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Disclaimer

This report is for informational purposes only and does not constitute an offer to sell, a solici-
tation to buy, or a recommendation for any security, nor does it constitute an offer to provide
investment advisory or other services by Gauntlet Networks Inc. No reference to any specific
security constitutes a recommendation to buy, sell or hold that security or any other security.
Nothing in this report shall be considered a solicitation or offer to buy or sell any security,
future, option or other financial instrument or to offer or provide any investment advice or
service to any person in any jurisdiction. Nothing contained in this report constitutes invest-
ment advice or offers any opinion with respect to the suitability of any security, and the views
expressed in this report should not be taken as advice to buy, sell or hold any security. The in-
formation in this report should not be relied upon for the purpose of investing. In preparing the
information contained in this report, we have not taken into account the investment needs, ob-
jectives and financial circumstances of any particular investor. This information has no regard
to the specific investment objectives, financial situation and particular needs of any specific
recipient of this information and investments discussed may not be suitable for all investors.
Any views expressed in this report by us were prepared based upon the information available
to us at the time such views were written. Changed or additional information could cause such
views to change. All information is subject to possible correction. Information may quickly
become unreliable for various reasons, including changes in market conditions or economic
circumstances.
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Part I

Background
Compound allows participants to trustlessly supply and borrow Ethereum assets, providing
appealing interest rates for borrowers and passive income for suppliers. By using collateral
and amortizing risk across individual suppliers in a liquidity pool, Compound’s Ethereum smart
contract has been a profitable place to supply crypto since its inception in 2018. The protocol
implemented in Compound’s smart contract is detailed in the Compound whitepaper.

However, despite the fact that Compound has grown well past nine figures (of USD value)
without any suppliers losing money, it is still technically possible, under extreme conditions,
for borrowers to default on their borrowed assets and suppliers to lose their principal. Under-
standing when this failure condition can happen boils down to understanding various types
of risks associated with the protocol, including protocol security risk,1 governance risk,2 and
market risk. This report focuses on evaluating market risk — the risk of a user experiencing
losses due to market fluctuations external to the smart contract itself.

We use a rigorous definition of market risks to construct simulation-based stress tests that
evaluate the economic security of the Compound protocol as it scales to underwriting billions
of dollars of borrowed assets. These stress tests are trained on historical data and put through
a battery of scenarios that represent the expected and worst case economic outcomes for the
protocol. Our stress tests are constructed analogously to how transaction-level backtesting
is done in high-frequency and algorithmic trading. These techniques are used to estimate the
market risk of a systematic trading strategy before it is deployed to the market. As there are
over $1 trillion US dollars of assets managed by funds that use these techniques to provide
daily actuarial analyses to risk managers, we believe that these are the best methodologies
for evaluating market risk.3 By modifying these techniques to handle the idiosyncrasies of
cryptocurrencies, we are able to provide similar statistical power in these actuarial analyses.

The first portion of this report will define the set ofmarket risks that users of theCompound
protocol face, breaking themdown into their principal quantitative components. Subsequently,
we will describe the incentives behind the mechanism that the Compound protocol uses to
ensure that it is solvent — liquidations. Finally, we will conclude by detailing how liquidators
are similar to trading strategies and detail the market impact models that are used to analyze
their incentives and expected returns.

The second portion will focus onmethodology and results from agent-based simulations of
the Compound smart contract. Our methodology utilizes careful simulation to closely replicate

1Examined by independent smart contract auditors: Certora, OpenZeppelin, and Trail of Bits
2More broadly, this refers to things like administrator mismanagement, voter participation, etc.
3Arnott et al. (2005); Curcuru et al. (2014); Hsu (2004)
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the live environment that users interact with in the Compound protocol. This approach and
some of our novel technologies, such as a custom Ethereum virtual machine, ensure that our
results replicate reality with high fidelity. We conclude by detailing the results of these simu-
lations, providing actuarial assurances for the conditions under which the Compound protocol
is insolvent.

Our conclusions show that the Compound protocol can scale to a larger size and handle
high volatility scenarios for a variety of collateral types. In particular, we find statistically
significant evidence that even when Ether (ETH) realizes it’s maximum historical volatility, the
Compound system is able to grow total borrowed value by more than 10x while having a sub-
1% chance of default.4 Note that in this report we will refer to the protocol being in ‘default’ as
equivalent to being under-collateralized. Moreover, we find that the system stays significantly
over-collateralized in extreme scenarios and that current liquidation incentives are sufficient
formore liquid collateral types, such as ETH.We also note that for collateral that realizes super-
linear slippage (e.g. trading costs per unit quantity increase with larger liquidation sizes), one
needs to be more aggressive with both liquidation incentives and collateralization ratios. The
same techniques used to justify these conclusions also provide guidance on how to set proto-
col parameters for new collateral types that are added in the future. Finally, we note that more
detailed descriptions of our simulation methodology and a glossary of terms utilized through-
out this report can be found in Appendix 9.

4This 10x is relative to the size of the Ether market. In the case where that grows a commensurate amount,
as it easily could, then Compound could grow even larger.
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Part II

Defining Market Risks

1 Market Risks

The decentralized nature of the Compound protocol renders risk assessment both more com-
plex and crucial than similar assessments in traditional markets. The main causes for this
increase in complexity are the multitude of participant behaviors in the Compound protocol
as well as their interactions with exogenous markets, such as centralized cryptocurrency trad-
ing venues. Unlike formal verification and smart contract auditing, which focus on endoge-
nous risks within a smart contract, economic analysis of protocols focuses on how exogenous
shocks affect participant behavior. As the Compound protocol uses a deterministic function
of liquidity supply and borrowing demand to determine the interest rates that suppliers and
borrowers receive, one need only consider market prices, supplier supply behavior, and bor-
rowing demand to accurately model exogenous risk (see Appendix 10). More specifically, the
primary sources of exogenous risk stem from the following components:

1. Shocks to market prices of collateral that cause the contract to become insolvent due
to under-collateralization

2. Loss of liquidity in an external market place, leading to a liquidator being disincentivized
to liquidate defaulted collateral

3. Cascades of liquidations impacting external market prices which in turn lead to further
liquidations (i.e. a deflationary spiral)

In order to quantify the effects of these risk components, we first need to delve into the notions
of assets and liabilities within the Compound protocol.

1.1 Assets and Liabilities

In the Compound protocol, the main assets are the collateral tokens that suppliers have com-
mitted to liquidity pools, whereas the main liabilities are the outstanding borrowed assets. To-
ken holders contribute their ERC-20 assets to a liquidity pool, and are in turn paid a yield on
their supplied tokens. Borrowers borrow an asset by first committing collateral before with-
drawing up to a certain amount from the liquidity pool. This amount is controlled by the col-
lateral factor,5 which is the ratio of the maximum outstanding debt to collateral. The system

5You can find more information on the collateral factor in the Compound developer documentation.
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forces borrowers to over-collateralize their borrowed assets (e.g. a fully-secured credit facility),
thus enforcing the invariant that assets must always be greater than liabilities. For instance,
one can deposit $100 of ETH6 into the contract and withdraw $75 if the contract has a col-
lateral factor of 75%. The borrower’s collateral requirement is the value of outstanding debt
divided by the collateral factor. When the value of the borrower’s collateral asset falls below
the collateral requirement, the collateral position becomes liquidatable.

