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The Move-Split-Merge Metric for Time Series
Alexandra Stefan, Vassilis Athitsos, and Gautam Das

Abstract—A novel metric for time series, called MSM (move-split-merge), is proposed. This metric uses as building blocks three
fundamental operations: Move, Split, and Merge, which can be applied in sequence to transform any time series into any other time
series. A Move operation changes the value of a single element, a Split operation converts a single element into two consecutive
elements, and a Merge operation merges two consecutive elements into one. Each operation has an associated cost, and the MSM
distance between two time series is defined to be the cost of the cheapest sequence of operations that transforms the first time
series into the second one. An efficient, quadratic-time algorithm is provided for computing the MSM distance. MSM has the desirable
properties of being metric, in contrast to the dynamic time warping (DTW) distance, and invariant to the choice of origin, in contrast
to the Edit Distance with Real Penalty (ERP) metric. At the same time, experiments with public time series datasets demonstrate that
MSM is a meaningful distance measure, that oftentimes leads to lower nearest neighbor classification error rate compared to DTW and
ERP.

Index Terms—Time series, similarity measures, similarity search, distance metrics.

✦

1 INTRODUCTION

Time series data naturally appear in a wide variety of
domains, including financial data (e.g. stock values), sci-
entific measurements (e.g. temperature, humidity, earth-
quakes), medical data (e.g. electrocardiograms), audio,
video, and human activity representations. Large time
series databases can serve as repositories of knowledge
in such domains, especially when the time series stored
in the database are annotated with additional informa-
tion such as class labels, place and time of occurrence,
causes and consequences, etc.

A key design issue in searching time series databases
is the choice of a similarity/distance measure for com-
paring time series. In this paper, we introduce a novel
metric for time series, called MSM (move-split-merge).
The key idea behind the proposed MSM metric is to
define a set of operations that can be used to transform
any time series into any other time series. Each operation
incurs a cost, and the distance between two time series X

and Y is the cost of the cheapest sequence of operations
that transforms X into Y .

The MSM metric uses as building blocks three fun-
damental operations: Move, Split, and Merge. A Move
operation changes the value of a single point of the time
series. A Split operation splits a single point of the time
series into two consecutive points that have the same
value as the original point. A Merge operation merges
two consecutive points that have the same value into a
single point that has that value. Each operation has an
associated cost. The cost of the Move operation is the
absolute difference between the old value and the new
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value. The cost of each Split and Merge operation is equal
and set to a constant.

Our main motivation in formulating MSM has been
to satisfy, with a single distance measure, a set of cer-
tain desirable properties that no existing method satis-
fies fully. One such property is robustness to temporal
misalignments. Such robustness is entirely lacking in
methods where time series similarity is measured using
the Euclidean distance [1], [2], [3], [4] or variants [5], [6],
[7]. Such methods cannot handle even the smallest mis-
alignment caused by time warps, insertions, or deletions.

Another desired property is metricity. As detailed
in Section 3.1.1, metricity allows the use of an ex-
tensive arsenal of generic methods for indexing, clus-
tering, and visualization, that have been designed to
work in any metric space. Several distance measures
based on dynamic programming (DP), while robust to
temporal misalignments, are not metric. Such methods
include dynamic time warping (DTW) [8], constrained
dynamic time warping (cDTW) [9], Longest Common
Subsequence (LCSS) [10], Minimal Variance Matching
(MVM) [11], and Edit Distance on Real Sequence (EDR)
[12]. All those measures are non-metric, and in particular
do not satisfy the triangle inequality.

Edit Distance with Real Penalty (ERP) [13] is a dis-
tance measure for time series that is actually a metric.
Inspired by the edit distance [14], ERP uses a sequence
of “edit” operations, namely insertions, deletions, and
substitutions, to match two time series to each other.
However, ERP has some behaviors that, in our opin-
ion, are counterintuitive. First, ERP is not translation-
invariant: changing the origin of the coordinate system
changes the distances between time series, and can
radically alter similarity rankings. Second, the cost of
inserting or deleting a value depends exclusively on the
absolute magnitude of that value. Thus, ERP does not
treat all values equally; it explicitly prefers inserting and
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deleting values close to zero compared to other values.
In our formulation, we aimed to ensure both translation
invariance and equal treatment of all values.

A desired property of any similarity measure is com-
putational efficiency. Measuring the DTW or ERP dis-
tance between two time series takes time quadratic to
the sum of lengths of the two time series, whereas linear
complexity is achieved by the Euclidean distance and,
arguably, cDTW (if we treat the warping window width,
a free parameter of cDTW, as a constant). One of our
goals in designing a new distance measure was to not
significantly exceed the running time of DTW and ERP,
and to stay within quadratic complexity.

The proposed MSM metric is our solution to the
problem of satisfying, with a single measure, the de-
sired properties listed above: robustness to misalign-
ments, metricity, translation invariance, treating all val-
ues equally, and quadratic time complexity. The MSM
formulation deviates significantly from existing ap-
proaches, such as ERP and DTW, and has proven quite
challenging to analyze. While the proposed algorithm
is easy to implement in a few lines of code (see Figure
10), proving that these few lines of code indeed compute
the correct thing turned out to be a non-trivial task, as
shown in Sections 4 and 5. We consider the novelty of
the formulation and the associated theoretical analysis
to be one of the main contributions of this paper.

For real-world applications, satisfying all the above-
mentioned properties would be of little value, unless the
distance measure actually provides meaningful results
in practice. Different notions of what is meaningful may
be appropriate for different domains. At the same time,
a commonly used measure of meaningfulness is the
nearest neighbor classification error rate attained in a
variety of time series datasets. We have conducted such
experiments using the UCR repository of time series
datasets [15]. The results that we have obtained illustrate
that MSM performs quite well compared to existing
competitors, such as DTW and ERP, yielding the lowest
error rate in several UCR datasets.

In summary, the contributions of this paper are the
following:

• We introduce the MSM distance, a novel metric for
time series data.

• We provide a quadratic-time algorithm for com-
puting MSM. The algorithm is short and simple
to implement, but the proof of correctness is non-
trivial.

• In the experiments, MSM produces the lowest classi-
fication error rate, compared to DTW and ERP, in ten
out of the 20 public UCR time series datasets. These
results show that, in domains where classification
accuracy is important, MSM is worth considering
as an alternative to existing methods.

2 DEFINING THE MSM DISTANCE

Similar to the edit distance and ERP, MSM uses a set
of operations that can transform any time series to

any other time series. The basic operations in the edit
distance and ERP are Insert, Delete, Substitute. MSM also
uses the Substitute operation, we just have renamed it
and call it the Move operation. This operation is used to
change one value into another.

Our point of departure from the edit distance and ERP
is in handling insertions and deletions. In the edit dis-
tance, all insertions and deletions cost the same. In ERP,
insertions and deletions cost the absolute magnitude of
the value that was inserted or deleted. Instead, we aimed
for a cost model where inserting or deleting a value
depends on both that value and the adjacent values. For
example, inserting a 10 between two 10s should cost the
same as inserting a 0 between two 0s, and should cost
less than inserting a 10 between two 0s.

Our solution is to not use standalone Insert and
Delete operations, and instead to use Split and Merge
operations. A Split repeats a value twice, and a Merge
merges two successive equal values into one. In MSM, an
Insert is decomposed to a Split (to create a new element)
followed by a Move (to set the value of the new element).
Similarly, a delete is decomposed to a Move (to make an
element equal in value to either the preceding or the
following element) followed by a Merge (to delete the
element we just moved). This way, the cost of insertions
and deletions depends on the similarity between the
inserted or deleted value and its neighbors.

