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Near-Optimal Signal Recovery From Random
Projections: Universal Encoding Strategies?

Emmanuel J. Candes and Terence Tao

Abstract—Suppose we are given a vector f in a class F � N ,
e.g., a class of digital signals or digital images. How many linear
measurements do we need to make about f to be able to recover
f to within precision � in the Euclidean (`2) metric? This paper
shows that if the objects of interest are sparse in a fixed basis or
compressible, then it is possible to reconstruct f to within very
high accuracy from a small number of random measurements by
solving a simple linear program. More precisely, suppose that the
nth largest entry of the vector jf j (or of its coefficients in a fixed
basis) obeys jf j(n) � R � n�1=p, where R > 0 and p > 0. Suppose
that we take measurements yk = hf;Xki; k = 1; . . . ; K , where the
Xk are N -dimensional Gaussian vectors with independent stan-
dard normal entries. Then for each f obeying the decay estimate
above for some 0 < p < 1 and with overwhelming probability,
our reconstruction f ], defined as the solution to the constraints
yk = hf]; Xki with minimal `1 norm, obeys

kf � f ]k` � Cp � R � (K= logN)�r; r = 1=p� 1=2:

There is a sense in which this result is optimal; it is generally impos-
sible to obtain a higher accuracy from any set of K measurements
whatsoever. The methodology extends to various other random
measurement ensembles; for example, we show that similar results
hold if one observes a few randomly sampled Fourier coefficients
of f . In fact, the results are quite general and require only two hy-
potheses on the measurement ensemble which are detailed.

Index Terms—Concentration of measure, convex optimization,
duality in optimization, linear programming, random matrices,
random projections, signal recovery, singular values of random
matrices, sparsity, trigonometric expansions, uncertainty prin-
ciple.

I. INTRODUCTION AND OVERVIEW OF THE MAIN RESULTS

THIS paper considers the fundamental problem of recov-
ering a finite signal from a limited set of mea-

surements. Specifically, given a class of signals , one is
interested in the minimum number of linear measurements one
has to make to be able to reconstruct objects from to within
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a fixed accuracy , say, in the usual Euclidean -distance. In
other words, how can one specify linear functionals

(1.1)

where is a set of vectors with cardinality ,
so that it is possible to reconstruct an object from the data

obeying

(1.2)

for each element taken from ? The primary goal is of course,
to find appropriate functionals so that the required
number of measurements is as small as possible. In addition,
we are also interested in concrete and practical recovery algo-
rithms.

The new results in this paper will address this type of ques-
tion for signals whose coefficients with respect to a fixed ref-
erence basis obey a power-law type decay condition, and for
random measurements sampled from a specified en-
semble. However, before we discuss these results, we first recall
some earlier results concerning signals of small support. (See
also Sections I-G and IX-B for a more extensive discussion of
related results.)

A. Exact Reconstruction of Sparse Signals

In a previous article [3], the authors together with J. Romberg
studied the recovery of sparse signals from limited measure-
ments; i.e., of signals which have relatively few nonzero terms
or whose coefficients in some fixed basis have relatively few
nonzero entries. This paper discussed some surprising phe-
nomena, and we now review a special instance of those. In
order to do so, we first need to introduce the discrete Fourier
transform which is given by the usual formula1

(1.3)

where the frequency index ranges over the set
.

Suppose then that we wish to recover a signal made
out of spikes, where the set denotes the support of the
signal

1Strictly speaking, the Fourier transform is associated to an orthonormal basis
inC rather than . However all of our analysis here extends easily to com-
plex signals instead of real signals (except for some negligible changes in the
absolute constants C). For ease of exposition we shall focus primarily on real-
valued signals f 2 , except when referring to the Fourier basis.
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We do not know where the spikes are located nor do we know
their amplitudes. However, we are given information about
in the form of ‘only’ randomly sampled Fourier coefficients

where is a random set of frequencies
sampled uniformly at random. In [3], it was shown that could
be reconstructed exactly from these data provided that the ex-
pected number of frequency samples obeyed the lower bound

(1.4)

for all sufficiently small (i.e., for some small
absolute constant ). To recover from , we simply min-
imize the -norm of the reconstructed signal

(1.5)

subject to the constraints

Moreover, the probability that exact recovery occurs exceeds
is here a universal constant and it is

worth noting that the aforementioned reference gave explicit
values for this constant. The implied constant in the nota-
tion is allowed to depend on , but is independent of . In short,
exact recovery may be achieved by solving a simple convex op-
timization problem—in fact, a linear program for real-valued
signals—which is a result of practical significance.

In a following paper, Candès and Romberg [4] extended these
results and showed that exact reconstruction phenomena hold
for other synthesis/measurement pairs. For clarity of presenta-
tion, it will be convenient to introduce some notations that we
will use throughout the remainder of the paper. We let de-
note the by matrix which specifies the set of those
linear functionals which describe the measurement process so
that the available information about is of the form

For instance, in our previous example, is the by partial
Fourier matrix whose rows are the sampled sinusoids

More generally, suppose that one is given an orthonormal basis

and that one has available partial information about in the
sense that we have knowledge about a randomly selected set

of coefficients in the basis . For conve-
nience, define to be the by synthesis matrix with entries

. Then is now obtained from by ex-
tracting the rows with indices obeying . Suppose as
before that there is another (fixed) orthonormal basis in which
the coefficients of in this basis, defined
by

are sparse in the sense that only a few of the entries of
are nonzero. Then it was shown in [4] that with overwhelming
probability, is the solution to

subject to (1.6)

That is, exact reconstruction still occurs; the relationship here
between the number of nonzero terms in the basis and the
number of observed coefficients depends upon the incoher-
ence between the two bases. The more incoherent, the fewer
coefficients needed; in the other direction, in the maximally co-
herent case, e.g., , one in fact needs to sample essentially
all of the coefficients in order to ensure exact reconstruction (the
same holds true if and share only one element with nonzero
inner product with ).

A special instance of these results concerns the case where the
set of measurements is generated completely at random; that is,
we sample a random orthonormal basis of and observe only
the first coefficients in that basis (note that there is no advan-
tage in randomizing as in Section I.A since the basis is already
completely random). As before, we let be the submatrix enu-
merating those sampled vectors and solve (1.6). Then a conse-
quence of the methodology developed in this paper is that exact
reconstruction occurs with probability at least
(for a different value of ) provided that

(1.7)

where is sufficiently small, and the -norm is of course
the size of the support of the vector

see [5] for sharper results. In summary, seems to recover
sparse unknown signals in a variety of different situations. The
number of measurements simply needs to exceed the number of
unknown nonzero coefficients by a proper amount.

Observe that a nice feature of the random basis discussed
above is its statistical invariance by rotation. Let be any basis
so that are the coefficients of in that basis: .
The constraints in (1.6) impose

and since the distribution of is that of , the choice of the
basis is actually irrelevant. Exact reconstruction occurs (with
overwhelming probability) when the signal is sparse in any fixed
basis; of course, the recovery algorithm requires knowledge of
this basis.

B. Power Laws

In general, signals of practical interest may not be supported
in space or in a transform domain on a set of relatively small
size. Instead, the coefficients of elements taken from a signal
class decay rapidly, typically like a power law [6], [7]. We now
give two examples leaving mathematical rigor aside in the hope
of being more concise.

