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1 Lp Spaces and Banach Spaces
 

In this work the assumption of quadratic integrability 
will be replaced by the integrability of |f(x)|p. The 
analysis of these function classes will shed a particu
lar light on the real and apparent advantages of the 
exponent 2; one can also expect that it will provide 
essential material for an axiomatic study of function 
spaces. 

F. Riesz, 1910 

At present I propose above all to gather results about 
linear operators defined in certain general spaces, no
tably those that will here be called spaces of type (B)... 

S. Banach, 1932 

Function spaces, in particular Lp spaces, play a central role in many 
questions in analysis. The special importance of Lp spaces may be said 
to derive from the fact that they offer a partial but useful generalization 
of the fundamental L2 space of square integrable functions. 

In order of logical simplicity, the space L1 comes first since it occurs 
already in the description of functions integrable in the Lebesgue sense. 
Connected to it via duality is the L∞ space of bounded functions, whose 
supremum norm carries over from the more familiar space of continuous 
functions. Of independent interest is the L2 space, whose origins are 
tied up with basic issues in Fourier analysis. The intermediate Lp spaces 
are in this sense an artifice, although of a most inspired and fortuitous 
kind. That this is the case will be illustrated by results in the next and 
succeeding chapters. 

In this chapter we will concentrate on the basic structural facts about 
the Lp spaces. Here part of the theory, in particular the study of their 
linear functionals, is best formulated in the more general context of Ba
nach spaces. An incidental benefit of this more abstract view-point is 
that it leads us to the surprising discovery of a finitely additive measure 
on all subsets, consistent with Lebesgue measure. 
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Lp1 spaces 

Throughout this chapter (X, F , µ) denotes a σ-finite measure space: X 
denotes the underlying space, F the σ-algebra of measurable sets, and µ 
the measure. If 1 ≤ p < ∞, the space Lp(X, F , µ) consists of all complex-
valued measurable functions on X that satisfy 

(1)	 
i

|f (x)|p dµ(x) < ∞. 
X 

To simplify the notation, we write Lp(X, µ), or Lp(X), or simply Lp 

when the underlying measure space has been specified. Then, if f ∈ 
Lp(X, F , µ) we define the Lp norm of f by 

)1/p(i
IfILp(X,F,µ) = |f(x)|p dµ(x) .
 

X
 

We also abbreviate this to IfILp(X), IfILp , or IfIp. 

When p = 1 the space L1(X, F , µ) consists of all integrable functions 
on X, and we have shown in Chapter 6 of Book III, that L1 together with 
I · IL1 is a complete normed vector space. Also, the case p = 2 warrants 
special attention: it is a Hilbert space. 

We note here that we encounter the same technical point that we al
ready discussed in Book III. The problem is that IfILp = 0 does not 
imply that f = 0, but merely f = 0 almost everywhere (for the measure 
µ). Therefore, the precise definition of Lp requires introducing the equiv
alence relation, in which f and g are equivalent if f = g a.e. Then, Lp 

consists of all equivalence classes of functions which satisfy (1). However, 
in practice there is little risk of error by thinking of elements in Lp as 
functions rather than equivalence classes of functions. 

The following are some common examples of Lp spaces. 

(a)	 The case X = Rd and µ equals Lebesgue measure is often used in 
practice. There, we have 

(i )1/p 

IfILp = |f(x)|p dx . 
Rd 

(b)	 Also, one can take X = Z, and µ equal to the counting measure. 
Then, we get the “discrete” version of the Lp spaces. Measurable 
functions are simply sequences f = {an}n∈Z of complex numbers, 
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1. Lp spaces 

and 
�1/p∞

If ILp = 

� � 
|an|p . 

n=−∞ 

When p = 2, we recover the familiar sequence space g2(Z). 

The spaces Lp are examples of normed vector spaces. The basic prop
erty satisfied by the norm is the triangle inequality, which we shall prove 
shortly. 

The range of p which is of interest in most applications is 1 ≤ p < ∞, 
and later also p = ∞. There are at least two reasons why we restrict our 
attention to these values of p: when 0 < p < 1, the function I · ILp does 
not satisfy the triangle inequality, and moreover, for such p, the space 
Lp has no non-trivial bounded linear functionals.1 (See Exercise 2.) 

When p = 1 the norm I · IL1 satisfies the triangle inequality, and L1 

is a complete normed vector space. When p = 2, this result continues to 
hold, although one needs the Cauchy-Schwarz inequality to prove it. In 
the same way, for 1 ≤ p < ∞ the proof of the triangle inequality relies on 
a generalized version of the Cauchy-Schwarz inequality. This is Hölder’s 
inequality, which is also the key in the duality of the Lp spaces, as we 
will see in Section 4. 

1.1 The Hölder and Minkowski inequalities 

If the two exponents p and q satisfy 1 ≤ p, q ≤ ∞, and the relation 

1 1 
+ = 1 

p q 

holds, we say that p and q are conjugate or dual exponents. Here, 
iwe use the convention 1/∞ = 0. Later, we shall sometimes use p to 

denote the conjugate exponent of p. Note that p = 2 is self-dual, that is, 
p = q = 2; also p = 1, ∞ corresponds to q = ∞, 1 respectively. 

Theorem 1.1 (Hölder) Suppose 1 < p < ∞ and 1 < q < ∞ are conju
gate exponents. If f ∈ Lp and g ∈ Lq, then fg ∈ L1 and 

IfgIL1 ≤ IfILp IgILq . 

Note. Once we have defined L∞ (see Section 2) the corresponding in
equality for the exponents 1 and ∞ will be seen to be essentially trivial. 

1We will define what we mean by a bounded linear functional later in the chapter. 
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The proof of the theorem relies on a simple generalized form of the 
arithmetic-geometric mean inequality: if A, B ≥ 0, and 0 ≤ θ ≤ 1, then 

(2) AθB1−θ ≤ θA + (1 − θ)B. 

Note that when θ = 1/2, the inequality (2) states the familiar fact that 
the geometric mean of two numbers is majorized by their arithmetic 
mean. 

To establish (2), we observe first that we may assume B �= 0, and 
replacing A by AB, we see that it suffices to prove that Aθ ≤ θA + (1 − 
θ). If we let f (x) = xθ − θx − (1 − θ), then f i(x) = θ(xθ−1 − 1). Thus 
f(x) increases when 0 ≤ x ≤ 1 and decreases when 1 ≤ x, and we see that 
the continuous function f attains a maximum at x = 1, where f(1) = 0. 
Therefore f(A) ≤ 0, as desired. 

To prove Hölder’s inequality we argue as follows. If either IfILp = 0 
or IfILq = 0, then fg = 0 a.e. and the inequality is obviously verified. 
Therefore, we may assume that neither of these norms vanish, and after 
replacing f by f/If ILp and g by g/IgILq , we may further assume that 
IfILp = IgILq = 1. We now need to prove that IfgIL1 ≤ 1. 

If we set A = |f(x)|p, B = |g(x)|q, and θ = 1/p so that 1 − θ = 1/q, 
then (2) gives 

1 1 |f(x)g(x)| ≤ |f (x)|p + |g(x)|q. 
p q 

Integrating this inequality yields IfgIL1 ≤ 1, and the proof of the Hölder 
inequality is complete. 

For the case when the equality IfgIL1 = IfILp IgILq holds, see Exer
cise 3. 

We are now ready to prove the triangle inequality for the Lp norm. 

Theorem 1.2 (Minkowski) If 1 ≤ p < ∞ and f, g ∈ Lp, then f + g ∈ 
Lp and If + gILp ≤ If ILp + IgILp . 

Proof. The case p = 1 is obtained by integrating |f(x) + g(x)| ≤ 
|f(x)| + |g(x)|. When p > 1, we may begin by verifying that f + g ∈ Lp, 
when both f and g belong to Lp. Indeed, 

|f(x) + g(x)|p ≤ 2p(|f(x)|p + |g(x)|p), 
as can be seen by considering separately the cases |f (x)| ≤ |g(x)| and 
|g(x)| ≤ |f(x)|. Next we note that 

|f(x) + g(x)|p ≤ |f (x)| |f(x) + g(x)|p−1 + |g(x)| |f (x) + g(x)|p−1 . 
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1. Lp spaces 

If q denotes the conjugate exponent of p, then (p − 1)q = p, so we see 
that (f + g)p−1 belongs to Lq , and therefore Hölder’s inequality applied 
to the two terms on the right-hand side of the above inequality gives 

(3) If + gIp ≤ IfILp I(f + g)p−1ILq + IgILp I(f + g)p−1ILq .Lp 

However, using once again (p − 1)q = p, we get 

p/qI(f + g)p−1ILq = If + gILp . 

From (3), since p − p/q = 1, and because we may suppose that If + 
gILp > 0, we find 

If + gILp ≤ IfILp + IgILp , 

so the proof is finished. 

1.2 Completeness of Lp 

The triangle inequality makes Lp into a metric space with distance 
d(f, g) = If − gILp . The basic analytic fact is that Lp is complete 
in the sense that every Cauchy sequence in the norm I · ILp converges to 
an element in Lp. 

Taking limits is a necessity in many problems, and the Lp spaces would 
be of little use if they were not complete. Fortunately, like L1 and L2 , 
the general Lp space does satisfy this desirable property. 

Theorem 1.3 The space Lp(X, F , µ) is complete in the norm I · ILp . 

Proof. The argument is essentially the same as for L1 (or L2); see 
Section 2, Chapter 2 and Section 1, Chapter 4 in Book III. Let {fn}∞ 

n=1 

be a Cauchy sequence in Lp, and consider a subsequence {fnk }∞ ofk=1 
{fn} with the following property Ifnk+1 − fnk ILp for all k ≥ 1.≤ 2−k 

We now consider the series whose convergence will be seen below 

∞ 

f(x) = fn1 (x) + (x) − fnk (x))(fnk+1 

k=1 

and 

∞ 

g(x) = |fn1 (x)| + |fnk+1 (x) − fnk (x)|, 
k=1 
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and the corresponding partial sums 

K 

SK (f)(x) = fn1 (x) + (x) − fnk (x))(fnk+1 

k=1 

and 
K 

SK (g)(x) = |fn1 (x)| + |fnk+1 (x) − fnk (x)|. 
k=1 

The triangle inequality for Lp implies 

K 

ISK (g)ILp ≤ Ifn1 ILp + − fnk ILpIfnk+1 

k=1 

K 

2−k≤ Ifn1 ILp + . 
k=1 

Letting K tend to infinity, and applying the monotone convergence theo
rem proves that 

J 
gp < ∞, and therefore the series defining g, and hence 

the series defining f converges almost everywhere, and f ∈ Lp. 
We now show that f is the desired limit of the sequence {fn}. Since 

(by construction of the telescopic series) the (K − 1)th partial sum of 
this series is precisely fnK , we find that 

fnK (x) → f(x) a.e. x. 

To prove that fnK → f in Lp as well, we first observe that 

|f(x) − SK (f )(x)|p ≤ [2 max(|f(x)|, |SK (f )(x)|)]p 

≤ 2p|f (x)|p + 2p|SK (f)(x)|p 

≤ 2p+1|g(x)|p, 

for all K. Then, we may apply the dominated convergence theorem to 
get IfnK − fILp → 0 as K tends to infinity. 

Finally, the last step of the proof consists of recalling that {fn} is 
Cauchy. Given E > 0, there exists N so that for all n,m > N we have 
Ifn − fmILp < E/2. If nK is chosen so that nK > N , and IfnK − fILp < 
E/2, then the triangle inequality implies 

Ifn − fILp ≤ Ifn − fnK ILp + IfnK − fILp < E 

whenever n > N . This concludes the proof of the theorem. 
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1.3 Further remarks 

We begin by looking at some possible inclusion relations between the 
various Lp spaces. The matter is simple if the underlying space has 
finite measure. 

Proposition 1.4 If X has finite positive measure, and p0 ≤ p1, then 
Lp1 (X) ⊂ Lp0 (X) and 

1 1 IfILp0 ≤ If ILp1 . 
µ(X)1/p0 µ(X)1/p1 

We may assume that p1 > p0. Suppose f ∈ Lp1 , and set F = |f |p0 , 
G = 1, p = p1/p0 > 1, and 1/p + 1/q = 1, in Hölder’s inequality applied 
to F and G. This yields 

IfIp0 

(i 
|f |p1 

)p0/p1 

· µ(X)1−p0/p1 
Lp0 ≤ . 

thIn particular, we find that If ILp0 < ∞. Moreover, by taking the p root 0 

of both sides of the above equation, we find that the inequality in the 
proposition holds. 

However, as is easily seen, such inclusion does not hold when X has 
infinite measure. (See Exercise 1). Yet, in an interesting special case the 
opposite inclusion does hold. 

Proposition 1.5 If X = Z is equipped with counting measure, then the 
reverse inclusion holds, namely Lp0 (Z) ⊂ Lp1 (Z) if p0 ≤ p1. Moreover, 
IfILp1 ≤ If ILp0 . 

Indeed, if f = {f (n)}n∈Z, then 
� |f(n)|p0 = IfIp0 , and sup |f (n)| ≤ Lp0 n 

IfILp0 . However 

|f(n)|p1 = |f (n)|p0 |f(n)|p1−p0 

≤ (sup |f (n)|)p1 −p0 If Ip0 
Lp0 

n 

≤ IfIp1 
Lp0 . 