We now proceed to formally define the three basic
operations and the MSM distance. Let time series X =
(x1, . . . , xm) be a finite sequence of real numbers xi. The
Move operation, and its cost, are defined as follows:

Movei,v(X) = (x1, . . . , xi−1, xi + v, xi+1, . . . , xm) . (1)

Cost(Movei,v) = |v|. (2)

In words, operation Movei,v(X) creates a new time series
X ′, that is identical to X , except that the i-th element is
moved from value xi to value xi+v. The cost of this move
is the absolute value of v.

The Split operation, and its cost, are defined as:

Spliti(X) = (x1, . . . , xi−1, xi, xi, xi+1, . . . , xm) . (3)

Cost(Spliti) = c. (4)

Operation Spliti(X) creates a new time series X ′, ob-
tained by taking X and splitting the i-th element of X

into two consecutive elements. The cost of this split is a
nonnegative constant c, which is a system parameter.

The Merge operation acts as the inverse of the Split
operation. The Merge operation is invoked as Mergei(X),
and is only applicable if xi = xi+1. Given a time series
X = (x1, . . . , xm), and assuming xi = xi+1:

Mergei(X) = (x1, . . . , xi−1, xi+1, . . . , xm) . (5)

Cost(Mergei) = c . (6)

Operation Mergei(X) creates a new time series X’, that is
identical to X , except that elements xi and xi+1 (which
are equal in value) are merged into a single element. The
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Fig. 1. Examples of the Move, Split, Merge operations.

cost of a Merge operation is equal to the cost of a Split
operation. This is necessary, as we explain in Section 3.1,
in order for MSM to be metric (otherwise, symmetry
would be violated).

Figures 1 and 4 show example applications of Move,
Split, and Merge operations.

We define a transformation S = (S1, . . . , S|S|) to be a
sequence of operations, where |S| indicates the number
of elements of S. Each Sk in the transformation S is
some Moveik,vk

, Splitik
, or Mergeik

operation, for some
appropriate values for ik and vk. The result of applying
transformation S to time series X is the result of consec-
utively applying operations S1, . . . , S|S| to X :

Transform(X, S) = Transform(S1(X), (S2, ..., S‖S‖)) . (7)

In the trivial case where S is the empty sequence (), we
can define Transform(X, ()) = X .

The cost of a sequence of operations S on X is simply
the sum of costs of the individual operations:

Cost(S) =

|S|
∑

k=1

Cost(Sk) . (8)

Given two time series X and Y , there are infinite
transformations S that transform X into Y . An example
of such a transformation is illustrated in Figure 4.

Using the above terminology, we are now ready to
formally define the MSM distance. The MSM distance
D(X, Y ) between two time series X and Y is defined to
be the cost of the lowest-cost transformation S such that
Transform(X, S) = Y . We note that this definition does
not provide a direct algorithm for computing D(X, Y ).
Section 5 provides an algorithm for computing the MSM
distance between two time series.

3 MOTIVATION FOR MSM: METRICITY AND
INVARIANCE TO THE CHOICE OF ORIGIN

In this section we show that the MSM distance satisfies
two properties: metricity and invariance to the choice
of origin. Satisfying those two properties was a key
motivation for our formulation. We also discuss simple
examples highlighting how MSM differs from DTW and
ERP with respect to these properties.

3.1 Metricity

The MSM distance satisfies reflexivity, symmetry, and the
triangle inequality, and thus MSM satisfies the criteria for
a metric distance. In more detail:

Reflexivity: Clearly, D(X, X) = 0, as an empty se-
quence of operations, incurring zero cost, converts X

into itself. If c > 0, then any transformation S that
converts X into Y must incur some non-zero cost. If,
for some domain-specific reason, it is desirable to set
c to 0, an infinitesimal value of c can be used instead,
to guarantee reflexivity, while producing results that are
practically identical to the c = 0 setting.

Symmetry: Let S be a Move, Split, or Merge operation.
For any such S there exists an operation S−1 such that,
for any time series X , S−1(S(X)) = X. In particular:

• The inverse of Movei,v is Movei,−v .
• Spliti and Mergei are inverses of each other.

Any sequence of operations S is also reversible: if
S = (S1, . . . , S|S|), then the inverse of S is S

−1 =
(S−1

|S| , . . . , S−1

1 ). Transform(X, S) = Y if and only if

Transform(Y, S−1) = X .
It is easy to see that, for any operation S, Cost(S) =

Cost(S−1). Consequently, if S is the cheapest (or a tie
for the cheapest) transformation that converts X into
Y , then S

−1 is the cheapest (or a tie for the cheapest)
transformation that converts Y into X . It readily follows
that D(X, Y ) = D(Y, X).

Triangle inequality: Let X , Y , and Z be three time se-
ries. We need to show that D(X, Z) ≤ D(X, Y )+D(Y, Z).
Let S1 be an optimal (i.e., lowest-cost) transformation of
X into Y , so that Cost(S1) = D(X, Y ). Similarly, let S2 be
an optimal transformation of Y into Z , so that Cost(S2) =
D(Y, Z). Let’s define S3 to be the concatenation of S1 and
S2, that first applies the sequence of operations in S1,
and then applies the sequence of operations in S2. Then,
Transform(X, S3) = Z and Cost(S3) = D(X, Y )+D(Y, Z).

If S3 is the cheapest (or a tie for the cheapest) transfor-
mation converting X into Z , then, D(X, Z) = D(X, Y )+
D(Y, Z), and the triangle inequality holds. If S3 is not
the cheapest (or a tie for the cheapest) transformation
converting X into Z , then D(X, Z) < D(X, Y )+D(Y, Z),
and the triangle inequality still holds.

3.1.1 Advantages of Metricity

Metricity distinguishes MSM from several alternatives,
such as DTW [8], LCSS [10], MVM [11], and EDR [12].
Metricity allows MSM to be combined with an extensive
arsenal of off-the-shelf, generic methods for indexing,
clustering, and visualization, that have been designed
to work in any metric space.

With respect to indexing, metricity allows the use of
generic indexing methods designed for arbitrary met-
rics (see [16] for a review). Examples of such methods
include VP-trees [17] and Lipschitz embeddings [18]. In
fairness to competing non-metric alternatives, we should
mention that several custom-made indexing methods
have been demonstrated to lead to efficient retrieval
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Fig. 2. An example where DTW violates the triangle inequality:
DTW(X, Y ) = 9, DTW(X, Z) = 0, DTW(Z, Y ) = 1. Thus,
DTW(X, Z) + DTW(Z, Y ) < DTW(X, Y ).

using non-metric time series distance measures [9], [19],
[20].

Another common operation in data mining systems is
clustering. Metricity allows the use of clustering meth-
ods that have been designed for general metric spaces.
Examples of such methods include [21], [22], [23].

Metricity also allows for better data visualization in
time series datasets. Visualization typically involves an
approximate projection of the data to two or three Eu-
clidean dimensions, using projection methods such as,
e.g., MDS [24], GTM [25], or FastMap [26]. In general,
projections of non-Euclidean spaces to a Euclidean space,
and especially to a low-dimensional Euclidean space,
can introduce significant distortion [18]. However, non-
metricity of the original space introduces an additional
source of approximation error, which is not present if the
original space is metric.

