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Abstract

Topology optimization is a method that optimally distributes material in a given design domain. In this pa-
per, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace.
First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain sit-
uated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened
material reflects and guides waves away from the surface. At high frequencies, destructive interference is
obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given
range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss
over the frequency range of interest is maximized. The resulting design contains features at depth leading
to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a
reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range
is optimized. This leads to designs that especially reduce the response at high frequencies. The designs
optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In
order to obtain a robust design, a worst case approach is followed.

Keywords: Topology optimization, Elastodynamic wave propagation, Vibration reduction measures, Wave
barriers

1. Introduction

This paper focuses on reducing two-dimensional wave transmission in an elastic halfspace by designing a
wave barrier using topology optimization. Topology optimization searches for the most efficient distribution
of a given amount of material in a specified design domain [1]. The problem is formulated as a mathe-
matical optimization problem where the performance of the structure is maximized while satisfying a set
of constraints such as the volume fraction of the stiffened material. Topology optimization simultaneously
optimizes not only the size and the shape of the design, but also the topology, making it possible to obtain
novel, improved design geometries.

Topology optimization was originally developed for static mechanical problems, but has since then been
used for a variety of applications including problems governed by wave propagation [2]. A lot of research
has been performed in the field of photonic crystal waveguide design. These electromagnetic waveguides
are designed based on the band-gap phenomenon in periodic structures, obstructing wave propagation for
specific frequencies [3, 4].
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Next to photonic band-gaps due to electromagnetic waves, also phononic band-gaps due to elastic and
acoustic waves have been investigated. Sigmund and Jensen [5] maximize the bandwidth of phononic band-
gap materials and minimize the transmitted wave amplitude of a band-gap structure subjected to harmonic
loading. For a one-dimensional homogeneous elastodynamic medium, topology optimization leads to periodic
structures where the thicknesses of the layers are equal to a quarter of the considered wavelength [6]. Jensen
[7] discusses a two-dimensional problem, where an incoming plane pressure or shear wave is maximally
reflected or dissipated by an optimal periodic distribution of scattering or absorbing inclusions.

Structural optimization has also been applied to acoustic design problems. Wadbro and Berggren [8]
optimize an acoustic horn that efficiently radiates sound. Duhring et al. [9] use topology optimization for
two types of problems. First, a room acoustic problem is considered where reflecting material is optimally
distributed along the ceiling or the walls. Second, an outdoor sound barrier is optimized to reduce the sound
power level behind the barrier. The same problem was considered by Greiner et al. [10] who applied shape
optimization using genetic algorithms to optimize Y-shaped noise barriers. Shape optimization is also used
by Abe et al. [11] to optimize noise barriers for railway viaducts and topology optimization is used by Kook
et al. [12] to minimize the maximum main specific loudness.

Structural optimization is often found to lead to designs which are very sensitive to geometrical im-
perfections [13]. Since small variations in the design might result in a strongly deteriorated performance,
robust optimization methods have been developed to take these uncertainties into account. Sigmund [14]
and Wang et al. [15] proposed a robust optimization method to deal with manufacturing tolerances. A
projection filter is added to the optimization to ensure a black and white design. The projection threshold is
varied to simulate geometric imperfections and the worst performance of multiple designs originating from
different projection thresholds is optimized. This methodology is applied to the elastodynamic problem in
this paper to obtain designs that are both effective and robust with respect to geometrical imperfections.

This paper investigates the use of topology optimization for the design of two-dimensional wave barriers
impeding wave transmission between a source and receiver. This problem is encountered in problems of
environmental vibrations, e.g. as generated by railway traffic [16]. The finite element method is used to
determine the displacement field in the halfspace, with Perfectly Matched Layers (PMLs) at the boundaries to
prevent spurious reflections. In order to minimize the transmission of waves, stiffened material is distributed
in a design domain situated between the source and the receiver. A gradient-based optimization method
is applied and the sensitivities are calculated using the adjoint method, making the calculation efficient for
the large number of design variables considered. A worst case approach is adopted for obtaining a robust
design with respect to geometrical imperfections where the worst performance of some (extreme) cases is
optimized. This paper demonstrates the importance of considering robustness in the optimization process,
and shows that the robust designs can be utilized as a source for simplified design solutions.

