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Sea level change contributions from the Greenland and Antarctica ice sheets 
 

Rene Forsberg, Louise Sørensen, Sebastian Simonsen 
National Space Institute, Technical University of Denmark (DTU Space) 

Elektrovej 328, 2800 Lyngby, Denmark. rf@space.dtu.dk 
 
 

Abstract. Thirteen years of GRACE data provide an excellent picture of the current mass changes 

of Greenland and Antarctica, with mass loss in the GRACE period 2002-15 amounting to 265±25 

GT/yr for Greenland (including peripheral ice caps), and 95±50 GT/year for Antarctica, 

corresponding to 0.72 mm/year and 0.26 mm/year average global sea level change. A significant 

acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a 

corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight 

decrease in short-term mass loss trend. The yearly mass balance estimates, based on pointmass 

inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic 

adjustment (GIA) processes, especially for Antarctica, leakage from unmodelled ocean mass 

changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet 

and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of 

total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including 

satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass 

change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For 

Antarctica the primary changes are associated with the major outlet glaciers in West Antarctica 

(Pine Island and Thwaites glacier systems), as well as on the Antarctic Peninsula, where major 

glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.    
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1.  Introduction 

  

The melting of the polar ice sheets is a major global concern, especially due to the direct effects on 

global sea level rise. Although estimation of ice sheet mass balance has been a main goal of 

glaciological research for decades, reliable observations of current mass changes have only been 

available since the advent of space observations. Three types of Earth observation methods are in 
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use for this purpose: satellite altimetry, where direct measurements of height changes by laser 

(ICESat) or radar (ERS-1/-2, EnviSat, CryoSat-2) altimetry, in combination with 

climatological/glaciological models for firn (snow) density and compaction, are used to estimate 

mass loss; input-output methods, where measurements of ice flow velocities from synthetic aperture 

radar data (ERS, EnviSat, RadarSat) over outlet glaciers are combined with glacier thickness data 

and models for accumulation and surface mass balance in the interior are used to give a net mass 

balance; and gravity field change missions (GRACE), where the mass changes are measured 

directly.   

    Numerous scientific papers on ice sheet change estimation have been published in the recent 

decade, and a review and intercomparison of all methods were done in the ESA/NASA supported 

IMBIE study (Icesheet Mass Balance Intercomparison Experiment 2011-12), resulting in a 

landmark paper with nearly 50 co-authors (Shepherd et al., 2012). We therefore refer readers to this 

paper, and extensive references therein, for background on the ice sheet mass loss estimation 

methods. The main IMBIE conclusions were that the three space-based methods give consistent 

results, when properly applied for common periods; and that combinations of all methods yield 

more reliable estimates, with overall mass change estimates closely mirroring GRACE-only 

estimations. 

    All the above space-based estimation schemes are affected by various types of errors. 

Conventional pulse-limited radar satellite altimetry does not cover the most sloping and rugged 

parts of the icesheets, which are the most rapidly changing parts; furthermore radar altimetry is 

strongly affected by radar penetration into snow and melt events forming ice lenses in the 

snowpack, especially in Greenland (Nilsson et al, 2015). The input-output method is limited by lack 

of information on outlet glacier ice thickness, especially in Antarctica, as well as uncertainty in 

interior surface mass balance models, derived from regional climate models. GRACE accuracy is 

limited by signal leakage from adjacent ice caps, land hydrology, unmodelled ocean mass changes, 

and – especially for Antarctica – large uncertainty in glacial isostatic adjustment (GIA) models 

(Wahr et al, 1998).  

    The mass loss of the ice sheets is typically expressed in units of GT/yr, with 100 GT of mass 

change corresponding to an average global sea level rise of 0.272 mm/yr. Examples of recent 

estimates of mass loss and corresponding sea level rise are outlined in Table 1, mainly extracted 

from a compilation of Dieng et al. (2015). A large variability in results are found, mainly due to use 

of linear trends over different time intervals; the use of such trends is not very suitable for longer 



time series, where decadal changes in climate and ocean temperatures (a major cause of outlet 

glacier melt, both in Greenland and Antarctica; Holland et. al, 2008) would be expected to change 

ice sheet mass loss correspondingly.  It should be noted that the mass loss of the ice sheets does not 

result in a uniform sea level rise; due to changes in gravitation, land uplift and earth rheology, 

Greenland melt will mainly affect tropical and southern latitudes, while Antarctica melt will mainly 

affect the northern hemisphere, as illustrated in Fig. 1. 

 

Table 1. Some selected mass loss estimates of the ice sheets by different methods 

 