The net liabilities of Compound are defined as the asset values less liabilities, so that the
system is deemed solvent when the net liabilities are positive. As a decentralized protocol,
Compound utilizes a series of economic incentives to ensure that net liabilities are always
positive. When the market value of the collateral backing a lien falls below the collateral re-
quirement, the protocol sells the collateral at a discount to a liquidator. This discount, termed
the liquidation incentive, provides a liquidator with financial incentive to buy the collateral from
the protocol, effectively repaying the borrowed asset on behalf of the borrower. With liquida-
tion, the protocol acts much like a bank selling a defaulted asset at a foreclosure auction to
increase their net liabilities. In particular, the liquidator acts analogously to the foreclosure
auction winner, who is usually able to claim the defaulted asset at a discount.

As an oversimplified example, suppose that the Compound protocol has an ETH borrow
position that is in default, with the current collateral amount equal to $100. If the liquidation
incentive is 105% (5% extra bonus), then the liquidator would pay the Compound Smart Con-
tract $95 for the ETH collateral. Moreover, if the liquidator has low time preference (Appendix
11.6.2), then they will sell the collateral as soon as possible. In practice, the Compound protocol
only lets liquidators liquidate a portion of the borrow amount, and they receive collateral equal
to 105% of the borrow value repaid. This has the benefit of increasing the collateralization
ratio on the remaining portion of the borrowed asset, while avoiding complicated mechanics
of completely closing borrow positions.7 In this sense, liquidation in Compound resembles an
algorithmic trading strategy, as there is a race to be the first liquidator to claim portions of the
collateral and sell it on the market with minimal transaction and slippage costs.

1.1.1 Synthetic Assets: cTokens

There is a slight nuance in how assets and liabilities are treated — technically, the assets that
suppliers and borrowers interact with are cTokens. These tokens, which wrap standard ERC-
20 assets, serve as contingent claims on assets and earned interest. Suppliers supply assets

6In this stylized example, we use US Dollars as a numéraire, whereas in reality, one would have to execute this
transaction in the Compound protocol against a USD stablecoin. Stablecoins are digital representations of US
dollars, with some backed by bank deposits (USDC, TUSD) and others backed by digital collateral (DAI).

7Contrast this with themodelMakerDAOuses, where there are auctions to liquidate the entire borrowed asset.
This can create a delay which adds to market risk as well as unnecessarily closes borrow positions which could
be merely reduced to a safe level.
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as ERC-20 tokens and are returned cTokens, whereas borrowers supply collateral, which is
converted to a cToken and used to make outstanding interest payments. Unlike traditional
assets, cTokens immediately realize earned interest as payments are paid pro rata to holders
on every block update.

Technically, there is a security risk that a cToken cannot be converted back to the under-
lying asset if the contract has many outstanding borrowed assets that are not being repaid as
collateral is redeemed. This would mean that the contract is illiquid, but not necessarily insol-
vent. This report focuses on solvency, and liquidity will be considered more deeply in future
analysis.

1.2 Risk Sensitive Parameters of the Protocol

The main levers protocol designers can wield in Compound to reduce risk are the collateral
factor and liquidation incentive. However, these two levers impact the incentives of the pro-
tocol in different ways. The collateral factor controls the riskiness of borrowers — the closer
it is to 100%, the more likely risky borrowers will default by borrowing USD stablecoin against
collateral that is rapidly decaying in value. On the other hand, the liquidation incentive con-
trols how likely liquidators are to take liabilities off of the smart contract’s balance sheet. The
higher the liquidation incentive, the less time a defaulted borrowed asset will be a liability on
the Compound protocol. If we dissect how the three risk components of §1 connect to these
two parameters, we find the following:

• The risk inherent in the collateral factor is connected to the nature of shocks to the
market price of the collateral

• The risks that liquidators with low time preference face is connected to the loss of liq-
uidity in an external market place

• Cascading liquidations affect both the collateral factor and the liquidation incentive be-
cause they create a feedback loop between price shocks and a loss of liquidity

This implies that under normal market conditions, when liquidations are independently dis-
tributed (e.g. uncorrelated), the collateral factor and liquidation incentive control borrower
risk and supplier’s ability to recoup losses, respectively. However, in situations when liquida-
tions have a ‘knock-on’ effect and are correlated, these parameters affect both borrower and
supplier behavior. Therefore, to study the true market risk of the system, we need to sample a
variety of market and liquidity conditions in order to stress test these scenarios.
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2 Liquidation

Akin to foreclosure sale participants in traditional finance, liquidators can repay the outstand-
ing debt with discounts in exchange for the borrower’s cToken collateral. In both foreclosure
sales and in Compound liquidations, discounts are used to incentivize purchases of defaulted
collateral. The Compound protocol provides a discount by giving liquidators additional col-
lateral as the liquidation incentive to perform liquidation. However, unlike the all-or-nothing
transactions of foreclosure sales, an individual liquidator can only repay a portion of the debt.
The close factor is the protocol parameter that specifies the proportion eligible to be liquidated
by any individual liquidator. When a liquidator finds a profitable trade, she repays a portion of
the outstanding debt (determined by the close factor) in return for the borrower’s collateral.
Depending on a liquidator’s risk preference, she may sell the collateral immediately to protect
against price-fluctuation risk or just hold the received collateral.

Liquidation incentives create an arbitrage opportunity or a price discount for the liquida-
tor in exchange for the reduction of Compound’s risk exposure. The higher the liquidation
incentive is, the more liquidators will participate in the liquidation process as they get steeper
discounts relative to market prices. In other words, tuning the liquidation incentive is one of
the most effective ways to adjust the protocol’s safety boundary. The liquidation incentive
also has an influence on a borrower’s decision to borrow asset within the protocol. When a
borrower’s lien is liquidated, the liquidation incentive can be viewed as a bonus amount of a
borrower’s collateral that is given to the liquidator to compensate for the risk they engender
while taking a liability off of the protocol’s balance sheet. If the liquidation incentive is too high,
a borrower may be unwilling to borrow assets from Compound in the first place, or she may
open a borrowing position and maintain a high collateral factor. In general, one expects that
increased liquidation incentives negatively impact borrowing demand.

The collateral factor defines a maximum borrowing capacity for each asset enabled within
the protocol. Borrowersmustmanage their own debt and keep their liens over-collateralized to
ensure a certain margin of safety with respect to the maximum borrowing capacity. This mar-
gin of safety fluctuates with market conditions and depends on the borrowers’ own risk profile.
When the market volatility is high, risk-averse borrowers maintain a high margin of safety to
avoid their collateral being liquidated. In contrast, risk-seeking borrowers maintain a low mar-
gin of safety and actively refinance their debt to optimize their usage of borrowed capital.
Understanding the interaction between collateral factor and the safety margin requires study-
ing the influence of psychology on the participant’s behavior. Randomized controlled trials and
other experimental methods are designed to understand this type of causal relationship.

Rational liquidators with short time preference are defined to be participants who pur-
chase collateral from the Compound smart contract and immediately sell it on a centralized
venue (e.g. have low risk tolerance). For brevity, we will refer to rational liquidators with short
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time preference as greedy liquidators. To simplify the analysis and simulate the worst-case
scenario for Compound, we assume that all liquidators are greedy and sell the collateral im-
mediately to a market, instead of having liquidators that repay the outstanding debt and hold
the collateral. This focus on greedy liquidators emulates the worst-case protocol behavior as
adverse market and liquidity conditions can cause cascading defaults. Greedy liquidators tend
to inflame cascading defaults as they create sell pressure and can cause a deleveraging spiral.8

The main source of loss for greedy liquidators is the loss due to price impact, or slippage, that
is caused by selling a large quantity of an asset. Given that greedy liquidators immediately sell,
they must optimize the quantity that they are willing to liquidate based on market prices and
expectations of slippage.