This paper is organized as follows. First, the method of topology optimization is briefly recapitulated
and the optimization problem is presented. Next, wave barriers are designed with topology optimization
for three types of excitation: harmonic point sources at a known frequency, harmonic point sources at a
frequency situated in a given range, and broadband point sources. Finally, the sensitivity of the optimized
design with respect to geometric imperfections is investigated and robust topology optimization is applied
to obtain designs less sensitive to these uncertainties.

2. Formulation of the optimization problem

2.1. Finite element model

Figure 1 shows the considered optimization problem. A two-dimensional homogeneous elastic halfspace
of material 1 is excited at the surface by a vertical point load. The aim is to minimize the response at an
output point, located at the surface of the halfspace. Therefore, a design domain is considered between
the source and the receiver where a second stiffer material is introduced. The design domain has a cross-
sectional area of 5×8m2 and is located at a distance of 5m from the excitation point. The position where the
performance is optimized is at another 5m from the design domain, and, therefore, 15m from the excitation
point. The properties of the original material 1 and the stiffened material 2 are summarized in table 1, with
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ρ the mass density, Cp the longitudinal wave velocity, Cs the shear wave velocity, λp the wavelength of the
longitudinal waves and λs the wavelength of the shear waves.

Source Receiver

Design
domain

Surrounding domain
(Material 1)

PML

11

2 33

5m5m5m

8m

Figure 1: The considered two-dimensional topology optimization problem.

Table 1: Material properties in the optimization problem and corresponding longitudinal and shear wavelengths at two fre-
quencies.

Property Material 1 Material 2
ρ 2000 kg/m3 2000 kg/m3

Cp 400m/s 950m/s
Cs 200m/s 550m/s

λp,25Hz 16m 38m
λs,25Hz 8m 22m
λp,50Hz 8m 19m
λs,50Hz 4m 11m

The elastodynamic problem is solved using the finite element method with two-dimensional four-node
elements in plane strain. For the mesh, an element size of 0.25m is used, corresponding to ten elements
per shear wavelength λs at a frequency of 80Hz, which is the upper limit considered in this paper. The
discretization results in a displacement vector û collecting Ndof degrees of freedom, determined by the
following system of equations:

K̂û = p̂ (1)

In this expression, û is the displacement vector, p̂ is the load vector, and K̂ is the dynamic stiffness matrix.
The dynamic stiffness matrix is computed as:

K̂ = −ω2M+K (2)

with ω the considered frequency [rad/s], M the mass matrix, and K the stiffness matrix, which are assembled
from the element mass and stiffness matrices. The element mass matrix Me and the element stiffness matrix
Ke are calculated from the matrix N containing the shape functions, the matrixB containing the derivatives
of the shape functions, and the constitutive matrix D. In the case of plane strain, the following expressions
are obtained:

Me =

∫

Ω

NTρNdΩ = ρM0,e (3)
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Ke =

∫

Ω

BTDBdΩ = ρC2
pKp,e + ρC2

s Ks,e (4)

The resulting 8×8 matrices M0,e, Kp,e, and Ks,e only depend on the element sizes. Note that ρC2
p = λ+2µ

(with λ and µ the Lamé coefficients) is the constrained modulus and ρC2
s = µ is the shear modulus.

A hysteretic damping model is applied. According to the correspondence principle, this can be modeled
in the frequency domain by the introduction of complex material properties, denoted by a prime, with
damping ratios βp and βs:

(

ρC2
p

)′

= ρC2
p(1 + 2iβp) (5)

(

ρC2
s

)′

= ρC2
s (1 + 2iβs) (6)

with i the imaginary unit. However, no damping was included to obtain the results in this paper, and
therefore the damping ratios are βp = βs = 0.