 
Mass loss  

 
Error estimate 

Area Period Method 

GT/yr mm/yr GT/yr mm/yr 

 
Reference 

2000-11 Combination 217 0.59 36 0.1   Shepherd et al., 2012 

2005-06 Input-output 210 0.57 40 0.11 Rignot and Kanagaratnam, 2006 

2003-07 Altimetry 176 0.48 4 0.01 Zwally et al., 2011 

2003-08 Altimetry 239 0.65 29 0.08 Sørensen et al., 2011 

2003-08 Alt. + GRACE 180 0.5 29 0.08 Ewert et al., 2012 

2003-09 Combination 265 0.72 58 0.16 Sasgen et al., 2012 

2003-10 GRACE 230 0.63 12 0.03 Lutsche and Sabaka, 2013 

2003-12 GRACE 265 0.72 40 0.11 Velicogna and Wahr, 2013 

Greenland 

2003-12 GRACE 235 0.64 25 0.07 Groh et al.,  2014 

2000-11 Combination 88 0.24 44 0.12   Shepherd et al., 2012 

2003-09 Altimetry 63 0.17 44 0.12 Helm et al., 2014 

2010-13 Altimetry 159 0.43 48 0.13 McMillan et al., 2014 

2003-11 GRACE 85 0.23 36 0.1 Barletta et al., 2013 

2003-10 GRACE 80 0.21 26 0.07 Lutsche and Sabaka, 2013 

2003-12 GRACE 118 0.32 66 0.18 Velicogna and Wahr, 2013 

Antarctica 

2003-12 GRACE 110 0.3 29 0.08 Groh et al.,  2014 

 

2 GRACE measurements of ice sheet changes 

 

For the investigations of this paper we will focus on the GRACE mission mass loss estimates, 

reprocessing GRACE data up to early 2016 based on new, improved GRACE data, with the primary 

goal to expand the sea level rise curves of the IMBIE study to 2016. 



    The successful GRACE gravity field mission  (Tapley et al., 2004) has since late 2002 provided  

measurements of the temporal variations of the gravitational field of the Earth in the form of 

monthly expansions of the gravitational field in spherical harmonics (Bettadpur, 2003). These data 

have provided a unique way to monitor the changing ice sheets of the Earth, and their link with 

climate change. GRACE measurements have clearly documented the accelerating mass loss of the 

Greenland ice sheet, with early results of analysis (e.g., Velicogna and Wahr 2006, Horwath and 

Dietriech, 2006, Chen et al, 2006, Lutsche et al 2006, Forsberg and Reeh, 2007) giving quite 

variable results in the 150-250 GT/yr range, depending on the analyzed period (for examples see 

Table 1).  

    Recent comprehensive multiple-method “reconciled” estimates (Shepherd et al, 2012: Sasgen et 

al. 2012) give results in a more narrow band around -225 GT/yr for Greenland, and -85 GT/yr for 

Antarctica, for the period 2003-11. Depending on the time periods analyzed, the mass loss trend 

estimates tend to increase with time, as the melt of both Greenland and especially Antarctica shows  

accelerating signals. 

    Differences in the published GRACE mass loss estimates are mainly due to method differences in 

how to convert the monthly gravity field solutions (expressed as spherical harmonic expansions, 

also termed “Level-2” GRACE data) into surface mass changes. The limited spatial resolution of 

GRACE (around 300-350 km), differences in processing methods adopted by the different Level-2 

data centers, differences in data corrections, notably the glacial isostatic adjustment (GIA) process, 

and leakage of GRACE signals between different mass bodies, are major sources of differences. 

The nature of most of these error sources are explained in details in the fundamental pre-launch 

GRACE methodology paper (Wahr et al., 1998). The same paper also outlined spherical harmonic 

filtering and conversion methods for converting GRACE spherical harmonic data into mass change 

estimates.  

    The point mass inversion methods used in this paper are fundamentally different from the 

spherical harmonic conversion methods of the above pre-launch paper. In the point mass (or 

mascon) methods, a direct inversion of the measured signals at orbit altitude are converted into 

associated mass distributions at the Earth’s surface. This can either be done by direct global analysis 

of “raw” GRACE satellite to satellite ranging data (termed “Level-1” data), solving for global 

mascons (e.g., Luthke et al., 2006, 2013), or by solving for regional distributions of mascons, e.g. 

representing ice covered areas, as done by e.g. (Forsberg and Reeh, 2006; Baur and Sneeuw, 2011;   

Barletta et al., 2012). In the regional point mass estimation methods, a priori knowledge of the 



source region of the mass changes can be taken into account in a simple intuitive manner, but with 

the risk of increasing “leakage” from unmodelled land and ocean mass changes close to the 

icesheet. The IMBIE project has, however, confirmed that estimates by either methods in Greenland 

and Antarctica provide similar results, when applied to same periods and using the same auxillary 

geophysical and environmental corrections. 

    We present in the sequel a reanalysis of a new 13.5-year GRACE data set from an improved 

unconstrained Kalman filter processing scheme at ITSG/TU Graz (Mayer-Gürr et al., 2014; Klinger 

et al., 2016), giving a clear picture of the year-to-year mass change signals, and the regions of 

greater mass loss, and providing an extension of the IMBIE (Shepherd et al., 2012) estimates of sea 

level rise due to ice sheet melt. We additionally supplement the GRACE analysis for Greenland and 

Antarctica, with mass change results from satellite altimetry (EnviSat and CryoSat), using a joint 

GRACE/altimetry inversion method, to pin-point with greater resolution where current mass 

changes are taking place. The joint inversion method improves the limited resolution of GRACE. 

This improved resolution is relatively more important for Greenland rather than for Antarctica, 

where the role of resolution is less dominant due to the larger area, and where leakage from adjacent 

ice caps is not an issue. 

