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Abstract
We consider the problem of reconstructing a sparse signal x0 ∈ R

n from a
limited number of linear measurements. Given m randomly selected samples
of Ux0, where U is an orthonormal matrix, we show that �1 minimization
recovers x0 exactly when the number of measurements exceeds

m � const · µ2(U) · S · log n,

where S is the number of nonzero components in x0 and µ is the largest entry
in U properly normalized: µ(U) = √

n · maxk,j |Uk,j |. The smaller µ is, the
fewer samples needed. The result holds for ‘most’ sparse signals x0 supported
on a fixed (but arbitrary) set T. Given T, if the sign of x0 for each nonzero
entry on T and the observed values of Ux0 are drawn at random, the signal is
recovered with overwhelming probability. Moreover, there is a sense in which
this is nearly optimal since any method succeeding with the same probability
would require just about as many samples.

1. Introduction

1.1. Sparse recovery from partial measurements

This paper addresses the problem of signal acquisition in a broad setting. We are interested in
‘sampling’ a vector x0 ∈ R

n. Instead of observing x0 directly, we sample a small number m
of transform coefficients of x0. For an orthogonal matrix3 U with

U ∗U = nI, (1.1)

these transform coefficients are given by y0 = Ux0. Of course, if all n of the coefficients y0

are observed, recovering x0 is trivial: we simply apply 1
n
U ∗ to the vector of observations y0.

Instead, we are concerned with the highly underdetermined case in which only a small fraction
of the components of y0 are actually sampled or observed. Given a subset � ⊂ {1, . . . , n}
3 On a first reading, our choice of normalization of U may seem a bit strange. The advantages of taking the row
vectors of U to have Euclidean norm

√
n are that (1) the notation in the following will be cleaner, and (2) it will

be easier to see how this result generalizes the special case of incomplete sampling in the Fourier domain presented
in [4].
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of size |�| = m, the challenge is to infer the ‘long’ n-dimensional vector x0 from the ‘short’
m-dimensional vector of observations y = U�x0, where U� is the m × n matrix consisting of
the rows of U indexed by �. In plain English, we wish to solve a system of linear equations
in which there are fewer equations than unknowns.

A special instance of this problem was investigated in a recent paper [4], where U is taken
as the usual discrete Fourier transform. The main result of this work is that if x0 is S-sparse (at
most S of the n components of x0 are nonzero), then it can be recovered perfectly from, of the
order of S, log n Fourier-domain samples. The recovery algorithm is concrete and tractable:
given the discrete Fourier coefficients

yk =
n∑

t=1

x0(t) e−i2π(t−1)k/n, k ∈ �, (1.2)

or y = F�x0 for short, we solve the convex optimization program

min
x

‖x‖�1 subject to F�x = y.

For a fixed x0, the recovery is exact for the overwhelming majority of sample sets � of size

|�| � C · S · log n, (1.3)

where C is a known (small) constant.
Since [4], a theory of ‘compressed sensing’ has developed around several papers

[6, 7, 10] demonstrating the effectiveness of �1 minimization for recovering sparse signals
from a limited number of measurements. To date, most of this effort has been focused on
systems which take completely unstructured, noise-like measurements, i.e. the observation
vector y is created from a series of inner products against random test vectors {φk}:

yk = 〈φk, x
0〉, k = 1, . . . , m. (1.4)

The collection {φk} is sometimes referred to as a measurement ensemble; we can write (1.4)
compactly as y = �x0, where the rows of � are the φk . Published results take φk to be
a realization of Gaussian white noise, or a sequence of Bernoulli random variables taking
values ±1 with equal probability. This work has shown that taking random measurements
is in some sense an optimal strategy for acquiring sparse signals; it requires a near-minimal
number of measurements [1, 6, 7, 10, 11]—m measurements can recover signals with sparsity
S � m/ log(n/m), and all of the constants appearing in the analysis are small [14]. Similar
bounds have also appeared using greedy [30] and complexity-based [18] recovery algorithms
in place of �1 minimization.

Although theoretically powerful, the practical relevance of results for completely random
measurements is limited in two ways. The first is that we are not always at liberty to choose
the types of measurements we use to acquire a signal. For example, in magnetic resonance
imaging (MRI), subtle physical properties of nuclei are exploited to collect samples in the
Fourier domain of a two- or three-dimensional object of interest. While we have control over
which Fourier coefficients are sampled, the measurements are inherently frequency based. A
similar statement can be made about tomographic imaging; the machinery in place measures
Radon slices, and these are what we must use to reconstruct an image.

