configuration structures. A configuration-based history 
preserving bisimulation (shortened as chpb) is a pair (R→, R←) where R→ is a fw-bisimulation, R← is a bw-bisimulation 
and R→ ⊆ R← . We say that C1 and C2 are configuration-based hp-bisimilar, and write C1 ∼hb C2, if there exists a chpb 
(R→, R←) such that (∅, ∅, ∅) ∈ R→ .

Notice that chpb is coarser than chhpb, since every chhpb R can be seen as a chpb (R, R). Moreover, the inclusion is 
strict, as the following example shows.

Example 4. Let us now consider the CS C2 arising from the diagram in Fig. 3 where, again, we assume that events with the 
same label are in conflict. Essentially, the diagram representing C2 is obtained from that for C1 in Fig. 1a by adding the red 
part. The transition system for C2 is in Fig. 4, where, again, we highlighted in red the additional part with respect to C1.

First, we note that C1 and C2 are chp-bisimilar. Indeed, choose as R→ the relation that acts as the identity mapping 
from the configurations in the transition system of C1 into the configurations in the black part of the transition system 
of C2 and that further associates: {a1} and {a2}; {b1} and {b2}; {a1, b1} and {a2, b2}; {a1, c1} and {a2, c2}; {b1, c1}
and {b2, c2}; {a1, b1, c1} and {a2, b2, c2}; {a0, b1} and {a2, b1}; {a1, b0} and {a1, b2}. To define R← , add to R→ the 
associations between {b2} and {b0} (to cope with a backward a-transition from {a1, b0} and {a1, b2}) and between {a2}
and {a0} (to cope with a backward b-transition from {a0, b1} and {a2, b1}).
12



c1

b2 a0 a1 b1 b0 a2

c2

#

#

#

# # #

#

#

#

#

Fig. 3. The configuration structure C2. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

{a2,b2,c2}

{b2,c2} {a2,b2} {a2,c2}

{a1,b1,c1}

{a1,b2} {a1,c1} {a1,b1} {b1,c1} {a2,b1}

{b2} {a1} {b1} {a2}

{a1,b0} ∅ {a0,b1}

{b0} {a0}

{a0,b0}

a c b

b c a
c

a

a

b

c bb

a

ca a

c
b

b

a b

b a

b a

a

a

b

b

Fig. 4. The transition system of the configuration structure C2.

Second, notice that C1 and C2 are not chhp-bisimilar. Indeed, consider the a-challenge from C2 leading to {a1}; the 
only possible reply from C1 is the one leading to {a1}. Then, consider the b-challenge of C2 leading to {a1, b2}; the only 
possible reply from C1 is the one leading to {a1, b0}. Now, consider the backward a-transition in C2 leading to {b2}; the 
only possible reply in C1 leads to {b0} that cannot perform a c, whereas {b2} can.

Like for hhp-bisimilarities, the configuration-based version of hp implies the path-based one, and the two notions coin-
cide only for CSs that are closed under bounded union; the proof is in Appendix A.2.

Proposition 4 (Chp- vs php-bisimilarity). If two CSs are chpb-bisimilar, then they are phpb-bisimilar; the converse holds if the two CSs 
are closed under bounded union.

To isolate a fragment of L0 whose logical equivalence coincides with chpb, we first define a derived operator.

Definition 17 (Executability check). Let x ⊆ V be a (finite) set of variables. We let

(a z〉x ϕ � (a z) (〈x〉 〈z〉T ∧ ϕ)

Intuitively, (a z〉x ϕ states that there is an a-labelled event that could be executed after the events in x and, if we bind 
such event to z without executing it, the formula ϕ holds. By relying on this, we can now identify a fragment of L0 that 
corresponds to hp-bisimilarity.

Definition 18 (Logic fragment for chpb). For a set of variables x ⊆ V , define

ϕx ::= T | ¬ϕx | ϕx ∧ ϕx | (a z〉x ϕx∪{z} | 〈x1〉 . . . 〈xn〉T
13



where it is intended that z /∈ x and {x1, . . . , xn} = x. Then, Lh is the set of formulae arising with x empty, i.e., ϕ∅ .