• Smooth signals. It is well-known that if a continuous-time
object has bounded derivatives, then the th largest entry
of the wavelet or Fourier coefficient sequence is of size
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about in one dimension and more generally,
in dimensions [7]. Hence, the decay of

Fourier or wavelet coefficients of smooth signals exhibits
a power law.

• Signals with bounded variations. A popular model for
signal analysis is the space of objects with bounded vari-
ations. At the level of the continuum, the total-variation
norm of an object is approximately the norm of its
gradient. In addition, there are obvious discrete analogs
for finite signals where the gradient is replaced by finite
differences. Now a norm which is almost equivalent to the
total-variation norm is the weak- norm in the wavelet
domain; that is, the reordered wavelet coefficients of a
compactly supported object approximately decay like

[8]. At the discrete level, essentially behaves
like the -norm of the Haar wavelet coefficients up to
a multiplicative factor of at most . Moreover, it is
interesting to note that studies show that the empirical
wavelet coefficients of photographs of natural scenes
actually exhibit the -decay [9].

In fact, finding representations with rapidly decaying coeffi-
cients is a very active area of research known as Computational
Harmonic Analysis and there are of course many other such
examples. For instance, certain classes of oscillatory signals
have rapidly decaying Gabor coefficients [10], certain types of
images with discontinuities along edges have rapidly decaying
curvelet coefficients [11] and so on.

Whereas [3] considered signals of small support, we now
consider objects whose coefficients in some basis decay like
a power-law. We fix an orthonormal basis
(which we call the reference basis), and rearrange the entries

of the coefficient vector in decreasing
order of magnitude . We say that

belongs to the weak- ball of radius (and we will some-
times write ) for some and if
for each

(1.8)

In other words, controls the speed of the decay: the smaller ,
the faster the decay. The condition (1.8) is also equivalent to the
estimate

holding for all . We shall focus primarily on the case
.

It is well-known that the decay rate of the coefficients of
is linked to the ‘compressibility’ of , compare the wide-

spread use of transform coders in the area of lossy signal or
image compression. Suppose for instance that all the coeffi-
cients are known and consider the partial recon-
struction (where is fixed) obtained by
keeping the largest entries of the vector (and setting the
others to zero). Then it immediately follows from (1.8) that the
approximation error obeys

for some constant which only depends on . And thus, it
follows from Parseval that the approximate signal obtained
by keeping the largest coefficients in the expansion of in the
reference basis obeys the same estimate, namely

(1.9)

where only depends on .

C. Recovery of Objects With Power-Law Decay

We now return to the setup we discussed earlier, where we
select orthonormal vectors in uniformly at
random. Since applying a fixed orthonormal transform does not
change the problem, we may just as well assume that is the
identity and solve

(1.10)

where as usual, . In the setting where
does not have small support, we do not expect the recovery pro-
cedure (1.10) to recover exactly, but our first main theorem
asserts that it will recover approximately.

Note: From now on and for ease of exposition, we will take
as our abstract recovery procedure where it is understood

that is the sparse object of interest to be recovered; that is,
could be a signal in or its coefficients in some fixed basis .

Theorem 1.1 (Optimal Recovery of ): Suppose that
obeys (1.8) for some fixed or for

, and let be a sufficiently small number (less than an
absolute constant). Assume that we are given random mea-
surements as described above. Then with probability 1, the
minimizer to (1.10) is unique. Furthermore, with probability
at least , we have the approximation

(1.11)

Here, is a fixed constant depending on and but not on
anything else. The implicit constant in is allowed to
depend on .

The result of this theorem may seem surprising. Indeed,
(1.11) says that if one makes random measure-
ments of a signal , and then reconstructs an approximate
signal from this limited set of measurements in a manner which
requires no prior knowledge or assumptions on the signal
(other than it perhaps obeys some sort of power law decay with
unknown parameters) one still obtains a reconstruction error
which is equally as good as that one would obtain by knowing
everything about and selecting the largest entries of the
coefficient vector ; thus the amount of “oversampling” in-
curred by this random measurement procedure compared to the
optimal sampling for this level of error is only a multiplicative
factor of . To avoid any ambiguity, when we say that
no prior knowledge or information is required about the signal,
we mean that the reconstruction algorithm does not depend
upon unknown quantities such as or .

Below, we will argue that we cannot, in general, design a
set of measurements that would allow essentially better re-
construction errors by any method, no matter how intractable.
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As we will see later, Theorem 1.1 is a special case of The-
orem 1.2 below (but for the uniqueness claim which is proved
in Section III).

D. Precedents

A natural question is whether the number of random sam-
ples we identified in Theorem 1.2 is, in some sense, optimal. Or
would it be possible to obtain similar accuracies with far fewer
observations? To make things concrete, suppose we are inter-
ested in the recovery of objects with bounded -norm, e.g., the

-ball

Suppose we can make linear measurements about
of the form . Then what is the best measurement/
reconstruction pair so that the error

(1.12)

is minimum? In (1.12), is the reconstruction algorithm. To
develop an insight about the intrinsic difficulty of our problem,
consider the following geometric picture. Suppose we take
measurements ; this says that belongs to an affine space

where is a linear subspace of co-dimension less or
equal to . Now the data available for the problem cannot dis-
tinguish any object belonging to that plane. Assume is known
to belong to the -ball , say, then the data cannot distinguish
between any two points in the intersection . There-
fore, any reconstruction procedure based upon
would obey

(1.13)

(When we take the supremum over all , we may just assume
that is orthogonal to the measurements since the
diameter will of course be maximal in that case.) The goal is
then to find such that the above diameter is minimal. This
connects with the agenda of approximation theory where this
problem is known as finding the Gelfand -width of the class

[12], as we explain below.
The Gelfand numbers of a set are defined as

(1.14)

where is, of course, the orthonormal projection on the sub-
space . Then it turns out that .
Now a seminal result of Kashin [13] and improved by Garnaev
and Gluskin [14], [15] shows that for the ball, the Gelfand
numbers obey

(1.15)

where are universal constants. Gelfand numbers are also
approximately known for weak- balls as well.

Viewed differently, Kashin, Garnaev and Gluskin assert
that with measurements, the minimal reconstruction error

(1.12) one can hope for is bounded below by a constant times
. In this sense, Theorem 1.2 is optimal

(within a multiplicative constant) at least for , with
.2 Kashin also shows that if we take a random projection,

is bounded above by the right-hand side of
(1.15). We would also like to emphasize that similar types of
recovery have also been known to be possible in the literature
of theoretical computer science, at least in principle, for certain
types of random measurements [17]. On the one hand, finding
the Chebyshev center of is a convex problem,
which would yield a near-optimal reconstruction algorithm.
On the other hand, this problem is computationally intractable
when . Further, one would need to know and the
radius of the weak- ball which is not realistic in practical
applications.

The novelty here is that the information about can be re-
trieved from those random coefficients by minimizing a simple
linear program (1.10), and that the decoding algorithm adapts
automatically to the weak- signal class, without knowledge
thereof. Minimizing the -norm gives nearly the best possible
reconstruction error simultaneously over a wide range of sparse
classes of signals; no information about and the radius are
required. In addition and as we will see next, another novelty is
the general nature of the measurement ensemble.

It should also be mentioned that when the measurement en-
semble consists of Fourier coefficients on a random arithmetic
progression, a very fast recovery algorithm that gives near-op-
timal results for arbitrary data has recently been given in [18].
Since the preparation of this manuscript, we have learnt that re-
sults closely related to those in this paper have appeared in [19].
We compare our results with both these works in Section IX.B.