The second drawback to completely unstructured measurement systems is computational.
Random (i.e. unstructured) measurement ensembles are unwieldy numerically; for large values
of m and n, simply storing or applying � (tasks which are necessary to solve the �1 minimization
program) is nearly impossible. If, for example, we want to reconstruct a megapixel image
(n = 1000 000) from m = 25 000 measurements (see the numerical experiment in section 2),
we would need more than 3 GB of memory just to store the measurement matrix, and of the
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order of gigaflops to apply it. The goal from this point of view, then, is to have similar recovery
bounds for measurement matrices � which can be applied quickly (in O(n) or O(n log n)

time) and implicitly (allowing us to use a ‘matrix free’ recovery algorithm).
Our main theorem, stated precisely in section 1.2 and proven in section 3, states that

bounds analogous to (1.3) hold for sampling with general orthogonal systems. We will show
that for a fixed signal support T of size |T | = S, the program

min
x

‖x‖�1 subject to U�x = U�x0 (1.5)

recovers the overwhelming majority of x0 supported on T and observation subsets � of size

|�| � C · µ2(U) · S · log n, (1.6)

where µ(U) is simply the largest magnitude among the entries in U:

µ(U) = max
k,j

|Uk,j |. (1.7)

It is important to understand the relevance of the parameter µ(U) in (1.6). µ(U) can be
interpreted as a rough measure of how concentrated the rows of U are. Since each row (or
column) of U necessarily has an �2-norm equal to

√
n, µ will take a value between 1 and

√
n.

When the rows of U are perfectly flat—|Uk,j | = 1 for each k, j , as in the case when U is the
discrete Fourier transform, we will have µ(U) = 1, and (1.6) is essentially as good as (1.3). If
a row of U is maximally concentrated—all the row entries but one vanish—then µ2(U) = n,
and (1.6) offers us no guarantees for recovery from a limited number of samples. This result
is very intuitive. Suppose indeed that Uk0,j0 = √

n and x0 is 1-sparse with a nonzero entry in
the j0th location. To reconstruct x0, we need to observe the k0th entry of Ux0 as otherwise,
the data vector y will vanish. In other words, to reconstruct x0 with probability greater than
1−1/n, we will need to see all the components of Ux0, which is just about the content of (1.6).
This shows informally that (1.6) is fairly tight on both ends of the range of the parameter µ.

For a particular application, U can be decomposed as a product of a sparsity basis �, and
an orthogonal measurement system �. Suppose for instance that we wish to recover a signal
f ∈ R

n from m measurements of the form y = �f . The signal may not be sparse in the time
domain but its expansion in the basis � may be

f (t) =
n∑

j=1

x0
j ψj (t), f = �x,

(the columns of � are the discrete waveforms ψj ). Our program searches for the coefficient
sequence in the �-domain with minimum �1 norm that explains the samples in the measurement
domain �. In short, it solves (1.6) with

U = ��, �∗� = I, �∗� = nI.

Result (1.6) then tells us how the relationship between the sensing modality (�) and signal
model (�) affects the number of measurements required to reconstruct a sparse signal. The
parameter µ can be rewritten as

µ(��) = max
k,j

|〈φk, ψj 〉|,
and serves as a rough characterization of the degree of similarity between the sparsity and
measurement systems. For µ to be close to its minimum value of 1, each of the measurement
vectors (rows of �) must be ‘spread out’ in the � domain. To emphasize this relationship,
µ(U) is often referred to as the mutual coherence [12, 13]. The bound (1.6) tells us that an
S-sparse signal can be reconstructed from ∼S log n samples in any domain in which the test
vectors are ‘flat’, i.e. the coherence parameter is O(1).
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1.2. Main result

The ability of the �1-minimization program (1.5) to recover a given signal x0 depends only
on (1) the support set T of x0 and (2) the sign sequence z0 of x0 on T.4 For a fixed support T,
our main theorem shows that perfect recovery is achieved for the overwhelming majority of
the combinations of sign sequences on T, and sample locations (in the U domain) of size m
obeying (1.6).

The language ‘overwhelming majority’ is made precise by introducing a probability model
on the set � and the sign sequence z. The model is simple: select � uniformly at random from
the set of all subsets of the given size m; choose each z(t), t ∈ T to be ±1 with probability
1/2. Our main result is the following.

Theorem 1.1. Let U be an n × n orthogonal matrix (U ∗U = nI) with |Uk,j | � µ(U). Fix a
subset T of the signal domain. Choose a subset � of the measurement domain of size |�| = m,
and a sign sequence z on T uniformly at random. Suppose that

m � C0 · |T | · µ2(U) · log(n/δ) (1.8)

and also m � C ′
0 · log2(n/δ) for some fixed numerical constants C0 and C ′

0. Then with
probability exceeding 1 − δ, every signal x0 supported on T with signs matching z can be
recovered from y = U�x0 by solving (1.5).

The hinge of theorem 1.1 is a new weak uncertainty principle for general orthobases.
Given T and � as above, it is impossible to find a signal which is concentrated on T and on � in
the U domain. In the example above, where U = ��, this says that one cannot be concentrated
on small sets in the � and � domains simultaneously. As noted in previous publications
[3, 4], this is a statement about the eigenvalues of minors of the matrix U. Let UT be the
n × |T | matrix corresponding to the columns of U indexed by T, and let U�T be the m × |T |
matrix corresponding to the rows of UT indexed by �. In section 3, we will prove the
following.

Theorem 1.2. Let U, T and � be as in theorem 1.1. Suppose that the number of measurements
m obeys

m � |T | · µ2(U) · max(C1 log|T |, C2 log(3/δ)), (1.9)

for some positive constants C1, C2. Then

P
(∥∥∥∥ 1

m
U ∗

�T U�T − I

∥∥∥∥ � 1/2

)
� δ, (1.10)

where ‖ · ‖ is the standard operator �2 norm—here, the largest eigenvalue (in absolute value).