From the definition above, it follows that every formula of the fragment Lh is closed; this is different from the formulae 
of the whole logic L0 which, instead, may contain free variables. We can now prove that the logical equivalence induced by 
the sublogic Lh coincides with chpb.

Theorem 2 (Logic for hp). Let C1 and C2 be CSs. Then C1 ∼hb C2 iff, for all ϕ ∈Lh, C1 |= ϕ ⇔ C2 |= ϕ .

Proof. (⇐). Fix a surjective environment η : V → EC1 , as we did in the proof of Theorem 1, such that η(xe) = e for all 
e ∈ EC1 and the corresponding fixed variable xe .

Assume that, for all ϕ in Lh , it holds C1 |= ϕ iff C2 |= ϕ . Let R, Q ⊆ I(C1, C2) be defined as

R = {(X, f , Y ) ∈ I(C1,C2) | ∀ϕxX . C1,∅, X |=η ϕxX iff C2,∅, Y |= f ◦η ϕxX }
and

Q = {(X, f , Y ) ∈ I(C1,C2) | ∀ {x1, . . . , xn} = xX . C1,∅, X |=η 〈x1〉 . . . 〈xn〉T iff

C2,∅, Y |= f ◦η 〈x1〉 . . . 〈xn〉T}
We show that (R, Q ) is a chpb between C1 and C2, i.e., R is a fw-bisimulation, Q is a bw-bisimulation, (∅, ∅, ∅) ∈ R , and 
R ⊆ Q . The latter holds immediately by definition, since the formulae in the definition of Q are a subset of those in R (see 
Definition 18).

We start by showing that R is a fw-bisimulation, which we do by contradiction. So, suppose that (X, f , Y ) ∈ R and, 
without loss of generality, that X

a−→ X ′ , but for all transitions Y
a−→ Y ′ , we have (X ′, f [e �→ e′], Y ′) /∈ R where e ∈ X ′ \ X

and e′ ∈ Y ′ \ Y . Since f [e �→ e′] is still an isomorphism, this can only happen because there exists a formula ϕxX ′ such that 
C1, ∅, X ′ |=η ϕxX ′ and C2, ∅, Y ′ �|= f [e �→e′]◦η ϕxX ′ (or vice versa, that is analogous, and so omitted).

Note that there must be at least one such transition Y
a−→ Y ′ , otherwise we would have C1, ∅, X |=η (a xe〉xX T and 

C2, ∅, Y �|= f ◦η (a xe〉xX T, contradicting the fact that (X, f , Y ) ∈ R .

Furthermore, since by hypothesis C1 and C2 are image-finite, there are finitely many transitions Y
l(ei)−−→ Yi = Y ∪ {ei},

indexed by i ∈ {1, . . . , h}, complying with the previous conditions. For each i ∈ {1, . . . , h}, call f i the corresponding iso-
morphism defined by f i = f [e �→ ei]. Then, by the assumption above, we know that there is a formula ψ i

xX ′ such that 
C1, ∅, X ′ |=η ψ i

xX ′ and C2, ∅, Yi �|= f i◦η ψ i
xX ′ .

Now consider the formula

ϕxX = (a xe〉xX

⎛
⎝ ∧

i∈{1,...,h}
ψ i

xX ′

⎞
⎠ = (a xe)

⎛
⎝〈xX 〉 〈xe〉T ∧

∧
i∈{1,...,h}

ψ i
xX ′

⎞
⎠

By hypothesis, it is easy to see that C1, ∅, X |=η ϕxX . However, for every i ∈ {1, . . . , h}, we know that C2, ∅, Yi �|= f i◦η ψ i
xX ′ , 

and since f i ◦ η = f [e �→ ei] ◦ η = ( f ◦ η)[xe �→ ei], we have that C2, ∅, Yi �|=( f ◦η)[xe �→ei ] ψ i
xX ′ . Observe that, for all F

∗←→
Y

Y

such that ei ∈ F \ Y (for some i ∈ {1, . . . , h}) and C2, ∅, F |=( f ◦η)[xe �→ei ] 〈xX 〉 〈xe〉 T, we must have that C2, Yi, F |=( f ◦η)[xe �→ei ] T
since f (η(xX )) ∪ {ei} = Y ∪ {ei} = Yi . By definition of the semantics, this requires that (Yi, F , ( f ◦ η)[xe �→ ei]) ∈ lt(T), which 
in turn requires that Yi