3 Slippage

Slippage refers to the expected change in a tradeable asset’s price p due to a matched order of
size q and is mathematically denoted ∆p(q). Formally, ∆p(q) is defined to be the difference
between the market midpoint price and the actual average execution price when a market
participant executes a trade. Slippage inevitably happens on every trade, and this effect tends
to be magnified in thin or high volatility markets. For a liquidation opportunity, slippage is the
only cost that can be partially controlled by the liquidator, whereas trading fees and smart
contract transaction fees are usually external restrictions. Therefore, slippage is one of the
major factors that influence a liquidator’s decision-making.

Market impact, which is a synonym for slippage, has been studied extensively in traditional
finance.9 Many market impact models have been proposed and tested for solving optimal or-
der execution problems. In traditional markets, the marginal increase in price impact is usually
observed to decrease as a function of trade quantity, which formally corresponds to ∆p(q)
being a concave function.10 However, this appears to not be true for cryptocurrency markets,
where empirical data suggests that ∆p(q) is linear or even convex (e.g. the marginal cost in-
creases with quantity).11 Despite each type of model having different underlying assumptions
and functional forms, a majority of the models comprise trade volume-to-market size, volatility
and time variables. Analyzing trade size, volatility and how these variables interact with liqui-
dation is the primary focus of this analysis. The analysis in this report only considers greedy
liquidators that sell repossessed collateral on centralized exchanges with order books, such as
Coinbase and Binance. As decentralized exchanges and automated market makers, such as

8See Klages-Mundt and Minca (2019) for an in-depth discussion of this in MakerDAO
9Tóth et al. (2011); Gatheral and Schied (2011)
10Eisler et al. (2012); Gatheral (2010)
11Makarov and Schoar (2019); Wei (2018)
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Uniswap,12 provide an alternative source of liquidity, one might ask why this assumption was
enforced. The reasons for this choice are two-fold:

• Order book depth on centralized exchanges is order of magnitudes greater than that of
decentralized exchanges for most assets13

• Slippage in automated market makers is usually designed to be small for small trades
and expensive for large quantities, so greedy liquidators would likely end up going to a
centralized exchange during the most volatile times to stay profitable

We will break up the dominant features of slippage into market variables that are exogenous
to the Compound smart contract state and protocol variables.

3.1 Key Market Variables

3.1.1 Outstanding Debt

The total traded quantity that the protocol will need liquidated in times of net negative liabil-
ities will be a function of the total outstanding debt in the system. Since this quantity is the
input to the slippage function∆p(q), it is clear that the choice of slippage model needs to be
cognizant of the amount of outstanding debt. We will define the amount of outstanding debt
in this analysis to be the sum of all the borrowers’ total outstanding debt value normalized
by the average daily trading volume of underlying collateral. This metric captures the size of
debt relative to the underlying liquidity, and gives readers a good intuition around how big
Compound’s market can grow safely relative to the trading markets. Since the trading volume
of different assets varies, using unitless metrics (such as the amount of outstanding debt)
provides a more intuitive comparison between different assets. The simulation in this report
assumes borrowers borrowing USD stablecoin backed by ETH, as this is the most common use
case in the Compound protocol. As an example, suppose that the ETH daily trading volume is
100 million USD, 0.5 total outstanding debt is equivalent to 50 million USD of total outstanding
debt value.

Estimating the average daily trading volume of cryptocurrencies is difficult, as wash trad-
ing and other market manipulation practices are known issues in the cryptocurrency market.14

Numerous studies have concluded that the reported volume from various cryptocurrency ex-
changes may be unrepresentative of the assets’ underlying liquidity. For this reason, we ag-
gregated the average daily trading volume from the top 10 exchanges with well-functioning

12Angeris et al. (2019)
13We do note that this is not true for assets such as MKR and SNX, as their primary market is Uniswap. How-

ever, for the larger assets that are listed on Compound such as ETH, DAI, and REP, there is far more centralized
exchange liquidity.

14Alameda Research (2019)
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markets identified by Bitwise Investments.15 This indexing methodology has been adopted as
the de facto industry standard, with major brokers and the Securities and Exchange Commis-
sion utilizing the Bitwise index for volume estimation.16

3.1.2 Asset Volatility

Volatility measures the degree of variation of asset price changes over a given time interval.
Historically, it is traditionally defined as the standard deviation of logarithmic returns and is
usually denoted σ.17 Research studies show that volatility is typically a linear coefficient in a
market impact model.18 Given that asset volatility changes over time and is affected by market
microstructure, it’s equally important to understand how liquidator behavior changes when the
market volatility changes. We assess this by sweeping through a variety of different volatility
levels to ensure that we emulate how greedy liquidators interact with a plethora of market
environments. Note that we normalize our volatility calculation in a manner akin to what is
used by exchanges such as BitMEX.19

3.2 Key Protocol Variables

3.2.1 Liquidation Incentive

The liquidation incentive is the main driver for liquidators to repay borrowers’ outstanding
debt. If liquidation incentives don’t exist, no rational liquidator will be willing to reduce the
borrower’s risk exposure during the collateral price drop. The size of liquidation incentive has a
substantial influence on the liquidators’ decision-making process. A greedy liquidator adjusts
their strategy to ensure that she receives positive returns on every liquidation opportunity.
Borrowers’ outstanding debt will no longer get repaid if the liquidation incentive is too low
and can’t cover the cost of arbitrage, which includes slippage, trading fees, and transaction
fees. Note that latency costs and smart contract front-running20 are intentionally left out of
this analysis because these introduce additional complexity. In particular, we use constant gas
costs throughout all simulations detailed in this report. We can adjust our simulations to handle
front-running, should there be further empirical evidence that liquidations costs are dominated

15Hougan et al. (2019); Bitwise Asset Management (2019)
16Securities and Exchange Commission (2019)
17Hull (1991)
18Mathematically, this means that there exists a function f : [0,∞) → R such that∆p(q) = σf(q) + o(1);

see Hull (1991); Almgren et al. (2005) for theoretical and empirical evidence of this. In particular, note that this
appears to hold for many markets in terms of permanent impact cost, whereas instantanous impact cost tends
to depend much more on an asset’s microstructure details.

19BitMEX (2020)
20Daian et al. (2020)
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by losses due to such behaviors. However, it appears that there currently is more front-running
on exchanges than there is for liquidations, guiding our decision to elide an transaction delay
model.21 Furthermore, we sweep a wide range of slippage conditions in our analysis, and delays
in order execution have a very similar effect as increased slippage for liquidators.

3.2.2 Collateral Factor

In the ideal scenario, if the liquidation incentive is enough to motivate liquidators to close out
liquidatable borrowings instantly all the time, there’s no need to require the over-collateralization
of borrowed assets. In reality, due to transaction latency or the absence of sophisticated liq-
uidators, a borrowed asset may not be closed out at the time it becomes liquidatable. Over-
collateralization is required to protect a decentralized interest rate protocol from default. The
collateral factor specifies a borrower’s minimum collateral requirement. It acts as an additional
buffer to prevent the system from becoming under-collateralized if the debt cannot be liqui-
dated in time.