E. Other Measurement Ensembles

Underlying our results is a powerful machinery essentially
relying on properties of random matrices which gives us very
precise tools allowing us to quantify how much of a signal one
can reconstruct from random measurements. In fact, Theorem
1.1 holds for other measurement ensembles. For simplicity, we
shall consider three types of measured data.

• The Gaussian ensemble: Here, we suppose that
and are fixed, and the entries of

are identically and independently sampled from a standard
normal distribution

i.i.d.

The Gaussian ensemble is invariant by rotation since for
any fixed orthonormal matrix , the distribution of is
that of .

• The binary ensemble: Again we take and
to be fixed. But now we suppose that the

entries of are identically and independently sampled
from a symmetric Bernoulli distribution

i.i.d.

2Note Added in Proof: Since submission of this paper, we proved in [16] that
Theorem 1.2 holds with log(N=K) instead of logN in (1.11).
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• The Fourier ensemble: This ensemble was discussed ear-
lier, and is obtained by randomly sampling rows from the
orthonormal by Fourier matrix

Formally, we let be a fixed parameter, and then
let be the random set defined by

where the ’s are independent and identically distributed
(i.i.d.) Bernoulli variables with . We
then let be the restriction map

for all (so that the adjoint
is the embedding obtained by ex-

tending by zero outside of ), and set

In this case, the role of is played by the quantity
. (In fact is usually very close to ; see

Lemma 6.6).
Just as Theorem 1.1 suggests, this paper will show that it is pos-
sible to derive recovery rates for all three measurement ensem-
bles. The ability to recover a signal from partial random mea-
surements depends on key properties of those measurement en-
sembles that we now discuss.

F. Axiomatization

We shall now unify the treatment of all these ensembles by
considering an abstract measurement matrix , which is a
random matrix following some probability distribution
(e.g., the Gaussian, Bernoulli, or Fourier ensembles). We also
allow the number of measurements to be a random variable
taking values between and , and set —the
expected number of measurements. For ease of exposition
we shall restrict our attention to real-valued matrices ; the
modifications required to cover complex matrices such as those
given by the Fourier ensemble are simple. We remark that we do
not assume that the rows of the matrix form an orthogonal
family.

This section introduces two key properties on which—if
satisfied—will guarantee that the solution to the problem (1.10)
will be a good approximation to the unknown signal in the
sense of Theorem 1.1.

First, as in [3], our arguments rely, in part, on the quantitative
behavior of the singular values of the matrices

which are the by matrices obtained by
extracting columns from (corresponding to indices in a
set ). More precisely, we shall need to assume the following
hypothesis concerning the minimum and maximum eigenvalues
of the square matrix .

Definition 1.1—(Uniform Uncertainty Principle (UUP)): We
say that a measurement matrix obeys the uniform uncer-
tainty principle with oversampling factor if for every suffi-
ciently small , the following statement is true with prob-
ability at least3 for some fixed positive constant

: for all subsets such that

(1.16)

3Throughout this paper, we allow implicit constants in the O() notation to
depend on �.

the matrix obeys the bounds

(1.17)

Note that (1.17) is equivalent to the inequality

(1.18)

holding for all signals with support size less or equal to .
There is nothing special about the constants and in

(1.17), which we merely selected to make the UUP as concrete
as possible. Apart from the size of certain numerical constants
(in particular, implied constants in the notation), nothing
in our arguments depends on this special choice, and we could
replace the pair with a pair where and are
bounded away from zero and infinity. This remark is important
to keep in mind when we will discuss the UUP for binary ma-
trices.

To understand the content of (1.17), suppose that is the
partial Fourier transform and suppose we have a signal sup-
ported on a set obeying . Then (1.17) says that

is at most with overwhelming proba-
bility (which is a much stronger statement than those one could
find in [20], say). Comparing this with Plancherel’s identity

, we see that (with overwhelming proba-
bility) a sparse signal cannot be concentrated in frequency on

regardless of the exact support of , unless is comparable
to . This justifies the terminology “Uncertainty Principle.” A
subtle but crucial point here is that, with overwhelming proba-
bility, we obtain the estimate (1.17) for all sets obeying (1.16);
this is stronger than merely asserting that each set obeying
(1.16) obeys (1.17) separately with overwhelming probability,
since in the latter case the number of sets obeying (1.16) is
quite large and thus the union of all the exceptional probability
events could thus also be quite large. This justifies the termi-
nology “Uniform.” As we will see in Section III, the uniform
uncertainty principle hypothesis is crucial to obtain estimates
about the distance between the reconstructed signal and
the unknown signal .

The UUP is similar in spirit to several standard principles
and results regarding random projection, such as the famous
Johnson–Lindenstrauss lemma [21] regarding the preservation
of distances between a finite number of points when randomly
projected to a medium-dimensional space. There are however a
number of notable features of the UUP that distinguish it from
more standard properties of random projections. Firstly, there
is a wide latitude in how to select the measurement ensemble

; for instance, the entries do not have to be independent or
Gaussian, and it is even conceivable that interesting classes of
completely deterministic matrices obeying the UUP could be
constructed. Second, the estimate (1.17) has to hold for all sub-
sets of a certain size; for various reasons in our applications, it
would not be enough to have (1.17) merely on an overwhelming
proportion of such sets . This makes it somewhat trickier for
us to verify the UUP; in the Fourier case we shall be forced to
use some entropy counting methods of Bourgain.

We now introduce a second hypothesis (which appears im-
plicitly in [3], [4]) whose significance is explained below.
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Definition 1.2 (Exact Reconstruction Principle (ERP)): We
say that a measurement matrix obeys the exact reconstruc-
tion principle with oversampling factor if for all sufficiently
small , each fixed subset obeying (1.16) and each ‘sign’
vector defined on , there exists with overwhelm-
ingly large probability a vector with the following
properties:

(i) , for all ;
(ii) is a linear combination of the rows of (i.e.,

for some vector of length );
(iii) for all .

By “overwhelmingly large,” we mean that the probability be at
least for some fixed positive constant
(recall that the implied constant is allowed to depend on ).

Section II will make clear that ERP is crucial to check that the
reconstruction is close, in the -norm, to the vector obtained
by truncating , keeping only its largest entries. Note that, in
contrast to the UUP, in ERP we allow a separate exceptional
event of small probability for each set , rather than having
a uniform event of high probability that covers all at once.
There is nothing special about the factor in 3); any quantity

strictly between and would suffice here.
To understand how ERP relates to our problem, suppose that
is a signal supported on a set . Then using duality theory,

it was shown in [3] (see also [22]) that the solution to (1.10) is
exact if and only if there exist a with the above properties for

–hence the name.
The hypotheses UUP and ERP are closely related. For in-

stance, one can use UUP to prove a statement very similar to
ERP, but in the norm rather than the norm; see Corol-
lary 3.1. One also has an implication of the form

for generic signals assuming an additional weaker hy-
pothesis WERP, see Section V. In [3] and [4], the property UUP
was used (together with some additional arguments) to deduce4

ERP.
We now are in position to state the main result of this paper.
Theorem 1.2: Let be a measurement process such that

UUP and ERP hold with oversampling factors and re-
spectively. Put and assume . Suppose
that is a signal in obeying (1.8) for some fixed
or for , and let . Then for any
sufficiently small , any minimizer to (1.10) will obey

(1.19)

with probability at least . The implied constant
may depend on and but not on anything else.