For small values of δ, the eigenvalues of U ∗
�T U�T are all close to m with high probability. To

see that this is an uncertainty principle, let x ∈ R
n be a sequence supported on T, and suppose

that ‖m−1U ∗
�T U�T − I‖ � 1/2. It follows that

m

2
‖x‖2

�2
� ‖U�x‖2

�2
� 3m

2
‖x‖2

�2
, (1.11)

which asserts that only a small portion of the energy of x will be concentrated on the set � in
the U-domain (the total energy obeys ‖Ux‖2

�2
= n‖x‖2

�2
). Moreover, this portion is essentially

proportional to the size of �.

4 In other words, the recoverability of x0 is determined by the facet of the �1 ball of radius ‖x0‖�1 on which x0

resides.
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1.3. Contributions and relationship to prior work

The relationship of the mutual coherence parameter µ to the performance of �1 minimization
programs with equality constraints first appeared in the context of basis pursuit for sparse
approximation, see [13] and also [12, 15, 17]. For earlier uses of �1 in signal processing, see
[27] and also [9].

As mentioned in the previous section, [4] demonstrated the effectiveness of �1 recovery
from Fourier-domain samples in slightly more general situations than in theorem 1.1
(randomization of the signs on T is not required). Obviously, the results presented in this
paper considerably extend this Fourier sampling theorem.

We also note that since [4], several papers have appeared on using �1 minimization to
recover sparse signals from a limited number of measurements [5, 7, 10]. In particular, [7] and
[26] provide bounds for reconstruction from a random subset of measurements selected from
an orthogonal basis; these papers ask that all sparse signals to be simultaneously recoverable
from the same set of samples (which is stronger than our goal here), and their bounds have log
factors of (log n)6 and (log n)5 respectively. These results are based on uniform uncertainty
principles, which require (1.10) to hold for all sets T of a certain size simultaneously once
� is chosen. Whether or not this log power can be reduced in this context remains an open
question.

A contribution of this paper is to show that if one is only interested in the recovery of
nearly all signals on a fixed set T, these extra log factors can indeed be removed. We show
that to guarantee exact recovery, we only require U�T to be well behaved for this fixed T as
opposed to all Ts of the same size, which is a significantly weaker requirement. By examining
the singular values of U�T , one can check whether or not (1.11) holds.

Our method of proof, as the reader will see in section 3, relies on a variation of the powerful
results presented in [25] about the expected spectral norm of certain random matrices. We
also introduce a novel large-deviation inequality, similar in spirit to those reviewed in [20, 21]
but carefully tailored for our purposes, to turn this statement about expectation into one about
high probability.

Finally, we would like to contrast this work with [31], which also draws on the results
from [25]. First, there is a difference in how the problem is framed. In [31], the m × n

measurement system is fixed, and bounds for perfect recovery are derived when the support
and sign sequence are chosen at random, i.e. a fixed measurement system works for most
signal supports of a certain size. In this paper, we fix an arbitrary signal support, and show that
we will be able to recover from most sets of measurements of a certain size in a fixed domain.
Second, although slightly more general class of measurement systems is considered in [31],
the final bounds for sparse recovery in the context of (1.5) do not fundamentally improve
on the uniform bounds cited above; [31] draws weaker conclusions since the results are not
shown to be universal in the sense that all sparse signals are recovered as in [7, 26].

2. Applications

In the 1990s, image compression algorithms were revolutionized by the introduction of the
wavelet transform. The reasons for this can be summarized with two major points: the
wavelet transform is a much sparser representation for photograph-like images than traditional
Fourier-based representations, and it can be applied and inverted in O(n) computations.

To exploit this wavelet-domain sparsity in acquisition, we must have a measurement
system which is incoherent with the wavelet representation (so that µ in (1.6) is small) and
that can be applied quickly and implicitly (so that large-scale recovery is computationally
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Figure 1. Wavelets in the frequency domain. The curves shown are the magnitude of the discrete
Fourier transform (2.1) of Daubechies-8 wavelets for n = 1024 and j = 1, 2, 3. The magnitude
of ψ̂j,· over the subband (2.3) is shown in bold.

(This figure is in colour only in the electronic version)

feasible). In this section, we present numerical experiments for two such measurement
strategies.

2.1. Fourier sampling of sparse wavelet subbands

Our first measurement strategy takes advantage of the fact that at fine scales, wavelets are very
much spread out in frequency. We will illustrate this in 1D; the ideas are readily applied to
2D images.