The collateral factor setting is essentially dependent on the liquidation incentive. Given
that the liquidation incentive is paid in the form of the collateral asset, a high liquidation in-
centive means that more collateral will get sold during liquidations. If the collateral factor is
too large (the collateral requirement is too low) to account for the high liquidation incentive,
the liquidator may be unable to get their full value to close the entire position. For this rea-
son, when one sets the liquidation incentive and collateral factor for a new asset, she needs to
enforce the following constraint:

1

collateral factor
≥ liquidation incentive

Note that it is unclear how borrowers will manage their debt and collateral according to
various collateral factor settings, and validating an assumption made for borrower’s behavior
is nontrivial due to the lack of empirical data. In our simulation, we rescale the borrower’s
collateral-to-debt ratio based on the ratio between the simulation input collateral factor and
Compound’s default ETH collateral factor. The assumption we made for borrower’s behavior
is our best guess, and the real-world borrower behavior may deviate from the simulation.

3.2.3 Close Factor

A liquidator is only allowed to liquidate a portion of the borrowed asset in each transaction,
and the maximum fraction is specified by the close factor. Compound protocol designers face
the trade-off between user adoption and protocol safety when determining the close factor:

21Zhang (2020); Schmidt (2020)
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a small close factor can prevent a substantial amount of a borrower’s borrowed asset from
being liquidated and hence increases borrowing demand, while a large close factor enables
liquidators to instantly reduce the system’s risk exposure. During an extreme price shock, the
design of close factors forces liquidators to break down a large repayment into multiple value
decaying repayments, and delays the liquidations in consequence. Properly simulating the
effect of the close factor requires precise modeling of the liquidator’s and borrower’s response
time to liquidation events. Although the close factor is a part of the simulation process, we will
not further examine the effect of changing the close factor in this report.
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Part III

Simulated Stress Tests

4 Background on Simulation

4.1 Agent-Based Simulation

The main tool that we use to perform simulation-based stress tests on Compound’s Ethereum
smart contracts is agent-based simulation (ABS). ABS has been used in a variety of stress test
contexts, including to estimate censorship in cryptocurrency protocols,22 detect fraudulent
trading activity in CFTC exchanges,23 and in stress testing frameworks from the European
Central Bank24 and the Federal Reserve.25 These simulations, while powerful, can be difficult
to make both useful and accurate as model complexity canmake it hard to match experimental
results.26 Careful design, tuning, and infrastructure architecture can help avoid these pitfalls
and has made ABS invaluable in industries such as algorithmic trading and self-driving car
deployment.

In such industries, one takes care to ensure that the simulation environment replicates the
live environment as closely as possible. This is enforced by having the agent models interact
with the same code that is deployed in a live environment in order to minimize errors due
to mistranslations or missing minutae. While the infrastructure overhead of simulating users
interacting with a piece of complex software can be heavy, it ensures that errors are limited to
those in models of agents as opposed to errors in the models of system dynamics.

As an example, the Compound interest rate curve (Appendix 10) is described via a simple
mathematical formula. One can simulate agents directly interacting with this formula, with-
out needing to host the Ethereum environment and having the agents generate transactions.
However, Ethereum’s 256-bit numerical system and precision differences between different
ERC-20 contracts can often lead to disastrous losses due to numerical errors. These cannot
be probed without running simulations directly against the Ethereum smart contract and gen-
erating the exact same transactions that an agent would if they were a liquidator interacting
with the live contract.

22Chitra et al. (2019)
23Yang et al. (2012)
24Halaj (2018); Liu et al. (2017)
25Geanakoplos et al. (2012); Bookstaber et al. (2018)
26Fagiolo and Roventini (2016)
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4.2 Gauntlet Simulation Environment

The Gauntlet platform, which was used for all simulations and results in this report, provides a
modular, generic ABS interface for running simulations directly against Ethereum smart con-
tracts. In this system, the agent models are specified via a Python domain-specific language
(DSL), akin to Facebook’s PyTorch,27 and interactwith a custom-built Ethereumvirtualmachine
that is written in C++. Agents can also interact with non-blockchainmodules, such as historical
or synthetic market data and/or other off-chain systems. Gauntlet hasmade significant perfor-
mance optimizations for interacting with the EVM in Python, resulting in performance gains of
50-100x over the stock tooling. The DSL hides the blockchain-level details from the analyst, al-
lowing the end-user to develop strategies that canmigrate from one smart contract to another,
should they have similar interfaces. Most of the platform’s design is inspired by similar plat-
forms in algorithmic trading that allow for quantitative researchers to develop strategies that
execute over multiple exchanges (with varying order books, wire protocols, slippage models,
etc.) without having to know these low-level details. Moreover, the non-blockchain portions of
the simulation are analogous to trading back-testing environments,28 so that agents are inter-
acting with realistic order books and financial data. It should be noted that the strategies emit
valid EVM transactions and can be deployed to Ethereum mainnet using the same code path.

4.3 Compound Simulation Overview

For the simulations in this report, we deployed the Compound contracts within the Gauntlet
platform and also set up a variety of slippage models and synthetic price trajectories (see
Appendix 11.2). We implemented liquidator strategies in our DSL, which allowed for a variety
of liquidators with different risk and time preferences to interact directly with the Compound
contracts and with simulated order books (see Appendix 11.6). These strategies also include
optimization components so that liquidators can optimize the amount of collateral purchased
based on their slippage estimates (see Appendices 11.3 and 11.6.1) We also wrote strategies
for borrowers in the Compound protocol using the DSL and fit their risk preferences based
on historical data (see Appendix 11.4). For further details on simulation methodology, please
consult Appendix 11.

5 Questions Addressed in Stress Tests

From a liquidity supplier’s perspective, the protocol is safe only if the supplied assets can be
safely withdrawn. A functioning liquidation mechanism is critical to the safe operation of the

27Paszke et al. (2019)
28Nystrup et al. (2019)
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Compound market. When an asset price drops and no liquidators have an incentive to repay
the borrower’s outstanding debt, the system fails and some suppliers cannot withdraw their
assets. Recall that a rational liquidator’s goal is to make a profit in each liquidation opportunity,
which depends on the liquidation incentive and slippage (this is dependent on the trade size
and volatility). In light of this, the main questions that we focus on answering are the following:

• Is the protocol safe when the total outstanding debt is high?

• Is the protocol safe under volatile market conditions?

• If Compound wants to support a new asset, how should one set the liquidation incentive
and collateral factor so that the system will have a large enough margin of safety?

We will first define some metrics that will help us answer these questions in a quantitative
manner. An under-collateralized run is a simulation run that ends with >1% of the value of
the market’s total outstanding debt that is under-collateralized. Let the under-collateralized
run percentage be defined as the percentage of simulation runs that are under-collateralized
runs. This metric is used to quantify the safety of the system, as the system will be at risk
if borrowers with a large amount of outstanding debt are under-collateralized. As we want
to ensure that the system is never under-collateralized, we use a strict 1% debt threshold to
define the failure criteria.

The simulation assumes borrowers use ETH as collateral and are borrowing the stablecoin
DAI from the Compound protocol. Each liquidator evaluates all borrower’s debt-to-collateral
ratio and repays DAI on the borrower’s behalf if there’s an arbitrage opportunity. We stress
tested a wide range of market conditions and analyzed the simulation outcomes. The test
scenarios include:

• Modeling historical data.

• Simulating various total outstanding debt and asset volatility.

• Simulating various total outstanding debt and liquidation incentives.

• Simulating various total outstanding debt and collateral factors.