Thus IfILp1 ≤ If ILp0 . 

2 The case p = ∞ 

Finally, we also consider the limiting case p = ∞. The space L∞ will 
be defined as all functions that are “essentially bounded” in the follow
ing sense. We take the space L∞(X, F , µ) to consist of all (equivalence 
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classes of) measurable functions on X, so that there exists a positive 
number 0 < M < ∞, with 

|f (x)| ≤ M a.e. x. 

Then, we define If IL∞ (X,F,µ) to be the infimum of all possible values M 
satisfying the above inequality. The quantity If IL∞ is sometimes called 
the essential-supremum of f . 

We note that with this definition, we have |f(x)| ≤ IfIL∞ for a.e. x. 
Indeed, if E = {x : |f(x)| > If IL∞ }, and En = {x : |f(x)| > If IL∞ + 
1/n}, then we have µ(En) = 0, and E = 

� 
En, hence µ(E) = 0. 

Theorem 2.1 The vector space L∞ equipped with I · IL∞ is a complete 
vector space. 

This assertion is easy to verify and is left to the reader. Moreover, 
Hölder’s inequality continues to hold for values of p and q in the larger 
range 1 ≤ p, q ≤ ∞, once we take p = 1 and q = ∞ as conjugate expo
nents, as we mentioned before. 

The fact that L∞ is a limiting case of Lp when p tends to ∞ can be 
understood as follows. 

Proposition 2.2 Suppose f ∈ L∞ is supported on a set of finite mea
sure. Then f ∈ Lp for all p < ∞, and 

IfILp → If IL∞ as p →∞. 

Proof. Let E be a measurable subset of X with µ(E) < ∞, and so 
that f vanishes in the complement of E. If µ(E) = 0, then IfIL∞ = 
IfILp = 0 and there is nothing to prove. Otherwise 

)1/p )1/p 

IfILp = 

(i 
|f (x)|p dµ ≤ 

(i 
IfIp dµ ≤ If IL∞ µ(E)1/p.L∞ 

E E 

Since µ(E)1/p → 1 as p →∞, we find that lim supp→∞ IfILp ≤ If IL∞ . 
On the other hand, given E > 0, we have 

µ({x : |f (x)| ≥ IfIL∞ − E}) ≥ δ for some δ > 0, 

hence i 
− E)p.|f |p dµ ≥ δ(IfIL∞ 

X 

Therefore lim infp→∞ If ILp ≥ If IL∞ − E, and since E is arbitrary, we 
have lim infp→∞ IfILp ≥ IfIL∞ . Hence the limit limp→∞ IfILp exists, 
and equals If IL∞ . 
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3 Banach spaces 

We introduce here a general notion which encompasses the Lp spaces as 
specific examples. 

First, a normed vector space consists of an underlying vector space V 
over a field of scalars (the real or complex numbers), together with a 
norm I · I : V → R+ that satisfies: 

• IvI = 0 if and only if v = 0. 

• IαvI = |α| IvI, whenever α is a scalar and v ∈ V . 

• Iv + wI ≤ IvI + IwI for all v, w ∈ V . 

The space V is said to be complete if whenever {vn} is a Cauchy 
sequence in V , that is, Ivn − vmI → 0 as n, m →∞, then there exists a 
v ∈ V such that Ivn − vI → 0 as n →∞. 

A complete normed vector space is called a Banach space. Here 
again, we stress the importance of the fact that Cauchy sequences con
verge to a limit in the space itself, hence the space is “closed” under 
limiting operations. 

3.1 Examples 

The real numbers R with the usual absolute value form an initial example 
of a Banach space. Other easy examples are Rd, with the Euclidean norm, 
and more generally a Hilbert space with its norm given in terms of its 
inner product. 

Several further relevant examples are as follows: 

Example 1. The family of Lp spaces with 1 ≤ p ≤ ∞ which we have just 
introduced are also important examples of Banach spaces (Theorem 1.3 
and Theorem 2.1). Incidentally, L2 is the only Hilbert space in the 
family Lp, where 1 ≤ p ≤ ∞ (Exercise 25) and this in part accounts for 
the special flavor of the analysis carried out in L2 as opposed to L1 or 
more generally Lp for p �= 2. 

Finally, observe that since the triangle inequality fails in general when 
0 < p < 1, I · ILp is not a norm on Lp for this range of p, hence it is not 
a Banach space. 

Example 2. Another example of a Banach space is C([0, 1]), or more 
generally C(X) with X a compact set in a metric space, as will be de
fined in Section 7. By definition, C(X) is the vector space of continuous 
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functions on X equipped with the sup-norm IfI = supx∈X |f (x)|. Com
pleteness is guaranteed by the fact that the uniform limit of a sequence 
of continuous functions is also continuous. 

Example 3. Two further examples are important in various applications. 
The first is the space Λα(R) of all bounded functions on R which satisfy 
a Hölder (or Lipschitz) condition of exponent α with 0 < α ≤ 1, 
that is, 

|f(t1) − f (t2)|sup < ∞. 
t1  |t1 − t2|α 

=t2 

Observe that f is then necessarily continuous; also the only interesting 
case is when α ≤ 1, since a function which satisfies a Hölder condition of 
exponent α with α > 1 is constant.2 

More generally, this space can be defined on Rd; it consists of contin
uous functions f equipped with the norm 

|f(x) − f(y)|IfIΛα (Rd) = sup |f (x)| + sup . |x − y|α 
x∈Rd x =y 

With this norm, Λα(Rd) is a Banach space (see also Exercise 29). 

Example 4. A function f ∈ Lp(Rd) is said to have weak derivatives 
in Lp up to order k, if for every multi-index α = (α1, . . . , αd) with |α| = 
α1 + · · · + αd ≤ k, there is a gα ∈ Lp with 

(4) 
i 

gα(x)ϕ(x) dx = (−1)|α| 
i 

f(x)∂αϕ(x) dxx 
Rd Rd 

for all smooth functions ϕ that have compact support in Rd . Here, we 
use the multi-index notation 

( 
∂ 

)α ( 
∂ 

)α1 
( 

∂ 
)αd 

∂α = = · · · .x ∂x ∂x1 ∂xd 

Clearly, the functions gα (when they exist) are unique, and we also write 
∂αf = gα. This definition arises from the relationship (4) which holds x 

whenever f is itself smooth, and g equals the usual derivative ∂αf , as x 

follows from an integration by parts (see also Section 3.1, Chapter 5 in 
Book III). 

2We have already encountered this space in Book I, Chapter 2 and Book III, Chapter 7. 
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The space Lp(Rd) is the subspace of Lp(Rd) of all functions that have k

weak derivatives up to order k. (The concept of weak derivatives will 
reappear in Chapter 3 in the setting of derivatives in the sense of distri
butions.) This space is usually referred to as a Sobolev space. A norm 
that turns Lp (Rd) into a Banach space is k

If ILp (Rd) = I∂x
αf ILp (Rd) . k 

|α|≤k 

Example 5. In the case p = 2, we note in the above example that an 
L2 function f belongs to L2 (Rd) if and only if (1 + |ξ|2)k/2f̂(ξ) belongs k

to L2, and that I(1 + |ξ|2)k/2f̂(ξ)IL2 is a Hilbert space norm equivalent 
to If IL2 (Rd ). k 

Therefore, if k is any positive number, it is natural to define L2 ask 

those functions f in L2 for which (1 + |ξ|2)k/2f̂(ξ) belongs to L2, and we 
can equip L2 with the norm IfIL2 = I(1 + |ξ|2)k/2f̂(ξ)IL2 .k (Rd)k 

3.2 Linear functionals and the dual of a Banach space 

For the sake of simplicity, we restrict ourselves in this and the following 
two sections to Banach spaces over R; the reader will find in Section 6 
the slight modifications necessary to extend the results to Banach spaces 
over C. 

Suppose that B is a Banach space over R equipped with a norm I · I. A 
linear functional is a linear mapping g from B to R, that is, g : B → R, 
which satisfies 

g(αf + βg) = αg(f) + βg(g), for all α, β ∈ R, and f, g ∈ B. 

A linear functional g is continuous if given E > 0 there exists δ > 0 so 
that |g(f ) − g(g)| ≤ E whenever If − gI ≤ δ. Also we say that a linear 
functional is bounded if there is M > 0 with |g(f )| ≤ MIf I for all f ∈ 
B. The linearity of g shows that these two notions are in fact equivalent. 

Proposition 3.1 A linear functional on a Banach space is continuous, 
if and only if it is bounded. 

Proof. The key is to observe that g is continuous if and only if g is 
continuous at the origin. 

Indeed, if g is continuous, we choose E = 1 and g = 0 in the above 
definition so that |g(f )| ≤ 1 whenever If I ≤ δ, for some δ > 0. Hence, 
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given any non-zero h, an element of B, we see that δh/IhI has norm equal 
to δ, and hence |g(δh/IhI)| ≤ 1. Thus |g(h)| ≤ MIhI with M = 1/δ. 

Conversely, if g is bounded it is clearly continuous at the origin, hence 
continuous. 

The significance of continuous linear functionals in terms of closed 
hyperplanes in B is a noteworthy geometric point to which we return 
later on. Now we take up analytic aspects of linear functionals. 

The set of all continuous linear functionals over B is a vector space 
since we may add linear functionals and multiply them by scalars: 

(g1 + g2)(f) = g1(f ) + g2(f) and (αg)(f) = αg(f). 

This vector space may be equipped with a norm as follows. The norm 
IgI of a continuous linear functional g is the infimum of all values M for 
which |g(f )| ≤ MIf I for all f ∈ B. From this definition and the linearity 
of g it is clear that 

|g(f)|IgI = sup |g(f )| = sup |g(f )| = sup . IfI1f 1≤1 1f 1=1 f =0 

The vector space of all continuous linear functionals on B equipped 
with I · I is called the dual space of B, and is denoted by B∗ . 

Theorem 3.2 The vector space B∗ is a Banach space. 

Proof. It is clear that I · I defines a norm, so we only check that B∗ is 
complete. Suppose that {gn} is a Cauchy sequence in B∗. Then, for each 
f ∈ B, the sequence {gn(f)} is Cauchy, hence converges to a limit, which 
we denote by g(f). Clearly, the mapping g : f  → g(f ) is linear. If M is 
so that IgnI ≤ M for all n, we see that 

|g(f)| ≤ |(g − gn)(f)| + |gn(f)| ≤ |(g − gn)(f)| + M If I, 

so that in the limit as n →∞, we find |g(f )| ≤ M If I for all f ∈ B. 
Thus g is bounded. Finally, we must show that gn converges to g in B∗ . 
Given E > 0 choose N so that Ign − gmI < E/2 for all n,m > N . Then, 
if n > N , we see that for all m > N and any f 

E |(g − gn)(f)| ≤ |(g − gm)(f)| + |(gm − gn)(f)| ≤ |(g − gm)(f)| + IfI.
2 

We can also choose m so large (and dependent on f) so that we also have 
|(g − gm)(f)| ≤ EIf I/2. In the end, we find that for n > N , 

|(g − gn)(f )| ≤ EIfI. 
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This proves that Ig − gnI → 0, as desired. 

In general, given a Banach space B, it is interesting and very useful to 
be able to describe its dual B∗. This problem has an essentially complete 
answer in the case of the Lp spaces introduced before. 

4 The dual space of Lp when 1 ≤ p < ∞ 

Suppose that 1 ≤ p ≤ ∞ and q is the conjugate exponent of p, that is, 
1/p + 1/q = 1. The key observation to make is the following: Hölder’s 
inequality shows that every function g ∈ Lq gives rise to a bounded linear 
functional on Lp by 

i
(5) g(f ) = f(x)g(x) dµ(x), 

X 

and that IgI ≤ IgILq . Therefore, if we associate g to g above, then we 
find that Lq ⊂ (Lp)∗ when 1 ≤ p ≤ ∞. The main result in this section 
is to prove that when 1 ≤ p < ∞, every linear functional on Lp is of 
the form (5) for some g ∈ Lq. This implies that (Lp)∗ = Lq whenever 
1 ≤ p < ∞. We remark that this result is in general not true when p = ∞; 
the dual of L∞ contains L1, but it is larger. (See the end of Section 5.3 
below.) 

Theorem 4.1 Suppose 1 ≤ p < ∞, and 1/p + 1/q = 1. Then, with B = 
Lp we have 

B ∗ = Lq, 

in the following sense: For every bounded linear functional g on Lp there 
is a unique g ∈ Lq so that 

i 
g(f) = f (x)g(x) dµ(x), for all f ∈ Lp. 

X 

Moreover, IgIB∗ = IgILq . 

This theorem justifies the terminology whereby q is usually called the 
dual exponent of p. 

The proof of the theorem is based on two ideas. The first, as already 
seen, is Hölder’s inequality; to which a converse is also needed. The 
second is the fact that a linear functional g on Lp, 1 ≤ p < ∞, leads nat
urally to a (signed) measure ν. Because of the continuity of g the measure 
ν is absolutely continuous with respect to the underlying measure µ, and 
our desired function g is then the density function of ν in terms of µ. 