Labelling the scales of the wavelet transform by j = 1, 2, . . . , J , where j = 1 is the
finest scale and j = J the coarsest, the wavelets5 ψj,k at scale j are almost flat in the Fourier
domain over a band of size nj = n2−j . The magnitude of the Fourier transform

ψ̂j,k(ω) =
n∑

t=1

ψ(t) e−i2π(t−1)ω/n, ω = −n/2 + 1, . . . , n/2, (2.1)

is the same for each wavelet at scale j , since

ψ̂j,k(ω) = e−i2π(k−1)ω/nj ψ̂j,1(ω). (2.2)

These spectrum magnitudes are shown for the Daubechies-8 wavelet in figure 1. We see that
over frequencies in the j th subband

ω ∈ Bj := {nj/2 + 1, . . . , nj } ∪ {−nj + 1, . . . ,−nj/2}, (2.3)

5 Wavelets are naturally parametrized by a scale j and a shift k with k = 1, 2, . . . , n2−j —see [22]. The wavelets at
a set scale are just circular shifts of one another: ψj,k(t) = ψj,1(t − 2j k), where the substraction is modulo n.
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Table 1. Number of measurements required to reconstruct a sparse subband. Here, n = 1024, S

is the sparsity of the subband and M(S, j) is the smallest number of measurements so that the
S-sparse subband at the wavelet level j was recovered perfectly in 1000/1000 trials.

j = 1 j = 2 j = 3

S M(S, j) S M(S, j) S M(S, j)

50 100 25 56 15 35
25 68 15 40 8 24
15 49 8 27 – –

we have

maxω∈Bj
|ψ̂j,k(ω)|

minω∈Bj
|ψ̂j,k(ω)| < const ≈

√
2.

Suppose now that a signal x0 is a superposition of S wavelets at scale j , that is, we can
write

x0 = �jw
0,

where w0 ∈ R
nj is S-sparse, and �j is the n × nj matrix whose columns are ψj,k(t) for

k = 1, . . . , nj . We will measure x0 by selecting Fourier coefficients from the band Bj at
random. To see how this scheme fits into the domain of the results in the introduction, let
ω index the subband Bj , let Fj be the nj × n matrix whose rows are the Fourier vectors for
frequencies in Bj , let Dj be a diagonal matrix with

(Dj )ω,ω = ψ̂j,1(ω), ω ∈ Bj ,

and consider the nj × nj system

U = D−1
j Fj�j .

The columns of Fj�j are just the Fourier transforms of the wavelets given in (2.2),

(Fj�j )ω,k = e−i2π(k−1)ω/nj ψ̂j,1(ω) ⇒ Uω,k = e−i2π(k−1)ω/nj ,

and so U is just an nj × nj Fourier system. In fact, one can easily check that U ∗U = U ∗U =
nj I .

We choose a set of Fourier coefficients � of size m in the band Bj and measure

y = F�x0 = F��jw
0,

which can easily be turned into a set of samples in the U domain y ′ = U�w0 just by re-
weighting y. Since the mutual incoherence of D−1Fj�j is µ = 1, we can recover w0 from
∼S log n samples.

Table 1 summarizes the results of the following experiment. Fix the scale j , sparsity S and
number of measurements m. Perform a trial for (S, j,m) by first generating a signal support
T of size S, a sign sequence on that support, and a measurement set �j of size m uniformly
at random, and then measuring y = F�j

�jx
0 (x0 is just the sign sequence on T and zero

elsewhere), solving (1.5), and declaring success if the solution matches x0. A thousand trials
were performed for each (S, j,m). The value M(S, j) recorded in the table is the smallest
value of m such that the recovery was successful in all 1000 trials. As with the partial Fourier
ensemble (see the numerical results in [4]), we can recover from m ≈ 2S to 3S measurements.

To use the above results in an imaging system, we would first separate the signal/image
into wavelet subband, measure Fourier coefficients in each subband as above, then reconstruct
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each subband independently. In other words, if PWj
is the projection operator onto the space

spanned by the columns of �j , we measure

yj = F�j
PWj

x0

for j = 1, . . . , J , then set wj to be the solution to

min‖w‖�1 subject to F�j
�jw = yj .

If all of the wavelet subbands of the object we are imaging are appropriately sparse, we will
be able to recover the image perfectly.

Finally, we would like to note that this projection onto Wj in the measurement process
can be avoided by constructing the wavelet and sampling systems a little more carefully. In
[13], a ‘bi-sinusoidal’ measurement system is introduced which complements the orthonormal
Meyer wavelet transform. These bi-sinusoids are an alternative orthobasis to the Wj spanned
by Meyer wavelets at a given scale (with perfect mutual incoherence); so sampling in the
bi-sinusoidal basis isolates a given wavelet subband automatically.

In the following section, we examine an orthogonal measurement system which allows
us to forgo this subband separation all together.

2.2. Noiselet measurements

In [8], a complex ‘noiselet’ system is constructed that is perfectly incoherent with the Haar
wavelet representation. If � is an orthonormal system of Haar wavelets and � is the orthogonal
noiselet system (renormalized so that �∗� = nI ), then U = �� has entries of constant
magnitude

|Uk,j | = 1,∀k, j which implies µ(U) = 1.

Just as the canonical basis is maximally incoherent with the Fourier basis, so is the noiselet
system with Haar wavelets. Thus if an n-pixel image is S-sparse in the Haar wavelet domain, it
can be recovered (with high probability) from ∼S log n randomly selected noiselet coefficients.

In addition to perfect incoherence with the Haar transform, noiselets have two additional
properties that make them ideal for coded-image acquisition.

(1) The noiselet matrix � can be decomposed as a multiscale filterbank. As a result, it can
be applied O(n log n) time.