6 Results

6.1 Historical Data

This section gives a brief overview of the liquidation mechanism and demonstrates how the
key metrics change over time. We replayed the price trajectory of the worst day in Ethereum
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(a) ETH price trajectory (b) Weighted average of collateralization ratios

(c) Borrowers’ collateralization ratios (d) Liquidity metrics

Figure 1: Liquidation mechanism simulation with the price trajectory of the worst day in Ethereum his-
tory (2018-02-05). The simulation assumes $100MM USD of ETH daily trading volume and the sum of
the total outstanding debt value is $50MM USD.

history and simulated the liquidation mechanism. This day includes a major price crash, where
the ETH price dropped 26%. The simulation results are in Figure 1, which will give readers an
idea of what is involved in the simulation. In figure 1a, the size of the dot represents the number
of liquidations. As the price dropped, borrowers with a low collateralization ratio got liquidated
first. When the price bottomed out at about $640, a large portion of the borrowing positions
got liquidated.

Figure 1b shows the simulated liquidity pool’s weighted average of collateralization ratios.
In this report, borrowers use ETH as collateral and withdraw stablecoin DAI from the liquidity
pool. Assuming that the price of DAI is stable, the collateralization ratio changes are mainly
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impacted by two factors: ETH price and liquidation. ETH price change affects the collateral
value, whereas liquidations reduce the quantity of DAI and ETH issued in the liquidity pool.
We randomly sample the borrowers’ initial collateralization ratios from Compound’s real-world
distribution (see Appendix 11.4). The initial collateralization ratio starts at around 170% and
decreases as the price declines. The liquidator holds the collateralization ratio above 133%
(= 1/0.75 default collateral factor) minimum collateralization ratio by liquidating the risky
debts, which proves that the liquidation mechanism is functioning in this scenario.

In figure 1c, each line represents an individual borrower’s collateralization ratio and the dot
size represents the borrower’s outstanding debt value. All the lines roughly follow a similar
trajectory, which is driven by the ETH price change. When a borrower gets liquidated, a por-
tion of the borrower’s collateral and debt will get reduced, which results in an increase of the
collateralization ratio. Similar to the previous chart, the individual borrower’s collateralization
ratio should never go below 133% minimum collateralization ratio with a well-functioning liqui-
dation mechanism. If a borrower does not get liquidated in the first place, there’s an extra 33%
buffer (relative to the borrower’s outstanding debt value) to prevent a borrower from being
under-collateralized.

The liquidity metrics can be shown in figure 1d. Liquidity/shortfall is defined as

collateral value ∗ collateral factor− outstanding debt value (1)

Either liquidity or shortfall is non-zero, depending on how the borrowing capacity compares
to the outstanding debt value. As the ETH price dips, the collateral value and the liquidity
both trend down. The shortfall remains at $0 since all the risky borrowing positions are being
liquidated in time.

6.2 Total Outstanding Debt vs. Asset Volatility

As was discussed in section 3.1, the collateral asset’s quantity to be traded and the asset’s
volatility are two major market variables causing slippage, and slippage is one of the main
factors influencing a liquidator’s behavior. This suggests that the protocol’s safety heavily
depends on the total outstanding debt and the collateral asset’s volatility.

In our simulation, the total outstanding debt is defined as the asset pool’s total outstanding
stablecoin debt value normalized by the collateral asset’s daily trading volume. Considering
that different collateral assets have different orders of magnitude of trading volume, normal-
izing the total outstanding debt enables us to intuitively compare the debt (relative to the
collateral asset’s liquidity) between different collateral assets. The simulation time duration is
a day, hence we use daily volatility instead of commonly used annualized volatility to make it
straightforward to understand.
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There is not strong agreement on the daily trading volume of most crypto tokens. Cen-
tralized exchanges are susceptible to wash trading, and decentralized exchanges are dwarfed
by their centralized counterparts. As the ability to sell collateral quickly is one of the driving
factors of safety, this creates an uncertainty that is addressed via simulation. By varying the
ratio of outstanding debt to market size widely in our simulations, we cover a broad swath of
scenarios that you might see in the practice. If you have very conservative assumptions on
the total market depth of the collateral order book, you can assume a higher ratio of debt ratio,
examined in the top of the heatmap. Our assumptions on ETH market size are fairly conserva-
tive ($100mm), falling on the lower end of Messari’s daily trading volumes for the beginning of
2020. 29.

Although the protocol provides liquidation incentives to the liquidator, there are still un-
avoidable costs for a liquidator to arbitrage, including slippage, transaction fee, and trading
fee. Transaction fees are the gas fees paid to an Ethereumminer for executing on-chain trans-
actions. When a liquidator sells his received collateral, he needs to pay the trading fee to the
exchange.

In Figure 2, we see liquidator profit and loss charts broken up into transaction fee, trading
fee, slippage, and profit. There are more arbitrage opportunities when the asset’s volatility is
high (figure 2b), and subsequently the liquidator’s total revenue (the sum of profit and costs)
is higher than the revenue in the low volatility regime (figure 2a). Our simulation uses a linear
slippage model, which means that the price slippage is proportional to the asset’s volatility
(see Appendix 11.6.1 for the empirical rationale). The chart demonstrates that price slippage
is the major cost of arbitrage. In the high volatility scenario, slippage represents more than
30% of the liquidator’s revenue. Even in the low volatility scenario, the liquidator still has to
pay more than 10% of the revenue for slippage. In both scenarios, the trading fee takes a fixed
percentage of revenue and the on-chain transaction fee is insignificant at this level of the total
outstanding debt.

Figure 3 shows the total liquidated debt amount with different initial total outstanding debt
and ETH volatility. The results match our intuition: the total liquidated debt amount is propor-
tional to both total outstanding debt and volatility. In the high volatility scenario, a borrower’s
collateral value has a high chance to fall below the collateral requirement and, as a conse-
quence, the collateral will get liquidated. Though liquidations are a necessary part of the Com-
pound protocol, they can also serve as a leading indicator of under-collateralization.

Figure 4 demonstrates the liquidatable and under-collateralized run percentages heatmap.
Recall that an account becomes liquidatable if the collateral value falls below the collateral
requirement and the collateral is available to be liquidated. When the price of the collateral
asset drops further and the collateral value is below the outstanding debt value, an account
becomes under-collateralized. Here we set a strict 1% debt threshold to define the failure

29Messari Historical Ethereum Data
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(a) 3% daily volatility

(b) 50% daily volatility

Figure 2: Mean aggregate liquidator profit and costs over 30 simulation runs. Note that the y-axis on
the left-hand side is using a linear scale (in dollars), whereas the right-hand side is using a logarithmic
scale. The simulation assumes $100MM USD of ETH daily trading volume and the sum of the total
outstanding debt value is $50MM USD.

criteria, i.e., the simulation run fails when over 1% of the outstanding debt is liquidatable/under-
collateralized. For each data point in the heatmap, we aggregate 30 simulation runs with the
same market variables and calculate the percentage of the runs that fail. The lighter the data
point is, the fewer simulation runs fail. If the data point is white, the protocol is safe and none
of the simulation runs have more than 1% of the under-collateralized debt. We use this metric
to quantify the safety of the protocol.