We begin with: 
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Lemma 4.2 Suppose 1 ≤ p, q ≤ ∞, are conjugate exponents. 

(i) If g ∈ Lq , then IgILq = sup 

  i 
fg

  
. 

1f1Lp ≤1

    

(ii) Suppose g is integrable on all sets of finite measure, and 

i 
sup fg = M < ∞.

    
    If ILp ≤ 1 

f simple

Then g ∈ Lq, and IgILq = M . 

For the proof of the lemma, we recall the signum of a real number 
defined by 

⎧
1 if x > 0 

sign(x) = 
⎨ 

−1 if x < 0 
0 if x = 0. ⎩ 

Proof. We start with (i). If g = 0, there is nothing to prove, so 
we may assume that g is not 0 a.e., and hence IgILq � older’s= 0. By H¨
inequality, we have that 

i
IgILq ≥ sup fg . 

    
    1f 1Lp ≤1

To prove the reverse inequality we consider several cases. 

•	 First, if q = 1 and p = ∞, we may take f(x) = sign g(x). Then, we 
have If IL∞ = 1, and clearly, 

J 
fg = IgIL1 . 

•	 If 1 < p, q < ∞, then we set f (x) = |g(x)|q−1sign g(x)/IgIq−1 .Lq We 
p(q−1)observe that IfIp = 

J |g(x)|p(q−1) dµ/IgI = 1 since p(q −Lp	 Lq 

1) = q, and that 
J 

fg = IgILq . 

•	 Finally, if q = ∞ and p = 1, let E > 0, and E a set of finite posi
tive measure, where |g(x)| ≥ IgIL∞ − E. (Such a set exists by the 
definition of IgIL∞ and the fact that the measure µ is σ-finite.) 
Then, if we take f (x) = χE (x) sign g(x)/µ(E), where χE denotes 
the characteristic function of the set E, we see that IfIL1 = 1, and 
also

i 
1 

i
fg = |g| ≥ IgI∞ − E. 

    
    µ(E) E 
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This completes the proof of part (i). 
To prove (ii) we recall3 that we can find a sequence {gn} of simple 

functions so that |gn(x)| ≤ |g(x)| while gn(x) → g(x) for each x. When 
p > 1 (so q < ∞), we take fn(x) = |gn(x)|q−1 sign g(x)/IgnIq−1 . As be-Lq 

fore, IfnILp = 1. However 
i J |gn(x)|q 

fng = = IgnILq , Iq−1Ign Lq 

and this does not exceed M . By Fatou’s lemma it follows that 
J |g|q ≤ 

Mq , so g ∈ Lq with IgILq ≤ M . The direction IgILq ≥ M is of course 
implied by Hölder’s inequality. 

When p = 1 the argument is parallel with the above but simpler. Here 
we take fn(x) = (sign g(x))χEn (x), where En is an increasing sequence 
of sets of finite measure whose union is X. The details may be left to 
the reader. 

With the lemma established we turn to the proof of the theorem. It 
is simpler to consider first the case when the underlying space has finite 
measure. In this case, with g the given functional on Lp, we can then 
define a set function ν by 

ν(E) = g(χE ), 

where E is any measurable set. This definition makes sense because χE is 
now automatically in Lp since the space has finite measure. We observe 
that 

(6) |ν(E)| ≤ c(µ(E))1/p, 

where c is the norm of the linear functional, taking into account the fact 
that IχE ILp = (µ(E))1/p. 

Now the linearity of g clearly implies that ν is finitely-additive. More
over, if {En} is a countable collection of disjoint measurable sets, and we 
put E = 

�∞ 
En, E∗ = 

�∞ 
En, then obviously n=1 N n=N+1 

N 

χE = χE∗ + χEn . N 

n=1 

Thus ν(E) = ν(E∗ ) + 
�N 

ν(En). However ν(E∗ ) → 0, as N →∞,N n=1 N 
because of (6) and the assumption p < ∞. This shows that ν is countably 

3See for instance Section 2 in Chapter 6 of Book III. 
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additive and, moreover, (6) also shows us that ν is absolutely continuous 
with respect to µ. 

We can now invoke the key result about absolutely continuous mea
sures, the Lebesgue-Radon-Nykodim theorem. (See for example Theo
rem 4.3, Chapter 6 in Book III.) It guarantees the existence of an in
tegrable function g so that ν(E) = 

J
g dµ for every measurable set E.

E 
Thus we have g(χE ) = 

J 
χE g dµ. The representation g(f) = 

J 
fg dµ then 

extends immediately to simple functions f , and by a passage to the limit, 
to all f ∈ Lp since the simple functions are dense in Lp, 1 ≤ p < ∞. (See 
Exercise 6.) Also by Lemma 4.2, we see that IgILq = IgI. 

To pass from the situation where the measure of X is finite to the 
general case, we use an increasing sequence {En} of sets of finite measure 
that exhaust X, that is, X = 

�∞ 
En. According to what we have just n=1 

proved, for each n there is an integrable function gn on En (which we 
can set to be zero in Ec ) so that n

i
(7) g(f ) = fgn dµ 

whenever f is supported in En and f ∈ Lp. Moreover by conclusion (ii) 
of the lemma IgnILq ≤ IgI. 

Now it is easy to see because of (7) that gn = gm a.e. on Em, whenever 
n ≥ m. Thus limn→∞ gn(x) = g(x) exists for almost every x, and by 
Fatou’s lemma, IgILq ≤ IgI. As a result we have that g(f) = 

J 
fg dµ for 

each f ∈ Lp supported in En, and then by a simple limiting argument, for 
all f ∈ Lp. The fact that IgI ≤ IgILq , is already contained in Hölder’s 
inequality, and therefore the proof of the theorem is complete. 

5 More about linear functionals 

First we turn to the study of certain geometric aspects of linear function
als in terms of the hyperplanes that they define. This will also involve 
understanding some elementary ideas about convexity. 

5.1 Separation of convex sets 

Although our ultimate focus will be on Banach spaces, we begin by con
sidering an arbitrary vector space V over the reals. In this general setting 
we can define the following notions. 

First, a proper hyperplane is a linear subspace of V that arises as 
the zero set of a (non-zero) linear functional on V . Alternatively, it is 
a linear subspace of V so that it, together with any vector not in V , 
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Related to this notion is that of an affine hyperplane (which 
for brevity we will always refer to as a hyperplane) defined to be a 
translate of a proper hyperplane by a vector in V . To put it another 

is a hyperplane if there is a non-zero linear functional g, and a 
, so that 

H {v ∈ V : g(v) = a}. 

Another relevant notion is that of a convex set. The subset K ⊂ V is said 
if whenever v0 and v1 are both in K then the straight-line 

segment joining them 

v(t) = (1 − t)v0 + tv1, 0 ≤ t ≤ 1 

also lies entirely in K. 

A key heuristic idea underlying our considerations can be enunciated 
as the following general principle: 

is a convex set and v0 /∈ K, then K and v0 can be sep-
arated by a hyperplane. 

This principle is illustrated in Figure 1. 
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way: H 
real number a

= 

to be convex 

(8) 

If K 

H 
v0 

K 

g(v) = a 

Figure 1. Separation of a convex set and a point by a hyperplane 

The sense in which this is meant is that there is a non-zero linear 
functional g and a real number a, so that 

g(v0) ≥ a, while g(v) < a if v ∈ K. 

To give an idea of what is behind this principle we show why it holds in 
a nice special case. (See also Section 5.2.) 
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Proposition 5.1 The assertion above is valid if V Rd and K is con-
vex and open. 

Since we may assume that K is non-empty, we can also 
suppose that (after a possible translation of K and v0) we have 0 ∈ K. 
The key construct used will be that of the Minkowski gauge function p 

K, which measures (the inverse of) how far we need to go, 
starting from 0 in the direction of a vector v, to reach the exterior of K. 
The precise definition of p is as follows: 

p(v) = inf 
r>0

{r : v/r ∈ K}. 

Observe that since we have assumed that the origin is an interior point 
, for each v ∈ Rd there is an r > 0, so that v/r ∈ K. Hence p(v) is 

Figure 2 below gives an example of a gauge function in the special case 
and K = (a, b), an open interval that contains the origin. 
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=
 

Proof. 

associated to 

of K
well-defined. 

where V = R 

y = 1 

p 

0 x 

Figure 2. The gauge function of the interval (a, b) in R 

a	 b 

We note, for example, that if V is normed and K is the unit ball 
{IvI < 1}, then p(v) = IvI. 

In general, the non-negative function p completely characterizes K in 
that 

(9) p(v) < 1 if and only if v ∈ K. 

Moreover p has an important sub-linear property: 

(10)	 
� 

p(av) = ap(v), if a ≥ 0, and v ∈ V . 
p(v1 + v2) ≤ p(v1) + p(v2), if v1 and v2 ∈ V . 
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In fact, if v ∈ K then v/(1 − E) ∈ K for some E > 0, since K is open, 
which gives that p(v) < 1. Conversely if p(v) < 1, then v = (1 − E)vi, for 
some 0 < E < 1, and vi ∈ K. Then since v = (1 − E)vi + E · 0 this shows 
v ∈ K, because 0 ∈ K and K is convex. 

To verify (10) we merely note that (v1 + v2)/(r1 + r2) belongs to K, 
if both v1/r1 and v2/r2 belong to K, in view of property (8) defining the 
convexity of K with t = r2/(r1 + r2) and 1 − t = r1/(r1 + r2). 

Now our proposition will be proved once we find a linear functional g, 
so that 

(11) g(v0) = 1, and g(v) ≤ p(v), v ∈ Rd . 

This is because g(v) < 1, for all v ∈ K by (9). We shall construct g in a 
step-by-step manner. 

First, such an g is already determined in the one-dimensional sub-
space V0 spanned by v0, V0 = {Rv0}, since g(bv0) = bg(v0) = b, when 
b ∈ R, and this is consistent with (11). Indeed, if b ≥ 0 then p(bv0) = 
bp(v0) ≥ bg(v0) = g(bv0) by (10) and (9), while (11) is immediate when 
b < 0. 

The next step is to choose any vector v1 linearly independent from v0 

and extend g to the subspace V1 spanned by v0 and v1. Thus we can 
make a choice for the value of g on v1, g(v1), so as to satisfy (11) if 

ag(v1) + b = g(av1 + bv0) ≤ p(av1 + bv0), for all a, b ∈ R. 

Setting a = 1 and bv0 = w yields 

g(v1) + g(w) ≤ p(v1 + w) for all w ∈ V0, 

while setting a = −1 implies 

−g(v1) + g(w i) ≤ p(−v1 + w i), for all wi ∈ V0. 

Altogether then it is required that for all w, wi ∈ V0 

(12) −p(−v1 + w i) + g(w i) ≤ g(v1) ≤ p(v1 + w) − g(w). 

Notice that there is a number that lies between the two extremes of the 
above inequality. This is a consequence of the fact that −p(−v1 + wi) + 
g(wi) never exceeds p(v1 + w) − g(w), which itself follows from the fact 
that g(w) + g(wi) ≤ p(w + wi) ≤ p(−v1 + wi) + p(v1 + w), by (11) on V0 

and the sub-linearity of p. So a choice of g(v1) can be made that is 
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consistent with (12) and this allows one to extend g to V1. In the same 
way we can proceed inductively to extend g to all of Rd . 

The argument just given here in this special context will now be car
ried over in a general setting to give us an important theorem about 
constructing linear functionals. 

5.2 The Hahn-Banach Theorem 

We return to the general situation where we deal with an arbitrary vector 
space V over the reals. We assume that with V we are given a real-valued 
function p on V that satisfies the sub-linear property (10). However, as 
opposed to the example of the gauge function considered above, which 
by its nature is non-negative, here we do not assume that p has this 
property. In fact, certain p’s which may take on negative values are 
needed in some of our applications later. 

Theorem 5.2 Suppose V0 is a linear subspace of V , and that we are 
given a linear functional g0 on V0 that satisfies 

g0(v) ≤ p(v), for all v ∈ V0. 

Then g0 can be extended to a linear functional g on V that satisfies 

g(v) ≤ p(v), for all v ∈ V . 

Proof. Suppose V0 =� V , and pick v1 a vector not in V0. We will first 
extend g0 to the subspace V1 spanned by V0 and v1, as we did before. 
We can do this by defining a putative extension g1 of g0, defined on V1 

by g1(αv1 + w) = αg1(v1) + g0(w), whenever w ∈ V0 and α ∈ R, if g1(v1) 
is chosen so that 

g1(v) ≤ p(v), for all v ∈ V1. 

However, exactly as above, this happens when 

−p(−v1 + w i) + g0(w i) ≤ g1(v1) ≤ p(v1 + w) − g0(w) 

for all w, wi ∈ V0. 
The right-hand side exceeds the left-hand side because of g0(wi) + 

g0(w) ≤ p(wi + w) and the sub-linearity of p. Thus an appropriate choice 
of g1(v1) is possible, giving the desired extension of g0 from V0 to V1. 