At the boundaries of the finite element mesh, appropriate radiation boundary conditions have to prevent
spurious wave reflections. Several solutions exist, such as absorbing boundary conditions that minimize
the reflectance [17], Perfectly Matched Layers (PML) [18], the boundary element method [19], etc. In this
article, the PMLs of Harari and Albocher [20, 21] are applied, where a complex coordinate stretch is used
to calculate the element mass and the element stiffness matrices:

x̃ =

x
∫

0

ψx (ξ) dξ (7)

ỹ =

y
∫

0

ψy (η) dη (8)

where x̃ and ỹ are the stretched coordinates of coordinates x and y. The complex-valued stretch function is
defined as:

ψj = 1 + isj (9)

with sj the attenuation function in direction j (x or y). The stretch functions depend on the attenuation
direction in the PML. In the region indicated by number 1 in figure 1, the attenuation will only take place
in the horizontal direction, and the stretch functions are ψx = 1+ isx(x) and ψy = 1. A quadratic function
of the coordinate x is chosen as attenuation function:

sx(x) = smax

( x

L

)2

, 0 < x < L (10)

where a maximum value smax of 13.2 is chosen at 25Hz and a value of 6.6 at 50Hz. Similarly, in region 2
the stretch functions are ψx = 1 and ψy = 1 + isy(y) and in region 3 ψx = 1 + isx(x) and ψy = 1 + isy(y).

In topology optimization, the topology is parametrized by densities attributed to the finite elements in
the design domain. In order to achieve a design with sufficient detail, the finite element mesh of the design
domain is finer than the one of the surrounding domain, following the method proposed by Kristensen
[21]. The horizontal and vertical displacement of the intermediate nodes are coupled to the nodes of the
surrounding domain, resulting in constraint equations which can be written in matrix form:

Qû = 0 (11)

where the matrix Q collects the coefficients.
Different methods exist to enforce these constraints, e.g. using a transformation matrix, adding penalty

functions, using Lagrange multipliers, etc. [22, chapter 13]. Here, Lagrange multipliers are used, leading to
the following system of equations:

[

K̂ QT

Q 0

]{

û

χ

}

=

{

p̂

0

}

(12)

where χ are the Lagrange multipliers.
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2.2. Introduction to topology optimization

Topology optimization searches the optimal distribution of material in a design domain taking into
account a set of relevant constraints [1]. The material distribution is parameterized using element densities
ρ̄e for each element e in the design domain. These element densities can take values in the interval [0, 1],
where ρ̄e = 0 indicates that element e has the properties of the original material (material 1), while ρ̄e = 1
corresponds to the properties of the stiffened material (material 2). By allowing the densities to vary
continuously between 0 and 1, the optimization problem can be solved with a gradient based optimization
algorithm. The method of moving asymptotes (MMA) [23] is used.

The (physical) element densities ρ̄e are obtained from the design variables ρe of the optimization problem
by applying a projection filter [24]:

ρ̄e =
tanh (βη) + tanh (β(ρ̃e − η))

tanh (βη) + tanh (β(1 − η))
(13)

where β is a sharpness parameter, controlling the smoothness of the projection, η is the projection threshold,
and the densities ρ̃e are obtained from:

ρ̃e =

∑N

i=1 weiviρi
∑N

i=1 weivi
(14)

where vi is the volume of element i and the weight wei = max (R− rei) depends on the filter radius R and
the center-to-center distance rei between the elements e and i. In the present work, the filter radius is taken
to be R = 2.5 elements, the projection threshold value is set to η = 0.5 and the sharpness parameter β has
an initial value equal to 1 and is doubled every 50 iterations until the value of 32 is reached.

A Solid Isotropic Material with Penalization (SIMP) interpolation [25, 26] is used to interpolate the
material properties α:

α = α1 + ρ̄pe (α2 − α1) (15)

where α1 and α2 are the properties of the original and stiffened material, respectively. The penalization
factor p ≥ 1 avoids so-called gray designs with intermediate densities. A value p = 1 is used for the mass
density ρ while p = 3 is used for the constrained modulus

(

ρC2
p

)

′

and the shear modulus
(

ρC2
s

)

′

.