∗←→
Yi

F . Thus, recalling that fv(ψ i
xX ′ ) ⊆ xX ′ = xX ∪ {e}, from the fact that C2, ∅, Yi �|=( f ◦η)[xe �→ei ] ψ i

xX ′

by Lemma 1 we deduce that also C2, ∅, F �|=( f ◦η)[xe �→ei ] ψ i
xX ′ . But then, by definition of the semantics, we would have that 

C2, ∅, Y �|= f ◦η ϕxX contradicting the fact that (X, f , Y ) ∈ R . Thus, we can conclude that R is a fw-bisimulation. Moreover, 
observe that (∅, ∅, ∅) ∈ R , since by hypothesis C1 |= ϕ∅ iff C2 |= ϕ∅ for all ϕ∅ in Lh .

We now need to show that Q is a bw-bisimulation. Let (X, f , Y ) ∈ Q . Observe that, for every transition X ′ l(e)−−→ X , there 
must exist a formula θxX = 〈x1〉 . . . 〈xn〉 T such that {x1, . . . , xn−1} = xX ′ , xn = xe , and C1, ∅, X |=η θxX , since X ′ ∈ C1. Then, by 

definition of Q , we must also have that C2, ∅, Y |= f ◦η θxX . By definition of the semantics, it follows that f (X ′) = Y ′ l(e)−−→ Y ,
and f |X ′ : X ′ → Y ′ is still an isomorphism. Now, by contradiction, suppose that (X ′, f |X ′ , Y ′) /∈ Q . Then, there must be a 
formula ξxX ′ = 〈x1〉 . . . 〈xk〉 T such that {x1, . . . , xk} = xX ′ , C1, ∅, X ′ |=η ξxX ′ and C2, ∅, Y ′ �|= f |X ′ ◦η ξxX ′ . Since xX ′ = xX \{xe} and
f |X ′(η(xX ′ )) = f (η(xX ′ )), we could build a formula ξxX = 〈x1〉 . . . 〈xk〉 〈xe〉 T such that C1, ∅, X |=η ξxX and C2, ∅, Y �|= f ◦η ξxX

contradicting the fact that (X, f , Y ) ∈ Q . So, we conclude that Q is a bw-bisimulation, hence (R, Q ) is a chpb.

(⇒). Assume that we have a chpb (R→, R←) between C1 and C2. We prove that, for all ϕ in Lh , it holds C1 |= ϕ
iff C2 |= ϕ . Actually, we show that, for every (X, f , Y ) ∈ R→ , for every formula ϕx with |x| = |X | and every environment 
η ∈ EnvC1 such that η(x) = X , it holds C1, ∅, X |=η ϕx if and only if C2, ∅, Y |= f ◦η ϕx . Observing that environments are 
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irrelevant when x = ∅, i.e. when X = ∅, this is enough since by hypothesis (∅, ∅, ∅) ∈ R→ , implying that C1 and C2 would 
satisfy the same formulae of Lh .

We proceed by induction on the shape of the formula ϕx . We discuss only some cases and a single direction, the other 
being symmetric.

ϕx = ¬ψx: Assume that C1, ∅, X |=η ¬ψx . By definition of the semantics, we know that C1, ∅, X �|=η ψx . Then, by inductive 
hypothesis, we have that C2, ∅, Y �|= f ◦η ψx . Again by definition of the semantics, we conclude that C2, ∅, Y |= f ◦η
¬ψx .

ϕx = (a z〉x ψx′ where x′ = x ∪ {z}: Assume that C1, ∅, X |=η (a z〉xψx′ . By definition of the semantics, we know that there 
exist X ′, F ∈ C1 such that
1. X ←→

X
F

2. η(fv(ϕx)) = η(x) = X
a−→ X ′ = X ∪ {e} = η[z �→ e](x′) ⊆ F

3. C1, ∅, F |=η[z �→e] 〈x〉 〈z〉 T
4. C1, ∅, F |=η[z �→e] ψx′

By (2) and (3) above, we know that C1, X ′, F |=η[z �→e] T, i.e. (X ′, F , η[z �→ e]) ∈ lt(T), hence X ′ ∗←→
X ′ F . Then, by 