The heatmaps demonstrate how large the protocol can scale under a reasonable volatility
assumption. The BitMEX weekly historical ETH volatility index reports that the highest ETH
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Figure 3: Total liquidated debt amounts over 24 hour period. The simulation assumes $100MM USD
of ETH daily trading volume. A 75% total outstanding debt is equivalent to $75MM USD worth of the
total outstanding debt value. To explain an example cell here: $20mm in liquidations corresponds to
20% of the Total Outstanding Debt in the 100% case, which is intuitively a worrying number liquidations.
However, this does match intuition, because you only see this happen when ETH has a worrying level
volatility (close to 50%)

weekly volatility in history happened in August 2017 and peaked at around 20%30 daily volatil-
ity31. Assuming that the ETH market capitalization will grow over time and the volatility will
decrease, we consider daily volatility < 20% as reasonable. Figure 4a shows that when the daily
volatility is 20% and the total outstanding debt is greater than or equal to $100 MM USD, a few
risky borrowing positions will not be fully liquidated at the end of the simulation runs. However,
with the same 20% daily volatility assumption, none of the borrowers are under-collateralized,
and the protocol can scale to at least 10x of the current borrow size, as shown in figure 4b.

Figure 4b highlights the safe operating space of the protocol. The protocol is safe when
the volatility is below 35% and the liquidity pool’s total outstanding debt value is below ETH’s
daily trading volume. As the volatility reaches 45%, some suppliers may be unable to withdraw
their supplied assets.

30BitMEX (2020)
31The daily volatility is converted from realized weekly volatility.
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(a) Percentages of simulation runs that end with> 1% of liquidatable debt

(b) Percentages of simulation runs that end with> 1% of under-collateralized debt

Figure 4: The Compound contracts are deployed with the default parameters. According to BitMEX
weekly historical ETH volatility index, the current daily volatility is around 3% and the highest histori-
cal daily volatility is around 20%. The simulation assumes $100MM USD of ETH daily trading volume.
Compound’s current total outstanding stablecoin debt value is around $25MM USD. The current to-
tal outstanding debt is around 25%, which is the total outstanding debt value normalized by the daily
trading volume of the collateral asset.
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6.3 Total Outstanding Debt vs. Liquidation Incentive

In this section, we examine how changes in liquidation incentive can affect the protocol’s safety.
ETH’s daily volatility in 2019 ranges between 1% and 4%. If we use 4% daily volatility to generate
synthetic price trajectories and adjust liquidation incentives to evaluate the market risk, none
of the simulation runs ends with a liquidatable or under-collateralized borrower.

Figure 5: Percentages of simulation runs that end with > 1% of liquidatable debt. The current de-
fault liquidation incentive is 105%. The simulation assumes 20% ETH daily volatility and $100MM USD
of ETH daily trading volume. Compound’s current total outstanding stablecoin debt value is around
$25MM USD. The current total outstanding debt is around 25%, which is the total outstanding debt
value normalized by the daily trading volume of the collateral asset.

To better assess the system’s safety with various liquidation incentives, we use 20% daily
volatility as an assumption. With the default 105% liquidation incentive, some borrowers cannot
get liquidated when the total outstanding debt value is above the ETH daily trading volume,
as can be seen in figure 5. Despite this, when we evaluate the under-collateralization risk with
the same range of parameters, all the simulation runs end with over-collateralized positions.
Given that a low liquidation incentive is ineffective in attracting liquidators to arbitrage, one
may wonder why there’s no under-collateralization risk in this scenario. A possible explanation
for this is that the default 75% collateral factor sets a high collateral requirement, such that the
price changes of 20% volatility is insufficient tomove the collateral value below the outstanding
debt value.
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6.4 Total Outstanding Debt vs. Collateral Factor

Figure 6 compares the system’s safety under different collateral factors and total outstand-
ing debt. As mentioned before, the collateral factor controls a borrower’s minimum collateral
requirement. The closer the collateral factor is to one, the less collateral a borrower needs
to maintain a borrowing position; consequently, borrowers are more likely to default. As illus-
trated in figure 6b, the system is risky in the high collateral factor and large outstanding debt
region. Ideally, collateral factor setting should be a function of the collateral asset’s volatility.
Assuming a liquidator doesn’t exist and the collateral factor is 80%, a borrower would only
default if the collateral asset price experienced greater than a 20% price decline. Figure 6b
suggests that the protocol is safe when the collateral factor is below 80%, which implies that
it’s rare to find a>20% price decline with the given volatility assumption.

7 Conclusions

In this report we conducted a market-risk assessment of the Compound protocol via agent-
based simulations run against theCompound contracts. We stress-tested the liquidationmech-
anism under a wide range of market volatility and sizing scenarios to ensure that the proto-
col can prevent borrowers from becoming under-collateralized in most of these cases. We
also used historical market data from centralized cryptocurrency exchanges to ensure that
assumptions about volatility and slippage are representative of real-world conditions.

We found that the protocol, as currently parameterized, should be robust enough to scale
to at least 3x the current borrow size as long as ETH price volatility does not exceed historical
highs. We also analyzed the effectiveness of the liquidation incentive and collateral factor, the
two primary risk levers the Compound protocol employs, to navigate the trade-off between
safety and capital efficiency.

Our methodology can also be applied to other collateral types on Compound with signifi-
cantly different liquidity profiles, such as REP. This work informs the Compound community on
how to choose collateral factors and liquidation incentives for new assets as they are added to
the protocol.
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(a) Percentages of simulation runs that end with> 1% of liquidatable debt

(b) Percentages of simulation runs that end with> 1% of under-collateralized debt

Figure 6: The current default collateral factor is 75%. The simulation assumes 20% ETH daily volatil-
ity and $100MM USD of ETH daily trading volume. Compound’s current total outstanding stablecoin
debt value is around $25MM USD. The current total outstanding debt is around 25%, which is the total
outstanding debt value normalized by the daily trading volume of the collateral asset.
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Part IV

Appendix

9 Glossary

• Debt: Amount of asset borrowed from an asset pool.

• Under-collateralized: An account is under-collateralized if the value of an account’s debt
exceeds the value of the collateral.

• Collateral factor: Maximum debt-to-collateral ratio of an asset a user may borrow. When
the debt-to-collateral ratio exceeds the collateral factor, the collateral is available to be
liquidated.

• Collateralization ratio: The ratio of collateral-to-debt, usually reported in percentage
points. For instance, a collateralization ratio of 200% means that one needs two times
as much collateral deposited into the contract as the maximum borrow quantity. Con-
cretely, this would mean that one must deposit $200 worth of ETH in order to borrow
$100 of a stablecoin.

• Borrowing capacity: Current value of collateral deposited into the contract multiplied
by the collateral factor.
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• Collateral requirement: Value of debt divided by the collateral factor.

• Liquidatable: An account is liquidatable if the account’s value of debt exceeds its bor-
rowing capacity. In other words, an account is liquidatable if the account’s collateral
value falls below the collateral requirement.

• Slippage: The amount of price impact that a liquidator engenders when trying to sell col-
lateral. Slippage is denoted∆p(q) and is formally defined as the difference between the
midpoint price at time t, pmid(t) and the execution price, pexec(q, t) for a traded quantity
q at time t,∆p(q, t) = pmid(t)− pexec(q, t). This quantity is usually a function of other
variables, such as implied and realized volatilities. Slippage is also known as market
impact within academic literature.

10 Interest Rate Curves

Within the cryptocurrency space, bonding curves are deterministic functions of smart contract
state that determine bid and ask spreads. Bonding curves are known as pricing rules within
the algorithmic game theory literature and were first introduced by Hansen32 in the study of
automated market makers.33 These were first introduced to Ethereum smart contracts by de
la Rouviere34 as a way to create tokenized markets whose buy and sell prices were determined
algorithmically. Instead of using a bonding curve to provide bids and offers, the Compound
protocol utilizes a bonding curve to compute the spread between the supply and borrowing
interest rates. One that think of this as an analogue of the traditional yield curve from finance,
albeit computed in a different manner.