(2) The real and imaginary parts of each noiselet function are binary valued. A noiselet
measurement of an image is just an inner product with a sign pattern, which make their
implementation in an actual acquisition system easier. (It would be straightforward to use
them in the imaging architecture proposed in [28], for example.)

A large-scale numerical example is shown in figure 2. The n = 10242 pixel synthetic
image in panel (a) is an exact superposition of S = 25 000 Haar wavelets6. The observation
vector y was created from m = 70 000 randomly chosen noiselet coefficients (each noiselet
coefficient has a real and imaginary part, so there are really 140 000 real numbers recorded).
From y, we are able to recover the image exactly by solving (1.5).

This result is a nice demonstration of the compressed sensing paradigm. A traditional
acquisition process would measure all n ∼ 106 pixels, transform into the wavelet domain,
and record the S that are important. Many measurements are made, but comparably very few

6 The image was created in the obvious way: the well-known test image was transformed into the Haar domain,
all but the 25 000 largest Haar coefficients were set to zero, and the result inverse transformed back into the spatial
domain.
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(a) (b) (c)

Figure 2. Sparse image recovery from noiselet measurements. (a) Synthetic n = 10242-pixel
image with S = 25 000 non-zero Haar wavelet coefficients. (b) Locations (in the wavelet quadtree)
of significant wavelet coefficients. (c) Image recovered from m = 70 000 complex noiselet
measurements. The recovery matches (a) exactly.

numbers are recorded. Here we take only a fraction of the number of measurements, and are
able to find the S active wavelets coefficients without any prior knowledge of their locations.

The measurement process can be adjusted slightly in a practical setting. We know that
almost all of the coarse-scale wavelet coefficients will be important (see figure 2(b)), so we
can potentially reduce the number of measurements needed for perfect recovery by measuring
these directly. In fact, if we measure the 128 × 128 block of coarse wavelet coefficients for
the image in figure 2 directly (equivalent to measuring averages over 8 × 8 blocks of pixels,
16 384 measurement total), we are able to recover the image perfectly from an additional 41 808
complex noiselet measurements (the total number of real numbers recorded is 100 000).

3. Proofs

3.1. General strategy

The proof of theorem 1.1 follows the program set forth in [4, 16]. As detailed in these
references, the signal x0 is the unique solution to (1.5) if and only if there exists a dual vector
π ∈ R

n with the following properties:

• π is in the row space of U�,
• π(t) = sgn x0(t) for t ∈ T , and
• |π(t)| < 1 for t ∈ T c.

We consider the candidate

π = U ∗
�U�T (U ∗

�T U�T )−1z0, (3.1)

where z0 is a |T |-dimensional vector whose entries are the signs of x0 on T, and show that under
the conditions in theorem (1) π is well defined (i.e. U ∗

�T U�T is invertible), and given this (2)
|π(t)| < 1 on T c (we automatically have that π is in the row space of U� and π(t) = sgn x(t)

on T).
We want to show that with the support fixed, a dual vector exists with high probability

when selecting � uniformly at random. Following [4], it is enough to show the desired
properties when � is sampled using a Bernoulli model. Suppose �1 of size m is sampled
uniformly at random, and �2 is sampled by setting

�2 := {k : δk = 1},



978 E Candès and J Romberg

where here and below δ1, δ2, . . . , δn is a sequence of independent identically distributed 0/1
Bernoulli random variables with

P(δk = 1) = m/n.

Then

P(Failure(�1)) � 2P(Failure(�2)) (3.2)

(see [4] for details). With this established, we will establish the existence of a dual vector for
x0 with high probability for � sampled using the Bernoulli model.

The matrix U ∗
�T U�T is now a random variable, which can be written as

U ∗
�T U�T =

n∑
k=1

δku
k ⊗ uk,

where the uk are the row vectors of UT ; uk = (Ut,k)t∈T .

3.2. Proof of theorem 1.2

Our first result, which is an analogue to a theorem of Rudelson [25, theorem 1], states that if
m is large enough, then on average the matrix m−1U ∗

�T U�T deviates little from the identity.

Theorem 3.1. Let U be an orthogonal matrix obeying (1.1). Consider a fixed set T, and let �

be a random set sampled using the Bernoulli model. Then

E

∥∥∥∥ 1

m
U ∗

�T U�T − I

∥∥∥∥ � CR ·
√

log |T |√
m

max
1�k�n

‖uk‖ (3.3)

for some positive constant CR , provided the right-hand side is less than 1. Since the coherence
µ(U) obeys

max
1�k�n

‖uk‖ � µ(U)
√

|T |,
this implies

E

∥∥∥∥ 1

m
U ∗

�T U�T − I

∥∥∥∥ � CR · µ(U)

√|T | log |T |√
m

. (3.4)

The probabilistic model is different here than in [25]. The argument, however, is similar.

Proof. We are interested in E‖Y‖ where Y is the random sum,

Y = 1

m

n∑
k=1

δku
k ⊗ uk − I.

Note that since U ∗U = nI ,

EY = 1

m

n∑
k=1

m

n
uk ⊗ uk − I = 1

n

n∑
k=1

uk ⊗ uk − I = 0.

We now use a symmetrization technique to bound the expected value of the norm of Y.
We let Y ′ be an independent copy of Y, i.e.