Lemma 1 and (4), we have that C1, ∅, X ′ |=η[z �→e] ψx′ . Moreover, since (X, f , Y ) ∈ R→ , there must also exist a 
transition f (η(x)) = Y

a−→ Y ′ = Y ∪ {e′}, for some event e′ , such that (X ′, f ′, Y ′) ∈ R→ with f = f ′|X ; hence, f ′ =
f [e �→ e′]. By inductive hypothesis, we have that C2, ∅, Y ′ |= f ′◦η[z �→e] ψx′ . Then, since f ′ ◦ η[z �→ e] = ( f ◦ η)[z �→
e′], again by definition of the semantics, we can conclude that C2, ∅, Y |= f ◦η (a z〉xψx′ since clearly Y

∗←→
Y

Y ′ .
ϕx = 〈x1〉 . . . 〈xn〉T where {x1, . . . , xn} = x: Assume that C1, ∅, X |=η 〈x1〉 . . . 〈xn〉 T. By definition of the semantics, we know 

that ∅ 
l(η(x1))−−−−→ . . .

l(η(xn−1))−−−−−→ X ′ l(η(xn))−−−−→ η(x) = X . Then, since (X, f , Y ) ∈ R→ ⊆ R← , there must also exist a transi-

tion Y ′ = f (X ′) l( f (η(xn)))−−−−−−→ Y = f (X). By iterating this argument, we obtain a sequence of transitions ∅ 
l( f (η(x1)))−−−−−−→

. . .
l( f (η(xn)))−−−−−−→ Y ; so, again by definition of the semantics, we conclude that C2, ∅, Y |= f ◦η 〈x1〉 . . . 〈xn〉 T. �

Example 5. As the logic L0 fully characterises hhp-bisimilarity, it is able to distinguish between the CSs C1 and C2 presented 
in Examples 1 and 4, respectively, which, as already noted, are not hhp-bisimilar. Indeed, consider the formula:

ϕ � (a x) (b y) (〈x〉 (cu)T ∧ 〈y〉 (c v)T ∧ 〈x〉 〈y〉¬(c z)T)

It requires the existence of an a-labelled event and a b-labelled one such that there is some c-labelled event in the future 
of each of them (possibly not the same one), but after executing both, no future c-labelled event is left. Intuitively, ϕ
captures the behaviour of C2 described in Example 4 and, indeed, it is satisfied by C2: take, for instance, the events a1 and 
b2 . By contrast, such a behaviour is not present in C1, and ϕ is not satisfied by C1.

Observe that ϕ is not in Lh since it uses, in an essential way, the more general syntax of L0 . In particular, in order to 
distinguish C1 and C2, we must be able to quantify the events labelled by a and b without immediately executing them.

5. Conclusions

We showed how a logic already studied for prime event structures in [4] can be interpreted in the more general set-
ting of configuration structures. We obtained a conservative extension of the original logic able to internalize concepts like 
closedness under bounded union or intersection. Furthermore, the logical equivalence induced by the proposed logic co-
incides with a notion of hereditary history preserving bisimilarity that strongly resembles the analogous notion for prime 
event structures. Such an equivalence is finer than the hhp-bisimilarity proposed by [18], and coincides with it in the setting 
of general event structures (i.e., CSs closed under bounded union). Finally, we extended the results above to the setting of 
history preserving bisimilarity.

There are standard questions for behavioural logics that we did not face in this paper and could represent interesting 
venues of research. The first one is the possibility of model checking the logic L0 over suitable classes of configuration 
structures. Clearly, as a first step, one should identify a finitary representation for the configuration structures in the class of 
interest, e.g., via some notion of regularity. Another classical problem that would be worth studying for L0 is satisfiability, 
i.e., the existence of a model (possibly in some restricted class) for a given formula in L0 .

A further natural question concerns the possibility of going beyond configuration structures and provide an event based 
behavioural logic, with forward flavour, for higher dimensional automata characterising history-preserving bisimilarities. Also 
the comparison with approaches based on backward modalities would be interesting to explore in this context. Particularly 
relevant appear the event identifier logic in [12], used to characterised various forms of true concurrent bisimilarities on 
stable event structures, and the logic with during/after/forward/backward modalities proposed in [14] for higher dimensional 
automata.
15



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading and for their suggestions that improved our work.