As an example, suppose that we want to project to
2D the three time series shown in Figure 2, so as to
visualize the DTW distances among those three series.
Any projection to a Euclidean space (which is metric)
will significantly distort the non-metric relationship of
those three time series. On the other hand, since MSM
is metric, the three MSM distances between the three
time series of Figure 2 can be captured exactly in a 2D
projection.

3.1.2 An Example of Non-Metricity in DTW
To highlight the difference between MSM and DTW,
Figure 2 illustrates an example case where DTW violates
the triangle inequality. In that example, the only differ-
ence between Y and Z is in the last value, as y10 = 1
and z10 = 2. However, this small change causes the
DTW distance from X to drop dramatically, from 9 to
0: DTW (X, Y ) = 9, and DTW (X, Z) = 0.

In contrast, in MSM, to transform X into Y , we per-
form 8 Merge operations, to collapse the last 9 elements
of X into a single value of 2, then a single Move operation
that changes the 2 into a 1, and 8 Split operations to
create 8 new values of 1. The cost of those operations
is 16c + 1. To transform X into Z , the only difference
is that x10 does not need to change, and thus we only
need 7 Merge operations, one Move operation, and 7 Split
operations. The cost of those operations is 14c+1. Thus,
the small difference between Y and Z causes a small
difference in the MSM distance values: MSM(Y, Z) = 1,
MSM(X, Y ) = 16c + 1, MSM(X, Z) = 14c + 1.

We should note that, in the above example, con-
strained DTW (cDTW) would not exhibit the extreme

-1 0 1 0sequence A: -1

sequence B: -1

sequence C: 0

-1 0 1 0 -1

-1 0 1 0 -1

Fig. 3. An example illustrating the different behavior of MSM
and ERP. Both sequences B and C are obtained by inserting
one value at the end of A. According to ERP, A is closer to C
than to B: ERP(A, B) = 1, ERP(A, C) = 0. According to MSM,
A is closer to B than to C: MSM(A, B) = c, MSM(A,C) = 1+c.

behavior of DTW. However, cDTW is also non-metric,
and the more we allow the warping path to deviate
from the diagonal, the more cDTW deviates from metric
behavior. DTW itself is a special case of cDTW, where
the diagonality constraint has been maximally relaxed.

3.2 Invariance to the Choice of Origin

Let X = (x1, . . . , xm) be a time series where each xi is a
real number. A translation of X by t, where t is also a real
number, is a transformation that adds t to each element
of the time series, to produce X+t = (x1+t, . . . , xm+t). If
distance measure D is invariant to the choice of origin,
then for any time series X , Y , and any translation t,
D(X, Y ) = D(X+t, Y +t). The MSM distance is invariant
to the choice of origin, because any transformation S that
converts X to Y also converts X + t to Y + t.

3.2.1 Contrast to ERP: Translation Invariance and Equal
Treatment of All Values
Invariance to the choice of origin is oftentimes a de-
sirable property, as in many domains the origin of the
coordinate system is an arbitrary point, and we do
not want this choice to impact distances and similarity
rankings. In contrast, the ERP metric [13] is not invariant
to the choice of origin. For the full definition of ERP we
refer readers to [13].

To contrast MSM with ERP, consider a time series X

consisting of 1000 consecutive values of v, for some real
number v, and let Y be a time series of length 1, whose
only value is a v as well. In ERP, to transform X into
Y , we need to delete v 999 times. However, the cost of
these deletions depends on the value of v: the cost is
0 if v = 0, and is 999v otherwise. In contrast, in MSM,
the cost of deleting v 999 times (by applying 999 Merge
operations) is independent of v. Thus, the MSM distance
is translation-invariant (does not change if we add the
same constant to both time series), whereas ERP is not.

A simple remedy for making ERP translation-invariant
is to normalize each time series so that it has a mean
value of 0. However, even in that case, the special
treatment of the origin by ERP leads to insertion and
deletion costs that are, in our opinion, counterintuitive
in some cases. Such a case is illustrated in Figure 3. In
that example, we define sequence A = (−1, 0, 1, 0,−1).
Then, we define sequences B and C, by copying A and
inserting respectively a value of −1 and a value of 0 at
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Fig. 4. An example of a (non-optimal, but easy-to-visualize)
transformation that converts input time series (5, 3, 7, 1) into
output time series (4, 5, 8, 10). We see the effects of each
individual operation in the transformation, and we also see the
step-by-step graph defined by applying this transformation to the
input time series.

the end. According to ERP, A is closer to C than to B,
and actually ERP (A, C) = 0, because ERP treats 0 (the
origin) as a special value that can be inserted anywhere
with no cost. In contrast, according to MSM, A is closer
to B, as a single Split operation of cost c transforms A

to B. Transforming A to C requires a Split and a Move,
and costs c + 1.

This difference between MSM and ERP stems from
the fact that, in MSM, the cost of inserting or deleting a
value v only depends on the difference between v and
its adjacent values in the time series. Thus, in MSM,
inserting a 10 between two 10’s is cheaper (cost = c)
than inserting a 10 between two zeros (cost = 10+c), and
inserting a 10 between two zeros is as expensive (cost =
10 + c) as inserting a 0 between two 10s. On the other
hand, ERP treats values differently depending on how
close they are to the origin: inserting a 10 between two
10’s costs the same (cost = 10) as inserting a 10 between
two zeros, and inserting a 10 between two zeros (cost
= 10) is more expensive than inserting a 0 between two
10’s (cost = 0).
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Fig. 5. The transformation graph corresponding to the step-by-
step graph of Figure 4.

4 TRANSFORMATION GRAPHS AND THE
MONOTONICITY LEMMA

In Section 5 we describe an algorithm that computes the
MSM distance between two time series. However, the
correctness of that algorithm derives from certain theo-
retical observations. In this section we lay the theoretical
groundwork for explaining the algorithm of Section 5.

4.1 Step-By-Step Graphs and Transformation
Graphs

For any time series X and any transformation S we can
draw what we call a step-by-step graph, that illustrates
the intermediate results and the final result that we
obtain, starting with X , and applying in sequence the
operations of transformation S. An example of such a
graph is shown in Figure 4. In that figure, X = (5, 3, 7, 1),
and transformation S consists of nine operations, which
are shown in detail. The final result of Transform(X, S)
is time series Y = (4, 5, 8, 10).

The step-by-step graph is a directed graph, that is
divided into layers. The first layer corresponds to the
input sequence X . Layer k + 1, for k > 0 corresponds to
the result of applying the first k operations of S on X . In
intermediate layers, every node is connected to one or
two parent nodes, and one or two children nodes. Every
directed edge has a label that shows how the child node
was obtained from the parent node. There are five types
of edge labels:

• HOLD: A HOLD edge indicates that no Move, Split,
or Merge operation was applied to the parent node.

• INC: An INC edge indicates that a Move operation
was applied to the parent node, and that a positive
value was added as a result of the move.

• DEC: A DEC edge indicates that a Move operation
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was applied to the parent node, and that a a nega-
tive value was added as a result of the move.

• SPLIT: A Split operation generates two SPLIT edges,
going from a parent node to two children nodes.

• MERGE: A Merge operation generates two MERGE
edges, going from two parents to a common child.

In a step-by-step graph, most edges are typically
HOLD edges. Given a step-by-step graph, we can obtain
a significantly more concise graph, called a transforma-
tion graph, by applying the following process:

• Copy the original step-by-step graph.
• Delete all HOLD edges.
• Collapse into a single node any set of nodes that, in

the original step-by-step graph, were connected by
a path consisting exclusively of HOLD edges.