In this paper, we will show that the Gaussian and binary en-
sembles mentioned earlier obey UUP and ERP with ,
while the Fourier ensemble obeys UUP with and
ERP with . Hence, given an object , we
prove that if we collect Gaussian or binary mea-
surements, then

(1.20)

4Note Added in Proof: In a sequel [16] to this paper, we show that a slight
strengthening of the UUP (in which the constants and are replaced by other
numerical constants closer to 1) in fact implies ERP unconditionally.

except for a set of probability at most . For ran-
domly sampled frequency data (with at least frequen-
cies being sampled), the quality of the reconstruction now reads
as

(1.21)

We prove this theorem in Section III.B. Observe that our ear-
lier Theorem 1.1 follows from (1.20) and is thus a special case
of Theorem 1.1. Indeed, for a fixed , (1.10) is equivalent to

subject to

where is the orthogonal projection onto the span of the rows
of . Now suppose as in the Gaussian ensemble that is a
matrix with i.i.d. entries, then is simply the pro-
jection onto a random plane of dimension (with probability
1) which, of course, is the setup of Theorem 1.1.

G. About the Norm

We would like to emphasize that the simple nonlinear recon-
struction strategy which minimizes the -norm subject to con-
sistency with the measured observations is well known in the
literature of signal processing. For example in the mid-eighties,
Santosa and Symes proposed this rule to reconstruct spike trains
from incomplete data [23], see also [24]. We would also like to
point out connections with total-variation approaches in the lit-
erature of image processing [25], [3] which are methods based
on the minimization of the -norm of the discrete gradient.
Note that minimizing the -norm is very different than stan-
dard least squares (i.e., ) minimization procedures. With in-
complete data, the least square approach would simply set to
zero the ‘unobserved’ coefficients. Consider the Fourier case,
for instance. The least-squares solution would set to zero all the
unobserved frequencies so that the minimizer would have much
smaller energy than the original signal. As is well known, the
minimizer would also contain a lot of artifacts.

More recently, -minimization perhaps best known under the
name of Basis Pursuit, has been proposed as a convex alternative
to the combinatorial norm , which simply counts the number
of nonzero entries in a vector, for synthesizing signals as sparse
superpositions of waveforms [26]. Interestingly, these methods
provided great practical success [26], [27] and were shown to
enjoy remarkable theoretical properties and to be closely related
to various kinds of uncertainty principles [28]–[31].

On the practical side, an -norm minimization problem (for
real-valued signals) can be recast as a linear program (LP) [32].
For example, (1.10) is equivalent to minimizing subject
to and for all . This is
interesting since there is a wide array of ever more effective
computational strategies for solving LPs.

H. Applications

In many applications of practical interest, we often wish to
reconstruct an object (a discrete signal, a discrete image and so
on) from incomplete samples and it is natural to ask how much
one can hope to recover. Actually, this work was motivated by
the problem of reconstructing biomedical images from vastly
undersampled Fourier data. Of special interest are problems in
magnetic resonance (MR) angiography but it is expected that
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our methodology and algorithms will be suitable for other MR
imagery, and to other acquisition techniques, such as tomog-
raphy. In MR angiography, however, we observe few Fourier
samples, and therefore if the images of interest are compress-
ible in some transform domain such as in the wavelet domain
for example, then -based reconstructions might be especially
well-suited.

Another application of these ideas might be to view the mea-
surement/reconstruction procedure as a kind of lossy encoder/
decoder pair where the measurement process would play the
role of an encoder and the linear program that of a decoder.
We postpone this discussion to Section VIII.

I. Organization of the Paper

This paper is roughly divided into three parts and is orga-
nized as follows. The first part (Sections II and III), shows how
UUP together with ERP give our main result, namely, The-
orem 1.2. In Section II, we establish that the solution to (1.10)
is in some sense stable in the -norm, while Section III intro-
duces some -theory and proves our main result. In the second
part (Sections IV, V, VI and VII), we show that all three mea-
surement ensembles obey UUP and ERP. Section IV studies
singular values of random matrices and shows that the UUP
holds for the Gaussian and binary ensembles. Section V presents
a weaker ERP which, in practice, is far easier to check. In
Section VI, we prove that all three ensembles obey the ERP.
In the case of the Fourier ensemble, the strategy for proving the
UUP is very different than for Gaussian and binary measure-
ments, and is presented in a separate Section VII. Finally, we
will argue in the third part of the paper that one can think of
the random measurement process as some kind of universal en-
coder (Section VIII) and briefly discuss some of its very special
properties. We conclude with a discussion section (Section IX)
whose main purpose is to outline further work and point out con-
nections with the work of others. The Appendix provides proofs
of technical lemmas.

II. STABILITY IN THE -NORM

In this section, we establish -properties of any minimizer to
the problem , when the initial signal is mostly concentrated
(in an sense) on a small set.

Lemma 2.1: Assume that the measurement matrix obeys
ERP. We let be a fixed signal of the form where
is a signal supported on a set whose size obeys (1.16). Then
with probability at least , any -minimizer (1.10)
obeys

(2.22)

Proof: Observe that since is of course feasible for ,
we immediately have

(2.23)

Now because ERP holds, one can construct—with the required
probability—a function for some such

that on and away from . Observe
the identity

Then, on the one hand

while on the other hand, the bounds on give

To conclude, we established that

and together with (2.23) proved that

as claimed.
This lemma says that any minimizer is approximately con-

centrated on the same set as the signal . Indeed, suppose that
obeys (1.8) and consider to be the set of largest values of
. Set . Then the property (1.8) gives

for some constant only depending on , and therefore (2.22)
gives

(2.24)

Thus, puts ‘little mass’ outside of the set .
Corollary 2.2: Let be any -minimizer to the problem

and rearrange the entries of in decreasing order of mag-
nitude . Under the hypotheses
of Lemma 2.1, the th largest entry of obeys

(2.25)

Proof: Suppose is the set of largest entries of as
above so that obeys (2.24). Denote by the set of the

-largest values of the function . Obviously
and, therefore

The claim then follows from
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III. STABILITY IN THE -NORM

A. Extension Lemma

As essentially observed in [3], a matrix obeying (1.17)—think
of it as a partial Fourier transform—allows us to extend a func-
tion from a small set to all of while constraining its Fourier
transform to a fixed random set:

Corollary (Extension Theorem): Assume that is a matrix
obeying the uniform uncertainty principle UUP. Then with
probability at least the following statement
holds: for all sets obeying the bound (1.17) and all
functions , there exists which

• agrees with on ;
• belongs to the column space of (i.e., for

some );
• and furthermore, we have the estimates

(3.26)

valid for all .
Proof: We may assume that we are on an event such that the

conclusions of UUP hold. In particular, from (1.17), the operator
is invertible and the inverse obeys

(3.27)

where is the operator norm induced by the norm. In the
remainder of this paper and unless specified otherwise will
always be the operator norm of

We now set as

By construction, agrees with on , and is in the column
space of . Now we prove (3.26). It suffices to do so when

, since the general claim then follows by decom-
posing larger ’s into smaller sets and then square-summing.
But from (1.17), we see that and have operator norms
of size at most , and the claim follows by composing
these facts with (3.27).