  

3  Basics of analysis of GRACE data  

 

All GRACE Level-2 data are provided as monthly spherical harmonic geopotential expansions of 

form 
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where V is the geopotential, G the gravitational constant, M earth mass, R the earth radius, and the 

fully normalized spherical harmonic coefficients Cnm and Snm, provided by a processing center, such 

as CSR (Center for Space Research, University of Texas) or GFZ (Geoforschungscenter, Potsdam), 

the primary GRACE mission data providers.  

    We have in our computations, however, used new reprocessed Level-2 data provided by Institute 

for Theoretical and Satellite Geodesy, TU Graz (ITSG), to harmonic degree and order 90 (Klinger 

et al., 2016). The ITSG GRACE data appears to be improved relative to corresponding CSR and 



GFZ data, and has recently been adopted for use in the ESA Climate Change Initiative projects for 

both the Greenland and Antarctica ice sheets, see http://www.esa-icesheets-cci.org/.  

    The ITSG spherical harmonic coefficients have been supplemented with C20-terms from satellite 

laser ranging derived from the International Laser Ranging Service data (available at 

https://podaac.jpl.nasa.gov/), and corrections for geocenter mass variations (C10, C11, S11) by the 

method of Swenson et al. (2008), as provided at http://grace.jpl.nasa.gov/. The spherical harmonic 

coefficients are further modified for the elastic response of the earths crust to a mass load change, 

which gives an indirect effect on the gravity response. We take this into account in the mass 

inversion method by modifying the GRACE coefficients for elastic loading by 
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where kn are the elastic Love numbers, using PREM numbers as listed in Wahr et al (1998). 

    The GRACE spherical harmonic data, as corrected above, should then in principle represent the 

land ice, land hydrology, GIA mass changes, and other geodynamic/earthquake effects, as 

atmosphere and ocean mass changes are modelled and subtracted from the original Level-2 

coefficient data. In the case of Greenland and Antarctica, the role of land hydrology is small to 

negligible, especially on temporal trends, and land hydrology effects from the ice-free part of 

Greenland and Antarctica have thus been ignored in this study.   

    An important further correction is the GIA effect. Many different past deglaciation history and 

earth models have been used to infer the GIA effects in Greenland and Antarctica. We use here two 

“standard” models, namely the ICE-5G model for Greenland (Peltier, 2004), and the W12 model for 

Antarctica (Whitehouse et al, 2012), as also used in the IMBIE study. The GIA models are also 

given as spherical harmonic models. We will not discuss further the possible errors in these models, 

but only note that the relatively large error quoted in the IMBIE estimates (±25 GT for Greenland 

and ±50 GT for Antarctica) are predominantly due to the GIA effects. 

    The results for the observed GRACE gravity trends at satellite altitude for Greenland and 

Antarctica over the period April 2002 to Jan 2016 (with a total of 148 available monthly epochs) are 

shown in Fig. 2. Because of the monthly “stacking” of data to estimate a trend, the use of 

“destriping” filters (Kusche et al., 2009), commonly in use for attenuating the dominant north-south 

trending error patterns in GRACE data (due to the near-polar orbit), seems not to be needed. No 

http://www.esa-icesheets-cci.org/
https://podaac.jpl.nasa.gov/
http://grace.jpl.nasa.gov/


further filtering has thus been applied to the gravity trend data. Fig. 2 shows major signals 

associated with the margins and major outlet glaciers in Greenland, and for Antarctica the overall 

dominating signal over the Amundsen Sea Embayment glacier systems in West Antarctica. 

   

         

4  Generalized inverse point mass inversion for Greenland and Antarctica changes  

 

From the fitted GRACE trends, cf. Fig. 2, a trend of mass change at the Earth’ surface can be 

obtained by a linear, albeit ill-posed inversion procedure. The formula for the response function for 

this inversion can be found in Heiskanen and Moritz (1967). For a point mass j at the surface, the 

gravity attraction at orbit height location i is of form 
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where  is the spherical distance, R the earth radius and r ~ R+480 km the GRACE orbit altitude 

(the GRACE orbit has decayed slightly over the years, so r is not constant).  

     In the inversion method the observed gravity δgi values (relative to a mean value over the 

GRACE period) over the region at GRACE orbit altitude, are combined in the observation vector y 

 

y  =  {gi}, i = 1, .., n        (4) 

 

and modelled by a dense set of point masses mj  in a solution vector x 

 

x  =  {mj} ,  j = 1, .., m              (5) 

 

located at the surface of the ice covered region to be studied. The key element of the method is that 

point masses are only located where the ice sheet changes are assumed to take place (defined by an 

“indicator” grid, cf. Fig 3); ocean and ice-free land gravity field changes are assumed to be removed 

by GIA, ocean and hydrological corrections prior to applying the inversion.  

    Using an ice-only set of point mass (mascon) elements has both advantages and drawbacks. An 

advantage is that a priori knowledge of the ice sheet location is applied, but a drawback is that any 



change signals from nearby non-glacial sources (e.g., land hydrology or ocean model errors) are 

“leaking” into the ice mass change, likely to a larger degree than in the spherical harmonics 

approach. To avoid such leakage, neighbouring ice caps in Greenland (especially the Canadian ice 

caps) need to be modelled simultaneously, otherwise the Canadian ice cap changes would “leak” 

into Greenland, and give too high mass loss estimates there.  