Figure 5 shows the transformation graph obtained from
the step-by-step graph of Figure 4.

The cost of a transformation graph is defined to be
the sum of the costs of the operations appearing in that
graph. If a transformation S has G as its transformation
graph, then S and G have the same cost. Similarly, the
cost of a path in a transformation graph is defined to
be the sum of the costs of the operations associated with
the edges of the path.

Any step-by-step graph corresponds to one and only
one sequence of operations, because the step-by-step
graph imposes a full order on the set of operations
appearing in that graph. On the other hand, a transfor-
mation graph imposes only a partial order on the set of
operations appearing in that graph. Given a transforma-
tion graph G, a sequence of operations S has G as its
transformation graph if:

• S contains all the operations appearing in G.
• S contains no operation that does not appear in G.
• The order of operations in S respects the partial

order defined by G.

For example, in the graph of Figure 5, consider the
move of the “3” node of the top layer to a “5”, and
the move of the “1” node of the top layer to a “7”.
The order of those two moves is interchangeable. On
the other hand, the move of the “1” node to a “7” must
occur before the move of the “7” to an “8”.

4.2 The Monotonicity Lemma

Using transformation graphs, we can derive certain
claims about transformations of a time series X into
a time series Y . We will use these claims to derive an
efficient algorithm for computing MSM distances.

We define two transformation graphs to be equivalent
transformation graphs if they have the same input time
series and output time series. Note that any transfor-
mation graph fully specifies an input time series X ,
an output time series Y , and a partially ordered set of
operations that converts X into Y.

Proposition 1: Let G be a transformation graph that con-
verts time series X into time series Y . If G includes any
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MERGE-SPLIT edges. (a) A local region of a transformation
graph, that includes consecutive MERGE-SPLIT edges. The
numerical values stored in nodes P1, P2, C1, C2, C3 must all be
equal to the same real number v. (b) An edited but equivalent
version of the region shown in (a). We note that nodes C1, C2

and C3 have been deleted, P1 is directly connected to what were
the descendants of C2 in (a), and P2 is directly connected to
what were the descendants of C3 in (a).

consecutive SPLIT-MERGE edges, we can convert G into an
equivalent transformation graph G′, such that G′ is at least as
cheap as G, and G′ contains no consecutive SPLIT-MERGE
edges.

Proof: There are two possible local topologies corre-
sponding to consecutive SPLIT-MERGE edges. The first
is the case where the Merge operation directly undoes
the effects of the preceding Split operation. In that
case, clearly these two operations cancel each other out
and can be deleted without changing the output of the
transformation.

Figure 6 illustrates the local topology corresponding
to the second case. In that figure, the numerical values
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Fig. 8. Left: a local region of a transformation graph that
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into single-element series (5). The cost is 6 + 3c. Right: The re-
sult of converting the region shown on the left into an equivalent
but monotonic region, with the same cost 6 + 3c, following the
description of Case 1 in the proof of Proposition 3.

stored in nodes P1, P2, C1, C2, C3 are all equal to
the same value v, because of the definition of the
Split and Merge operations. The consecutive Split and
Merge operations have the net effect of converting two
consecutive v values (stored in nodes P1 and P2) into
two consecutive v values (of nodes C1 and C3), and
thus they can be deleted without changing the output of
the graph. By deleting those two operations and editing
the local topology as shown in the figure, we obtain an
equivalent transformation graph, that is cheaper than
the original transformation graph by a difference of 2c. �

Proposition 2: Let G be a transformation graph that con-
verts time series X into time series Y . If G includes any
consecutive MERGE-SPLIT edges, we can convert G into an
equivalent transformation graph G′, such that G′ is at least as
cheap as G, and G′ contains no consecutive MERGE-SPLIT
edges.

Proof: Figure 7 illustrates the local topology
corresponding to consecutive MERGE-SPLIT edges.
The Merge operation merges two values of v into one,
and the Split operation directly undoes the effects of the
preceding Merge operation, by recreating two values
of v. Thus, we can delete both the Merge and the Split
operation without changing the final output of the
transformation graph. �

We define a path of a transformation graph to be a
monotonic path if it does not contain both INC and
DEC edges. We define a monotonic transformation
graph to be a transformation graph that only contains
monotonic paths. We define a monotonic transformation
to be a transformation whose transformation graph is
monotonic.

Proposition 3: Let X and Y be two time series. Let S be a
transformation that converts X into Y . If S is not monotonic,
we can convert S into another transformation S

′, that also
converts X into Y , is as cheap or cheaper than S, and is

7 5 7 7

7

merge

inc

  merge

7

merge        

7

7

     merge

3

  dec

  merge

merge

7 5 7 7

  dec

merge

5

5

merge
merge

5 7

merge        
merge        

5

 dec

merge        

3

  dec

z
i-1

z
i

z
i+1

z
i+2

z
i-1

z
i

z
i+1

z
i+2

Fig. 9. Left: a local region of a transformation graph that
includes a non-monotonic path, of the form INC-MERGE-
MERGE-MERGE-DEC. This region transforms series (7, 5, 7, 7)
into single-element series (3). The cost is 6 + 3c. Right: The re-
sult of converting the region shown on the left into an equivalent
but monotonic region, with the same cost 6 + 3c, following the
description of Case 2 in the proof of Proposition 3. We note that
no INC edges appear in the region on the right.

monotonic.

Proof: This proposition has a long proof, because we
have to cover several different cases. We can assume
that transformation S has already been processed as
described in Propositions 1 and 2, so that there are no
consecutive SPLIT-MERGE edges in the transformation
graph. Also, any consecutive INC-DEC edges or DEC-
INC edges are clearly suboptimal, and can be replaced
with a single INC or DEC edge. So, we can ignore such
cases from here on.

If the transformation graph is not monotonic, it must
have a non-monotonic path. Then, the path must have a
subpath, whose one end is an INC edge, the other end is
a DEC edge, and the intermediate edges are either all of
type MERGE or all of type SPLIT (based on Propositions
1 and 2). We will primarily consider the case where
the path is of the form INC-MERGE-. . .-MERGE-DEC,
because once we prove the proposition for that case,
the proof for the other cases is straightforward. Two
examples of an INC-MERGE-. . .-MERGE-DEC path and
its surrounding local topology are illustrated in Figures
8 and 9. We advise the reader to refer to these examples
while reading the remainder of this proof.

Since we can re-order operations in S into any ordering
compatible with the partial order imposed by the trans-
formation graph, we choose to use an order in which the
operations specified by the INC-MERGE-. . .-MERGE-
DEC path are applied consecutively. Let Z = (z1, . . . , zt)
be the time series to which the first operation of the path
is applied. In that case, the INC edge corresponds to
some operation Movei,v , for some i and some positive v.
This operation moves the i-th element of Z from value
zi to value zi + v. Then, there is a sequence of Merge
operations, that merge the i-th element with l elements
zi−l, . . . , zi−1, and with r elements zi+1, . . . , zi+r, which
all have the same value zi + v. It is possible for either l

or r to be equal to 0. In Figure 8, l = 1, r = 2, zi = 3,
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v = 4, and zi−1 = zi+1 = zi+2 = 7.

After all the Merge operations have been applied,
elements zi−l, . . . , zi+r have been converted into a single
element, with value zi + v. The final DEC edge corre-
sponds to changing value zi+v to a new value zi+v−v′,
where v′ is a positive real number (v′ = 2 in Figure 8).
The net result of all those operations is merging elements
zi−l, . . . , zi+r of time series Z into a single value zi+v−v′.
The overall cost of all these operations is v+v′+(l+r)∗c,
since we do two Move operations of magnitude v and v′

respectively, and l+r Merge operations. Our task is now
to show that we can convert all elements zi−l, . . . , zi+r

into a single element with value zi+v−v′, with less than
or equal cost, and without having a non-monotonic path.