B. Proof of Theorem 1.2

Let (resp. ) be the set of the -largest values of (resp.
) and put . By construction, and

we assume that obeys the condition (1.16). Now observe that
by construction of , a consequence of Lemma 2.1 is that

(3.28)

Furthermore, it follows from our assumption about and (2.25):

(3.29)

By interpolation, these last two inequalities give

(3.30)

and it remains to prove that the same bound holds over the set
.
In order to prove this fact, Corollary 3.1 assures us that one

can find a function of the form which matches on
and with the following property:

(3.31)

for all sets of cardinality that are disjoint from .
Here and in the rest of the proof, the constants are allowed
to depend on . From the representation and the
constraint (from (1.10)), we have

and hence

Splitting into and , we obtain

(3.32)

We will use (3.32) to show that the left-hand side must be
small since (3.30) and (3.31) assert that the right-hand side is not
very large. Enumerate as in decreasing
order of magnitude of . We then group these into adjacent
blocks of size (except perhaps for the last one)

. From (3.31) and
Cauchy–Schwarz, we have

(3.33)

where

Because we are enumerating the values of in decreasing
order, we have
while for we have

In other words
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and, therefore, it follows from (3.28) that the summation of the
inequality (3.33) over the blocks gives

Inserting this back into (3.32), we established

This concludes the proof of Theorem 1.2.
Note that by Cauchy–Schwarz, it follows from the proof of

our Theorem that

and, therefore, owing to (3.28), we also proved an stability
estimate

(3.34)

Had we assumed that belonged to the weak- ball when
, the right-hand side of (3.28) would read

instead of just . This is the reason why we required in
the hypothesis of Theorem 1.2 and showed that we also have
a near-optimal signal recovery result for the unit ball of with
no additional losses (logarithmic or otherwise).

C. Uniqueness of the Minimizer for the Gaussian Ensemble

The claim that the minimizer is unique with probability
, for Gaussian measurements, can be easily established as fol-

lows. The claim is trivial for so we may assume is not
identically zero. Then is almost surely nonzero. Further-
more, if one considers each of the (finitely many) facets of the
unit ball of , we see that with probability 1 the random
Gaussian matrix has maximal rank on each of these facets
(i.e., the image of each facet under has dimension equal to
either or the dimension of the facet, whichever is smaller).
From this we see that every point on the boundary of the image
of the unit -ball under arises from a unique point on that
ball. Similarly for nonzero dilates of this ball. Thus the solution
to the problem (1.10) is unique as claimed.

We remark that the question of establishing uniqueness with
high probability for discretely randomized ensembles such as
the binary and Fourier ensembles discussed below is an inter-
esting one, but one which we will not pursue here.

IV. EIGENVALUES OF RANDOM MATRICES

In this section, we show that all three ensembles obey the
uniform uncertainty principle UUP.

A. The Gaussian Ensemble

Let be an by matrix with and with i.i.d. entries
sampled from the normal distribution with mean zero and vari-
ance . We are interested in the singular values of or the
eigenvalues of . A famous result due to Marchenko and

Pastur [33] states that the eigenvalues of have a determin-
istic limit distribution supported by the interval

as , with . In fact, results from
[34] show that the smallest (resp. largest) eigenvalue converges
a.s. to (resp. ). In other words, the smallest
singular value of converges a.s. to and the largest
to . In addition, there are remarkably fine statements
concerning the speed of the convergence of the largest singular
value [35].

To derive the UUP, we need a result about the concentra-
tion of the extreme singular values of a Gaussian matrix, and
we borrow a most elegant estimate due to Davidson and Szarek
[36]. We let be the ordered list of the
singular values of . Then in [36], the authors prove that

(4.35)

(4.36)

Such inequalities about the concentration of the largest and
smallest singular values of Gaussian matrices have been known
for at least a decade or so. Estimates similar to (4.35)–(4.36)
may be found in the work of Szarek [37], see also Ledoux [38].

Lemma 4.1: The Gaussian ensemble obeys the uniform un-
certainty principle (UUP) with oversampling factor .

Proof: Fix and let . Let be
a fixed index set and define the event as

Since the entries of are i.i.d. , it follows from
(4.35)–(4.36) by a simple renormalization that for each

where one can choose by selecting in
(4.35)–(4.36). We now examine the tightness of the spectrum
over all sets where we assume that

is less than . We have

We now use the well-known bound on the binomial coefficient

where for is the binary entropy function

The inequality shows that
and thus
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Hence

provided that ,
which is what we needed to establish. (We need to assume that

for the claim not to be vacuous.)
Note that we proved more than what we claimed since the UUP
holds for an oversampling factor proportional to .

B. The Binary Ensemble

The analysis is more complicated in the case where the ma-
trix is an by array with i.i.d. symmetric Bernoulli entries
taking on values in . To study the concentra-
tion of the largest singular values of , we follow an approach
proposed by Ledoux [38] which makes a simple use of the con-
centration property, see also [39].

As before, we let be the mapping that associates to a
matrix its largest singular values. Equip with the Frobe-
nius norm

(the Euclidean norm over ). Then the mapping is convex
and 1-Lipschitz in the sense that

for all pairs of by matrices. A classical application
of the concentration inequality for binary measures [38] then
gives

(4.37)

is either the mean or the median of . Now
the singular values still exhibit the same behavior; that is

and converge a.s. to
and , respectively, as with
[40]. As a consequence, for each and sufficiently large,
one can show that the medians belong to the fixed interval

which gives

(4.38)

This is a fairly well-established result [39].
The problem is that this method does not apply to the

minimum singular value which is 1-Lipshitz but not convex.
Fortunately, Litvak, Pajor, Rudelson and Tomczak-Jaegermann
[41][Theorem 3.1] have recently announced a result which
gives exponential concentration for the lowest singular value.
They proved that whenever where is greater
than a small constant,

(4.39)

where and are universal positive constants. Just as
(4.35)–(4.36) implied the uniform uncertainty principle UUP
for Gaussian matrices, (4.38)–(4.38) gives the same conclusion
for the binary ensemble with the proviso that the condition about
the lowest singular value reads ; i.e.,

substitutes (recall the remark following the definition of
the UUP).

Lemma 4.2: The binary ensemble obeys the uniform uncer-
tainty principle (UUP) with oversampling factor .

The proof is of course identical to that of Lemma 4.1. If we
define as

we have for some constant . The rest of
the proof is as before.

C. The Fourier Ensemble

The analysis for the Fourier ensemble is much more delicate
than that for the Gaussian and binary cases, in particular re-
quiring entropy arguments as used for instance by Bourgain [1],
[2]. We prove the following lemma in the separate Section VII.

Lemma 4.3: The Fourier ensemble obeys the uniform uncer-
tainty principle UUP with oversampling factor .

The exponent of 6 can almost certainly be lowered,5 but we
will not attempt to seek the optimal exponent of here.

V. GENERIC SIGNALS AND THE WEAK ERP

In some cases, it might be difficult to prove that the exact
reconstruction principle ERP holds, and it is interesting to ob-
serve that UUP actually implies ERP for ‘generic’ sign func-
tions supported on a small set . More precisely, if we
fix and define to be supported on with the i.i.d. Bernoulli
distribution (independently of ), thus

for all

then we shall construct a obeying the conditions (i)–(iii) in
the definition of ERP. Indeed, we shall construct explicitly
as

(5.40)

one can view this choice of as the unique solution to
(i) and (ii) which minimizes the norm of , and can thus be
viewed as a kind of least-squares extension of using the rows
of .