    The elements of the basic point mass equation (3) form a response matrix A, where the linear 

observation equations 

y = Ax                            (6) 

 

may be solved by Tychonov generalized inverse by 

 

x  =  [A
T
A +  I]

-1
ATy           (7) 

 

Here I is the unit matrix and  a regularization factor, needed to obtain a non-singular inversion 

problem. The -factor determines the necessary trade off between model smoothness and residuals; 

the total mass change of the Greenland ice sheet will only to a small degree be affected by the 

choice of ; the areal shape of the modelled mass change is, however, stronger affected by this 

choice. The selection of the optimal -parameter has been discussed at length in Baur and Sneeuw 

(2011), and will in the end be up to a subjective trade-off. 

    Linear equations like (7) are readily and quickly solved by the Cholesky method for positive 

definite linear equation systems. The equations may either be solved for gravity trends, or – on a 

monthly by monthly basis – by gravity residuals relative to the mean of the period. The latter will 

give a time series of the mass balance. Because the geometry of the input (a regular grid, covering 

the region of interest) and the output (a fixed set of space domain masses, covering the ice sheets), 

the normal equation matrix of (7) will be constant, except for the “right hand side” (ATy) 

observations. Processing many epochs is therefore extremely fast, as the Cholesky factorization 

need to be done only once.  

     Fig. 4 shows the results of the selected point mass solution by the inversion method, using a 

relatively weak regularization (small –factor), and a 200-250 km cut-away zone for GRACE 

observations beyond the ice sheets (to limit leakage from oceans and land areas); the resolution of 

the mass cells are around 50 km (0.5 x 1 for Greenland and 0.5 x 2 for Antarctica). It is seen 

that the mass balance, expressed in mm water-equivalent change, is negative in a quite narrow band 



along the ice margins in Greenland, in good accordance with in situ and airborne observations 

(Krabill et al., 2010; Sørensen et al., 2011, Helm et al., 2014), and that the Antarctica changes are 

dominated by the West Antarctica sector of the Amundsen Sea, with the major changes in the 

region of the Pine Island / Thwaites glacier systems.  

     Fig. 5 shows the time series for the Greenland and Antarctic ice sheets, with no time-domain 

low-pass filtering done on the monthly estimates. Included in the Greenland plot are also results 

from the northern Canadian ice caps (Ellesmere and Devon Islands), estimated jointly with 

Greenland. It should be noted, though, that the estimates from the northern Canadian ice caps are 

further affected by leakage error from the southern Canadian ice caps and glaciers of Baffin and 

Bylot Island, so the quoted estimates for Ellesmere and Devon Islands are likely too large (and not 

really a topic for this paper). The estimated mass trends and associated global sea level rise are 

additionally listed in Table 2.  

    It should be noted that the Greenland ice loss estimates include minor outlying ice caps and 

glaciers; the mass loss of the outlying ice bodies have been estimated at –28±11 GT/yr from ICESat 

altimetry in the period 2003-8 (Bolsch et al., 2013); this estimate might be slightly overestimated, 

as it includes a major part of the ice sheet classified as “outlying” (the central East Greenland 

nunatak zone);  the estimate will most likely be an underestimate for more recent periods, where 

many outlying ice caps and outlet glaciers have experienced rapid melt.     

    Fig. 5 shows that the mass loss of both Greenland and the northern Canadian ice caps are 

accelerating, with summer 2012 seeing an exceptionally large melt event in Greenland, and the  

Canadian ice caps experiencing rapid acceleration since 2008. But it is also seen that taking a trend 

over only the last 5 years gives an apparent slow-down of the Greenland ice sheet melt, following 

the anomalous large melt event of 2012 (Nghiem et al, 2012). In July 2012 the entire Greenland ice 

sheet for the first time in recent times experienced melt and rain even at the highest elevations, due 

to unsual warm meterorological conditions; using a five-year trend interval don’t make too much 

sense because of the highly unusual events of recent years, where the 2012 summer was followed 

by an unusually cold 2013 summer.  

    For Antarctica a major apparent acceleration is seen continent-wide, especially due to the West 

Antarctica ice streams, with major snow accumulation effects in East Antarctica offsetting to some 

degree the acceleration in West Antarctica, as studied in more details in Shepherd et al. (2012) and 

Lenaerts et al. (2013). 

 



Table 1. Mass change and global sea level rise for Greenland and Antarctica from GRACE 

 Apr 2002-15 
(13.7 yrs) 

2006-15 
(10 years) 

2011-15 
(5 years) 

 
Time period 

GT/yr mm/yr GT/yr mm/yr GT/yr mm/yr 

Greenland, including outlying ice caps (±25 GT/yr) -264 -0.72 -295 -0.80 -265 -0.72 

Ellesmere and Devon Island** (± 20 GT/yr) -41 -0.11 -48 -0.13 -45 -0.12 

Antarctica* (±50 GT/yr) -92 -0.25 -120 -0.33 -147 -0.40 

* Two anomalous first epochs (April-May 2012) in GRACE time series deleted. ** Estimates include leakage from Baffin Island 

    

5 Satellite altimetry used to outline detailed melt regions in Greenland and Antarctica 

 

In this section we use an extension of the inversion method to include satellite altimetry in the mass 

loss determination. In Greenland the relatively smaller size of the region (compared to Antarctica) 

makes the lack of GRACE resolution issue more serious, in terms of pinpointing the true regions of 

mass loss.  