The contract also uses the bonding curve to enforce the no-arbitrage condition that the
supply interest rate must be strictly lower than the borrowing interest rate. If this were not
true, then an arbitrageur could break the system by borrowing cTokens from the contract and
adding liened tokens to the liquidity supply, leading to net negative liabilities. Moreover the
contract also enforces softer constraints that control the difference between the supply and
borrowing interest rates. The main idea behind the curve used in Compound is that if there is
more liquidity supply than borrowing demand, then the interest rate to supply liquidity should
be significantly lower than the interest rate to borrow.

Formally, the Compound V2 smart contract35 constructs the bonding curve as a function
of the utilization rate at block height t, Ut ∈ [0, 1]. If we denote the borrowing demand at

32Hanson (2003)
33Othman et al. (2013)
34Rouviere (2017)
35Leshner and Hayes (2019)
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height t (in tokens) as Bt and the liquidity supply at height t as Lt, then the utilization rate is
defined as

Ut =
Bt

Lt +Bt

We compute the borrowing interest rate, βt and the supply interest rate, `t, using the following
formulas, where β0, β1 ∈ (0, 1) are interest-rate parameters and γ0 ∈ (0, 1) is a measure of
the spread between supply and borrowing (i.e. 1− γ0 is the relative spread).

βt = Ut(β0 + β1Ut) (2)

`t = (1− γ0)βt (3)

For reference, the Compound V2 contract uses the values β0 = 5% and β1 = 45%. The
choice of quadratic bonding curve has a variety of benefits that have been profiled in a number
of articles and papers.36

11 Simulation Details

11.1 Environment and Sampling

The simulation environment allows for configuration of the Compound network’s state, includ-
ing agent distribution, agent behavior, and smart contract parameters. The simulation environ-
ment directly interacts with the Compound smart contract deployed on Gauntlet’s simulated
Ethereum virtual machine. At each time step, agents observe the state of environment vari-
ables and on-chain contracts. The policy defines the agent’s behavior at a given time and state.
When each agent performs an action, the simulation environment submits transactions to the
blockchain and updates the state of the smart contract.

For each set of parameters, we run simulation 30 times to make sure that the sample size
is large enough to cover a wide range of borrowing distributions.

11.1.1 Simulation Duration

If the simulation time duration is too short, the price movement will be insufficient to affect the
overall agent behavior. On the other hand, even if we assume that most borrowers are passive
participants and won’t often change their debt position, they may still adjust their position
when the time duration is long. To balance both of these factors, we use one day as the time
duration to run simulations.

36Chitra (2019); Obadia (2019)
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11.1.2 Agents

There are four types of agents in the simulation setup: supplier, borrower, liquidator, and oracle.
In the initialization phase, a supplier supplies DAI to the Compound smart contract, whichmints
and returns cDAI. Borrowers supply ETH as collateral and borrowDAI from the contract. During
each time step, liquidator looks for under-collateralized borrowers and repays DAI to close out
the resulting ETH collateral position. The price oracle updates the on-chain token price based
on the GBM model or the price trajectories from historical data.

11.2 Price Trajectory

We use a standard Geometric Brownian motion (GBM) to simulate price trajectories. This
stochastic process obeys the Îto stochastic differential equation, dXt = µStdt + σStdWt,
where dWt is the standardWienermeasure onR. GBM is also equivalent to the exponential of a

randomly varying quantity follows aBrownianmotion, e.g. Xt = X0 exp
((

µ− σ2

2

)
t+ σWt

)
.

The graph below shows the ETH price trajectories with a $200 initial price and various daily
volatilities. For each volatility, we generate 30 different price paths to cover a wide range of
variation.

We also simulated other Lévy processes, including processes with jumps to emulate flash
crashes.37 However, if the jump parameter (e.g. the mean of a particular Poisson process) led
to the average jump being larger than the collateral factor, then the system halted. When the
jump parameter is smaller than the collateral factor, there were few differences between the
simulation results with and without jumps. Future work will investigate jump processes with
memory (such as Hawkes processes38), which could have qualitatively different behavior.

11.3 Slippage

The square-root model is the most popular market impact model in traditional finance.39 To
validate whether the same assumption holds in cryptocurrency trading, we pulled the hourly
exchange order book snapshot between 12/1 to 12/7 from Coinbase Pro. Since including orders
with extremely low prices will bias the slippage estimation, orders with a price below 70% of
the market mid-price were filtered out prior to fitting our model. For a given trade size, the
slippage is estimated by the market mid-price minus the volume-weighted average price. We

37Note that for (semi)-martingales and non-predictable processes, Lévy processes are the broadest
parametrizable family of processes that can be written as the sum of a drift-diffusion process and an independent
jump process. See the Lévy-Îto decomposition theorem in Lawler (2010) for a detailed discussion.

38Hawkes and Oakes (1974)
39Almgren et al. (2005); Gatheral and Schied (2011)
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Figure 7: Simulated price trajectories under different volatilities

define the slippage ratio to be the slippage normalized by the market mid-price. Note that the
slippage estimate here is modeling the worst-case scenario as we assume that all liquidators
are greedy. In practice, a trader with a longer time preference can sell their order through the
OTC market or split one order into multiple suborders/exchanges to reduce the slippage.

We use a non-linear least squares method40 to fit our model and choose the following basis
functions to represent our slippage model:

• Square-root: price slippage is proportional to the square root of the quantity traded, i.e.
∆p(q) = Iσ

√
q

• Linear: price slippage is proportional to the quantity traded, i.e. ∆p(q) = Iσq

40Atkinson and Han (2005)
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• Quadratic: price slippage is proportional to the square of quantity traded, i.e. ∆p(q) =
Iσq2

where the intensity I is a constant determined by the model and q is the order size normalized
by the average daily trading volume. Theoretically, a more complicated basis function can be
chosen to reduce the model’s error. For the sake of interpretability and preventing overfitting,
we chose simple functional forms for this analysis.

Figure 8: Historical order size versus estimated price slippage data and slippage models

Our results from fitting show that the linear model (R2 = 0.76) fit the data better than
the square-root model (R2 = 0.56), so we picked the linear market impact model for our
simulation. Moreover, the linear slippagemodel fits well for sizes below $500, 000, as illustrated
in Figure 8. One reason for why the square-root model does not fit well with existing data
is a dearth of liquidity. Cryptocurrency exchanges’ liquidity is relatively small compared to
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the liquidity that exists on exchanges in traditional finance. In traditional finance, the ratio
of change in slippage with respect to change in order size decreased when the order size
increased (e.g. ∆p(q) is concave). However, when there’s not enough liquidity, the slippage
will be magnified when the order size is large.

11.4 Borrower

The borrower’s collateralization ratio (value of collateral / value of outstanding debt) and the
total collateral value are two influential parameters on the system dynamics. We visualize real-
world Compound borrower data to better understand how borrowers behave. The scatter plot
in Figure 9 shows the joint distribution of the logarithm of the borrower’s collateral value and
collateralization ratio. Again, the collateral factor represents the percentage of the supplied
value that can be borrowed, so that the inverse of collateral factor is the minimum collateral-
ization ratio that a borrower will not get liquidated.

Figure 9: Compound borrower data from contract inception onmainnet to October 19, 2019. The dashed
line represents the liquidation threshold (e.g. the minimum allowable inverse collateral factor).