2.3. The optimization problem

Consider again the topology optimization problem shown in figure 1. The aim is to maximize the insertion
loss (IL), that quantifies the effectiveness of the wave barrier as:

IL = 10 log

(

ûorigHLûorig

ûHLû

)

(16)

with (·)H the Hermitian (or conjugate) transpose, ûorig the displacement vector of the original field (the
homogeneous halfspace) and û the displacement vector of the actual field. L is a sparse selection matrix,
containing ones at the diagonal elements corresponding to the degrees of freedom selected for assessing the
effectiveness of the wave barrier. The problem is reformulated as a minimization problem, resulting in an
objective function Φ = −IL, and is subjected to a volume constraint:

min
ρe

10 log

(

ûHLû

ûorigHLûorig

)

s. t.

N
∑

e=1

veρ̄e ≤ V ∗, e = 1 . . .N

0 ≤ ρe ≤ 1, e = 1 . . .N

with

[

K̂ QT

Q 0

]{

û

χ

}

=

{

p̂

0

}

(17)
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where N is the number of elements in the design domain. The upper limit for the volume V ∗ is set to 20%
of the total volume. Note that this problem is not convex, and multiple local minima may be present.

As a gradient-based approach is used, the derivatives of the objective function are required. The adjoint
method is an efficient method to compute the gradient in the case of a large number of design variables and
is therefore applied. Appendix A addresses the derivation of the sensitivities, which leads to:

∂Φ

∂ρ̄e
= 2Re

{

λT ∂K̂

∂ρ̄e
û

}

(18)

with λ computed from the adjoint equation:

[

K̂ QT

Q 0

]{

λ

µ

}

=







−
1

2

(

∂Φ

∂ûR
− i

∂Φ

∂ûI

)T

0







=
10

ûHLû

{

−Lû∗

0

}

(19)

The sensitivities in Eq. (18) are (in the case of plane strain) straightforwardly computed from the elaborated
element mass and stiffness matrix in Eq. (3) and (4), respectively:

∂K̂e

∂ρ̄e
= −ω2∂ (ρ)

∂ρ̄e
M0,e +

∂
(

ρC2
p

)

∂ρ̄e
Kp,e +

∂
(

ρC2
s

)

∂ρ̄e
Ks,e

= −ω2 (ρ2 − ρ1)M0,e + pρ̄p−1
e

[(

ρ2C
2
p2 − ρ1C

2
p1

)

Kp,e +
(

ρ2C
2
s2 − ρ1C

2
s1

)

Ks,e

]

(20)

3. Optimization of wave barriers for harmonic waves

In this section, harmonic vibration sources are considered. As initial design, all element densities are
assigned a value ρe = 0.2. Two cases are considered. First, only the vertical component of the displacement
at the output point is considered in the calculation of the insertion loss (and therefore the objective function).
Second, the norm of the displacement vector is considered.

When only the vertical displacement in the output point is considered, the insertion loss becomes:

ILy = 10 log

(

ûorigHLûorig

ûHLû

)

= 10 log







∣

∣

∣û
orig
out,y

∣

∣

∣

2

|ûout,y|
2






= 20 log

(∣

∣

∣

∣

∣

ûorigout,y

ûout,y

∣

∣

∣

∣

∣

)

(21)

The insertion loss of the optimized design and a reference rectangular design with dimensions 1m× 8m are
compared in the following. The reference design, the design optimized for harmonic excitation at 25Hz and
the corresponding insertion loss ILy are shown in figure 2.

In the neighborhood of the targeted frequency of 25Hz, the insertion loss obtained for the optimized
design is positive and significantly larger than for the reference design. At higher frequencies, from around
50Hz, the optimized design performs worse than the reference design and at frequencies above 60Hz, the
insertion loss of the optimized design is close to zero. In this frequency range, the penetration depth of the
Rayleigh waves is too small, so that they are not affected by the stiffened material introduced at depth.
At frequencies above 80Hz, the transmission of the Rayleigh waves is affected by the zone at the surface,
providing again a positive value for the insertion loss, but smaller than for the reference design.

The optimized design is symmetric due to the symmetric nature of the problem. Both the load p̂ and

the adjoint load
−10Lû∗

ûHLû
have only a single entry, at degrees of freedom that are positioned symmetrically

with respect to the design domain. This makes the sensitivities in Eq. (18) symmetrical, resulting in a
symmetric design.