Appendix A. Omitted proofs

A.1. Proof of Proposition 1

Proposition 1 (Logics over PESs). Let C be a CS closed under intersection and bounded union, and ϕ be a formula of L0 . For all 
configurations X, F ∈ C and environment η ∈ EnvC such that (X, F , η) ∈ lt(ϕ), it holds C, X, F |=η ϕ iff (X, η) ∈ | [ϕ] |E(C) , where 
E(C) is the PES corresponding to C .

Proof. First of all, observe that (X, F , η) ∈ lt(ϕ) implies (X, η) ∈ lpE (ϕ), because there exists a configuration including 
X ∪ η(fv(ϕ)), which is F . The proof proceeds by induction on the shape of the formula ϕ . We discuss only some cases.

ϕ = (a z)ψ : Assume that C, X, F |=η (a z)ψ . By Definition 6, we know that there are F ′ ∈ C and e ∈ F ′ \ X such that l(e) =
a, F

∗←−−−−−−−−→
X∪η(fv((a z)ψ))

F ′ and C, X, F ′ |=η[z �→e] ψ . This also means that (X, F ′, η[z �→ e]) ∈ lt(ψ). Then, by inductive 

hypothesis, we have that (X, η[z �→ e]) ∈ | [ψ] |E . So, by Definition 10, we conclude that (X, η) ∈ | [(a z)ψ] |E , since as 
mentioned (X, η) ∈ lpE ((a z)ψ).

Conversely, assume that (X, η) ∈ | [(a z)ψ] |E . By Definition 10 we know that there exist F ′ ∈ C and e ∈ F ′ \ X
such that l(e) = a, X ∪ η(fv((a z)ψ)) ⊆ F ′ , and (X, η[z �→ e]) ∈ | [ψ] |E . Note that X ′ = X ∪ �η(fv((a z)ψ))� ∪ �e� is a 
configuration. Since C is closed under bounded union, the fact that X ∪η[z �→ e](fv(ψ)) ⊆ X ∪η(fv((a z)ψ)) ∪{e} ⊆
X ′ ⊆ F ′ ∈ C implies that X −→ . . . −→ X ′ −→ . . . −→ F ′; hence, (X, F ′, η[z �→ e]) ∈ lt(ψ). Then, by inductive hypothesis 
we obtain that C, X, F ′ |=η[z �→e] ψ . Moreover, we also know that X ′′ = X ∪ �η(fv((a z)ψ))� is a configuration. Thus, 
like before, since C is closed under bounded union and X ′′ is necessarily a subset of both F and F ′ , we must have 
that X ′′ −→ . . . −→ F and X ′′ −→ . . . −→ F ′; hence, F

∗←→
X ′′ F ′ and so F

∗←−−−−−−−−→
X∪η(fv((a z)ψ))

F ′ . Then, by Definition 6, we can 

conclude that C, X, F |=η (a z)ψ , since by hypothesis (X, F , η) ∈ lt((a z)ψ).

ϕ = 〈z〉 ψ : Assume that C, X, F |=η 〈z〉 ψ . By Definition 6, we know that X
l(η(z))−−−→ X ∪ {η(z)} = X ′ and C, X ′, F |=η ψ . This

also means that (X ′, F , η) ∈ lt(ψ). Then, by inductive hypothesis, we have that (X ′, η) ∈ | [ψ] |E . So, by Definition 10, 
we can conclude that (X, η) ∈ | [〈z〉ψ] |E , since (X, η) ∈ lpE (〈z〉ψ).

Conversely, assume that (X, η) ∈ | [〈z〉ψ] |E . By Definition 10, we know that X
l(η(z))−−−→ X ∪ {η(z)} = X ′ and 