It is immediate to check that obeys (i) and (ii) above. In-
deed, the restriction of to is given by

5Note Added in Proof: Since the submission of this paper, Rudelson and Ver-
shynin, in a very recent piece of work [42], have improved the oversampling
factor to (logN) .
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and, therefore, (i) is verified. Further, it follows from the defi-
nition that is a linear combination of the columns of and
thus, (ii) holds. Therefore, we only need to check that for all

with sufficiently high probability. In order
to do this, we rewrite as

where for each is the dimensional vector

and is the -th column of . We now introduce another
condition which is far easier to check than ERP.

WERP (Weak ERP). We say that the measurement process
obeys the weak ERP, if for each fixed obeying (1.16) and any

obeys

for all (5.41)

with probability at least for some fixed positive
constant .

For example, it is an easy exercise in large deviation theory to
show that WERP holds for Gaussian and binary measurements.
One can also check that WERP holds for random frequency
samples. We omit the proof of these facts, however, since we
will show the stronger version, namely, ERP in all three cases.
Instead, we would like to emphasize that UUP together with
WERP actually imply ERP for most sign patterns .

We begin by recalling the classical Hoeffding inequality:
let be independent symmetric Bernoulli
random variables and consider the sum . Then

(5.42)

Suppose now that the ’s are independent Bernoulli, and in-
dependent from . Then (5.42) gives

If we now assume that both UUP and WERP hold, then for any
we have

with probability at least . Letting be the event
, this shows that

Hence, if , then

Therefore, if is chosen small enough, then for some small

In other words, ERP holds for most sign patterns . That is, if
one is only interested in providing good reconstruction to nearly
all signals (but not all) in the sense discussed above, then it is ac-
tually sufficient to check that both conditions UUP and WERP
are valid.

VI. ABOUT THE EXACT RECONSTRUCTION PRINCIPLE

In this section, we show that all the three ensembles obey the
exact reconstruction principle ERP.

A. The Gaussian Ensemble

To show that there is function obeying the conditions
(i)–(iii) in the definition of ERP, we take an approach that
resembles that of Section V, and establish that defined as in
(5.40)

obeys the three conditions (i)–(iii).
We already argued that obeys (i) and (ii). Put

to be the restriction of to . We need to show that

with high probability. Begin by factorizing as

where

The crucial observation is that the random matrix and the
random variable are independent since they are functions of
disjoint sets of independent variables.

Proposition 6.1: Conditional on , the components of are
i.i.d. Gaussian with

Proof: Suppose is fixed. By definition

and, therefore, it follows from the independence between the
’s and for each that the conditional distribution

of is normal with mean and variance . The
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independence between the components of is a simple con-
sequence of the independence between the columns of .

Lemma 6.2: Let be sufficiently small, and suppose that
is chosen as in (1.16) so that UUP holds. The components

of obey

where is a standard normal random variable.
Proof: Observe that

On the event such that the conclusions of UUP hold,
and also .

Since , this gives

Therefore, with

The first term is bounded by Proposition 6.1 while the second
is bounded via the uniform uncertainty principle UUP. This es-
tablishes the lemma.

The previous lemma showed that for

Therefore, if is chosen small enough, then for some small

In short, we proved:
Lemma 6.3: The Gaussian ensemble obeys the exact recon-

struction principle ERP with oversampling factor .

B. The Binary Ensemble

The strategy in the case where the entries of are indepen-
dent Bernoulli variables is nearly identical and we only discuss
the main differences. Define and as above; obviously,
and are still independent.

Proposition 6.4: Conditional on , the components of are
independent and obey

Proof: The conditional independence of the components is
as before. As far as the tail-bound is concerned, we observe that

is a weighted sum of independent Bernoulli variables and
the claim follows from the Hoeffding inequality (5.42).

The rest of the argument is as before. If is selected as in
(1.16) such that UUP holds, one has

And, of course, identical calculations now give the following.
Lemma 6.5: The binary ensemble obeys the exact reconstruc-

tion principle ERP with oversampling factor .

C. The Fourier Ensemble

It turns out that the exact reconstruction principle also holds
for the Fourier ensemble although the argument is consider-
ably more involved [3]. We do not reproduce the proof here but
merely indicate the strategy for proving that (defined as be-
fore) also obeys the desired bound on the complement of with
sufficiently high probability. We first remark that is concen-
trated around . To see this, recall the Bernstein’s inequality
[43] which states that if are independent random
variables with mean-zero and obeying , then

(6.43)

where . Specializing this inequality gives
the following lemma which we shall need later in this paper.

Lemma 6.6: Fix and let be an i.i.d.
sequence of random variables obeying . Let

be arbitrary, and set . Then

Proof: Letting be the sum , the
proof follows from (6.43) by simply stating that
is bounded above by the sum

, where and are the real and imaginary parts of ,
respectively.

Thus the bound on the quantity ex-
hibits a Gaussian-type behavior at small thresholds , and an
exponential-type behavior at large thresholds.

Recall that . Applying Lemma 6.6 with
(so ), we have that

with probability provided that ,
which we will assume as the claim is vacuous otherwise. In the
sequel, we assume that we are on an event .

Decompose as

where is the matrix defined by
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if and otherwise. We then expand the inverse as a
truncated Neumann series

where is small remainder term. This allows us to express
as

and one can derive bounds on each individual terms so that the
sum obeys the desired property. By pursuing this strategy, the
following claim was proved in [3].

Lemma 6.7: The Fourier ensemble obeys the exact recon-
struction principle ERP with oversampling factor .

VII. UNIFORM UNCERTAINTY PRINCIPLES FOR THE FOURIER

ENSEMBLE

In this section, we prove Lemma 4.3. The ideas here are in-
spired by an entropy argument sketched in [2], as well as by
related arguments in [1], [44]. These methods have since be-
come standard in the high-dimensional geometry literature, but
we shall give a mostly self-contained presentation here.

We remark that the arguments in this section (and those in
the Appendix) do not use any algebraic properties of the Fourier
transform other than the Plancherel identity and the fact that the
maximum entry of the Fourier matrix is bounded by .
Indeed a simple modification of the arguments we give below
also gives the UUP for randomly sampled rows of orthonormal
matrices, see also [1] and [4] for further discussion of this issue.
Suppose that and let be the matrix obtained
by randomly selected rows. Then the UUP holds for

In the case where one observes a few coefficients in
the basis when the signal is sparse in another basis

is interpreted as the mutual
coherence between and [29].

For sake of concreteness, we now return to the Fourier en-
semble. Let us first set up what we are trying to prove. Fix

, which we shall assume to be sufficiently small. We may
take to be large depending on , as the claim is vacuous when

is bounded depending on . If is empty then the claim is
trivial, so from (1.16) we may assume that

(7.44)

for some (possibly) large constant .
We need to prove (1.17). By self-adjointness, it would suffice

to show that with probability at least

for all and all obeying (1.16), thus , where

(7.45)

For any fixed and , the above type of estimate can easily
be established with high probability by standard tools such as
Lemma 6.6. The main difficulty is that there are an exponentially
large number of possible to consider, and for each fixed
there is a -dimensional family of to consider. The strategy
is to cover the set of all of interest by various finite nets at sev-
eral scales, obtain good bounds on the size of such nets, obtain
large deviation estimates for the contribution caused by passing
from one net to the net at the next scale, and sum using the union
bound.