In order to verify the reduction of the horizontal response in the output point obtained by this optimized
design, the insertion losses ILx and ILxy are defined as:

ILx = 10 log







∣

∣

∣
ûorigout,x

∣

∣

∣

2

|ûout,x|
2






= 20 log

(∣

∣

∣

∣

∣

ûorigout,x

ûout,x

∣

∣

∣

∣

∣

)

(22)
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Figure 2: (a) Reference design, (b) optimized design maximizing ILy at 25Hz, and (c) resulting insertion loss ILy (Eq. (21))
as a function of the frequency for the reference design (dash-dotted line) and the optimized design (solid line).
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(23)

The insertion losses ILx and ILxy for the optimized design in figure 2b are shown in figure 3. The design
optimized for the vertical response at 25Hz leads to a much higher horizontal response at 25Hz than
the reference design and the response is even higher than for the original homogeneous halfspace. As a
consequence, the insertion loss of the vector sum ILxy of the optimized design is hardly higher than for the
reference design.
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Figure 3: The insertion loss (a) ILx (Eq. (22)) and (b) ILxy (Eq. (23)) as a function of the frequency for the reference design
in figure 2a (dash-dotted line) and the optimized design in figure 2b (solid line).

Maximizing the insertion loss of the vector sum in Eq. (23) for a harmonic point source at 25Hz results
in the design and insertion loss ILxy in figure 4. Since the horizontal displacement is introduced in the
selection matrix L, the optimized design is no longer symmetric. Comparing figures 3b and 4b shows that
the resulting insertion loss ILxy is considerably higher. At 25Hz, the optimized design leads to a reduction
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of 7.2 dB compared to the original situation which is 3.8 dB higher than the insertion loss of the reference
design in figure 2a.
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Figure 4: (a) Optimized design maximizing ILxy at 25Hz, and (b) resulting insertion loss ILxy (Eq. (23)) as a function of the
frequency for the reference design in figure 2a (dash-dotted line) and the optimized design (solid line).

The optimized design in figure 4a consists of three main features: (1) the vertical part at the left hand
side of the design domain, (2) the inclined part going upward from the center of this vertical part, and (3)
the curved part from the center of the vertical part to the right hand side of the design domain. In order
to verify the role of these features, figure 5 shows the real part of the displacement field and the insertion
loss at 25Hz in the surrounding domain for the homogeneous halfspace, for the reference design, for part
(1) of the optimized design, and for the entire design. The vertical part (1) works mainly as a traditional
wall barrier that reflects the incoming waves. Since the design domain comprising the optimal wave barriers
is located at the surface of the halfspace, the incoming waves are mainly surface or Rayleigh waves. The
Rayleigh waves in a halfspace consisting of solely material 1 (with the properties given in table 1) have a
wave speed CR equal to 186m/s, or a wavelength λR equal to 7.5m at 25Hz. The depth of the vertical
part extends more or less from 0.2λR to 0.9λR, in line with the rule of thumb stating that open trenches
start to be effective in cutting off the propagation of Rayleigh waves if the depth of the trench is at least
half the Rayleigh wavelength [27]. By adding the two other parts (2) and (3), the waves are directed in the
extension of their branches. The inclined part (2) directs the waves primarily to the surface, where they are
reflected downwards in the domain together with the waves directed by the curved part (3), reducing the
response at the surface.

The optimized design and its performance change significantly when the wavelength becomes smaller.
Consider for example excitation at 50Hz. The optimized design and the resulting insertion loss ILxy are
shown in figure 6. The peak in the insertion loss at 50Hz reaches a very high value of 59.3 dB, and is much
higher than for the reference design in figure 2a, where the insertion loss reaches a value of 2.9 dB at 50Hz.