    We use for Greenland elevation changes derived from the ESA EnviSat radar altimetry mission 

(www.esa.int/envisat) for the period 2002-10, generated by a repeat-track algorithm (Sørensen et 

al., 2015); for the period July 2010-February 2015 we use data from the ESA CryoSat-2 mission 

(www.esa.int/cryosat), in classical altimeter mode (LRM) in the interior of the ice sheet, and SAR 

interferometry (SARIn) in the coast-near region. The CryoSat data used are retracked by a novel 

threshold retracker, and the LRM mode data relocated by an updated Greenland DEM (Nilsson et 

al., 2016). 

    CryoSat elevation change estimates are computed by monthly binning and stacking elevation 

residuals relative to an initial Greenland DEM, with bias and trend estimated in 5 km resolution 

cells by “stacking” of the monthly average residuals. The biases of these residuals are subsequently 

used to update the DEM, and then repeating the stacking process for the final dh/dt results. Both the 

EnviSat and CryoSat changes are spatially filtered at resolutions around 15-20 km for the final 

results.  

    For Antarctica a similar CryoSat stacking has been performed for a 5-year period July 2010-June 

2016, starting from the BEDMAP-2 DEM (Fretwell et al., 2012), using the newest Baseline C ESA 

Level 2 data (OCOG retracker and DEM-relocation corrected for LRM). The Antarctica elevation 

changes from the altimetry are shown in Fig 6, along with the corresponding GRACE change data.  

http://www.esa.int/envisat
http://www.esa.int/cryosat


    The inversion method outlined in Sect. 3 may also include height change estimates from 

altimetry. In the joint inversion method an additional set of observation equations for x may be 

formed simply for the trends over the designated period by  

   

gi /dt= model(i) dhi /dt  + fi   (8) 

 

where fi is a firn (upper snow layer) compaction correction, and model a modelled surface density 

(for more details see Sørensen et al., 2011, or Simonsen et al., 2013). The surface density would 

typically be ice density of 0.92 g/cm3 in the margin-near ablation zone, and have lower values of 

0.3-0.4 g/cm3 for uncompacted snow at the higher elevations (Sørensen et al., 2011).  

    The firn model for Greenland is derived from the regional climate model HIRHAM, run by the 

Danish Meteorological Institute (R. Mottram, pers.comm.; Simonsen, 2013). An example of the firn 

compaction correction (for the EnviSat period) is shown in Fig. 7 (left), along with the results of the 

“optimal” combined altimetry/GRACE combination. The GRACE/altimetry inversion in Greenland 

is performed using the CryoSat-2 or EnviSat derived mass change estimates at a 25 km resolution 

UTM (Universal Transverse Mercator) grid, covering the entire Greenland ice sheet and peripheral 

ice caps and glaciers (the UTM projection is superior to the often  used Polar Stereographic 

projection in Greenland, giving fewer observation cells and smaller scale distortion corrections).   

The degrees of freedom in the inversion process include the -factor (7) as well as the apriori 

standard deviations of both GRACE and altimetry data, with a “best” weighting scheme 

reproducing the overall GRACE mass loss estimate, while keeping the detailed spatial resolution of 

the altimetry. 

    For Antarctica the inversion method has been applied with ice density 0.92 g/cm3 only; then the 

inversion method will effectively estimate on overall mass product consistent with GRACE, within 

the shape parameter of CryoSat; a derived a posteriori regional scale correction to dh/dt would thus 

represent a kind of proxy for a composite of density variations and firn compaction parameters. The 

Antarctica inversion was done on a 40 km resolution polarstereographic grid. The results are shown 

in Fig. 8, and it is seen that due to larger size of the Antarctica continent relative to Greenland, the 

difference between the “pure” and “combined” GRACE solutions are relatively smaller.  

    The overall mass change of the joint estimation methods for both Greenland and Antarctica are 

within a few GT/yr of the overall GRACE-only mass change estimate. The small variation is due to 

the strong adjustment constraint from GRACE (the firn model corrections to the Greenland 



altimetry are by themselves around 40 GT/yr). The strong GRACE constraint also overcomes the 

lack of data in altimetry solutions over the most sloping parts of the ice sheets. 

 

5 Discussion and conclusions 

 

The mass changes in Greenland are clearly seen to be associated with relatively narrow marginal ice 

zones, especially in West and South-East Greenland, and major outlet glaciers such as Jakobshavn 

and Helheim glaciers, most clearly seen in the joint GRACE/altimetry inversion results. The overall 

mass loss of Greenland is accelerating, but the last 6 years (2010-2015) have seen large year-to-year 

interannual variations, with 2010 and especially 2012 record melt years. The period 2010-15 has an 

apparent decreasing trend relative to 2005-2010, which might not be significant due to the short 

period, the large melt events, and the lack of some key monthly GRACE data (the GRACE satellite 

pair is now operating way beyond its original design life time).  

    The large Greenland melt event in 2012 have made the use of radar altimetry for height and mass 

change estimation more complicated, with inherent changes in melt-generated ice layers inside the 

upper layers of the firn, leading to “noisy” CryoSat elevation change data, apparent in Fig. 6 

(Nilsson et al., 2015; Forsberg et al., 2013) . 