We will consider two cases: v ≥ v′, and v < v′.
Case 1: v ≥ v′. Figure 8 illustrates an example of this

case. Consider replacing the sequence of operations spec-
ified by the INC-MERGE-. . .-MERGE-DEC path with the
following combination of operations:

1) We move zi up to zi + v − v′, with cost v − v′.
2) If l > 0, we merge elements zi−l, . . . , zi−1 into a

single element whose value is zi + v, and we move
that single element down to zi + v− v′. The cost of
these operations is (l − 1) ∗ c + v′.

3) If r > 0, we merge elements zi+1, . . . , zi+r into a
single element whose value is zi + v, and we move
that single element down to zi + v− v′. The cost of
these operations is (r − 1) ∗ c + v′.

4) We merge the results of steps 1, 2, and 3 into a
single element. The cost here is at most 2 * c, it can
be less if l = 0 or r = 0.

Step 4 must take place after steps 1, 2, and 3, whereas
the order of steps 1, 2, and 3 is not important. Overall,
the total cost of the above four steps is (l + r)∗ c+ v+ v′,
which is equal to the cost of the original INC-MERGE-
. . .-MERGE-DEC path. In the special case where l = 0 or
r = 0, the total cost becomes (l+r)∗c+v, which is better
than the original cost. At the same time, the local topol-
ogy resulting from these changes to the transformation
graph includes only monotonic paths. Furthermore, the
resulting transformation is at least as cheap as the orig-
inal transformation. Figure 8 shows an example of this
process, the local topology corresponding to the original
INC-MERGE-. . .-MERGE-DEC, and the local topology
corresponding to the new combination of operations.

Case 2: v < v′. Figure 9 illustrates an example of this
case. Consider replacing the sequence of operations spec-
ified by the INC-MERGE-. . .-MERGE-DEC path with the
following combination of operations:

1) If l > 0, we merge elements zi−l, . . . , zi−1 into a
single element whose value is zi + v, and we move
that single element down to value zi. The cost of
these operations is (l − 1) ∗ c + v.

2) If r > 0, we merge elements zi+1, . . . , zi+r into a
single element whose value is zi + v, and we move
that single element down to value zi. The cost of
these operations is (r − 1) ∗ c + v.

3) We merge zi and the results of steps 1 and 2 into
a single element, with value zi. The cost here is 2
* c, or less if l = 0 or r = 0.

4) We move the result of step 3 down to final value
zi + v − v′, with cost v′ − v.

Steps 1 and 2 can take place in any order, but step 3 must
be taken after steps 1 and 2, and step 4 after step 3. The
cost of these four steps is at most (l + r) ∗ c + v + v′, so
it is not greater than the cost of the original sequence of
operations. At the same time, the local topology resulting
from these changes to the transformation graph includes
only monotonic paths. Furthermore, the resulting trans-
formation is at least as cheap as the original transforma-
tion. Figure 9 shows an example of this process, the local
topology corresponding to the original INC-MERGE-. . .-
MERGE-DEC, and the local topology corresponding to
the new combination of operations.

We can now briefly consider the remaining cases of
non-monotonic paths. The proof for paths of the form
form DEC-MERGE-. . .-MERGE-INC is a direct adapta-
tion of the proof we provided for paths of the form
INC-MERGE-. . .-MERGE-DEC. For paths of the form
INC-SPLIT-. . .-SPLIT-DEC or DEC-SPLIT-. . .-SPLIT-INC,
we use the fact that, as discussed in Section 3.1 (when
demonstrating that MSM is symmetric), any transfor-
mation of X into Y can be inverted, to produce an
equal-cost transformation of Y into X . Thus, if, for
some transformation S of X into Y , the corresponding
transformation graph contains a path of the form INC-
SPLIT-. . .-SPLIT-DEC or DEC-SPLIT-. . .-SPLIT-INC, then
for the inverse transformation S

−1 of Y into X the
transformation graph contains a path of the form INC-
MERGE-. . .-MERGE-DEC or DEC-MERGE-. . .-MERGE-
INC. We can edit S

−1 to remove such paths, and then
invert it again, to obtain a transformation that changes
X into Y and that does not include paths of the form
INC-SPLIT-. . .-SPLIT-DEC or DEC-SPLIT-. . .-SPLIT-INC.

At this point, we have shown that, for any type of
non-monotonic path in a transformation graph, we
can edit the graph so that the non-monotonic path is
replaced with an arrangement of monotonic paths, and
we have shown that the edited graph is equivalent
to G and at least as cheap as G. By repeating such
edits, we can convert any transformation graph G

into an equivalent, monotonic, and at least as cheap
transformation graph G′, and thus we have concluded
the proof of Proposition 3. �

We are now ready to state and prove the monotonicity
lemma, which is a key lemma for describing, in Section
5, the algorithm for computing MSM distances.

Proposition 4: (Monotonicity lemma) For any two time
series X and Y , there exists an optimal transformation
that converts X into Y and that is monotonic.

Proof: Let S be an optimal transformation that
converts X into Y . Let G be the transformation
graph corresponding to applying S to X . If G is not
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monotonic, we can convert G to a monotonic graph G′

that is at least as cheap as G (and thus also optimal), by
editing G as described in the proofs of Propositions 1, 2,
and 3. Then, any transformation S compatible with G′ is
an optimal and monotonic transformation of X into Y . �

5 COMPUTING THE MSM DISTANCE

Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) be two
time series. Figure 10 describes a simple dynamic pro-
gramming algorithm for computing the MSM distance
between X and Y . For each (i, j) such that 1 ≤ i ≤ m and
1 ≤ j ≤ n, we define Cost(i, j) to be the MSM distance
between the first i elements of X and the first j elements
of Y . This way, the MSM distance between X and Y is
simply Cost(m, n).

As the algorithm on Figure 10 shows, for i > 1 and
j > 1, Cost(i, j) can be computed recursively based on
Cost(i, j − 1), Cost(i− 1, j), and Cost(i− 1, j − 1). In this
section we explain why it is correct to define the Cost
function in this recursive manner, and we fully specify
how to actually compute the Cost function.

First, we note that Cost(1, 1) is simply the cost of
moving x1 to y1, so this is a trivial case. The interest-
ing case is when i > 1 or j > 1. In that case, we
know from the monotonicity lemma that there exists
an optimal monotonic transformation Si,j converting
(x1, . . . , xi) into (y1, . . . , yj). We use notation Gi,j for the
transformation graph corresponding to applying Si,j to
X . In Gi,j there is a monotonic path moving xi to yj .
There can be three cases for that path, that we need to
analyze separately.

Case 1 (applicable if i > 1 and j > 1): the monotonic
path taking xi to yj does not include any SPLIT or
MERGE edges. In that case, without loss of generality,
we can assume that the monotonic path taking xi to yj

contains a single INC or DEC edge. We refer the reader
to Figure 11 for an example.