We can think of the extension we have constructed as the key step in 
an inductive procedure. This induction, which in general is necessarily 
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trans-finite, proceeds as follows. We well-order all vectors in V that do 
not belong to V0, and denote this ordering by <. Among these vectors we 
call a vector v “extendable” if the linear functional g0 has an extension 
of the kind desired to the subspace spanned by V0, v, and all vectors 
< v. What we want to prove is in effect that all vectors not in V0 are 
extendable. Assume the contrary, then because of the well-ordering we 
can find the smallest v1 that is not extendable. Now if V i is the space 0 

spanned by V0 and all the vectors < v1, then by assumption g0 extends 
to V i. The previous step, with V i in place of V0 allows us then to extend 0 0 

g0 to the subspace spanned by V i and v1, reaching a contradiction. This 0 

proves the theorem. 

5.3 Some consequences 

The Hahn-Banach theorem has several direct consequences for Banach 
spaces. Here B∗ denotes the dual of the Banach space B as defined in 
Section 3.2, that is, the space of continuous linear functionals on B. 

Proposition 5.3 Suppose f0 is a given element of B with If0I = M . 
Then there exists a continuous linear functional g on B so that g(f0) = M 
and IgIB∗ = 1. 

Proof. Define g0 on the one-dimensional subspace {αf0}α∈R by 
g0(αf0) = αM , for each α ∈ R. Note that if we set p(f) = IfI for every 
f ∈ B, the function p satisfies the basic sub-linear property (10). We also 
observe that 

|g0(αf0)| = |α|M = |α|If0I = p(αf0), 

so g0(f) ≤ p(f) on this subspace. By the extension theorem g0 extends 
to an g defined on B with g(f) ≤ p(f) = If I, for all f ∈ B. Since this 
inequality also holds for −f in place of f we get |g(f )| ≤ If I, and thus 
IgIB∗ ≤ 1. The fact that IgIB∗ ≥ 1 is implied by the defining property 
g(f0) = If0I, thereby proving the proposition. 

Another application is to the duality of linear transformations. Sup
pose B1 and B2 are a pair of Banach spaces, and T is a bounded lin
ear transformation from B1 to B2. By this we mean that T maps B1 

to B2; it satisfies T (αf1 + βf2) = αT (f1) + βT (f2) whenever f1, f2 ∈ B 
and α and β are real numbers; and that it has a bound M so that 
IT (f)IB2 ≤ M IfIB1 for all f ∈ B1. The least M for which this inequal
ity holds is called the norm of T and is denoted by IT I. 

Often a linear transformation is initially given on a dense subspace. In 
this connection, the following proposition is very useful. 
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Proposition 5.4 Let B1, B2 be a pair of Banach spaces and S ⊂ B1 

a dense linear subspace of B1. Suppose T0 is a linear transformation 
from S to B2 that satisfies IT0(f)IB2 ≤ MIfIB1 for all f ∈ S. Then T0 

has a unique extension T to all of B1 so that IT (f)IB2 ≤ M If IB1 for all 
f ∈ B1. 

Proof. If f ∈ B1, let {fn} be a sequence in S which converges to 
f . Then since IT0(fn) − T0(fm)IB2 ≤ M Ifn − fmIB1 it follows that 
{T0(fn)} is a Cauchy sequence in B2, and hence converges to a limit, 
which we define to be T (f). Note that the definition of T (f) is indepen
dent of the chosen sequence {fn}, and that the resulting transformation 
T has all the required properties. 

We now discuss duality of linear transformations. Whenever we have 
a linear transformation T from a Banach space B1 to another Banach 
space B2, it induces a dual transformation, T ∗ of B∗ to B∗, that can 2 1 

be defined as follows. 
Suppose g2 ∈ B∗, (a continuous linear functional on B2), then g1 = 2 

T ∗(g2) ∈ B∗, is defined by g1(f1) = g2(T (f1)), whenever f1 ∈ B1. More1 

succinctly 

(13) T ∗(g2)(f1) = g2(T (f1)). 

Theorem 5.5 The operator T ∗ defined by (13) is a bounded linear trans
formation from B∗ to B1 

∗ . Its norm IT ∗I satisfies IT I = IT ∗I.2 

Proof. First, if If1IB1 ≤ 1, we have that 

|g1(f1)| = |g2(T (f1))| ≤ Ig2I IT (f1)IB2 ≤ Ig2I IT I. 

Thus taking the supremum over all f1 ∈ B1 with If1IB1 ≤ 1, we see that 
the mapping g2  → T ∗(g2) = g1 has norm ≤ IT I. 

To prove the reverse inequality we can find for any E > 0 an f1 ∈ B1 

with If1IB1 = 1 and IT (f1)IB2 ≥ IT I − E. Next, with f2 = T (f1) ∈ B2, 
by Proposition 5.3 (with B = B2) there is an g2 in B∗ so that Ig2IB∗ = 1 2 2 

but g2(f2) ≥ IT I − E. Thus by (13) one has T ∗(g2)(f1) ≥ IT I − E, and 
since If1IB1 = 1, we conclude IT ∗(g2)IB∗ ≥ IT I − E. This gives IT ∗I ≥ 

1 

IT I − E for any E > 0, which proves the theorem. 

A further quick application of the Hahn-Banach theorem is the obser
vation that in general L1 is not the dual of L∞ (as opposed to the case 
1 ≤ p < ∞ considered in Theorem 4.1). 
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Let us first recall that whenever g ∈ L1, the linear functional f  → g(f) 
given by 

i
(14)	 g(f) = fg dµ 

is bounded on L∞, and its norm IgI(L∞)∗ is IgIL1 . In this way L1 can be 
viewed as a subspace of (L∞)∗, with the L1 norm of g being identical with 
its norm as a linear functional. One can, however, produce a continuous 
linear functional of L∞ not of this form. For simplicity we do this when 
the underlying space is R with Lebesgue measure. 

We let C denote the subspace of L∞(R) consisting of continuous 
bounded functions on R. Define the linear function g0 on C (the “Dirac 
delta”) by 

g0(f ) = f(0), f ∈ C. 
Clearly |g0(f)| ≤ IfIL∞ , f ∈ C. Thus by the extension theorem, with 
p(f) = IfIL∞ , we see that there is a linear functional g on L∞, extend
ing g0, that satisfies |g(f )| ≤ If IL∞ , for all f ∈ L∞ . 

Suppose for a moment that g were of the form (14) for some g ∈ L1 . 
Since g(f) = g0(f) = 0 whenever f is a continuous trapezoidal function 
that excludes the origin, we would have 

J 
fg dx = 0 for such functions f ; 

by a simple limiting argument this gives 
J

g dx = 0 for all intervals ex-
I 

cluding the origin, and from there for all intervals I. Hence the indefi
nite integrals G(y) = 

J y 
g(x) dx vanish, and therefore Gi = g = 0 by the 

0 
differentiation theorem.4 This gives a contradiction, hence the linear 
functional g is not representable as (14). 

5.4 The problem of measure 

We now consider an application of the Hahn-Banach theorem of a dif
ferent kind. We present a rather stunning assertion, answering a basic 
question of the “problem of measure.” The result states that there is a 
finitely-additive5 measure defined on all subsets of Rd that agrees with 
Lebesgue measure on the measurable sets, and is translation invariant. 
We formulate the theorem in one dimension. 

Theorem 5.6 There is an extended-valued non-negative function m̂, de
fined on all subsets of R with the following properties: 

(i)	 m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) whenever E1 and E2 are disjoint 
subsets of R. 

4See for instance Theorem 3.11, in Chapter 3 of Book III. 
5The qualifier “finitely-additive” is crucial. 
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(ii)	 m̂(E) = m(E) if E is a measurable set and m denotes the Lebesgue 
measure. 

(iii)	 m̂(E + h) = m̂(E) for every set E and real number h. 

From (i) we see that m̂ is finitely additive; however it cannot be countably 
additive as the proof of the existence of non-measurable sets shows. (See 
Section 3, Chapter 1 in Book III.) 

This theorem is a consequence of another result of this kind, dealing 
with an extension of the Lebesgue integral. Here the setting is the circle 
R/Z, instead of R, with the former realized as (0, 1]. Thus functions on 
R/Z can be thought of as functions on (0, 1], extended to R by periodicity 
with period 1. In the same way, translations on R induce corresponding 
translations on R/Z. The assertion now is the existence of a generalized 
integral (the “Banach integral”) defined on all bounded functions on the 
circle. 

Theorem 5.7 There is a linear functional f  → I(f ) defined on all 
bounded functions f on R/Z so that: 

(a)	 I(f) ≥ 0, if f (x) ≥ 0 for all x. 

(b)	 I(αf1 + βf2) = αI(f1) + βI(f2) for all α and β real. 

(c)	 I(f) = 
J 1 

f(x) dx, whenever f is measurable. 
0 

(d)	 I(fh) = I(f), for all h ∈ R where fh(x) = f (x − h). 

The right-hand side of (c) denotes the usual Lebesgue integral. 

Proof. The idea is to consider the vector space V of all (real-valued) 
bounded functions on R/Z, with V0 the subspace of those functions that 
are measurable. We let I0 denote the linear functional given by the 
Lebesgue integral, I0(f ) = 

J 1 
f(x) dx for f ∈ V0. The key is to find the 

0 
appropriate sub-linear p defined on V so that 

I0(f ) ≤ p(f ), for all f ∈ V0. 

Banach’s ingenious definition of p is as follows: We let A = {a1, . . . , aN }
denote an arbitrary collection of N real numbers, with #(A) = N denot
ing its cardinality. Given A, we define MA(f) to be the real number 

1 
N 

MA(f) = sup f (x + aj ) ,
Nx∈R 

j=1 
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and set 

p(f) = inf {MA(f )}, 
A 

where the infimum is taken over all finite collections A. 
It is clear that p(f ) is well-defined, since f is assumed to be bounded; 

also p(cf) = cp(f ) if c ≥ 0. To prove p(f1 + f2) ≤ p(f1) + p(f2), we find 
for each E, finite collections A and B so that 

MA(f1) ≤ p(f1) + E and MB (f2) ≤ p(f2) + E. 

Let C be the collection {ai + bj }1≤i≤N1, 1≤j≤N2 where N1 = #(A), and 
N2 = #(B). Now it is easy to see that 

MC (f1 + f2) ≤ MC (f1) + MC (f2). 

Next, we note as a general matter that MA(f) is the same as MAI (f i) 
where f i = fh is a translate of f and Ai = A − h . Also the averages 
corresponding to C arise as averages of translates of the averages corre
sponding to A and B, so it is easy to verify that 

MC (f1) ≤ MA(f1) and also MC (f2) ≤ MB (f2). 

Thus 

p(f1 + f2) ≤ MC (f1 + f2) ≤ MA(f1) + MB (f2) ≤ p(f1) + p(f2) + 2E. 

Letting E → 0 proves the sub-linearity of p. 

Next if f is Lebesgue measurable (and hence integrable since it is 
bounded), then for each A 

N11 
i i 1 

I0(f ) = f(x + aj ) dx ≤ MA(f ) dx = MA(f ),
N 0 0j=1 

and hence I0(f ) ≤ p(f ). Let therefore I be the linear functional extend
ing I0 from V0 to V , whose existence is guaranteed by Theorem 5.2. It 
is obvious from its definition that p(f ) ≤ 0 if f ≤ 0. From this it follows 
that I(f) ≤ 0 when f ≤ 0, and replacing f by −f we see that conclu
sion (a) holds. 

Next we observe that for each real h 

(15) p(f − fh) ≤ 0. 
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In fact, for h fixed and N given, define the set AN to be {h, 2h, 3h, . . . , Nh}. 
Then the sum that enters in the definition of MAN (f − fh) is 

1 
N 

(f(x + jh) − f(x + (j − 1)h)) ,
N 

j=1 

and thus |MAN (f − fh)| ≤ 2M/N , where M is an upper bound for |f |. 
Since p(f − fh) ≤ MAN (f − fh) → 0, as N →∞, we see that (15) is 
proved. This shows that I(f − fh) ≤ 0, for all f and h. However, replac
ing f by fh and then h by −h, we see that I(fh − f) ≤ 0 and thus (d) is 
also established, finishing the proof of Theorem 5.7. 

As a direct consequence we have the following. 

Corollary 5.8 There is a non-negative function m̂ defined on all subsets 
of R/Z so that: 

(i) m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) for all disjoint subsets E1 and E2. 

(ii) m̂(E) = m(E) if E is measurable. 

(iii) m̂(E + h) = m̂(E) for every h in R. 

We need only take m̂(E) = I(χE ), with I as in Theorem 5.7, where χE 

denotes the characteristic function of E. 

We now turn to the proof of Theorem 5.6. Let Ij denote the interval 
(j, j + 1], where j ∈ Z. Then we have a partition 

�∞ Ij of R into j=−∞ 
disjoint sets. 

For clarity of exposition, we temporarily relabel the measure m̂ on 
(0, 1] = I0 given by the corollary and call it m̂0. So whenever E ⊂ I0 we 
defined m̂(E) to be m̂0(E). More generally, if E ⊂ Ij we set m̂(E) = 
m̂0(E − j). 