    For Antarctica, the GRACE time series shows a clear acceleration between 2002 and present, 

dominated by the West Antarctica outlet glaciers of the Amundsen Embayment (Thwaites and Pine 

Island glacier systems), but also mass loss in the Antarctic Peninsula and in smaller outlet glacier 

regions of coastal East Antarctica near 120E (Totten Glacier region). The larger size of the 

continent give a larger degree of similarity of the jointly estimated altimetry/GRACE mass changes, 

relative to the GRACE-alone estimates. A major apparent mass increase in Queen Maud Land, East 

Antarctica, are most likely expressions of the major snowfall events in the region after 2009-2011, 

which has been estimated to give a mass gain on the order of 350 GT in East Antarctica (Boening et 

al., 2012; Lenaearts et al., 2013). 

    The overall GRACE-derived sea level change from the ice sheets are plotted alongside the results 

of the IMBIE 2012 reconciled estimates of Greenland and Antarctica mass changes in Fig. 9. The 

IMBIE results are from combinations of altimetry, GRACE and input-output SAR interferometry 

methods, and therefore do not agree exactly with the GRACE-only solutions of this paper. 

Furthermore the reprocessed GRACE results 2002-16 have improved significantly since the IMBIE 

study. The accumulated global sea level rise during the IMBIE period seems to agree reasonably 



well for Greenland, albeit with a slightly lower trend in Antarctica (which might be due to the 

difference in GIA models used). Beyond the IMBIE period, Fig. 9 shows the extension of the global 

sea level curve, giving a present (2016) accumulated sea level rise of 12 mm for Greenland, and 5 

mm for Antarctica since the IMBIE starting time of 1992, continuing currently at rates around -0.8 

mm/yr for Greenland and -0.4 mm/year for Antarctica. 

 

Acknowledgements 

The sea level “fingerprinting” plots in Fig. 1 was provided by V. Barletta. Many comments by 

Anny Cazenave improved the original manuscript.  Johan Nilsson, former ph.d. student at DTU 

Space, now at NASA-JPL, provided the retracked CryoSat-2 data for Greenland. Torsten Mayr-

Gürr, TU Graz, provided early access to the new ITSG-processed GRACE L2 data.  

 

References 

Barletta V R, L Sandberg Sørensen and R Forsberg: Variability of mass changes at basin scale for Greenland 

and Antarctica, The Cryosphere, 6, 3397-3446, 2012, doi:10.5194/tcd-6-3397-2012. 

Baur O, N Sneeuw, Assessing Greenland ice mass loss by means of point-mass modeling: a viable 

methodology. Journal of Geodesy 85, 607-615, 2011. doi:10.1007/s00190-011-0463-1  

Bettadpur, S: GRACE level-2 gravity field product user handbook. CSR Publ. GR-03-01, Univ. of Texas, 

Austin, http://podaac.jpl.nasa.gov/grace, 2003. 

Boening C, M Lebsock, F Landerer, G Stephens: Snowfall-driven mass change on the East Antarctic ice 

sheet. The Cryosphere, Volume 39, Issue 21, 2012, doi: 10.1029/2012GL053316 

Bolsch, T, L. Sandberg Sørensen, S. B. Simonsen, N. Mölg, H. MacGuth, P. Rastner, F. Paul: Mass loss of 

Greenland’s glaciers and ice caps 2003-8 revealed from ICESat laser altimetry data. Geophys. Res. 

Lett.,40 (5), 875-881, 2013, doi:10.1002/grl.50270. 

Dieng, H B, N Champollion, Y Wada, E Schrama, B Meyssignac : Total land water storage change over 

2003-13 estimated from a global mass budget approach. Environ. Res. Lett., 10, 124010, 2015, 

doi:10.1088/1748-9326/10/12/124010 

 Ewert H, Groh A and Dietrich R: Volume and mass changes of the Greenland ice sheet inferred from 

ICESat and GRACE.  J. Geodyn. 59–60 111–23, 2012. 

Forsberg, R and N Reeh: Mass Change of the Greenland Ice Sheet from Grace. In: Proceedings of the 1st 

international symposium of the IGFS, Harita Dergisi, Ankara, vol. 18, pp. 454-458, 2007. 

Forsberg R, L Sørensen, J Levinsen, J Nilsson: Mass loss of Greenland from GRACE, IceSat and CryoSat. 

Proceedings of the CryoSat Workshop, Dresden, March 2013. ESA Special Publication 717 paper S6-4. 

http://podaac.jpl.nasa.gov/grace


Fretwell P, H D Pritchard, D G Vaughan, J L Bamber, N E Barrand, R. Bell, C. Bianchi, R G Bingham, D D 

Blankenship, G Casassa, G Catania, D Callens, H Conway, A J Cook, H Corr, D Damaske, V Damm, F 

Ferraccioli, R Forsberg, S Fujita, P Gogineni, J A Griggs, R Hindmarsh, P Holmlund, J Holt, R W 

Jacobel, A Jenkins, W Jokat, T Jordan, E C King, J Kohler, W Krabill, M Riger-Kusk, K Langley, G 

Leitchenkov, C Leuschen, B Luyendyk, K Matsuoka, Y Nogi, O Nost, S Popov, E Rignot, D Rippin, A 

Riviera, J Roberts, N Ross, M Siegert, A Smith, D Steinhage, M Studinger, B Sun, B Tinto, B Welch, D 

Young, C Xiangbin, A Zirizzotti: BEDMAP2: Improved Ice Bed, Surface and Thickness Datasets for 

Antarctica. The Cryosphere, 6, 4305-4361, doi:10.5194/tcd-6-4305-2012, 2012. 