Consider the transformation graph G′ that we obtain
by removing the INC or DEC edge connecting xi to
yj from transformation graph Gi,j . We show by con-
tradiction that G′ defines an optimal transformation of
(x1, . . . , xi−1) into (y1, . . . , yj−1). If G′ is not optimal,
then there exists an optimal transformation S1 that has a
smaller cost than G′. If we add a Move operation to the
end of S1, that moves xi to yj , we obtain a transformation
that converts (x1, . . . , xi) into (y1, . . . , yj) and that is
cheaper than Si,j , which was assumed to be optimal.
Therefore, we have reached a contradiction.

Consequently, if Case 1 holds, we obtain an optimal
transformation Si,j by adding a move operation (mov-
ing xi to yj) to an optimal transformation converting
(x1, . . . , xi−1) into (y1, . . . , yj−1). It follows readily that,
if Case 1 holds, Cost(i, j) = Cost(i − 1, j − 1) + |xi − yj|.

Case 2 (applicable if i > 1): in the monotonic path
moving xi to yj , the first non-move operation is a Merge.
In the transformation graph Gi,j , that first Merge oper-
ation creates a node M with two parents. One of those

function MSM Distance(X , Y )

Inputs:
Time series X = (x1, . . . , xm)
Time series Y = (y1, . . . , yn)

Initialization:
Cost(1, 1) = |x1 − y1|.
For i = 2, . . . , m:

Cost(i, 1) = Cost(i − 1, 1) + C(xi, xi−1, y1)
For j = 2, . . . , n:

Cost(1, j) = Cost(1, j − 1) + C(yj , x1, yj−1)

Main Loop:
For i = 2, . . . , m:

For j = 2, . . . , n:
Cost(i, j) = min{Cost(i − 1, j − 1) + |xi − yj |,

Cost(i − 1, j) + C(xi, xi−1, yj),
Cost(i, j − 1) + C(yj , xi, yj−1)}

Output: The MSM distance D(X, Y ) is Cost(m, n).

Fig. 10. A simple, quadratic-time algorithm for computing the
MSM distance between two time series X = (x1, . . . , xm) and
Y = (y1, . . . , yn). Function C, used in computing values for the
Cost array, is defined in Equation 9.
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Fig. 11. An example of Case 1 for an optimal monotonic
transformation graph Gi,j . Gi,j maps (x1, . . . , xi) to (y1, . . . , yj).
In Case 1, Gi,j is obtained from an optimal transformation graph
G′ mapping (x1, . . . , xi−1) to (y1, . . . , yj−1), by adding to G′ a
Move operation that moves xi to yj . In the example shown here,
i = 5 and j = 4.

parents, that we call Pi, has xi as an ancestor. The other
parent, that we call Pi−1, has xi−1 as an ancestor. There is
a path passing through Pi−1 and M that connects xi−1 to
yj . There is another path passing through Pi and M that
connects xi to yj . Since the transformation is monotonic,
the value v stored at node M must be between xi−1 and
yj , and also between xi and yj . Figure 12 illustrates three
examples, with the position of node M indicated.

For Case 2, there are three subcases that we need to
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Fig. 12. Examples of the three subcases of Case 2 for an optimal monotonic transformation graph Gi,j . Gi,j maps (x1, . . . , xi) to
(y1, . . . , yj). In Case 2, Gi,j is obtained from an optimal transformation graph G′ mapping (x1, . . . , xi−1) to (y1, . . . , yj). Subcase
2.1: the value of xi is not between the value of xi−1 and the value of yj , and xi is closer to xi−1 than to yj . In the example for
Subcase 2.1, i = 3 and j = 3. In Subcase 2.2, the value of xi is not between the value of xi−1 and the value of yj , and xi is closer
to yj than to xi−1. In the example for Subcase 2.2, i = 3 and j = 2. In Subcase 2.3, the value of xi is between the value of xi−1

and the value of yj . In the example for Subcase 2.3, i = 3 and j = 2. Note that, in this example, in the optimal transformation from
(x1, x2) to (y1, y2), x2 moves directly from value 8 to value 4. In the optimal transformation from (x1, x2, x3) to (y1, y2), x2 moves
first to an intermediate value of 5, that allows a merge with x3, and then to value 4.

address. An example for each subcase is shown in Figure
12.

• Subcase 2.1: the value of xi is not between the value
of xi−1 and the value of yj , and xi is closer to xi−1

than to yj . Then, xi first moves to value xi−1, and
then merges.

• Subcase 2.2: the value of xi is not between the value
of xi−1 and the value of yj , and xi is closer to yj than
to xi−1. Then, xi first moves to value yj , and then
merges.

• Subcase 2.3: the value of xi is between the value
of xi−1 and the value of yj . In that case, xi merges
immediately with a value along the monotonic path
that moves xi−1 to yj .

In all three subcases, by removing the one or two
operations linking xi with node M from the transfor-
mation graph Gi,j , we obtain a transformation graph
G′ that converts (x1, . . . , xi−1) into (y1, . . . , yj). As in
Case 1, we can show that if G′ is suboptimal, then Gi,j

is suboptimal (which is a contradiction). Consequently,
G′ is optimal, and if Case 2 holds then Cost(i, j) =
Cost(i − 1, j) + C(xi, xi−1, yj), where C(xi, xi−1, yj) is
defined as follows:

C(xi, xi−1, yj) =

{

c if xi−1 ≤ xi ≤ yj or xi−1 ≥ xi ≥ yj

c + min(|xi − xi−1|, |xi − yj |) otherwise
(9)

In Figure 12, for Subcase 2.3 in particular, we should
note that the transformation graph obtained by remov-
ing the Merge operation from the bottom graph is not
identical to the top graph. However, both graphs have
equal cost. The only difference is that in the top graph
xi−1 moves directly from a value of 8 to a value of 4, and
in the bottom graph xi−1 moves first to an intermediate
value of 5, and then to the final value of 4.

Case 3 (applicable if j > 1): in the monotonic path
moving xi to yj , the first non-move operation is a
Split. We omit the details here, but the analysis for
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this case is a direct adaptation of the analysis for Case
2. In summary, in Case 3 we can obtain from trans-
formation graph Gi,j an optimal transformation graph
G′ that converts (x1, . . . , xi) into (y1, . . . , yj−1), so that
Cost(i, j) = Cost(i, j − 1) + C(yj , xi, yj−1).

Based on the above considerations, the algorithm on
Figure 10 checks which of the three cases leads to a
cheaper transformation of (x1, . . . , xi) into (y1, . . . , yj).
The cost of the transformation corresponding to each
case is computed in a few operations, using the already
computed values for Cost(i, j − 1), Cost(i − 1, j), and
Cost(i − 1, j − 1). The algorithm for computing MSM
distances is fairly simple, and can be implemented in a
few lines of code. We have posted Matlab, Java, and C++
impelementations of the MSM Distance function on the
web, at two mirrored sites:

• http://omega.uta.edu/˜athitsos/msm/
• http://vlm1.uta.edu/˜alex/msm/

Computing Cost(i, j) takes constant time for each
(i, j). Therefore, the time complexity of computing the
MSM distance is O(mn). The O(mn) complexity is the
same as the time complexity of DTW (without the diag-
onality constraint [9]) and ERP. The Euclidean distance,
in contrast, has linear time complexity O(m), and n = m

in that case. Constrained DTW [9], that utilizes the
diagonality constraint, also has linear time complexity
if we consider that the radius around the diagonal does
not depend on the length of the time series.

6 EXPERIMENTS

We compare MSM to cDTW, DTW, ERP, and the Eu-
clidean distance, based on the 1-nearest neighbor classi-
fication error rate attained on the 20 time series datasets
available on the UCR time series archive [15]. We should
note that, while the UCR time series website shows
results on 22 datasets, only 20 of those datasets are
publicly available, and those are the 20 datasets that we
have used. A note on the website indicates that two of
those datasets (namely, the “Car” and “Plane” datasets)
are still not publicly available.