To close the gap between simulation and reality, we have sampled the borrower’s collat-
eral value and collateralization ratio from the real-world distribution. The detailed steps for
generating a representative sampling of borrowers from historical data are:

• Load Compound’s borrower data.
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• Use multivariate kernel density estimation to fit the borrower data. The probability den-
sity contour plot is on the above right-hand side.

• Sample the collateral value and collateralization ratio from the probability density con-
tour plot.

• During sampling, it’s possible that some sampled data points are under-collateralized.
For those data points, increase the collateralization ratio to theminimumvalue satisfying
collateral factor constraint to avoid smart contract initialization failure.

• Re-scale the samples such that the sum of the total outstanding debt value equals the
simulation input and uses the processed sample data for simulation.

11.5 Liquidity Supply

In the simulation, a supplier supplies DAI to the protocol, which begins accumulating interest
rate. The supplier receives a quantity of cDAI equal to the underlying DAI supplied, divided by
the exchange rate. The purpose of having a supplier is to provide liquidity to the system and
enabling borrowers to withdraw DAI from the liquidity pool. The DAI supplied amount in the
simulation equals the sum of all the borrowers’ total outstanding debt + 1.

11.6 Liquidator

A rational liquidator’s main goal is to maximize profits, by ensuring that the revenue received
from the liquidation incentive outweighs the costs. The slippagemodel assumes that a liquida-
tor will submit a market order on a single exchange, so the cost is the worst-case estimate. Let
the liquidation incentive be denoted by η, the trading fee denoted by γ , and the transaction
fee denoted by α. We can then formulate the profit p of each trade as

p = max((η −∆p(q)− γ)q − α, 0)

For each liquidation opportunity, the liquidator repays the minimum value among

• Maximum repay value: borrower’s outstanding debt× close factor

• Value of borrower’s liquidatable collateral

• Liquidator agent’s perceived optimal repay amount
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The Compound protocol defines maximum repayment amount for liquidating a borrower. If the
collateral price drops too fast during periods of extreme volatility and falls below the maximum
repay value, a liquidator can only repay up to the value of the borrower’s liquidatable collateral.
A liquidator also estimates the perceived slippage and calculates the optimal repay amount to
maximize the profit. The optimal repayment amount calculation is discussed in the next sec-
tion. After the liquidator acquires the collateral from the Compound protocol, she immediately
sells all received ETH in exchange for USD on an open exchange to realize profit.

11.6.1 Optimal Liquidation Amount

To derive the optimal repayment amount to maximize liquidator profit, we first plug the slip-
page model into the profit function. For instance, in the linear slippage case, we have the
following:

p = (η − Iσq − γ)q − α

To maximize profit, we find the derivative of profit with respect to the normalized order size q
and find a value q∗ such that ∂qp(q∗) = 0. By construction, the value q∗ is the optimal order
size that maximizes the net profit. Performing this calculation yields that the optimal value of
q to maximize profit is,

q∗ =
η − γ

Iσ

Figure 10 shows liquidation incentive, profit curve and the optimal repay value under var-
ious volatility assumptions. The area enclosed by rectangle with vertices (0, 0), (p(q), 0),
(q, p(q)), (0, p(q)) ∈ R2 is the liquidator’s net profit. Based on the above derivation, we
see that a liquidator has no incentive to liquidate any collateral larger than q∗. If the value of
the borrower’s liquidatable collateral is less than q∗, the rational strategy for a liquidator is to
liquidate maximum liquidatable collateral.

11.6.2 Compound liquidator time preferences

To be safe, we always assume that liquidators immediately sell their collateral. This may seem
like a presumptuous simplification, but it is the expected outcome of any profit-maximizing
strategy, regardless of your valuation of the collateral asset.

Let’s say that all participants in Compound have a valuation of the collateral asset v. We’ll
denote the liquidation incentive as l = 1.05. Consider a case where there is a collateral po-
sition with $75 of DAI borrowed against $101 of ETH. The collateral factor for ETH is .75, so if
the price drops by more than $1, the position can be liquidated. The liquidatable position can
be then claimed for $95. There are three cases for the liquidator here:
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Figure 10: Profit curve and optimal liquidation amount with the assumption of linear slippage model

• Case 1: v ≥ $100
In this case, this participant would have bought ETH already, regardless of the liquida-
tion. Assuming there is a large, liquid market for ETH, they will have no more assets to
allocate to ETH before the liquidation even occurs.

• Case 2: v is between $95 and $100
In this case, the participant will by the ETH from the liquidation. However, since the
market price is greater than v, they will also sell immediately.

• Case 3: v < $95
This participant will still not want to buy the ETH from the liquidation, since the liqui-
dation incentive discount still doesn’t give them an opportunity to buy at a price below
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their validation.

This simple analysis excludes transaction costs, and the market impact of buying and selling
the collateral, but it serves to show that the assumption that liquidators always sell the col-
lateral immediately isn’t a glib one. The only case where a rational liquidator would hang on
to the collateral is in Case 1, but this implies that they acted irrationally in the past and didn’t
buy the asset on the open market when they had the opportunity to do so for less than their
intrinsic valuation.
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11.7 Raw data

ETH Daily Volatility
0.03 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3.0 0.0 0.03 0.03 0.03 0.1 0.17 0.23 0.23 0.27 0.3
2.5 0.0 0.03 0.03 0.03 0.1 0.13 0.23 0.23 0.23 0.27
2.0 0.0 0.0 0.03 0.03 0.1 0.1 0.2 0.23 0.23 0.27

To
ta
lO

ut
st
an

di
ng

D
eb

t

1.5 0.0 0.0 0.03 0.03 0.07 0.13 0.2 0.23 0.23 0.27
1.0 0.0 0.0 0.0 0.03 0.07 0.1 0.13 0.2 0.2 0.27
0.75 0.0 0.0 0.0 0.0 0.07 0.1 0.1 0.17 0.2 0.23
0.5 0.0 0.0 0.0 0.0 0.03 0.07 0.1 0.1 0.2 0.23
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.13

Table 1: Raw data of figure 4a

ETH Daily Volatility
0.03 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.17 0.2 0.27
2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.17 0.2 0.23
2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.13 0.2 0.23

To
ta
lO

ut
st
an

di
ng

D
eb

t

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.1 0.13 0.23
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.1 0.2
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.07 0.17
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.17
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.1

Table 2: Raw data of figure 4b
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Liquidation Incentive
1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

3.0 0.27 0.2 0.1 0.07 0.03 0.03 0.03 0.03 0.03 0.03
2.5 0.27 0.13 0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03
2.0 0.23 0.1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

To
ta
lO

ut
st
an

di
ng

D
eb

t

1.5 0.23 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.0 0.0
1.0 0.1 0.03 0.03 0.03 0.03 0.0 0.0 0.0 0.0 0.0
0.75 0.1 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.03 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Raw data of figure 5

Collateral Factor
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

3.0 0.03 0.03 0.03 0.03 0.03 0.03 0.1 0.13 0.2
2.5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.1 0.17
2.0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.1 0.17

To
ta
lO

ut
st
an

di
ng

D
eb

t

1.5 0.0 0.03 0.03 0.03 0.03 0.03 0.03 0.07 0.17
1.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03 0.07 0.1
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.07
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03

Table 4: Raw data of figure 6a

Collateral Factor
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.1
2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.07
2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07

To
ta
lO

ut
st
an

di
ng

D
eb

t

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: Raw data of figure 6b
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