Groh A, Ewert H, Fritsche M, Rülke A, Rosenau R, Scheinert M and Dietrich R: Assessing the current 

evolution of the Greenland ice sheet by means of satellite and ground-based observations Surv. Geophys. 

35 1459–80,  2014. 

Heiskanen, W and H Moritz: Physical Geodesy. Wheeler, San Franciso, 1967. 

Helm V, Humbert A and Miller H: Elevation and elevation change of Greenland and Antarctica derived from 

CryoSat-2, Cryosphere 8 1539–59, 2014. 

Horwath, M and R Dietrich: Errors of regional mass variations inferred from GRACE monthly solutions. 

Geoph. Res. Lett., 33, L07502, doi:10.1029/2005GL025550, 2006. 

Holland, D.M., R.H. Thomas, B. deYoung, M.H. Ribergaard, and B. Lyberth: Acceleration of Jakobshavn 

Isbrae Triggered by Warm Subsurface Ocean Waters. Nature Geoscience, 28 September, 2012,  

doi:10.1038/ngeo316.  

Klinger, B, Mayer-Gürr, T, Behzadpour, S, Ellmer, M, Kvas, A & Zehentner: The new ITSG-Grace2016 

release, EGU General Assembly 2016, Vienna, Austria, 2016, doi: 10.13140/RG.2.1.1856.7280 

Krabill, W, W Abdalati, E Frederick, S Manizade, C Martin, J Sonntag, R Swift, R Thomas, W Wright, J 

Yungel: Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning. Science, 289, pp. 428-

430, 2000.  

Kusche, J., R. Schmidt, S. Petrovic, and R. Rietbroek: Decorrelated GRACE Time-Variable Gravity 

Solutions by GFZ, and their Validation using a Hydrological Model, J. Geodesy, 83,903-913, 2009, 

doi:10.1007/s00190-009-0308-3 

Lenaerts, J. T. M.; Van Meijgaard, E.; Van den Broeke, M. R.; Ligtenberg, S. R. M.; Horwath, M.; Isaksson, 

E.: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate 

perspective; Geophysical Research Letters, doi: 10.1002/grl.50559, 2013 

Luthcke S B, Zwally H J, Abdalati W, Rowlands D D, Ray D D, Nerem R S, Lemoine F G, McCarthy J J, 

Chin D S: Recent Greenland ice mass loss by drainage basin from satellite gravity observations. Science 

314, pp 1286-89, doi:10.1126/science.1130776, 2006. 

https://pure.tugraz.at/portal/files/3643450/2016_04_Klinger_etal_EGU2016_ITSG_Grace2016.pdf
https://pure.tugraz.at/portal/files/3643450/2016_04_Klinger_etal_EGU2016_ITSG_Grace2016.pdf


Luthcke S B, T J Sabaka, B D Loomis, A A Arendt, J.J. Mccarthy, J. Camp:  Antarctica, Greenland and Gulf 

of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 

Vol. 59, No. 216, 2013, doi:10.3189/2013JoG12J147 

Mayer-Gürr, T.; Zehentner, N.; Klinger, B.; Kvas, A., ITSG-Grace2014: a new GRACE gravity field release 

computed in Graz. - in: GRACE Science Team Meeting (GSTM), Potsdam, Sept. 2014. 

McMillan M, A Shepherd, A Sundal, K Briggs, A Muir, A Ridout, A Hogg, D Wingham: Increased ice 

losses from Antarctica detected by CryoSat-2.Geoph.Res. Lett., 41, 11, pp 899–3905, 2014, 

doi:10.1002/2014GL060111 

Nilsson, J, Vallelonga, P T, Simonsen, S B, Sørensen, L S, Forsberg, R, Dahl-Jensen, D, Hirabayashi, M, 

Goto-Azuma, K, Hvidberg, CS, Kjær, H A and Satow, K:  'Greenland 2012 melt event effects on 

CryoSat-2 radar altimetry' Geophysical Research Letters, vol 42, pp. 3919-3926, 2014. doi: 

10.1002/2015GL063296. 

Nilsson, J, A Gardner, L Sørensen, and R Forsberg: Improved retrieval of land ice topography from CryoSat-

2 data and its impact for volume change estimation of the Greenland Ice Sheet. The Cryosphere, MS tc-

2016-109, accepted for publication, 2016. 

Nghiem, S V, D. K. Hall, T. L. Mote, M. Tedesco, M. R. Albert, K. Keegan, C. A. Shuman, N. E. 

DiGirolamo, G. Neumann: The extreme melt across the Greenland ice sheet in 2012. Geophysical 

Research Letters, vol. 39 no 20, 2012, doi: 10.1029/2012GL053611 

Peltier, W R, Global glacial isostasy and the surface of the ice-age earth: The ice-5G (VM2) model and 

grace. Annual Review of Earth and Planetary Sciences 32, 111 (2004). 

Rignot E and Kanagaratnam P: Changes in the velocity structure of the Greenland ice sheet Science 311 

986–90, 2006. 