The MSM algorithm has one free parameter, namely
c, the cost of every Split and Merge operation. For each
of the 20 datasets, the value for c was chosen from
the set {0.01, 0.1, 1, 10, 100}, using leave-one-out cross-
validation on the training set. It is important to empha-
size that c was not optimized based on results on the test
data. Overall we have found it fairly straightforward to
pick a value for c by simply trying those five values on
the training data.

We should note that considering a lot of possible
values for c could slow down the training phase sig-
nificantly, as a separate cross-validation measurement
must be obtained for each individual value. In our ex-
periments, MSM produced competitive error rates while
considering only five widely-spaced values (differing by
factors of 10) for c. Considering only five widely-spaced

values demonstrates that no careful finetuning of c was
needed to obtain good results.

Table 1 shows the error rate for each method on
each dataset. The table also shows characteristics of
each dataset, the parameter values used by MSM and
cDTW for that dataset, and the statistical significance (p-
value) of the results. The p-value specifically measures
the statistical significance of the difference between the
top two methods for each dataset.

We note that for each method there are some datasets
where that method is at least as accurate as the other
four methods. MSM produces lower error rates than
its competitors in 10 datasets. Each of DTW and ERP
produces the lowest error rate in two datasets. In the
remaining six datasets, two or more methods tie for
lowest error rate. Table 2 shows, for each competitor
of MSM, the number of datasets where MSM produces
respectively better accuracy, equal accuracy, and worse
accuracy compared to the competitor.

Our primary goal in these experiments has been to
demonstrate that MSM has competitive performance on
1-nearest neighbor classification, compared to cDTW,
DTW, and ERP. We are not making a claim that MSM
is a fundamentally more accurate measure than cDTW,
DTW, or ERP. Our interpretation of the results is that
all these methods are valuable, and any one of them
may outperform the other methods in a new dataset.
At the same time, MSM has some attractive theoretical
properties that DTW or ERP do not have.

A natural question to ask is how to determine which
of these methods to use on a new dataset. A simple
answer to that question is to evaluate all methods on
the training set (using leave-one-out cross-validation),
and choose the method with the lowest error rate. We
have tried that approach, and we show the results on
the rightmost two columns of Table 1. If two or more
methods tied on the training set, we show the average
test error of those methods. We tried two variants: in the
CV+MSM variant, we chose for each dataset the best out
of all five methods. In the CV-MSM variant we excluded
MSM from consideration.

In those results, CV+MSM matched the best error
rate in 12 datasets and CV-MSM matched the best error
rate (excluding MSM) in 11 datasets. In head-to-head
comparison with each of the individual methods they
included, both CV+MSM and CV-MSM gave better re-
sults in more datasets than they gave worse results. Both
CV+MSM and CV-MSM had lower average error rates
than any of the individual methods that they included.
Thus, these results demonstrate that cross-validation is
a good way to choose automatically which method to
use in each dataset. Furthermore, we note that CV+MSM
had a lower error rate than CV-MSM in 10 datasets,
and higher error rate in only three datasets. This result
further illustrates the advantages of considering MSM as
an alternative to DTW and ERP in practical applications.

In Figures 13, 14 and 15 we illustrate some specific
examples where MSM gives better or worse accuracy
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TABLE 1
1-nearest neighbor classification error rates attained by MSM, constrained DTW (denoted as cDTW), unconstrained DTW

(denoted as DTW), ERP, and the Euclidean distance, on each of the 20 datasets in the UCR repository of time series datasets
[15]. The last row indicates the average error rate over all 20 datasets. In addition, the table shows for each dataset: the number of
classes, the number of training objects, the number of test objects, the length of each sequence in the dataset, the value of c used
by MSM on that dataset, and the length of the warping window (as specified in [15]) used by cDTW on that dataset. We also show,
for each dataset, the statistical significance(p-value) of the difference between the two best-performing methods for that dataset.
The last two columns show the results of the CV+MSM and CV-MSM hybrid methods, described in the text, where the distance

measure used for each dataset is the one that minimizes training error.

class train. test seq. p MSM cDTW CV CV
Dataset num. size size length MSM cDTW DTW ERP Euclid. value c param. +MSM -MSM

Cofee 2 28 28 286 0.236 0.179 0.179 0.25 0.25 0.5 0.01 3 0.179 0.179
CBF 3 30 900 128 0.012 0.004 0.003 0.003 0.148 0.5 0.1 11 0.006 0.003
ECG 2 100 100 96 0.11 0.12 0.23 0.13 0.12 0.3285 1 0 0.117 0.12

Synthetic 6 300 300 60 0.027 0.017 0.007 0.037 0.12 0.2076 0.1 6 0.007 0.007
Gun Point 2 50 150 150 0.06 0.087 0.093 0.04 0.087 0.1595 0.01 0 0.078 0.087
FaceFour 4 24 88 350 0.057 0.114 0.17 0.102 0.216 0.0224 1 2 0.057 0.114

Lightning-7 7 70 73 319 0.233 0.288 0.274 0.301 0.425 0.2476 1 5 0.288 0.288
Trace 4 100 100 275 0.07 0.01 0 0.17 0.24 0.1599 0.01 3 0 0
Adiac 37 390 391 176 0.384 0.391 0.396 0.379 0.389 0.3276 1 3 0.384 0.379
Beef 5 30 30 30 0.5 0.467 0.5 0.5 0.467 0.5 0.1 0 0.467 0.467

Lightning-2 2 60 61 637 0.164 0.131 0.131 0.148 0.246 0.5 0.01 6 0.131 0.131
OliveOil 4 30 30 570 0.167 0.167 0.133 0.167 0.133 0.5 0.01 1 0.167 0.167

OSU Leaf 6 200 242 427 0.198 0.384 0.409 0.397 0.483 < 0.0001 0.1 7 0.198 0.384
SwedishLeaf 15 500 625 128 0.104 0.157 0.21 0.12 0.213 0.0703 1 2 0.104 0.157

Fish 7 175 175 463 0.08 0.16 0.167 0.12 0.217 0.0448 0.1 4 0.08 0.16
FaceAll 14 560 1690 131 0.189 0.192 0.192 0.202 0.286 0.2243 1 3 0.189 0.197
50words 50 450 455 270 0.196 0.242 0.31 0.281 0.369 0.01 1 6 0.196 0.242

Two Patterns 4 1000 4000 128 0.001 0.0015 0 0 0.09 0.5 1 4 0.0003 0
Wafer 2 1000 6174 152 0.004 0.005 0.02 0.011 0.005 0.2249 1 1 0.008 0.011
Yoga 2 300 3000 426 0.143 0.155 0.164 0.147 0.17 0.2207 0.1 2 0.143 0.155

average 0.147 0.164 0.179 0.175 0.234 0.140 0.162
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Fig. 13. An example, from the Yoga dataset, of a query that MSM classifies correctly whereas cDTW and DTW classify incorrectly,
due to time shift. The query series is shown in blue. Its nearest neighbor according to MSM (which belongs to the same class)
is shown in red. The alignments computed by MSM (left), cDTW (middle), and DTW (right) are shown via links connecting
corresponding elements.

compared to its competitors. These examples help build
some intuition about how the behavior of different meth-
ods can influence classification results.