Y ′ = 1

m

n∑
k=1

δ′
ku

k ⊗ uk − I, (3.5)

where δ′
1, . . . , δ

′
n are independent copies of δ1, . . . , δn, and write

E‖Y‖ � E‖Y − Y ′‖,
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which follows from Jensen’s inequality and the law of iterated expectation (also known as
Fubini’s theorem). Now let ε1, . . . , εn be a sequence of Bernoulli variables taking values ±1
with probability 1/2 (and independent of the sequences δ and δ′). We have

E‖Y‖ � Eδ,δ′

∥∥∥∥∥
1

m

n∑
k=1

(δk − δ′
k)u

k ⊗ uk

∥∥∥∥∥

= EεEδ,δ′

∥∥∥∥∥∥
1

m

∑
1�k�n

εk(δk − δ′
k)u

k ⊗ uk

∥∥∥∥∥∥

� 2EεEδ

∥∥∥∥∥∥
1

m

∑
1�k�n

εkδku
k ⊗ uk

∥∥∥∥∥∥ .

The first equality follows from the symmetry of the random variable (δk − δ′
k)u

k ⊗ uk , while
the last inequality follows from the triangle inequality.

We may now apply Rudelson’s powerful lemma [25] which states that

Eε

∥∥∥∥∥
n∑

k=1

εkδku
k ⊗ uk

∥∥∥∥∥ � CR/4 ·
√

log |T | · max
k:δk=1

‖uk‖ ·
√√√√

∥∥∥∥∥
n∑

k=1

δkuk ⊗ uk

∥∥∥∥∥ (3.6)

for some universal constant CR > 0 (the notation should make it clear that the left-hand side
is only averaged over ε). Taking expectation over δ then gives

E‖Y‖ � CR/2 ·
√

log |T |
m

· max
1�k�n

‖uk‖ · E

√√√√
∥∥∥∥∥

n∑
k=1

δkuk ⊗ uk

∥∥∥∥∥

� CR/2 ·
√

log |T |
m

· max
1�k�n

‖uk‖ ·
√√√√E

∥∥∥∥∥
n∑

k=1

δkuk ⊗ uk

∥∥∥∥∥, (3.7)

where the second inequality uses the fact that for a non-negative random variable Z, E
√

Z �√
EZ. Observe now that

E

∥∥∥∥∥
n∑

k=1

δku
k ⊗ uk

∥∥∥∥∥ = E‖mY + mI‖ � m(E‖Y‖ + 1)

and, therefore, (3.7) gives

E‖Y‖ � a ·
√

E‖Y‖ + 1, a = CR/2 ·
√

log |T |√
m

· max
1�k�n

‖uk‖.
It then follows that if a � 1,

E‖Y‖ � 2a,

which concludes the proof of the theorem. �

With theorem 3.1 established, we have a bound on the expected value of ‖m−1U ∗
�T U�T − I‖.

Theorem 1.2 shows that m−1U ∗
�T U�T is close to the identity with high probability, turning

the statement about expectation into a corresponding large deviation result.
The proof of theorem 1.2 uses remarkable estimates about the large deviations of suprema

of sums of independent random variables. Let Y1, . . . , Yn be a sequence of independent
random variables taking values in a Banach space and let Z be the supremum defined as

Z = sup
f ∈F

n∑
i=1

f (Yi), (3.8)
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where F is a countable family of real-valued functions. In a striking paper, Talagrand [29]
proved a concentration inequality about Z which is stated below, see also [20, corollary 7.8].

Theorem 3.2. Assume that |f | � B for every f in F , and Ef (Yi) = 0 for every f in F and
i = 1, . . . , n. Then for all t � 0,

P(|Z − EZ| > t) � 3 exp

(
− t

KB
log

(
1 +

Bt

σ 2 + BEZ̄

))
, (3.9)

where σ 2 = supf ∈F
∑n

i=1 Ef 2(Yi), Z̄ = supf ∈F
∣∣∑n

i=1 f (Yi)
∣∣ and K is a numerical constant.

We note that very precise values of the numerical constant K are known and are small, see
[23] and [19, 24].

Proof of theorem 1.2. Set Y to be the matrix 1
m

U ∗
�T U�T −I and recall that 1

n

∑n
k=1 uk⊗uk = I,

which allows us to express Y as

Y =
n∑

k=1

(
δk − m

n

) uk ⊗ uk

m
:=

n∑
k=1

Yk,

where

Yk :=
(
δk − m

n

) uk ⊗ uk

m
.

Note that EYk = 0. We are interested in the spectral norm ‖Y‖. By the definition

‖Y‖ = sup
f1,f2

〈f1, Yf2〉 = sup
f1,f2

n∑
k=1

〈f1, Ykf2〉,

where the supremum is over a countable collection of unit vectors. For a fixed pair of unit
vectors (f1, f2), let f (Yk) denote the mapping 〈f1, Ykf2〉. Since Ef (Yk) = 0, we can apply
theorem 3.2 with B obeying

|f (Yk)| � |〈f1, u
k〉〈uk, f2〉|
m

� ‖uk‖2

m
� B, for all k.