With these things said, for any set E define m̂(E) by 

∞ ∞ 

(16) m̂(E) = m̂(E ∩ Ij ) = m̂0((E ∩ Ij ) − j). 
j=−∞ j=−∞ 

Thus m̂(E) is given as an extended non-negative number. Note that if 
E1 and E2 are disjoint so are (E1 ∩ Ij ) − j and (E2 ∩ Ij ) − j. It follows 
that m̂(E1 ∪ E2) = m̂(E1) + m̂(E2). Moreover if E is measurable then 
m̂(E ∩ Ij ) = m(E ∩ Ij ) and so m̂(E) = m(E). 

To prove m̂(E + h) = m̂(E), consider first the case h = k ∈ Z. This is 
an immediate consequence of the definition (16) once one observes that 
((E + k) ∩ Ij+k) − (j + k) = (E ∩ Ij ) − j, for all j, k ∈ Z. 
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∪ EiiNext suppose 0 < h < 1. We then decompose E ∩ Ij as Ej 
i , with j 

Ej 
i = E ∩ (j, j + 1 − h] and Ej 

ii = E ∩ (j + 1 − h, j + 1]. The point of 
this decomposition is that Ej 

i + h remains in Ij but Eii + h is placed j 
Ei Eiiin Ij+1. In any case, E = 

�
j ∪ 

�
j , and the union is disjoint. j j 

Thus using the first additivity property proved above and then (16) 
we see that 

∞ 

m̂(E) = 
(
m̂(Ej 

i ) + m̂(Ej 
ii)

) 
. 

j=−∞ 

Similarly 
∞ 

m̂(E + h) = 
(
m̂(Ej 

i + h) + m̂(Ej 
ii + h)

) 
. 

j=−∞ 

Now both Ej 
i and Ej 

i + h are in Ij , hence m̂(Ej 
i ) = m̂(Ej 

i + h) by the 
translation invariance of m̂0 and the definition of m̂ on subsets of Ij . 
Also Ej 

ii is in Ij and Ej 
ii + h is in Ij+1, and their measures agree for the 

same reasons. This establishes that m̂(E) = m̂(E + h), for 0 < h < 1. 
Now combining this with the translation invariance with respect to Z 
already proved, we obtain conclusion (iii) of Theorem 5.6 for all h, and 
hence the theorem is completely proved. 

For the corresponding extension of Lebesgue measure in Rd and other 
related results, see Exercise 36 and Problems 8∗ and 9∗ . 

6 Complex Lp and Banach spaces 

We have supposed in Section 3.2 onwards that our Lp and Banach spaces 
are taken over the reals. However, the statements and the proofs of 
the corresponding theorems for those spaces taken with respect to the 
complex scalars are for the most part routine adaptations of the real case. 
There are nevertheless several instances that require further comment. 
First, in the argument concerning the converse of Hölder’s inequality 
(Lemma 4.2), the definition of f should read 

sign g(x)
f(x) = |g(x)|q−1 , IgIq−1 

Lq 

where now “sign” denotes the complex version of the signum function, 
defined by sign z = z/|z| if z �= 0, and sign 0 = 0. There are similar oc
currences with g replaced by gn. 

Second, while the Hahn-Banach theorem is valid as stated only for real 
vector spaces, a version of the complex case (sufficient for the applications 
in Section 5.3 where p(f ) = IfI) can be found in Exercise 33 below. 
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7 Appendix: The dual of C(X) 

In this appendix, we describe the bounded linear functionals of the space C(X) 
of continuous real-valued functions on X. To begin with, we assume that X is a 
compact metric space. Our main result then states that if f ∈ C(X) ∗ , then there 
exists a finite signed Borel measure µ (this measure is sometimes referred to as a 
Radon measure) so that 

Z
f(f) = f(x) dµ(x) for all f ∈ C(X). 

X 

Before proceeding with the argument leading to this result, we collect some basic 
facts and definitions. 

Let X be a metric space with metric d, and assume that X is compact; that is, 
every covering of X by open sets contains a finite sub-covering. The vector space 
C(X) of real-valued continuous functions on X equipped with the sup-norm 

IfI = sup |f (x)|, f ∈ C(X) 
x∈X 

is a Banach space over R. Given a continuous function f on X we define the 
support of f , denoted supp(f), as the closure of the set {x ∈ X : f(x)  6= 0}. 

We recall some simple facts about continuous functions and open and closed 
sets in X that we shall use below. 

(i) Separation. If A and B are two disjoint closed subsets of X, then there 
exists a continuous function f with f = 1 on A, f = 0 on B, and 0 < f < 1 in the 
complements of A and B. 

Indeed, one can take for instance 

d(x, B)
f(x) = ,

d(x, A) + d(x, B) 

where d(x, B) = infy∈B d(x, y), with a similar definition for d(x, A). 

(ii) Partition of unity. If K is a compact set which is covered by finitely many 
open sets {Ok}N then there exist continuous functions ηk for 1 ≤ k ≤ N sok=1, 
that 0 ≤ ηk ≤ 1, supp(ηk) ⊂ Ok, and 

PN
k=1 ηk (x) = 1 whenever x ∈ K. Moreover, 

0 ≤ 
PN

k=1 ηk(x) ≤ 1 for all x ∈ X. 
One can argue as follows. For each x ∈ K, there exists a ball B(x) centered at x 

and of positive radius such that B(x) ⊂ Oi for some i. Since 
S

x∈K B(x) covers K, 

we can select a finite subcovering, say 
SM

j=1 B(xj ). For each 1 ≤ k ≤ N , let Uk 

be the union of all open balls B(xj ) so that B(xj ) ⊂ Ok; clearly K ⊂ 
SN

k=1 Uk . 
By (i) above, there exists a continuous function 0 ≤ ϕk ≤ 1 so that ϕk = 1 on Uk 

and supp(ϕk) ⊂ Ok. If we define 

η1 = ϕ1, η2 = ϕ2(1 − ϕ1), . . . , ηN = ϕN (1 − ϕ1) · · · (1 − ϕN−1) 

6This is the common usage of the terminology “support.” In Book III, Chapter 2, we 
used “support of f” to indicate the set where f(x)  = 0, which is convenient when dealing 
with measurable functions. 
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then supp(ηk) ⊂ Ok and 

η1 + · · · + ηN = 1 − (1 − ϕ1) · · · (1 − ϕN ), 

thus guaranteeing the desired properties. 

Recall7 that the Borel σ-algebra of X, which is denoted by BX , is the smallest 
σ-algebra of X that contains the open sets. Elements of BX are called Borel sets, 
and a measure defined on BX is called a Borel measure. If a Borel measure is 
finite, that is µ(X) < ∞, then it satisfies the following “regularity property”: for 
any Borel set E and any E > 0, there are an open set O and a closed set F such 
that E ⊂ O and µ(O − E) < E, while F ⊂ E and µ(E − F ) < E. 

In general we shall be interested in finite signed Borel measures on X, that 
is, measures which can take on negative values. If µ is such a measure, and µ + 

and µ − denote the positive and negative variations of µ, then µ = µ + − µ −, and 
integration with respect to µ is defined by 

R 
f dµ = 

R 
f dµ+ − 

R
f dµ− . Conversely, 

if µ1 and µ2 are two finite Borel measures, then µ = µ1 − µ2 is a finite signed Borel 
measure, and 

R
f dµ = 

R 
f dµ1 − 

R 
f dµ2. 

We denote by M (X) the space of finite signed Borel measures on X. Clearly, 
M(X) is a vector space which can be equipped with the following norm 

IµI = |µ|(X), 

where |µ| denotes the total variation of µ. It is a simple fact that M(X) with this 
norm is a Banach space. 

7.1 The case of positive linear functionals 

We begin by considering only linear functionals f : C(X) → R which are positive, 
that is, f(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. Observe that positive linear 
functionals are automatically bounded and that IfI = f(1). Indeed, note that 
|f(x)| ≤ IfI, hence IfI ± f ≥ 0, and therefore |f(f)| ≤ f(1)IfI. 

Our main result goes as follows. 

Theorem 7.1 Suppose X is a compact metric space and f a positive linear func
tional on C(X). Then there exists a unique finite (positive) Borel measure µ so 
that 

Z
(17) f(f) = f(x) dµ(x) for all f ∈ C(X). 

X 

Proof. The existence of the measure µ is proved as follows. Consider the 
function ρ on the open subsets of X defined by 

ρ(O) = sup {f(f), where supp(f ) ⊂ O, and 0 ≤ f ≤ 1} , 

7The definitions and results on measure theory needed in this section, in particular the 
extension of a premeasure used in the proof of Theorem 7.1, can be found in Chapter 6 
of Book III. 
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and let the function µ∗ be defined on all subsets of X by 

µ∗(E) = inf{ρ(O), where E ⊂ O and O is open}. 

We contend that µ∗ is a metric exterior measure on X. 
Indeed, we clearly must have µ∗(E1) ≤ µ∗(E2) whenever E1 ⊂ E2. Also, if O is 

open, then µ∗(O) = ρ(O). To show that µ∗ is countably sub-additive on subsets 
of X, we begin by proving that µ∗ is in fact sub-additive on open sets {Ok}, that 
is, 

∞ ∞! 
(18) µ∗ 

[
Ok ≤ 

X
µ∗(Ok). 

k=1 k=1 

= 
S∞ 

If f is any continuous function that satisfies supp(f) ⊂ O and 0 ≤ f ≤ 1, then 
by compactness of K = supp(f) we can pick a sub-cover so that (after relabeling 
the sets Ok, if necessary) K ⊂ 

SN
k=1 Ok. k=1 

To do so, suppose {Ok }∞ 
k=1 is a collection of open sets in X, and let O k=1 Ok . 

Let {ηk}N be a partition of unity of 
{O1, . . . , ON } (as discussed above in (ii)); this means that each ηk is continuous 
with 0 ≤ ηk ≤ 1, supp(ηk ) ⊂ Ok and 

PN
k=1 ηk(x) = 1 for all x ∈ K. Hence recalling 

that µ∗ = ρ on open sets, we get 

N N ∞
f(f) = 

X
f(fηk) ≤ 

X
µ∗(Ok ) ≤ 

X
µ∗(Ok), 

k=1 k=1 k=1 

where the first inequality follows because supp(fηk ) ⊂ Ok and 0 ≤ fηk ≤ 1. Tak
ing the supremum over f we find that µ∗ 

`S∞ Ok

´ ≤ 
P∞ µ∗(Ok).k=1 k=1 

We now turn to the proof of the sub-additivity of µ∗ on all sets. Suppose {Ek }
is a collection of subsets of X and let E > 0. For each k, pick an open set Ok 

so that Ek ⊂ Ok and µ∗(Ok) ≤ µ∗(Ek) + E2−k . Since O = 
SOk covers 

S
Ek, we 

must have by (18) that 

µ∗(
[

Ek) ≤ µ∗(O) ≤ 
X

µ∗(Ok) ≤ 
X

µ∗(Ek) + E, 
k k 

and consequently µ∗(
S

Ek) ≤ 
P

k µ∗(Ek) as desired. 
The last property we must verify is that µ∗ is metric, in the sense that if 

d(E1, E2) > 0, then µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2). Indeed, the separation con
dition implies that there exist disjoint open sets O1 and O2 so that E1 ⊂ O1 

and E2 ⊂ O2. Therefore, if O is any open subset which contains E1 ∪ E2, then 
O ⊃ (O ∩O1) ∪ (O ∩O2), where this union is disjoint. Hence the additivity of µ∗ 

on disjoint open sets, and its monotonicity give 

µ∗(O) ≥ µ∗(O ∩O1) + µ∗(O ∩O2) ≥ µ∗(E1) + µ∗(E2), 

since E1 ⊂ (O ∩O1) and E2 ⊂ (O ∩O2). So µ∗(E1 ∪ E2) ≥ µ∗(E1) + µ∗(E2), and 
since the reverse inequality has already been shown above, this concludes the proof 
that µ∗ is a metric exterior measure. 
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By Theorems 1.1 and 1.2 in Chapter 6 of Book III, there exists a Borel measure 
µ on BX which extends µ∗. Clearly, µ is finite with µ(X) = f(1). 

We now prove that this measure satisfies (17). Let f ∈ C(X). Since f can be 
written as the difference of two continuous non-negative functions, we can assume 
after rescaling, that 0 ≤ f (x) ≤ 1 for all x ∈ X. The idea now is to slice f , that is, 
write f = 

P
fn where each fn is continuous and relatively small in the sup-norm. 

More precisely, let N be a fixed positive integer, define O0 = X, and for every 
integer n ≥ 1, let 

On = {x ∈ X : f(x) > (n − 1)/N}. 

Thus On ⊃ On+1 and ON +1 = ∅. Now if we define 

fn(x) = 

8
< 
: 

1/N if x ∈ On+1, 
f(x) − (n − 1)/N if x ∈ On −On+1, 
0 if x ∈ Oc 

n, 

then the functions fn are continuous and they “pile up” to yield f , that is, f = PN 
n=1 fn. Since Nfn = 1 on On+1, supp(Nfn) ⊂ On ⊂ On−1, and also 0 ≤ Nfn ≤ 

1 we have µ(On+1) ≤ f(Nfn) ≤ µ(On−1), and therefore by linearity 

XXN N

n=1 n=1 

The properties of Nfn also imply µ(On+1) ≤ 
R 

Nfn dµ ≤ µ(On), hence 

1 1 
µ(On+1) ≤ f(f) ≤ µ(On−1).(19) 

N N 

Z XXN N

n=1 n=1 

Consequently, combining the inequalities (19) and (20) yields 

1 1 
µ(On+1) ≤ f dµ ≤ µ(On).(20) 

N N 

Z
2µ(X)

f(f) − ≤f dµ . 