In the optimized design of figure 6a, material 2 is introduced in three main areas: (1) the top part,
partially horizontal and partially inclined, (2) the middle part situated approximately at a depth of λR
consisting of two small inclusions, and (3) the curved bottom part at a depth of 2λR. Figure 7 shows
the real part of the displacement field and the insertion loss at 50Hz in the surrounding domain for the
homogeneous halfspace, for the reference design, for the left half of part (1) of the optimized design, for part
(1) of the optimized design, and for the entire design. The left half of the top part (1) splits the incoming
Rayleigh waves with a wavelength equal to 3.7m at 50Hz in two waves, one propagating through the stiffened
material and one redirected downwards. The depth of this part is equal to 0.2λR and the resulting insertion
loss of this part of the design is already close to the insertion loss of the reference design in figure 2a. The
right half acts again as a waveguide and directs the waves downwards, under the surface, outperforming the
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ûR [µm/kN] ILxy [dB]

 

 

0

0.5

1

1.5

2

 

 

−10

−5

0

5

10

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: Real part of the displacement field û
R at 25Hz (a) for the original domain and after the introduction of (b) the

reference design in figure 2a, (c) part (1) of the optimized design, and (d) the entire optimized design maximizing ILxy at
25Hz (figure 4a). Insertion loss ILxy at 25Hz after the introduction of (e) the reference design in figure 2a, (f) part (1) of the
optimized design, and (g) the entire optimized design maximizing ILxy at 25Hz (figure 4a).

reference design already by 5.6 dB (compare figures 7f and 7h). The waves that are redirected downwards
by the top part, are guided and reflected by the mid part (2) and the bottom part (3) and finally interfere
with the waves transmitted by the top part, minimizing the displacement at the surface. This destructive
interference is very sensitive to geometric imperfections, as will be shown in section 5.
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Figure 6: (a) Optimized design maximizing ILxy at 50Hz, and (b) resulting insertion loss ILxy (Eq. (23)) as a function of the
frequency for the reference design in figure 2a (dash-dotted line) and the optimized design (solid line).

4. Optimization of wave barriers for a target frequency range

In the previous section, the optimization was performed for harmonic excitation at a single fixed fre-
quency. In this section, a frequency range [f1, f2] is considered. A distinction is made between (1) harmonic
excitation at a frequency in a given range and (2) broadband excitation. For harmonic sources at a frequency
in a given range, a good performance is needed for the entire frequency range, and the minimal insertion
loss over the frequency range is maximized. For broadband sources, the frequency averaged insertion loss is
maximized.

If the objective is to maximize the minimal insertion loss, the optimization problem becomes:

min
ρe
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]{
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}

=
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p̂

0

}

(24)

The frequency range is discretized using Nf = 10 equidistant frequencies. Increasing the number of frequen-
cies Nf hardly changes the optimal design geometry, indicating that only taking 10 frequencies into account
is sufficient. This problem is not differentiable and is therefore reformulated using a bound formulation [28].
Figure 8 shows the design optimized for the frequency range from 20 to 80Hz, corresponding to Rayleigh
wavelengths between 2.3 and 9.3m, and the resulting insertion loss. The insertion loss is higher than for
the reference design in the entire frequency range considered. The optimized design contains a part (1) that
maximizes the insertion loss in the lower frequency range (bottom left, compare with figure 4a) and a part
(2) for the higher frequency range (top right, compare with figure 6a).

If the objective is to maximize the frequency averaged insertion loss ILxy (in the case of broadband
sources), the parameter to be optimized becomes:

ILxy =
1

f2 − f1
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∫
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10
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Figure 7: Real part of the displacement field û
R at 50Hz (a) for the original domain and after the introduction of (b) the

reference design in figure 2a, (c) the left half of part (1) of the optimized design, (d) part (1) of the optimized design, and (e)
the entire optimized design maximizing ILxy at 50Hz (figure 6a). Insertion loss ILxy at 50Hz after the introduction of (f) the
reference design in figure 2a, (g) the left half of part (1) of the optimized design, (h) part (1) of the optimized design, and (i)
the entire optimized design maximizing ILxy at 50Hz (figure 6a).
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Figure 8: (a) Optimized design maximizing minfn ILxy(fn) for the frequency range 20−80Hz (discretized with 10 frequencies),
and (b) resulting insertion loss ILxy (Eq. (23)) as a function of the frequency for the reference design in figure 2a (dash-dotted
line) and the optimized design (solid line).