(X ′, η) ∈ | [ψ] |E . Therefore, we must have that F ′ = X ′ ∪ �η(fv(ψ))� = X ∪ �η(fv(〈z〉ψ))� is a configuration. Since 
C is closed under bounded union, the fact that X ′ ⊆ F ′ ∈ C implies that X ′ −→ . . . −→ F ′; hence, we have 
(X, F ′, η) ∈ lt(〈z〉ψ) and (X ′, F ′, η) ∈ lt(ψ). From the latter, by inductive hypothesis we obtain that C, X ′, F ′ |=η ψ ; 
since X ′ = X ∪ {η(z)}, by Definition 6 we also know that C, X, F ′ |=η 〈z〉 ψ . Moreover, observe that, since C is 
closed under bounded union and by hypothesis X ∪ η(fv(〈z〉ψ)) ⊆ F (hence, by definition of causes, F ′ = X ∪
�η(fv(〈z〉ψ))� ⊆ F ), we must have that F ′ −→ . . . −→ F , that is, F ′ ∗←−−−−−−−→

X∪η(fv(〈z〉ψ))
F . Recalling that (X, F ′, η) ∈ lt(〈z〉ψ)

and C, X, F ′ |=η 〈z〉 ψ , by Lemma 1 we can conclude that C, X, F |=η 〈z〉 ψ . �
A.2. Proofs of Propositions 3 and 4

In order to prove Propositions 3 and 4, we first need a technical result which shows that for CSs closed under bounded 
union, all paths that are coinitial and cofinal are adjacent. This is proved in two steps.

Lemma 2 (Anticipating events). Let C be a CS closed under bounded union, X ∈ C , and π = e1 . . . en be a path starting from X. If 
X −→ X ∪ {eh}, for some h ∈ {1, . . . , n}, then π ′ = ehe1 . . . eh−1eh+1 . . . en is a path starting from X and π ←→∗ π ′ .

Proof. We proceed by induction on h. If h = 1, the thesis trivially holds. If h > 1, observe that, since π = e1 . . . en is a path 
starting from X , we have X −→ X ∪ {e1} ⊆ X ∪ set(π). Moreover, by hypothesis, X −→ X ∪ {eh} ⊆ X ∪ set(π). Hence, by closure 
under bounded union, we obtain that X ∪ {e1, eh} ∈ C . The situation is depicted in the picture below:
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X X ∪ {e1} X ∪ {e1, e2} . . . X ∪ set(π)

X ∪ {eh} X ∪ {e1, eh} . . .

Observe that π1 = e2 . . . eh is a path starting from X ∪ {e1} and X ∪ {e1} −→ X ∪ {e1, eh}. Hence, by inductive hypothesis, 
π ′

1 = ehe2 . . . eh−1eh+1 . . . en is a path starting from X ∪ {e1} and π1 ←→∗ π ′
1. Thus

π = e1π1 ←→∗ e1π
′
1 = e1ehe2 . . . eh−1eh+1 . . . en (A.1)

and e1π
′
1 is a path starting from X . Additionally, e1eh ←→∗ ehe1 and thus, by (A.1), we obtain π ←→∗ ehe1e2 . . . eh−1eh+1 . . . en; 

moreover, ehe1e2 . . . eh−1eh+1 . . . en is a path starting from X , as desired. �
Lemma 3 (Adjacency of coinitial and cofinal paths). Let C be a CS closed under bounded union, X ∈ C , and π1, π2 be paths starting 
from X such that set(π1) = set(π2). Then π1 ←→∗ π2 .

Proof. We proceed by induction on n = |π1| = |π2|. If n = 0 the thesis is trivial. If n > 0, let π1 = e1π
′
1 and π2 = e2π

′
2.

Since set(π1) = set(π2), we have that e2 ∈ set(π1); hence, by Lemma 2, there is a path e2π
′′
1 starting from X such that 

π1 ←→∗ e2π
′′
1 :

X X ∪ {e1} X ∪ set(π1)

X ∪ {e2}

π ′
1

π ′
2

π ′′
1

By inductive hypothesis, π ′′
1 ←→∗ π ′

2; hence, π1 ←→∗ e2π
′′
1 ←→∗ e2π

′
2 = π2, as desired. �

Now, given a path π , we denote by π(i) the i-th event in π . Furthermore, given a configuration X ∈ C , we denote with 
paths(X, C) the set of all paths leading from ∅ to X in C , i.e. all the possible total orders that can be built by using events 
in X that form a path; formally, paths(X, C) � {π ∈ paths(C) : set(π) = X}.

Proposition 3 (Chhp- vs phhp-bisimilarity). If two CSs are chhp-bisimilar, then they are phhp-bisimilar; the converse holds if the two 
CSs are closed under bounded union.