˛̨
˛̨

˛̨
˛̨

N 

In the limit as N →∞ we conclude that f(f) = 
R 

f dµ as desired. 

'Finally, we prove uniqueness. Suppose µ is another finite positive Borel measure 
on X that satisfies f(f) = 

R 
f dµ' for all f ∈ C(X). If O is an open set, and 

0 ≤ f ≤ 1 with supp(f) ⊂ O, then 

Z
'

Z Z
' ' '≤ (O).f(f) = f dµ f dµ 1 dµ= = µ 

O O 

'Taking the supremum over f and recalling the definition of µ yields µ(O) ≤ µ (O). 
For the reverse inequality, recall the inner regularity condition satisfied by a finite 

'Borel measure: given E > 0, there exists a closed set K so that K ⊂ O, and µ (O − 
K) < E. By the separation property (i) noted above applied to K and Oc , we can 
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pick a continuous function f so that 0 ≤ f ≤ 1, supp(f) ⊂ O and f = 1 on K. 
Then 

µ ' (O) ≤ µ ' (K) + E ≤ 
Z 

f dµ ' + E ≤ f(f) + E ≤ µ(O) + E. 
K 

' Since E was arbitrary, we obtain the desired inequality, and therefore µ(O) = µ (O) 
for all open sets O. This implies that µ = µ ' on all Borel sets, and the proof of 
the theorem is complete. 

7.2 The main result 

The main point is to write an arbitrary bounded linear functional on C(X) as the 
difference of two positive linear functionals. 

Proposition 7.2 Suppose X is a compact metric space and let f be a bounded 
linear functional on C(X). Then there exist positive linear functionals f+ and f− 

so that f = f+ − f− . Moreover, IfI = f+(1) + f−(1). 

Proof. For f ∈ C(X) with f ≥ 0, we define 

f+(f) = sup{f(ϕ) : 0 ≤ ϕ ≤ f}. 

Clearly, we have 0 ≤ f+(f) ≤ IfIIfI and f(f) ≤ f+(f). If α ≥ 0 and f ≥ 0, then 
f+(αf) = αf+(f). Now suppose that f, g ≥ 0. On the one hand we have f+(f) + 
f+(g) ≤ f+(f + g), because if 0 ≤ ϕ ≤ f and 0 ≤ ψ ≤ g, then 0 ≤ ϕ + ψ ≤ f + g. 
On the other hand, suppose 0 ≤ ϕ ≤ f + g, and let ϕ1 = min(ϕ, f) and ϕ2 = ϕ − 
ϕ1. Then 0 ≤ ϕ1 ≤ f and 0 ≤ ϕ2 ≤ g, and f(ϕ) = f(ϕ1) + f(ϕ2) ≤ f+(f) + f+(g). 
Taking the supremum over ϕ, we get f+(f + g) ≤ f+(f) + f+(g). We conclude 
from the above that f+(f + g) = f+(f) + f+(g) whenever f, g ≥ 0. 

We can now extend f+ to a positive linear functional on C(X) as follows. Given 
an arbitrary function f in C(X) we can write f = f+ − f−, where f+, f− ≥ 0, 
and define f+ on f by f+(f) = f+(f+) − f+(f−). Using the linearity of f+ on non
negative functions, one checks easily that the definition of f+(f ) is independent 
of the decomposition of f into the difference of two non-negative functions. From 
the definition we see that f+ is positive, and it is easy to check that f+ is linear 
on C(X), and that If+I ≤ IfI. 

Finally, we define f− = f+ − f, and see immediately that f− is also a positive 
linear functional on C(X). 

Now since f+ and f− are positive, we have If+I = f+(1) and If−I = f−(1), 
therefore IfI ≤ f+(1) + f−(1). For the reverse inequality, suppose 0 ≤ ϕ ≤ 1. Then 
|2ϕ − 1| ≤ 1, hence IfI ≥ f(2ϕ − 1). By linearity of f, and taking the supremum 
over ϕ we obtain IfI ≥ 2f+(1) − f(1). Since f(1) = f+(1) − f−(1) we get IfI ≥ 
f+(1) + f−(1), and the proof is complete. 

We are now ready to state and prove the main result. 

Theorem 7.3 Let X be a compact metric space and C(X) the Banach space of 
continuous real-valued functions on X. Then, given any bounded linear functional f 
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on C(X), there exists a unique finite signed Borel measure µ on X so that 

Z
f(f) = f(x) dµ(x) for all f ∈ C(X). 

X 

Moreover, IfI = IµI = |µ|(X). In other words C(X) ∗ is isometric to M (X). 

Proof. By the proposition, there exist two positive linear functionals f+ and f− 

so that f = f+ − f− . Applying Theorem 7.1 to each of these positive linear func
tionals yields two finite Borel measures µ1 and µ2. If we define µ = µ1 − µ2, then 
µ is a finite signed Borel measure and f(f) = 

R 
f dµ. 

Now we have 
Z

|f(f)| ≤ |f | d|µ| ≤ IfI |µ|(X), 

and thus IfI ≤ |µ|(X). Since we also have |µ|(X) ≤ µ1(X) + µ2(X) = f+(1) + 
f−(1) = IfI, we conclude that IfI = |µ|(X) as desired. 

To prove uniqueness, suppose 
R 

f dµ = 
R

f dµ ' for some finite signed Borel mea
' ' sures µ and µ , and all f ∈ C(X). Then if ν = µ − µ , one has 

R
fdν = 0, and 

consequently, if ν+ and ν− are the positive and negative variations of f , one finds 
that the two positive linear functionals defined on C(X) by f+(f) = 

R 
f dν+ and 

f−(f) = 
R 

f dν− are identical. By the uniqueness in Theorem 7.1, we conclude 
that ν+ = ν−, hence ν = 0 and µ = µ ' , as desired. 

7.3 An extension 

Because of its later application, it is useful to observe that Theorem 7.1 has an 
extension when we drop the assumption that the space X is compact. Here we 
define the space Cb(X) of continuous bounded functions f on X, with norm IfI = 
sup |f(x)|.x∈X 

Theorem 7.4 Suppose X is a metric space and f a positive linear functional on 
Cb(X). For simplicity assume that f is normalized so that f(1) = 1. Assume also 
that for each E > 0, there is a compact set KE ⊂ X so that 

(21) |f(f)| ≤ sup |f(x)| + EIfI, for all f ∈ Cb(X). 
x∈Kt 

Then there exists a unique finite (positive) Borel measure µ so that 

Z
f(f) = f(x) dµ(x), for all f ∈ Cb(X). 

X 

The extra hypothesis (21) (which is vacuous when X is compact) is a “tightness” 
assumption that will be relevant in Chapter 6. Note that as before |f(f)| ≤ IfI 
since f(1) = 1, even without the assumption (21). 

The proof of this theorem proceeds as that of Theorem 7.1, save for one key 
aspect. First we define 

ρ(O) = sup {f(f ), where f ∈ Cb(X), supp(f) ⊂ O, and 0 ≤ f ≤ 1} . 
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The change that is required is in the proof of the countable sub-additivity of 
ρ, in that the support of f ’s (in the definition of ρ(O)) are now not necessarily 
compact. In fact, suppose O = 

S∞ 
k=1 Ok is a countable union of open sets. Let C be 

the support of f , and given a fixed E > 0, set K = C ∩ KE, with KE the compact 
set arising in (21). Then K is compact and 

S∞ 
k=1 Ok covers K. Proceeding as 

before, we obtain a partition of unity {ηk }N with ηk supported in Ok andk=1,PN ηk (x) = 1, for x ∈ K. Now f − 
PN fηk vanishes on KE. Thus by (21)k=1	 k=1 

N

f(f) − 
X

f(fηk ) ≤ E, 
k=1 

˛̨
˛̨
˛

˛̨
˛̨
˛ 

and hence 

∞
f(f) ≤ 

X
ρ(Ok) + E. 

k=1 

Since this holds for each E, we obtain the required sub-additivity of ρ and thus 
of µ∗. The proof of the theorem can then be concluded as before. 

Theorem 7.4 did not require that the metric space X be either complete or 
separable. However if we make these two further assumptions on X, then the 
condition (21) is actually necessary. 

Indeed, suppose f(f) = 
R

X f dµ, where µ is a positive finite Borel measure on X, 
which we may assume is normalized, µ(X) = 1. Under the assumption that X is 
complete and separable, then for each fixed E > 0 there is a compact set KE so 
that µ(KE

c) < E. Indeed, let {ck} be a dense sequence in X. Since for each m 
the collection of balls {B1/m(ck)}∞ covers X, there is a finite Nm so that ifk=1 

Om = 
SNm B1/m(ck), then µ(Om) ≥ 1 − E/2m . 

Take 
k=1 

= 
T∞ Om. Then also, KE is closed and totallyKE m=1 µ(KE) ≥ 1 − E; 

bounded, in the sense that for every δ > 0, the set KE can be covered by finitely 
many balls of radius δ. Since X is complete, KE must be compact. Now (21) 
follows immediately. 

8 Exercises 

1. Consider Lp = Lp(Rd) with Lebesgue measure. Let f0(x) = |x|−α if |x| < 1, 
f0(x) = 0 for |x| ≥ 1; also let f∞(x) = |x|−α if |x| ≥ 1, f∞(x) = 0 when |x| < 1. 
Show that: 

(a)	 f0 ∈ Lp if and only if pα < d. 

(b)	 f∞ ∈ Lp if and only if d < pα. 

(c)	 What happens if in the definitions of f0 and f∞ we replace |x|−α by 
|x|−α/(log(2/|x|)) for |x| < 1, and |x|−α by |x|−α/(log(2|x|)) for |x| ≥ 1? 

2. Consider the spaces Lp(Rd), when 0 < p < ∞. 
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(a)	 Show that if If + gILp ≤ IfILp + IgILp for all f and g, then necessarily 
p ≥ 1. 

(b)	 Consider Lp(R) where 0 < p < 1. Show that there are no bounded linear 
functionals on this space. In other words, if f is a linear function Lp(R) → C 
that satisfies 

|f(f)| ≤ MIfILp(R) for all f ∈ Lp(R) and some M > 0, 

then f = 0. 

[Hint: For (a), prove that if 0 < p < 1 and x, y > 0, then xp + yp > (x + y)p . 
For (b), let F be defined by F (x) = f(χx), where χx is the characteristic func
tion of [0, x], and consider F (x) − F (y).] 

3. If f ∈ Lp and g ∈ Lq, both not identically equal to zero, show that equality 
holds in Hölder’s inequality (Theorem 1.1) if and only if there exist two non-zero 
constants a, b ≥ 0 such that a|f (x)|p = b|g(x)|q for a.e. x. 

4. Suppose X is a measure space and 0 < p < 1. 

(a)	 Prove that IfgIL1 ≥ IfILp IgILq . Note that q, the conjugate exponent of 
p, is negative. 

(b)	 Suppose f1 and f2 are non-negative. Then If1 + f2ILp ≥ If1ILp + If2ILp . 

(c)	 The function d(f, g) = If − gIp for f, g ∈ Lp defines a metric on Lp(X).Lp 

5. Let X be a measure space. Using the argument to prove the completeness 
of Lp(X), show that if the sequence {fn} converges to f in the Lp norm, then a 
subsequence of {fn} converges to f almost everywhere. 

6. Let (X, F , µ) be a measure space. Show that: 

(a)	 The simple functions are dense in L∞(X) if µ(X) < ∞, and; 

(b)	 The simple functions are dense in Lp(X) for 1 ≤ p < ∞. 

M� M (�+1)[Hint: For (a), use E�,j = {x ∈ X : ≤ f(x) < } where −j ≤ f ≤ j, and 
j j 

M = IfIL∞ . Then consider the functions fj that equal Mf/j on E�,j . For (b) use 
a construction similar to that in (a).] 

7. Consider the Lp spaces, 1 ≤ p < ∞, on Rd with Lebesgue measure. Prove that: 

(a)	 The family of continuous functions with compact support is dense in Lp, 
and in fact: 

(b)	 The family of indefinitely differentiable functions with compact support is 
dense in Lp . 
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The cases of L1 and L2 are in Theorem 2.4, Chapter 2 of Book III, and Lemma 3.1, 
Chapter 5 of Book III. 

8. Suppose 1 ≤ p < ∞, and that Rd is equipped with Lebesgue measure. Show 
that if f ∈ Lp(Rd), then 

If(x + h) − f(x)ILp → 0 as |h| → 0. 

Prove that this fails when p = ∞.
 

[Hint: By the previous exercise, the continuous functions with compact support
 
are dense in Lp(Rd) for 1 ≤ p < ∞. See also Theorem 2.4 and Proposition 2.5 in
 
Chapter 2 of Book III.]
 