As such, we can take B = max1�k�n ‖uk‖2/m. We now compute

Ef 2(Yk) = m

n

(
1 − m

n

) |〈f1, u
k〉〈uk, f2〉|2
m2

� m

n

(
1 − m

n

) ‖uk‖2

m2
|〈uk, f2〉|2.

Since
∑

1�k�n |〈uk, f2〉|2 = n, we proved that

∑
1�k�n

Ef 2(Yk) �
(

1 − m

n

) 1

m
max

1�k�n
‖uk‖2 � B.

In conclusion, with Z = ‖Y‖ = Z̄, theorem 3.2 shows that

P(|‖Y‖ − E‖Y‖| > t) � 3 exp

(
− t

KB
log

(
1 +

t

1 + E‖Y‖
))

. (3.10)

Take m large enough so that E‖Y‖ � 1/4 in (3.4) and pick t = 1/4. Since B � µ2(U)|T |/m,
(3.10) gives

P(‖Y‖ > 1/2) � 3 e
− m

CT µ2(U)|T | ,

for CT = 4K/ log(6/5). Taking C1 = 16CR and C2 = CT finishes the proof. �
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3.3. Proof of theorem 1.1

With theorem 1.2 established, we know that with high probability the eigenvalues of U ∗
�T U�T

will be tightly controlled—they are all between m/2 and 3m/2. Under these conditions, the
inverse of (U ∗

�T U�T ) not only exists, but we can guarantee that ‖(U ∗
�T U�T )−1‖ � 2/m, a fact

which we will use to show |π(t)| < 1 for t ∈ T c.
For a particular t0 ∈ T c, we can rewrite π(t0) as

π(t0) = 〈v0, (U ∗
�T U�T )−1z〉 = 〈w0, z〉,

where v0 is the row vector of U ∗
�U�T with the row index t0 and w0 = (U ∗

�T U�T )−1v0. The
following three lemmas give estimates for the sizes of these vectors. From now on and for
simplicity, we drop the dependence on U in µ(U).

Lemma 3.1. The second moment of Z0 := ‖v0‖ obeys

EZ2
0 � µ2m|T |. (3.11)

Proof. Set λ0
k = uk,t0 . The vector v0 is given by

v0 =
n∑

k=1

δkλ
0
kuk =

n∑
k=1

(δk − Eδk)λ
0
ku

k,

where the second equality holds due to the orthogonality of the rows of U:
∑

1�k�n λ0
kuk,t =∑

1�k�n uk,t0uk,t = 0. We thus can view v0 as a sum of independent random variables

v0 =
n∑

k=1

Yk, Yk = (δk − m/n)λ0
ku

k, (3.12)

where we note that EYk = 0. It follows that

EZ2
0 =

∑
k

E〈Yk, Yk〉 +
∑
k′ �=k

E〈Yk, Yk′ 〉 =
∑

k

E〈Yk, Yk〉.

Now

E‖Yk‖2 = m

n

(
1 − m

n

) ∣∣λ0
k

∣∣2‖uk‖2 � m

n

(
1 − m

n

) ∣∣λ0
k

∣∣2
µ2|T |.

Since
∑

k

∣∣λ0
k

∣∣2 = n, we prove that

EZ2
0 �

(
1 − m

n

)
µ2m|T |.

This establishes the claim. �

The following result shows that the tail of Z0 exhibits a Gaussian behaviour.

Lemma 3.2. Fix t0 ∈ T c and let Z0 = ‖v0‖. Define σ as

σ 2 = µ2m · max(1, µ|T |/√m).

Fix a > 0 obeying a � (m/µ2)1/4 if µ|T |/√m > 1 and a � (m/µ2|T |)1/2 otherwise. Then

P(Z0 � µ
√

m|T | + aσ) � e−γ a2
, (3.13)

for some positive constant γ > 0.

The proof of this lemma uses the powerful concentration inequality (3.9).
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Proof. By definition, Z0 is given by

Z0 = sup
‖f ‖=1

〈v0, f 〉 = sup
‖f ‖=1

n∑
k=1

〈Yk, f 〉

(and observe Z0 = Z̄0). For a fixed unit vector f , let f (Yk) denote the mapping 〈Yk, f 〉.
Since Ef (Yk) = 0, we can apply theorem 3.2 with B obeying

|f (Yk)| �
∣∣λ0

k

∣∣|〈f, uk〉| �
∣∣λ0

k

∣∣‖uk‖ � µ2|T |1/2 := B.

Before we do this, we also need bounds on σ 2 and EZ0. For the latter, we simply use

EZ0 �
√

EZ2
0 � µ

√
m|T |. (3.14)

For the former

Ef 2(Yk) = m

n

(
1 − m

n

) ∣∣λ0
k

∣∣2|〈uk, f 〉|2 � m

n

(
1 − m

n

)
µ2|〈uk, f 〉|2.

Since
∑

1�k�n |〈uk, f 〉|2 = n, we prove that
∑

1�k�n

Ef 2(Yk) � mµ2
(

1 − m

n

)
.