Proof. (chhp ⇒ phhp) We first show that chhp-bisimilarity implies phhp-bisimilarity. Let S be a chhpb; then, we want to 
prove that

R �
⋃

(X1, f ,X2)∈S

⋃
π∈paths(X1,C1)

{(π, f (π))}

is a phhpb. Trivially, (ε, ε) ∈ R , since (∅, ∅, ∅) ∈ S . Now fix (π1, π2) ∈ R; this means that there exists (X1, f , X2) ∈ S
such that π2 = f (π1). We have to prove that R ⊆ paths(C1) × paths(C2); we shall actually show that π2 ∈ paths(X2, C2). 
To this aim, let π1 � e1 . . . en and consider the backwards sequence of challenges ∅ a1−→ {e1} . . . an−→ {e1, . . . , en} = X1, where

l(ei) = ai for all is. Since S is a bw-bisimulation, ∅ a1−→ {e′
1} . . .

an−→ {e′
1, . . . , e

′
n} = X2, where e′

i = f (ei) for all is, and so
f (π1) = π2 ∈ paths(X2, C2). Then:

• tr(π1) = tr(π2), since f is a configuration isomorphism, and so it respects labelling.

• Let π1
k←→ π ′

1; this means that π1 � e1 . . . ekek+1ek+2 . . . en and π ′
1 � e1 . . . ek+1ekek+2 . . . en . By letting e′

i � f (ei),
we have that π2 = e′

1 . . . e′
ke′

k+1e′
k+2 . . . e′

n . Now, since set(π ′
1) = X1 (and so π ′

1 ∈ paths(X1, C1)), by construction 

(π ′
1, f (π

′
1)) ∈ R , where f (π ′

1) = e′
1 . . . e′

k+1e′
ke′

k+2 . . . e′
n; the last equality entails that π2

k←→ f (π ′
1) and this suffices to

conclude.
• Let π1e ∈ paths(C1); this means that X1

a−→ X1 ∪ {e}, where a = l(e). Since S is a fw-bisimulation, there exists e′ such
that X2

a−→ X2 ∪ {e′} and (X1 ∪ {e}, f ∪ [e �→ e′], X2 ∪ {e′}) ∈ S . This entails that π2e′ ∈ paths(C2) and so by construction
(π1e, π2e′) ∈ R , being π2e′ = ( f ∪ [e �→ e′])(π1e).

• Finally, we have to show that (e1 . . . en−1, e′
1 . . . e′

n−1) ∈ R , where π1 � e1 . . . en and π2 � e′
1 . . . e′

n (and so e′
i � f (ei), for

all is). Let X ′
1

a−→ X1, where X ′
1 � X1 \ {en} and a = l(en). Since S is a bw-bisimulation, there exists X ′

2 � X2 \ {e} such

that X ′
2

a−→ X2, l(e) = a and (X ′
1, f

′, X ′
2) ∈ S , for f = f ′ ∪ [en �→ e]. The very last condition entails that e must be e′

n and
we conclude, since trivially e′ . . . e′ ∈ paths(X ′ , C2).
1 n−1 2
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(phhp ⇒ chhp) We next show that, if C is closed under bounded union, phhpb-bisimilarity implies chhpb-bisimilarity. 
Let R be a phhpb. We want to prove that

S � {(set(π1), f , set(π2)) : (π1,π2) ∈ R ∧ ∀i. f (π1(i)) = π2(i)}
is a chhpb. First of all, we have that S ⊆ I(C1, C2) since, for every triple (set(π1), f , set(π2)) ∈ S , it holds that tr(π1) = tr(π2)

(see Definition 15(2)); in particular, this means that the second component of every triple in S is an isomorphism of 
configurations (i.e. a bijection that respects labelling, since configurations are labelled sets of events). Then:

1. (∅, ∅, ∅) ∈ S since by Definition 15(1) (ε, ε) ∈ R .
2. Let (set(π1), f , set(π2)) ∈ S and set(π1) 

a−→ set(π1) ∪ {e1}, for l(e1) = a. Then, π1e1 ∈ paths(C1) and so, by Defini-
tion 15(4), there exists e2 such that π2e2 ∈ paths(C2) and (π1e1, π2e2) ∈ R . This last fact implies that l(e2) = a; so,
set(π2) 

a−→ set(π2) ∪ {e2} and, by construction, (set(π1) ∪ {e1}, f ∪ [e1 �→ e2], set(π2) ∪ {e2}) ∈ S .
3. Let (set(π1), f , set(π2)) ∈ S and X1

a−→ set(π1). Since C1 is rooted and connected, this implies the existence of a path
π ′