9. Suppose X is a measure space and 1 ≤ p0 < p1 ≤ ∞. 

(a)	 Consider Lp0 ∩ Lp1 equipped with 

IfILp0 ∩Lp1 = IfILp0 + If ILp1 . 

Show that I · ILp0 ∩Lp1 is a norm, and that Lp0 ∩ Lp1 (with this norm) is a 
Banach space. 

(b)	 Suppose Lp0 + Lp1 is defined as the vector space of measurable functions f 
on X that can be written as a sum f = f0 + f1 with f0 ∈ Lp0 and f1 ∈ Lp1 . 
Consider 

IfILp0 +Lp1 = inf {If0ILp0 + If1ILp1 } , 

where the infimum is taken over all decompositions f = f0 + f1 with f0 ∈ 
Lp0 and f1 ∈ Lp1 . Show that I · ILp0 +Lp1 is a norm, and that Lp0 + Lp1 

(with this norm) is a Banach space. 

(c)	 Show that Lp ⊂ Lp0 + Lp1 if p0 ≤ p ≤ p1. 

10. A measure space (X, µ) is separable if there is a countable family of measur
able subsets {Ek}∞ so that if E is any measurable set of finite measure, then k=1 

µ(E Enk ) → 0 as k → 0 

for an appropriate subsequence {nk} which depends on E. Here A B denotes the 
symmetric difference of the sets A and B, that is, 

A B = (A − B) ∪ (B − A). 

(a)	 Verify that Rd with the usual Lebesgue measure is separable. 

(b)	 The space Lp(X) is separable if there exists a countable collection of ele
ments {fn}∞ in Lp that is dense. Prove that if the measure space X isn=1 

separable, then Lp is separable when 1 ≤ p < ∞. 
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11. In light of the previous exercise, prove the following: 

(a)	 Show that the space L∞(R) is not separable by constructing for each a ∈ R 
an fa ∈ L∞, with Ifa − fbI ≥ 1, if a = b. 

(b)	 Do the same for the dual space of L∞(R). 

12. Suppose the measure space (X, µ) is separable as defined in Exercise 10. Let 
1 ≤ p < ∞ and 1/p + 1/q = 1. A sequence {fn} with fn ∈ Lp is said to converge 
to f ∈ Lp weakly if 

Z Z
(22)	 fng dµ → fg dµ for every g ∈ Lq . 

(a)	 Verify that if If − fnILp → 0, then fn converges to f weakly. 

(b)	 Suppose supn IfnILp < ∞. Then, to verify weak convergence it suffices to 
check (22) for a dense subset of functions g in Lq . 

(c)	 Suppose 1 < p < ∞. Show that if supn IfnILp < ∞, then there exists f ∈ 
Lp, and a subsequence {nk} so that fnk converges weakly to f . 

Part (c) is known as the “weak compactness” of Lp for 1 < p < ∞, which fails
 
when p = 1 as is seen in the exercise below.
 

[Hint: For (b) use Exercise 10 (b).]
 

13. Below are some examples illustrating weak convergence. 

(a)	 fn(x) = sin(2πnx) in Lp([0, 1]). Show that fn → 0 weakly. 

(b)	 fn(x) = n 1/pχ(nx) in Lp(R). Then fn → 0 weakly if p > 1, but not when 
p = 1. Here χ denotes the characteristic function of [0, 1]. 

(c)	 fn(x) = 1 + sin(2πnx) in L1([0, 1]). Then fn → 1 weakly also in L1([0, 1]), 
IfnIL1 = 1, but Ifn − 1IL1 does not converge to zero. Compare with Prob
lem 6 part (d). 

14. Suppose X is a measure space, 1 < p < ∞, and suppose {fn} is a sequence of 
functions with IfnILp ≤ M < ∞. 

(a)	 Prove that if fn → f a.e. then fn → f weakly. 

(b)	 Show that the above result may fail if p = 1. 

(c)	 Show that if fn → f1 a.e. and fn → f2 weakly, then f1 = f2 a.e. 

15. Minkowski’s inequality for integrals. Suppose (X1, µ1) and (X2, µ2) 
are two measure spaces, and 1 ≤ p ≤ ∞. Show that if f(x1, x2) is measurable on 
X1 × X2 and non-negative, then 

Z	 Z
f(x1, x2) dµ2 ≤ If(x1, x2)ILp(X1) dµ2.

‚‚‚‚
‚‚‚‚

Lp(X1 ) 
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Extend this statement to the case when f is complex-valued and the right-hand
 
side of the inequality is finite.
 

[Hint: For 1 < p < ∞, use a combination of Hölder’s inequality, and its converse
 
in Lemma 4.2.]
 

16. Prove that if fj ∈ Lpj (X), where X is a measure space, j = 1, . . . , N , and PN
j=1 1/pj = 1 with pj ≥ 1, then 

NY	 
j=1 

N

j=1 

This is the multiple Hölder inequality. 

Y
I fj IL1 ≤ IfIL

pj . 

17. The convolution of f and g on Rd equipped with the Lebesgue measure is 
defined by 

Z
(f ∗ g)(x) = f(x − y)g(y) dy. 

Rd 

(a)	 If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L1, then show that for almost every x the 
integrand f(x − y)g(y) is integrable in y, hence f ∗ g is well defined. More
over, f ∗ g ∈ Lp with 

If ∗ gILp ≤ IfILp IgIL1 . 

(b)	 A version of (a) applies when g is replaced by a finite Borel measure µ: if 
f ∈ Lp, with 1 ≤ p ≤ ∞, define 

Z
(f ∗ µ)(x) = f(x − y) dµ(y), 

Rd 

and show that If ∗ µILp ≤ IfILp |µ|(Rd). 

(c)	 Prove that if f ∈ Lp and g ∈ Lq , where p and q are conjugate exponents, then 
f ∗ g ∈ L∞ with If ∗ gIL∞ ≤ IfILp IgILq . Moreover, the convolution f ∗ g 
is uniformly continuous on R, and if 1 < p < ∞, then lim|x|→∞(f ∗ g)(x) = 
0. 

[Hint: For (a) and (b) use the Minkowski inequality for integrals in Exercise 15. 
For part (c), use Exercise 8.] 

18. We consider the Lp spaces with mixed norm, in a special case that is useful 
is several contexts. 

We take as our underlying space the product space {(x, t)} = Rd × R, with the 
product measure dx dt, where dx and dt are Lebesgue measures on Rd and R 
respectively. We define Lr

t (Lx
p ) = Lp,r , with 1 ≤ p ≤ ∞, 1 ≤ r ≤ ∞, to be the 
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space of equivalence classes of jointly measurable functions f(x, t) for which the 
norm 

r ! 1 
r 

p 

IfILp,r = 
Z „Z 

|f(x, t)|p dx

« 
dt 

R Rd 

is finite (when p < ∞ and r < ∞), and an obvious variant when p = ∞ or r = ∞. 

(a) Verify that Lp,r with this norm is complete, and hence is a Banach space. 

(b) Prove the general form of Hölder’s inequality in this context 

Z 
|f(x, t)g(x, t)| dx dt ≤ If ILp,r IgILpI,rI , 

Rd ×R 

with 1/p + 1/p ' = 1 and 1/r + 1/r ' = 1. 

(c) Show that if f is integrable over all sets of finite measure, then 

Z
If ILp,r = sup f(x, t)g(x, t) dxdt , 

Rd×R 

˛̨
˛̨	

˛̨
˛̨

with the sup taken over all g that are simple and IgILpI,rI ≤ 1. 

(d) Conclude that the dual space of Lp,r is Lp I ,r I , if 1 ≤ p < ∞, and 1 ≤ r < ∞. 

19. Young’s inequality.	 Suppose 1 ≤ p, q, r ≤ ∞. Prove the following on Rd: 

If ∗ gILq ≤ IfILp IgILr whenever 1/q = 1/p + 1/r − 1. 

Here, f ∗ g denotes the convolution of f and g as defined in Exercise 17. 

[Hint: Assume f, g ≥ 0, and use the decomposition 

b 1−a 1−bf(y)g(x − y) = f (y)a g(x − y) [f(y) g(x − y) ] 

for appropriate a and b, together with Exercise 16 to find that 

q 

Lp Lq 

Z 
f(y)g(x − y) dy ≤ IfI1−q/pIgI1−q/r 

„Z 
|f(y)|p|g(x − y)|r dy

« 1 

.] 

˛̨
˛̨	

˛̨
˛̨

20. Suppose X is a measure space, 0 < p0 < p < p1 ≤ ∞, and f ∈ Lp0 (X) ∩ 
Lp1 (X). Then f ∈ Lp(X) and 

1 1−t	 tIfILp ≤ IfI1−t
Lp1 , if t is chosen so that + .Lp0 If It	 = 

p p0	 p1 

21. Recall the definition of a convex function. (See Problem 4, Chapter 3, in 
Book III.) Suppose ϕ is a non-negative convex function on R and f is real-valued 
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and integrable on a measure space X, with µ(X) = 1. Then we have Jensen’s 
inequality: 

„Z « Z
ϕ f dµ ≤ ϕ(f) dµ. 

X X 

Note that if ϕ(t) = |t|p, 1 ≤ p, then ϕ is convex and the above can be obtained 
from Hölder’s inequality. Another interesting case is ϕ(t) = e at . 

[Hint: Since ϕ is convex, one has, ϕ(
PN aj xj ) ≤ 

PN aj ϕ(xj ), whenever aj , xjj=1 j=1 

are real, aj ≥ 0, and 
PN

j=1 aj = 1.] 

22. Another inequality of Young. Suppose ϕ and ψ are both continuous, 
strictly increasing functions on [0, ∞) that are inverses of each other, that is, 
(ϕ ◦ ψ)(x) = x for all x ≥ 0. Let 

x	 xZ	 Z
Φ(x) = ϕ(u) du and Ψ(x) = ψ(u) du. 

0	 0 

(a)	 Prove: ab ≤ Φ(a) + Ψ(b) for all a, b ≥ 0. 
p−1 q−1In particular, if ϕ(x) = x and ψ(y) = y with 1 < p < ∞ and 1/p + 

1/q = 1, then we get Φ(x) = xp/p, Ψ(y) = yq /q, and 

θ 1−θA B ≤ θA + (1 − θ)B for all A, B ≥ 0 and 0 ≤ θ ≤ 1. 

(b)	 Prove that we have equality in Young’s inequality only if b = ϕ(a) (that is, 
a = ψ(b)). 

[Hint: Consider the area ab of the rectangle whose vertices are (0, 0), (a, 0), (0, b) 
and (a, b), and compare it to areas “under” the curves y = Φ(x) and x = Ψ(y).] 

23. Let (X, µ) be a measure space and suppose Φ(t) is a continuous, convex, and 
increasing function on [0, ∞), with Φ(0) = 0. Define 

Φ	 
Z

L = {f measurable : Φ(|f(x)|/M) dµ < ∞ for some M > 0}, 
X 

and 
Z

IfIΦ = inf Φ(|f(x)|/M) dµ ≤ 1. 
M>0 X 

Prove that: 

LΦ(a) is a vector space. 

(b)	 I · ILΦ is a norm. 

LΦ(c) is complete in this norm. 
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The Banach spaces LΦ are called Orlicz spaces. Note that in the special case 
p = LpΦ(t) = t , 1 ≤ p < ∞, then LΦ . 

[Hint: Observe that if f ∈ LΦ, then limN→∞ 
R

Φ(|f |/N) dµ = 0. Also, use the 
X 

fact that there exists A > 0 so that Φ(t) ≥ At for all t ≥ 0.] 

24. Let 1 ≤ p0 < p1 < ∞. 

(a)	 Consider the Banach space Lp0 ∩ Lp1 with norm IfILp0 ∩Lp1 = IfILp0 + 
IfILp1 . (See Exercise 9.) Let 

j 
tp0 if 0 ≤ t ≤ 1,

Φ(t) = p1t if 1 ≤ t < ∞. 

Show that LΦ with its norm is equivalent to the space Lp0 ∩ Lp1 . In other 
words, there exist A, B > 0, so that 

AIfILp0 ∩Lp1 ≤ IfILΦ ≤ BIfILp0 ∩Lp1 . 

(b)	 Similarly, consider the Banach space Lp0 + Lp1 with its norm as defined in 
Exercise 9. Let 

t	 p1−1Z	 j 
u if 0 ≤ u ≤ 1,

Ψ(t) = ψ(u) du where ψ(u) = 
0	 up0−1 if 1 ≤ u < ∞. 

Show that LΨ with its norm is equivalent to the space Lp0 + Lp1 . 

25. Show that a Banach space B is a Hilbert space if and only if the parallelogram 
law holds 

If + gI2 + If − gI2 = 2(IfI2 + IgI2). 

As a consequence, prove that if Lp(Rd) with the Lebesgue measure is a Hilbert 
space, then necessarily p = 2. 

[Hint: For the first part, in the real case, let (f, g) = 1
4 (If + gI2 + If − gI2).] 

26. Suppose 1 < p0, p1 < ∞ and 1/p0 + 1/q0 = 1 and 1/p1 + 1/q1 = 1. Show that 
the Banach spaces Lp0 ∩ Lp1 and Lq0 + Lq1 are duals of each other up to an 
equivalence of norms. (See Exercise 9 for the relevant definitions of these spaces. 
Also, Problem 5 ∗ gives a generalization of this result.) 