Sasgen I, van den Broeke M, Bamber J L, Rignot E, Sørensen L S, Wouters B, Martinec Z, Velicogna I and 

Simonsen S B: Timing and origin of recent regional ice-mass loss in Greenland Earth Planet. Sci. Lett. 

333–334 293–303, 2012. 

Simonsen, S B, Stenseng, L, Adalgeirsdottir, G, Fausto, R, Hvidberg, C S, Lucas-Picher, P: Assessing a 

multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements. Journal 

of Glaciology, 59(215):545–558, 2013. 

Shepherd A, E Ivins, G A, and 43 co-authors: A Reconciled Estimate :of Ice Sheet Mass Balance. Science, 

338, pp. 2012. 

Swenson S C , D P Chambers, and J Wahr: Estimating geocenter variations from a combination of GRACE 

and ocean model output. J Geophys. Res.-Solid Earth, Vol 113, Issue: B8, Article B08410, . 

doi:10.1029/2007JB005338, 2008. 



Sørensen, L S, S B Simonsen, K Nielsen, P Lucas-Picher, G Spada, G Adalgeirsdottir, R Forsberg, C 

Hvidberg:Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn 

compaction modelling, The Cryosphere 5, 173-86, doi:10.5194/tcd-4-2103-2010. 

Sørensen, L S, S B Simonsen, R Meister,  R Forsberg, J Levinsen, T Flament: Envisat-derived elevation 

changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area, 

Remote Sensing of Environment, p. 7, 2015. 

Tapley, B D, S Bettadpur, M Watkins, C Reigber: The gravity recovery and climate experiment: Mission 

overview and early results. Geoph. Res. Lett., 31, L09607, doi:10.1029/2004GL019920, 2004. 

Velicogna, I and J Wahr: Acceleration of Greenland ice mass loss in spring 2004. Vol 443, 21 Sep  2006, 

doi:10.1038/nature05168. 

Velicogna I and Wahr J: Time-variable gravity observations of ice sheet mass balance: precision and 

limitations of the GRACE satellite data Geophys. Res. Lett. 40 3055–63, 2013. 

Wahr, J, Molenaar M, Bryan F: Time variability of the earths gravity field: hydrological and oceanographic 

effects and their possible detection by GRACE. J. Geophys. Res., 103, pp 30205-30229, 

doi:10.1029/98JB02844, 1998. 

Whitehouse, P L, M. J. Bentley, A. M. Le Brocq, A deglacial model for Antarctica: geological constraints 

and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. 

Quaternary Science Reviews 32, 1 (2012). 

Zwally H J et al 2011 Greenland ice sheet mass balance: distribution of increased mass loss with climate 

warming; 2003–07 versus 1992–2002 J. Glaciol. 57 88–102 

http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication
http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication
http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication
http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication
http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication
http://orbit.dtu.dk/admin/workspace.xhtml?openEditorId=e38adc17-13bd-43b0-96b7-b64ae3e32a20&family=publication


Figures and figure captions 

 

 

 

Fig. 1. Relative sea level rise due to Greenland melt (left) and Antarctica melt (right) for IceSat 

period 2003-8, unit mm/year.  Figures courtesy of V. Barletta (DTU Space), produced as part of EU 

Ice2Sea project. 

 

 

 

    

 

Fig. 2. GRACE gravity change signals 2002-16 over Greenland (left) and Antarctica (right), at orbit 

altitude. GRACE ITSG-2016 solution to degree n = 90, corrected for elastic response. Unit Gal/yr.  



 

     

   

Fig. 3. Indicator grids for the Greenland ice sheet and adjacent ice caps, and for the grounded ice 

regions of Antarctica. The mascons are distributed at approx. 50 km resolution. For Greenland only 

the Ellesmere and Devon Island (“Canada north”) are solved for to avoid excess leakage.  

    

 

Fig. 4. Mass change trends 2002-16 for Greenland and Antarctica. Unit: mm water-equivalent/year. 

Note difference in colour scale (and size of the ice sheets, Antarctica map scale only half of 

Greenland). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Unfiltered GRACE time series of mass balance for Greenland and Ellesmere/Devon Island 

(upper), and Antarctica (lower), with monthly solution values (dots) and linear trend fit. Yellow 

circle shows 2012 record melt event in Greenland.  



     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Elevation changes of the Greenland ice sheet from EnviSat 2002-10 (left), CryoSat 2010-15 

(center) and GRACE 2010-15 (right). Units: m/yr for height changes, and mm/year water 

equivalent for GRACE. 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 7. Left: Average Greenland firn compactions corrections from HIRHAM (unit: m/yr). 

Center/right: Mass solutions by constrained GRACE inversion with EnviSat (center) and CryoSat 

(right, including Canadian ice caps), unit mm w.eq./yr. 



 

 

 

    

Fig 8. Antarctica elevation changes from CryoSat 2010-15 (left, unit m/year), and jointly estimated 

GRACE/CryoSat mass changes (right, unit mm w.eq./year). CryoSat data smoothed to 0.3 

resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 9. Accumulated global sea level rise from the ITSG GRACE 2002-16 monthly solutions (blue), 

with yearly GRACE moving-average filtered values (red), plotted together with IMBIE 1992-2011 

Greenland (black) and Antarctica (red) reconciled mass change estimates (Shepherd et al., 2012).  
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