In conclusion, theorem 3.2 shows that

P(|Z0 − EZ0| > t) � 3 exp

(
− t

KB
log

(
1 +

Bt

µ2m + Bµ
√

m|T |
))

. (3.15)

Suppose now σ 2 = Bµ
√

m|T | � µ2m and fix t = aσ . Then it follows from (3.15) that

P(|Z0 − EZ0| > t) � 3 e−γ a2
,

provided that Bt � σ 2. The same is true if σ 2 = µ2m � Bµ
√

m|T | and Bt � µ2m. We
omit the details. The lemma follows from (3.14). �

Lemma 3.3. Let w0 = (U ∗
�T U�T )−1v0. With the same notations and hypotheses as in

lemma 3.2, we have

P
(

sup
t0∈T c

‖w0‖ � 2µ
√

|T |/m + 2aσ/m
)

� n e−γ a2
+ P(‖U ∗

�T U�T ‖ � m/2). (3.16)

Proof. Let A and B be the events {‖U ∗
�T U�T ‖ � m/2} and {supt0∈T c ‖v0‖ � µ

√
m|T | + aσ },

respectively, and observe that lemma 3.2 gives P(Bc) � n e−γ a2
. On the event A ∩ B,

sup
t0∈T c

‖w0‖ � 2

m
(µ

√
m|T | + aσ).

The claim follows. �

Lemma 3.4. Assume that z(t), t ∈ T is an i.i.d. sequence of symmetric Bernoulli random
variables. For each λ > 0, we have

P
(

sup
t∈T c

|π(t)| > 1
)

� 2n e−1/2λ2
+ P

(
sup
t0∈T c

‖w0‖ > λ
)
. (3.17)

Proof. The proof is essentially an application of Hoeffding’s inequality [2]. Conditioned on
the w0, this inequality states that

P(|〈w0, z〉| > 1 | w0) � 2 e
− 1

2‖w0‖2 . (3.18)
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Recall that π(t0) = 〈w0, z〉. It then follows that

P
(

sup
t0∈T c

|π(t0)| > 1
∣∣∣ sup

t0∈T c

‖w0‖ � λ
)

� 2n e− 1
2λ2 ,

which proves the result. �

The pieces are in place to prove theorem 1.1. Set λ = 2µ
√|T |/m + 2aσ/m. Combining

lemmas 3.4 and 3.3, we have for each a > 0 obeying the hypothesis of lemma 3.2:

P
(

sup
t∈T c

|π(t)| > 1
)

� 2n e−1/2λ2
+ n e−γ a2

+ P(‖(U ∗
�T U�T )‖ � m/2).

For the second term to be less than δ, we choose a such that

a2 = γ −1 log(n/δ),

and assume this value from now on. The first term is less than δ if

1

λ2
� 2 log(2n/δ). (3.19)

Suppose µ|T | � √
m. The condition in lemma 3.2 is a � (m/µ2)1/4 or equivalently

m � µ2γ −2[log(n/δ)]2,

where γ is a numerical constant. In this case, aσ � µ
√

m|T | which gives

1

λ2
� 1

16

m

µ2|T | . (3.20)

Suppose now that µ|T | � √
m. Then if |T | � a2, aσ � µ

√
m|T | which gives again (3.20).

On the other hand if |T | � a, λ � 4aσ/m and

1

λ2
� 1

16

m

a2µ2
.

To verify (3.19), it suffices to take m obeying

m

16µ2
min

(
1

|T | ,
1

a2

)
� 2 log(2n/δ).

This analysis shows that the second term is less than δ if

m � K1µ
2 max(|T |, log(n/δ)) log(n/δ)

for some constant K1. Finally, by theorem 1.2, the last term will be bounded by δ if

m � K2µ
2|T | log(n/δ)

for some constant K2. In conclusion, we proved that there exists a constant K3 such that the
reconstruction is exact with probability at least 1−δ provided that the number of measurements
m obeys

m � K3µ
2 max(|T |, log(n/δ)) log(n/δ).

The theorem is proved.
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4. Discussion

It is possible that a version of theorem 1.1 exists that holds for all sign sequences on a set
T simultaneously, i.e. we can remove the condition that the signs are chosen uniformly at
random. Proving such a theorem with the methods above would require showing that the
random vector w0 = (U ∗

�T U�T )−1v0, where v0 is as in (3.12), will not be aligned with the
fixed sign sequence z. We conjecture that this is indeed true, but proving such a statement
seems considerably more involved.

The new large-deviation inequality of theorem 1.2 can also be used to sharpen results
presented in [3] about using �1 minimization to find the sparsest decomposition of a signal in
a union of bases. Consider a signal f ∈ R

n that can be written as a sparse superposition of the
columns of a dictionary D = (�1�2) where each �i is an orthonormal basis. In other words
f = Dx0, where x0 ∈ R

2n has small support. Given such an f , we attempt to recover x0 by
solving

min
x

‖x‖�1 subject to Dx = f. (4.1)

Combining theorem 1.2 with the methods used in [3], we can establish that if

|supp x| � const · n

µ2(�∗
1 �2) · log n

,

then the following will be true with high probability (where the support and signs of x0 are
drawn at random).

(1) There is no x �= x0 with |supp x| � |supp x0| with f = Dx. That is, x0 is the sparsest
possible decomposition of f .

(2) We can recover x0 from f by solving (4.1).

This is a significant improvement over the bounds presented in [3], which have logarithmic
factors of (log n)6.
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