We turn to the details. We can rewrite our goal as

whenever . From Parseval’s identity, this is the same as
asking that

whenever . Now let denote the set

Then the previous goal is equivalent to showing that

with probability at least for some . In fact
we shall obtain the stronger estimate

(7.46)

for some constant .
It remains to prove (7.46). The left-hand side of (7.46) is the

large deviation probability of a supremum of random sums over
. This type of expression can be handled by entropy esti-

mates on , as was done in [1], [2], [44]. To follow their ap-
proach, we need some notation. For any , we let
be its discrete Fourier transform (1.3) and define the norm of

by

Intuitively, if is a “generic” function bounded in we
expect the norm of to be also be bounded (by standard large
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deviation estimates). We shall need this type of control in order
to apply Lemma 6.6 effectively. To formalize this intuition we
shall need entropy estimates on in the norm. Let be
the unit ball of in . Thus for instance is contained
inside the ball , thanks to Cauchy–Schwarz. However
we have much better entropy estimates available on in the

norm, which we now state.
Definition 7.1 (Kolmogorov Entropy): Let be a (finite-di-

mensional) normed vector space with norm , and let
be the unit ball of . If is any

bounded nonempty subset of and , we define the cov-
ering number to be the least integer such
that there exist elements such that the balls

cover ,
and the Kolmogorov entropy as

Proposition 7.1: We have

(7.47)

for all .
This proposition is essentially contained in [1], [2], [44]; for

sake of completeness we give a proof of the proposition in the
Appendix. Let us assume this proposition for the moment and
conclude the proof of Lemma 4.3. Set

and fix in Lemma 7.1. By (7.47) one can find a finite
subset of of cardinality

(7.48)

such that for all , there exists such that
. Let us fix such sets . Then for any , we

have the telescoping decomposition

where and ; here we have the con-
vention that and if . By construc-
tion, , and . We write

, thus . Fix and observe the
crude estimates

and

It then follows from that

Multiplying this by and summing, we obtain

where is the nonnegative random variable

By (7.44), the error term is less than (say) if
is sufficiently large. Set

Thus to prove (7.46) it suffices to show that

(7.49)

The main difficulty is of course the presence of the suprema
. On the other hand, the fact that the functions

are well controlled both in entropy and in norm will allow
us to handle these suprema by relatively crude tools such as the
union bound. By the pigeonhole principle, we can bound the
left-hand side of (7.49) by

for some small absolute constant . Since the number
of pairs is , which is much smaller than

, it now suffices to show (after adjusting the
value of slightly) that

whenever .
Fix as above and recall the definition of .

From (7.48) the number of possible values of is at most
. Thus by the union bound it suffices to

show that
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for each with ; note that we
can absorb the factor since .

Fix . We could also apply the union bound to eliminate the
supremum over , but it turns out that this will lead to inferior
bounds at this stage, because of the poor control on .
We have to first split the frequency domain into two sets

, where

and

for some large absolute constant . Note that these sets depend
on but not on . It thus suffices to show that

(7.50)

for , where we have substituted (7.45), and
is the random variable

We treat the cases separately.
Proof of (7.50) when . For the contribution of the large

frequencies we will take absolute values everywhere, which
is fairly crude but conveys the major advantage that we will be
able to easily eliminate the supremum in . Note that since

we see that this case is vacuous unless

or in other words

(7.51)

We then use the crude bound

and the triangle inequality to conclude

By definition of , we have

Writing , we conclude that

and hence to prove (7.50) when , it would suffice (if is
chosen sufficiently large) to show that

It thus suffices to show

where and . Recall that

and

We apply Lemma 6.6 and obtain

Using (7.51), we see that for some absolute
constant , and conclude that

Taking logarithms, we deduce that this contribution will be ac-
ceptable if

which holds (with some room to spare) thanks to (7.45).
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Proof of (7.50) when . For the contribution of the small
frequencies we use (7.48) and the union bound, and reduce
to showing that

(7.52)

for any .
Fix , and set ; thus

By definition of , we have

while from Hölder and Plancherel

We can apply Lemma 6.6 to conclude

Taking logarithms, we thus see that this contribution will be
acceptable if

which holds thanks to (7.45). This concludes the proof of
Lemma 4.3 (assuming Proposition 7.1).

VIII. “UNIVERSAL” ENCODING

Our results interact with the agenda of coding theory. In fact,
one can think of the process of taking random measurements as
a kind of universal coding strategy that we explain below. In a
nutshell, consider an encoder/decoder pair which would operate
roughly as follows.

• The Encoder and the Decoder share a collection of random
vectors where the ’s are independent Gaussian
vectors with standard normal entries. In practice, we can

imagine that the encoder would send the seed of a random
generator so that the decoder would be able to reconstruct
those “pseudorandom” vectors.

• Encoder: To encode a discrete signal , the encoder simply
calculates the coefficients and quantizes the
vector .

• Decoder: The decoder then receives the quantized values
and reconstructs a signal by solving the linear program
(1.10).

This encoding/decoding scheme is of course very different
from those commonly discussed in the literature of information
theory. In this scheme, the encoder would not try to know any-
thing about the signal, nor would exploit any special structure
of the signal; it would blindly correlate the signal with noise and
quantize the output–effectively doing very little work. In other
words, the encoder would treat each signal in exactly the same
way, hence the name “universal encoding.” There are several as-
pects of such a strategy which seem worth exploring:

• Robustness: A fundamental problem with most existing
coding strategies is their fragility vis a vis bit-loss. Take
JPEG 2000, the current digital still-picture compression
standard, for example. All the bits in JPEG 2000 do not
have the same value and if important bits are missing (e.g.,
because of packet loss), then there is simply no way the in-
formation can be retrieved accurately.
The situation is very different when one is using the
scheme suggested above. Suppose for example that with a
little more than coefficients one achieves the distortion
obeying the power-law

(8.53)

(This would correspond to the situation where our objects
are bounded in .) Thus receiving a little more than
random coefficients essentially allows us to reconstruct a
signal as precisely as if one knew the largest coefficients.
Now suppose that in each packet of information, we have
both encoded the (quantized) value of the coefficients
but also the label of the corresponding coefficients . Con-
sider now a situation in which half of the information is
lost in the sense that only half of the coefficients are actu-
ally received. What is the accuracy of the decoded message

%? This essentially corresponds to reducing the number
of randomly sampled coefficients by a factor of two, and so
by (8.53) we see that the distortion would obey

% (8.54)

and, therefore, losses would have minimal effect.
• Security: Suppose that someone would intercept the mes-

sage. Then he/she would not be able to decode the mes-
sage because he/she would not know in which random
basis the coefficients are expressed. (In practice, in the case
where one would exchange the seed of a random gener-
ator, one could imagine protecting it with standard tech-
nologies such as RSA. Thus this scheme can be viewed as
a variant of the standard stream cipher, based on applying a
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XOR operation between the plain text and a pseudorandom
keystream, but with the advantage of robustness.)

• Cost Efficiency: Nearly all coding scenarios work roughly
as follows. We acquire a large number of measurements
about an object of interest, which we then encode. This en-
coding process effectively discards most of the measured
data so that only a fraction of the measurement is being
transmitted. For concreteness, consider JPEG 2000, a pro-
totype of a transform coder. We acquire a large number
of sample values of a digital image . The encoder then
computes all the wavelet coefficients of , and quan-
tizes only the largest, say. Hence only a very small
fraction of the wavelet coefficients of are actually trans-
mitted.
In stark contrast, our encoder makes measurements that are
immediately used. Suppose we could design sensors which
could actually measure the correlations . Then not
only the decoded object would be nearly as good (in the

-distance) as that obtained by knowing all the wavelet
coefficients and selecting the largest (it is expected that the

-reconstruction is well-behaved vis a vis quantization),
but we would effectively encode all the measured coeffi-
cients and thus, we would not discard any data available
about (except for the quantization).