27. The purpose of this exercise is to prove that the unit ball in Lp is strictly 
convex when 1 < p < ∞, in the following sense. Here Lp is the space of real-
valued functions whose p th power are integrable. Suppose If0ILp = If1ILp = 1, 
and let 

ft = (1 − t)f0 + tf1 

be the straight-line segment joining the points f0 and f1. Then IftILp < 1 for all 
t with 0 < t < 1, unless f0 = f1. 
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(a)	 Let f ∈ Lp and g ∈ Lq , 1/p + 1/q = 1, with IfILp = 1 and IgILq = 1. Then 

Z 
fg dµ = 1 

only when f (x) = sign g(x)|g(x)|q−1 . 

(b) Suppose IftI ILp = 1 for some 0 < t ' < 1. Find g ∈ Lq , IgILq = 1, so that 

Z 
ftI g dµ = 1 

and let F (t) = 
R

ftg dµ. Observe as a result that F (t) = 1 for all 0 ≤ t ≤ 1. 
Conclude that ft = f0 for all 0 ≤ t ≤ 1. 

(c)	 Show that the strict convexity fails when p = 1 or p = ∞. What can be said 
about these cases? 

A stronger assertion is given in Problem 6 ∗ . 

B1−θ[Hint: To prove (a) show that the case of equality in Aθ ≤ θA + (1 − θ)B, for 
A, B > 0 and 0 < θ < 1 holds only when A = B.] 

28. Verify the completeness of Λα(Rd) and Lp
k(Rd). 

29. Consider further the spaces Λα(Rd). 

(a)	 Show that when α > 1 the only functions in Λα(Rd) are the constants. 

(b)	 Motivated by (a), one defines Ck,α(Rd) to be the class of functions f on Rd 

whose partial derivatives of order less than or equal to k belong to Λα(Rd). 
Here k is an integer and 0 < α ≤ 1. Show that this space, endowed with the 
norm 

βIfICk,α = 
X 

∂x f ,
‚‚‚

‚‚‚
Λα(Rd)|β|≤k 

is a Banach space. 

30. Suppose B is a Banach space and S is a closed linear subspace of B. The 
subspace S defines an equivalence relation f ∼ g to mean f − g ∈ S. If B/S denotes 
the collection of these equivalence classes, then show that B/S is a Banach space 
with norm If IB/S = inf(If ' IB, f ' ∼ f). 

31. If Ω is an open subset of Rd then one definition of Lp
k(Ω) can be taken to be the 

quotient Banach space B/S, as defined in the previous exercise, with B = Lp
k(Rd) 

and S the subspace of those functions which vanish a.e. on Ω. Another possible 
space, that we will denote by Lk

p (Ω0), consists of the closure in Lk
p (Rd) of all f 

that have compact support in Ω. Observe that the natural mapping of Lp
k(Ω0) to 
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Lp 
k(Ω) has norm equal to 1. However, this mapping is in general not surjective. 

Prove this in the case when Ω is the unit ball and k ≥ 1. 

32. A Banach space is said to be separable if it contains a countable dense subset. 
In Exercise 11 we saw an example of a Banach space B that is separable, but where 
B ∗ is not separable. Prove, however, that in general when B ∗ is separable, then B 
is separable. Note that this gives another proof that in general L1 is not the dual 
of L∞ . 

33. Let V be a vector space over the complex numbers C, and suppose there exists 
a real-valued function p on V satisfying: 

j 
p(αv) = |α|p(v), if α ∈ C, and v ∈ V , 
p(v1 + v2) ≤ p(v1) + p(v2), if v1 and v2 ∈ V . 

Prove that if V0 is a subspace of V and f0 a linear functional on V0 which satisfies 
|f0(f)| ≤ p(f) for all f ∈ V0, then f0 can be extended to a linear functional f on V 
that satisfies |f(f)| ≤ p(f) for all f ∈ V . 

[Hint: If u = Re(f0), then f0(v) = u(v) − iu(iv). Apply Theorem 5.2 to u.] 

34. Suppose B is a Banach space and S a closed proper subspace, and assume 
f0 / Show that there is a continuous linear functional f on B, so that f(f) = 0 ∈ S. 
for f ∈ S, and f(f0) = 1. The linear functional f can be chosen so that IfI = 1/d 
where d is the distance from f0 to S. 

35. A linear functional f on a Banach space B is continuous if and only if {f ∈ B :
 
f(f) = 0} is closed.
 

[Hint: This is a consequence of Exercise 34.]
 

36. The results in Section 5.4 can be extended to d-dimensions.
 

(a)	 Show that there exists an extended-valued non-negative function m̂ defined 
on all subsets of Rd so that (i) m̂ is finitely additive; (ii) m̂(E) = m(E) 
whenever E is Lebesgue measurable, where m is Lebesgue measure; and 
m̂(E + h) = ˆ .m(E) for all sets E and every h ∈ Rd Prove this is as a conse
quence of (b) below. 

(b)	 Show that there is an “integral” I, defined on all bounded functions on 
Rd/Zd, so that I(f) ≥ 0 whenever f ≥ 0; the map f �→ I(f) is linear; I(f) = 

f dx whenever f is measurable; and I(fh) = I(f) where fh(x) = f(x − 

h), and h ∈ Rd . 

R
Rd/Zd 

9 Problems 

1. The spaces L∞ and L1 play universal roles with respect to all Banach spaces 
in the following sense. 
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(a)	 If B is any separable Banach space, show that it can be realized without 
change of norm as a linear subspace of L∞(Z). Precisely, prove that there 
is a linear operator i of B into L∞(Z) so that Ii(f)IL∞(Z) = IfIB for all 
f ∈ B. 

(b)	 Each such B can also be realized as a quotient space of L1(Z). That is, there 
is a linear surjection P of L1(Z) onto B, so that if S = {x ∈ L1(Z) : P (x) = 
0}, then IP (x)IB = infy∈S Ix + yIL1(Z), for each x ∈ L1(Z). This gives an 
identification of B (and its norm) with the quotient space L1(Z)/S (and its 
norm), as defined in Exercise 30. 

Note that similar conclusions hold for L∞(X) and L1(X) if X is a measure space 
that contains a countable disjoint collection of measurable sets of positive and 
finite measure. 

[Hint: For (a), let {fn} be a dense set of non-zero vectors in B, and let fn ∈ 
B ∗ be such that IfnIB∗ = 1 and fn(fn) = IfnI.	 −∞.If f ∈ B, set i(f) = {fn(f)}∞ 

For (b), if x = {xn} ∈ L1(Z), with 
P∞ |xn| = IxIL1(Z) < ∞, define P by P (x) = P∞	 
−∞ 

xnfn/IfnI.]−∞ 

2. There is a “generalized limit” L defined on the vector space V of all real 
sequences {sn}∞ that are bounded, so that: n=1 

(i)	 L is a linear functional on V . 

(ii)	 L({sn}) ≥ 0 if sn ≥ 0, for all n. 

(iii)	 L({sn}) = limn→∞ sn if the sequence {sn} has a limit. 

(iii)	 L({sn}) = L({sn+k}) for every k ≥ 1. 

(iii)	 L({sn}) = L({snI }) if sn − s ' n = 0 for only finitely many n. 
` 

s1+···+sn[Hint: Let p({sn}) = lim sup
´
, and extend the linear functional Ln→∞ n 

defined by L({sn}) = limn→∞ sn, defined on the subspace consisting of sequences 
that have limits.] 

3. Show that the closed unit ball in a Banach space B is compact (that is, if 
fn ∈ B, IfnI ≤ 1, then there is a subsequence that converges in the norm) if and 
only if B is finite dimensional. 

[Hint: If S is a closed subspace of B, then there exists x ∈ B with IxI = 1 and the 
distance between x and S is greater than 1/2.] 

4. Suppose X is a σ-compact measurable metric space, and Cb(X) is separable, 
where Cb(X) denotes the Banach space of bounded continuous functions on X 
with the sup-norm. 

(a)	 If {µn}∞ is a bounded sequence in M(X), then there exists a µ ∈ M(X)n=1 

and a subsequence {µnj j=1, so that µnj converges to µ in the following }∞
 

(weak ∗ ) sense:
 
Z	 Z 

g(x) dµnj (x) → g(x) dµ(x), for all g ∈ Cb(X). 
X X 
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(b)	 Start with a µ0 ∈ M(X) that is positive, and for each f ∈ L1(µ0) consider 
the mapping f �→ fdµ0. This mapping is an isometry of L1(µ0) to the 
subspace of M(X) consisting of signed measures which are absolutely con
tinuous with respect to µ0. 

(c)	 Hence if {fn} is a bounded sequence of functions in L1(µ0), then there 
exist a µ ∈ M (X) and a subsequence {fnj } such that the measures fnj dµ0 

converge to µ in the above sense. 

5. ∗ Let X be a measure space. Suppose ϕ and ψ are both continuous, strictly 
increasing functions on [0, ∞) which are inverses of each other, that is, (ϕ ◦ ψ)(x) = 
x for all x ≥ 0. Let 

x	 xZ	 Z
Φ(x) = ϕ(u) du and Ψ(x) = ψ(u) du. 

0	 0 

Consider the Orlicz spaces LΦ(X) and LΨ(X) introduced in Exercise 23. 

(a) In connection with Exercise 22 the following Hölder-like inequality holds: 

Z 
|fg| ≤ CIfILΦ IgILΨ for some C > 0, and all f ∈ LΦ and g ∈ LΨ . 

(b)	 Suppose there exists c > 0 so that Φ(2t) ≤ cΦ(t) for all t ≥ 0. Then the dual 
of LΦ is equivalent to LΨ . 

6. ∗ There are generalizations of the parallelogram law for L2 (see Exercise 25) that 
hold for Lp . These are the Clarkson inequalities: 

(a)	 For 2 ≤ p ≤ ∞ the statement is that 

f + g p 
f − g p 

1 
+ ≤ (IfIp + IgIp ) .Lp Lp

2 2 2Lp Lp

‚‚‚‚ 
‚‚‚‚

‚‚‚‚
‚‚‚‚ 

(b) For 1 < p ≤ 2 the statement is that 

f + g q 
f − g q 

1 q/p+ ≤ (IfIp + IgIp ) ,Lp Lp
2 2 2Lp Lp

‚‚‚‚
‚‚‚‚

‚‚‚‚
‚‚‚‚ 

where 1/p + 1/q = 1. 

(c)	 As a result, Lp is uniformly convex when 1 < p < ∞. This means that 
there is a function δ = δ(E) = δp(E), with 0 < δ < 1, (and δ(E) → 0 as E → 
0), so that whenever IfILp = IgILp = 1, then If − gILp ≥ E implies that 

f +g ≤ 1 − δ.
‚‚ 

2 

‚‚
This is stronger than the conclusion of strict convexity in Exercise 27. 
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(d)	 Using the result in (c), prove the following: suppose 1 < p < ∞, and the 
sequence {fn}, fn ∈ Lp, converges weakly to f . If IfnILp → IfILp , then 
fn converges to f strongly, that is, Ifn − fILp → 0 as n →∞. 

7. ∗ An important notion is that of the equivalence of Banach spaces. Suppose 
B1 and B2 are a pair of Banach spaces. We say that B1 and B2 are equivalent 
(also said to be “isomorphic”) if there is a linear bijection T between B1 and B2 

that is bounded and whose inverse is also bounded. Note that any pair of finite-
dimensional Banach spaces are equivalent if and only if their dimensions are the 
same. 

Suppose now we consider Lp(X) for a general class of X (which contains for 
instance, X = Rd with Lebesgue measure). Then: 

Lp(a) and Lq are equivalent if and only if p = q. 

(b)	 However, for any p with 1 ≤ p ≤ ∞, L2 is equivalent with a closed infinite-
dimensional subspace of Lp. 

8. ∗ There is no finitely-additive rotationally-invariant measure extending Lebesgue 
measure to all subsets of the sphere Sd when d ≥ 2, in distinction to what happens 
on the torus Rd/Zd when d ≥ 2. (See Exercise 36). This is due to a remarkable 
construction of Hausdorff that uses the fact that the corresponding rotation group 
of Sd is non-commutative. In fact, one can decompose S2 into four disjoint sets 
A, B, C and Z so that (i) Z is denumerable, (ii) A ∼ B ∼ C, but A ∼ (B ∪ C). 

Here the notation A1 ∼ A2 means that A1 can be transformed into A2 via a 
rotation. 

9. ∗ As a consequence of the previous problem one can show that it is not possible to 
extend Lebesgue measure on Rd , d ≥ 3, as a finitely-additive measure on all subsets 
of Rd so that it is both translation and rotation invariant (that is, invariant under 
Euclidean motions). This is graphically shown by the “Banach-Tarski paradox”: 
There is a finite decomposition of the unit ball B1 = 

SN
j=1 Ej , with the sets Ej 

˜disjoint, and there are corresponding sets Ej that are each obtained from Ej by 
˜ ˜a Euclidean motion, with the Ej also disjoint, so that 

SN
j=1 Ej = B2 the ball of 

radius 2. 