1e1 ∈ paths(C1) such that l(e1) = a, X1 = set(π ′
1) and set(π1) = set(π ′

1e1). Since C1 is closed under bounded union,
by Lemma 3, π1 ←→∗ π ′

1e1. By Definition 14(3), there exists π ′
2e2 ∈ paths(C2) such that π2 ←→∗ π ′

2e2 (hence, set(π2) =
set(π ′

2e2)) and (π ′
1e1, π ′

2e2) ∈ R . This implies the presence of a triple (set(π ′
1e1), f ′, set(π ′

2, e2)) = (set(π1), f ′, set(π2)) ∈
S . Moreover, since π ′

i ei is obtained from πi , for i ∈ {1, 2}, by applying the same sequence of swappings, we have 
that f = f ′ . By Definition 14(5), we then have (π ′

1, π
′
2) ∈ R . Thus X2 = set(π ′

2) 
a−→ set(π2) and, by construction,

(X1, f |X1 , X2) ∈ S . �
In order to prove an analogous result for history-preserving bisimilarity, let us denote with π |i the path formed by the 

first i events of π ; that is, if π = e1 . . . ei . . . en (for 0 ≤ i ≤ n), then π |i = e1 . . . ei .

Proposition 4 (Chp- vs php-bisimilarity). If two CSs are chpb-bisimilar, then they are phpb-bisimilar; the converse holds if the two CSs 
are closed under bounded union.

Proof. (chhp ⇒ phhp) The fact that chpb implies phpb can be proved like Proposition 3; the only difference is that here 
we have a chpb (S→, S←) and R is defined by considering all the pairs (X1, f , X2) ∈ S→; the proof is then identical (apart 
from the last item, that of course is not needed), since S→ is also a bw-bisimulation because, by definition, S→ ⊆ S← .

(phhp ⇒ chhp) Let us assume that the CSs are closed under bounded union and prove that phpb implies chpb. Let R
be a phpb; then, we want to prove that the pair made up by

S→ � {(set(π1), f , set(π2)) : (π1,π2) ∈ R ∧ ∀i. f (π1(i)) = π2(i)}
S← � {(set(π1|i), f , set(π2|i)) : (π1,π2) ∈ R ∧ 0 ≤ i ≤ |π1| ∧ ∀ j ≤ i. f (π1( j)) = π2( j)}

is a chpb. By construction and like in Proposition 3, we have that S→ ⊆ S← ⊆ I(C1, C2). Trivially, (∅, ∅, ∅) ∈ S→ , since 
(ε, ε) ∈ R . The proof that S→ is a fw-bisimulation can be done like in the proof of Proposition 3 (see point 2. of the first 
direction of that proof). We have to prove that S← is a bw-bisimulation; to this aim, let (X1, f , X2) ∈ S← and X ′

1
a−→ X1. By 

construction, X1 = set(π1|i) and X2 = set(π2|i), for some (π1, π2) ∈ R and 0 ≤ i ≤ |π1|. Since C1 is rooted and connected, 
the fact that X ′

1
a−→ X1 = set(π1|i) implies the existence of a path π ′

1e1 ∈ paths(C1) such that set(π ′
1) = X ′

1. Since C1 is 
closed under bounded union, by Lemma 3, π1|i ←→∗ π ′

1e1. By Definition 15(3), there exists π ′
2e2 ∈ paths(C2) such that

set(π2|i) = set(π ′
2e2) and (π ′

1e1, π ′
2e2) ∈ R . This implies that set(π ′

2) 
a−→ X2. Moreover, by construction of S← , we derive the

presence of a triple (set(π ′
1), f

′, set(π ′
2)) = (X ′

1, f
′, X ′

2) ∈ S . Since π ′
je j is obtained from π j |i , for j ∈ {1, 2}, by applying the

same sequence of swappings, we have that f ′ = f |X ′
1
, as desired. �
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