Figure 13 shows an example where MSM classifies
the query correctly, whereas cDTW and DTW give the
wrong answer. The main difference between the query
and its MSM-based nearest neighbor is time shift, which
causes mismatches at the beginning and the end of the
sequences. MSM erases (via small moves and merges)
the mismatched points with relatively low cost. In DTW,
the cost of matching the extra points prevents this train-
ing object from being the nearest neighbor of the query.
The time shift affects cDTW even more severely, as the

warping window is too small to compensate for the shift.

Figure 14 shows another example where the query is
classified correctly by MSM, and incorrectly by cDTW
and DTW. Here, the query contains a valley between
times 80 and 100, and that valley is not matched well
by the query’s MSM-based nearest neighbor. MSM “col-
lapses” the mismatched valley to a single point with rel-
atively low cost. In DTW, the cost of matching elements
of the training object to points in that valley is large
enough to prevent this training object from being the
nearest neighbor of the query.

Figure 15 shows a case where MSM gives the wrong
answer, whereas cDTW, DTW and ERP give the right
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TABLE 2
We indicate the number of UCR datasets for which MSM

produced better, equal, or worse accuracy compared to ERP,
and also compared to DTW.

MSM better Tie MSM worse
MSM vs. cDTW 13 1 6
MSM vs. DTW 12 1 7
MSM vs. ERP 13 2 5

MSM vs. Euclidean 18 0 2

TABLE 3
Runtime efficiency comparisons. For each dataset, in the MSM

time column, the time it took in seconds to compute all
distances from the entire test set to the entire training set. In
the rightmost four columns we show the factor by which MSM
was slower than each of cDTW, DTW, ERP, and the Euclidean

distance.

MSM cDTW DTW ERP Euclidean
Dataset time (sec) factor factor factor factor

Cofee 1.59 13.25 1.49 1.42 159
CBF 16.05 3.77 1.51 1.61 94.41
ECG 2.88 3.56 1.55 1.46 48

Synthetic 10.89 8.71 1.51 1.35 36.3
Gun Point 4.14 10.89 1.48 1.18 103.5
FaceFour 9.59 17.76 1.99 0.97 479.5

Lightning-7 14.17 14.61 1.56 1.15 472.33
Trace 30.89 1.98 1.38 1.74 514.83
Adiac 103.33 2.52 1.28 1.03 178.16
Beef 6.11 2.54 1.14 0.97 611

Lightning-2 51.62 2.76 1.28 1.23 1720.67
OliveOil 8.83 1.89 1.04 1.03 883

OSU Leaf 259.16 2.94 1.27 1.09 959.85
SwedishLeaf 125.31 10.55 1.38 1.16 113.92

Fish 183.3 2.28 1.17 1.06 1018.33
FaceAll 491.56 12.89 1.25 1.28 111.46
50words 323.13 3.13 1.3 1.07 359.03

Two Patterns 2348.1 9.33 1.6 1.56 157.91
Wafer 3281.24 11.05 1.51 1.18 148
Yoga 4606.48 2.43 1.25 1.07 988.52

min 1.890 1.040 0.970 36.300
max 17.760 1.990 1.740 1,720.670

median 3.665 1.380 1.170 268.595
average 6.942 1.397 1.231 457.886

answer. For that query, we show both its MSM-based
nearest neighbor (denoted as D), which belongs to the
wrong class, as well as its MSM-based nearest neighbor
(denoted as S) among training examples of the same
class as the query. The main difference between the
query and D is a peak and a valley that the query
exhibits between time 200 and time 250. This difference
gets penalized by DTW, cDTW, and ERP, and thus,
according to those measures the query is closer to S than
to D. On the other hand, the MSM distance between the
query and D is not affected much by the extra peak and
valley of the query. Thus, according to MSM, the query
is closer to D than to S.

Figures 14 and 15 indicate that MSM penalizes extra
peaks and valleys less severely than cDTW, DTW, and
ERP. This may be a desirable property in data where
such extra peaks and valleys appear due to outlier ob-
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Fig. 14. An example from the Swedish Leaf dataset, where
MSM does better than DTW. The query series is shown in blue.
Its nearest neighbor according to MSM is shown in red, and
belongs to the same class as the query. For MSM (left) and and
DTW (right), the alignment between the red and the blue series
is shown via links connecting corresponding elements.
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S: same−class NN of Q according to MSM

Q: query
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D: NN of Q according to MSM

Q: query

Fig. 15. An example from the Trace dataset where MSM does
worse than DTW and ERP. On the left, we show in blue Q, a
query series, and in red S, the nearest neighbor (according to
MSM) of Q among training examples of the same class as Q.
On the right, we show in blue the same query Q, and in red we
show D, the overall nearest neighbor (according to MSM), which
belongs to a different class.
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Fig. 16. Two examples of a peak added to time series. In
blue we show the original time series. The modified version is
the same as the original time series, except for a small region
(shown in red) of 10 values, where we have added a peak.

servations. We simulated this situation in the following
experiment: for each test example of each of the 20 UCR
datasets, we modified that example by adding an extra
peak. The width of the peak was 10 elements, and the
height of the peak was chosen randomly and uniformly
between 0 and 80. Two examples of this modification
are shown on Figure 16. We measured the error rates of
MSM and its competitors on this modified dataset. We
note that the training examples were not modified, and
thus the free parameters chosen via cross-validation for
MSM and cDTW remained the same.

Due to lack of space, the table of error rates for this
experiment is provided as supplementary material. The
summary of those results is that, while the average error
rates of all methods increase, MSM suffers significantly
less than its competitors. MSM gives lower error rate
than cDTW, DTW, and the Euclidean distance on all
20 datasets. Compared to ERP, MSM does better on 16
datasets, worse in 3 datasets, and ties ERP in 1 dataset.
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Finally, Table 3 compares the efficiency of MSM to that
of its competitors. As expected, the Euclidean distance
and cDTW are significantly faster than MSM, DTW, and
ERP. In all datasets the running time for MSM was
between 0.97 and 2 times the running time of DTW and
ERP. Running times were measured on a PC with 64-bit
Windows 7, an Intel Xeon CPU running at 2GHz, 4GB
of RAM, and using a single-threaded implementation.

7 CONCLUSIONS

We have described MSM, a novel metric for time series,
that is based on the cost of transforming one time series
into another using a sequence of individual Move, Split,
and Merge operations. MSM has the attractive property
of being both metric and invariant to the choice of origin,
whereas DTW is not metric, and ERP is not invariant
to the choice of origin. These properties may make
MSM a more appealing choice, compared to existing
alternatives, in various domains. Metricity, in particular,
allows the use of a large number of existing tools for
indexing, clustering and visualization, that have been
designed to work in arbitrary metric spaces.

We have presented a quadratic-time algorithm for
computing the MSM distance between two time series. A
large part of the paper has been dedicated to explaining
the algorithm and proving its correctness. At the same
time, despite the relatively complex proof, the actual
algorithm is quite short and easy to implement, as shown
on Figure 10, and on the implementations we have
posted online.

Experiments on all 20 datasets available at the UCR
time series archive [15] demonstrate that, in ten of the 20
datasets, MSM produces lower nearest neighbor classi-
fication error rate than constrained DTW, unconstrained
DTW, ERP, and the Euclidean distance. The fact that
MSM gave the best accuracy in several datasets supports
the conclusion that MSM is a method worth being
aware of and experimenting with, in domains where
practitioners currently use DTW or ERP. The attractive
theoretical properties of MSM are an additional factor
that can make MSM an appealing choice, compared to
existing alternatives.
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