Even if one could make all of this practical, a fundamental
question remains: is this an efficient strategy? That is, for a
class of interesting signals, e.g., a class of digital images with
bounded variations, would it be possible to adapt the ideas pre-
sented in this paper to show that this scheme does not use many
more bits than what is considered necessary? In other words, it
appears interesting to subject this compression scheme to a rig-
orous information theoretic analysis. This analysis would need
to address 1) how one would want to efficiently quantize the
values of the coefficients and 2) how the quantization
quantitatively affects the precision of the reconstructed signal.

IX. DISCUSSION

A. Robustness

To be widely applicable, we need noise-aware variants of the
ideas presented in this paper which are robust against the effects
of quantization, measurement noise and modeling error, as no
real-world sensor can make perfectly accurate measurements.
We view these issues as important research topics. For example,
suppose that the measurements are rounded up to
the nearest multiple of , say, so that the available information
is of the form with . Then we would
like to know whether the solution to (1.10) or better, of the
variant

still obeys error estimates such as those introduced in Theorem
1.2. Our analysis seems to be amenable to this situation and
work in progress shows that the quality of the reconstruction
degrades gracefully as increases. Precise quantitative answers
would help establishing the information theoretic properties of
the scheme introduced in Section VIII.

B. Connections With Other Works

Our results are connected with very recent work of A. Gilbert,
S. Muthukrishnan, and M. Strauss [45], [18]. In this work, one
considers a discrete signal of length which one would like
to represent as a sparse superposition of sinusoids. In [45],
the authors develop a randomized algorithm that essentially
samples the signal in the time domain poly
times (poly denotes a polynomial term in ) and
returns a vector of approximate Fourier coefficients. They show
that under certain conditions, this vector gives, with positive
probability, an approximation to the discrete Fourier transform
of which is almost as good as that obtained by keeping the

-largest entries of the discrete Fourier transform of . In [18],
the algorithm was refined so that (1) only poly
samples are needed and (2) so that the algorithm runs in

poly time which truly is a remarkable feat. To
achieve this gain, however, one has to sample the signal on
highly structured random grids.

Our approach is different in several aspects. First and fore-
most, we are given a fixed set of nonadaptive measurements.
In other words, the way in which we stated the problem does
not give us the ‘luxury’ of adaptively sampling the signals as
in [18]. In this context, it is unclear how the methodology pre-
sented in [18], [45], would allow reconstructing the signal
from poly arbitrary sampled values. In contrast,
our results guarantee that an accurate reconstruction is possible
for nearly all possible measurements sets taken from ensem-
bles obeying UUP and ERP. Second, the methodology there es-
sentially concerns the recovery of spiky signals from frequency
samples and do not address other setups. Yet, there certainly is
a similar flavor in the statements of their results. Of special in-
terest is whether some of the ideas developed by this group of
researchers might be fruitful to attack problems such as those
discussed in this article.

While finishing the write-up of this paper, we became aware
of very recent and independent work by David Donoho on a
similar project [19]. In that paper which appeared one month be-
fore ours, Donoho essentially proves Theorem 1.1 for Gaussian
ensembles. He also shows that if a measurement matrix obeys
three conditions (CS1–CS3), then one can obtain the estimate
(1.11). There is some overlap in methods, in particular the esti-
mates of Szarek [36] on the condition numbers of random ma-
trices (CS1) also play a key role in those papers, but there is also
a greater reliance in those papers on further facts from high-di-
mensional geometry, in particular, in understanding the shape of
random sections of the ball (CS2–CS3). Our proofs are com-
pletely different in style and approach, and most of our claims
are different. While [19] only derives results for the Gaussian
ensemble, this paper establishes that other types of ensembles
such as the binary and the Fourier ensembles and even arbitrary
measurement/synthesis pairs will work as well. This is impor-
tant because this shows that concrete sensing mechanisms may
be used in concrete applications.

In a companion [16] to this paper we actually improve on
the results presented here and show that Theorem 1.2 holds
for general measurement ensembles obeying the UUP. The
implication for the Gaussian ensemble is that the recovery
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holds with an error in (1.11) of size at most a constant times
.

APPENDIX A
PROOF OF ENTROPY ESTIMATE

In this section we prove Proposition 7.1. The material here is
to a large extent borrowed from that in [1], [2], [44].

The entropy of the unit ball of a Hilbert space can be
estimated using the dual Sudakov inequality of Pajor and
Tomczak–Jaegerman [46] (See [47], [44] for a short “volume
packing” proof, and [44] for further discussion):

Lemma 10.1: [46] Let be a -dimensional Hilbert space
with norm , and let be the associated unit ball. Let

be an orthonormal basis of the Hilbert space , and
let be i.i.d. standard Gaussian random
variables. Let be any other norm on . Then we have

where is an absolute constant (independent of ).
To apply this Lemma, we need to estimate the norm of cer-

tain randomized signs. Fortunately, this is easily accomplished:
Lemma 10.2: Let and , be i.i.d.

standard Gaussian random variables. Then

The same statement holds if the ’s are i.i.d. Bernoulli sym-
metric random variables ( with equal probability).

Proof: Let us normalize . For any , we
have

If the are i.i.d. normalized Gaussians, then for each fixed
is a Gaussian with mean zero and

standard deviation . Hence

Combining this with the trivial bound
and then integrating in gives the result. The claim for i.i.d.
Bernoulli variables is similar but uses Hoeffding’s inequality;
we omit the standard details.

Combining this lemma with Lemma 10.1, we immediately
obtain.

Corollary 10.3: Let be a nonempty subset of ; note
that is both a Hilbert space (with the usual Hilbert space

structure), as well as a normed vector space with the norm.
For all , we have

Now we turn to the set introduced in the preceding sec-
tion. Since the number of sets of cardinality is ,
we have the crude bound

and hence by Corollary 10.3

(10.55)

This already establishes (7.47) in the range
. However, this bound is quite poor when is large.

For instance, when we have

(10.56)

since we have whenever and
. In the regime we can use the

following support reduction trick of Bourgain to obtain a better
bound.

Lemma 10.4: [1] If and , then

Proof: Let and , thus
and . Let be i.i.d. Bernoulli symmetric
variables. We write . From Lemma 10.2 for
Bernoulli variables we have

and hence by Markov’s inequality

for a suitable absolute constant . Also observe that

and hence by Hoeffding’s or Khintchine’s inequalities and the
normalization

for a suitable absolute constant . In a similar spirit, we have
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and hence

for a suitable absolute constant . Combining all these esti-
mates together, we see that there exists a deterministic choice
of signs (depending on and ) such that

In particular, is within (in norm) from
. We thus have

and the claim follows.
Iterating this lemma roughly times to reduce

and , and then applying (10.55) once becomes comparable
with , we obtain

whenever

which (together with (10.56)) yields (7.47) for all
.

It remains to address the case of small , say .
A simple covering argument (see [44, Lemma 2.7]; the basic
point is that can be covered by translates of

) gives the general inequality

for , and hence by Corollary 10.3

Arguing as in the proof of (10.55) we thus have

which gives (7.47) in the range . This com-
pletes the proof of Proposition 7.1.
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