The optimization problem minimizes the objective function Φ′ = −ILxy, where the integral in Eq. (25) is
approximated by a discretization of the frequency range by Nf equidistant frequencies.

min
ρe
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s. t.
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}

=
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(26)

Figure 9 shows the design optimized for the frequency range from 20 to 80Hz, using Nf = 10 frequencies
in Eq. (26), and the resulting insertion loss ILxy. The optimization leads to designs which mainly reduce
transmission at higher frequencies, as it is easier to obtain high insertion loss values in this frequency range,
as observed in section 3. Figure 10 shows the real part of the displacement field for frequencies of 30Hz
(λR = 6.2m), 50Hz (λR = 3.7m), and 70Hz (λR = 2.7m) in the surrounding domain for the homogeneous
halfspace, the reference design and the design optimized for the average insertion loss in the frequency range
20− 80Hz (figure 9a). For the highest frequencies of the target range, almost all the energy is reflected by
the structure, resulting in a negative insertion loss value in front of the design domain and a high insertion
loss value behind the design domain. However, the insertion loss for the lowest frequencies is rather small,
and below 40Hz (λR = 4.7m), the insertion loss for the optimized design is lower than for the reference
design. Depending on the actual loading, more weight can be given to certain frequencies by introducing a
weighting function in Eq. (25).

5. Geometric imperfections

Topology optimization often provides designs that are only optimal for the specific problem considered.
In many cases, the performance is very sensitive to geometric imperfections. Consider for example the design
in figure 6a. This design contains small features, making it very sensitive to deviations in the geometry of
these features. As a consequence, the performance of the actual wave barrier may be far from optimal.
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Figure 9: (a) Optimized design maximizing ILxy for the frequency range 20 − 80Hz (discretized with 10 frequencies), and (b)
resulting insertion loss ILxy (Eq. (23)) as a function of the frequency for the reference design in figure 2a (dash-dotted line)
and the optimized design (solid line).

The influence of errors in the (in-plane) dimensions of the stiffened material can be modeled by varying
the Heaviside projection threshold η in Eq. 13 [29]. For low values of the Heaviside projection threshold
(e.g. η = 0.25), lower values of the filtered densities are projected to the stiffened material as well, and the
dimensions of the stiffened material increase, leading to so-called dilated designs. For high values of the
Heaviside projection threshold (e.g. η = 0.75), only the higher values of the filtered densities are projected
to the stiffened material, and the dimensions of the stiffened material decrease, leading to so-called eroded
designs.

Figures 11a-c show the dilated, intermediate, and eroded version of the design optimized for a frequency
of 25Hz (figure 4). The corresponding insertion loss values are indicated in figure 11d, which shows the
insertion loss as a function of the projection threshold. Increasing the Heaviside projection threshold η
results in a reduction of the dimensions of the stiffened material. This is accompanied by a decrease in the
insertion loss. The upper value η = 1 removes all stiffened material from the design (û = ûorig), and the
insertion loss (Eq. (16)) becomes equal to zero.

Figure 12 shows the influence of the Heaviside projection threshold η for the design optimized for reducing
transmission at a frequency of 50Hz (figure 6). In contrast to the design optimized for a frequency of 25Hz, a
high value occurs at η = 0.5 (intermediate design). The performance is therefore very sensitive to thickness
variations as these disturb the previously discussed interference (see section 3). For the dilated design
(η = 0.25), a high performance is still obtained thanks to the top part of the design, which is largely affected
for the eroded design (η = 0.75).

The effect of the projection threshold on the designs maximizing the minimal and frequency averaged
insertion loss in the frequency range 20− 80Hz is shown in figures 13 and 14. These results show that the
design maximizing the minimal insertion loss (Eq. (26)) is less sensitive to thickness variations than the
design maximizing the frequency averaged insertion loss (Eq. (24)). The former is significantly affected
only for values of η above 0.6, leading to modifications in the top part of the design which result in a lower
performance at higher frequencies.

In order to obtain designs which are less sensitive to this type of geometric imperfections, a robust
topology optimization approach is adopted. Here, robust topology optimization is applied to account for
deviations from the design geometry maximizing the frequency averaged insertion loss. The interval of the
projection threshold is set to [0.25, 0.75].

Since the insertion loss in figure 14 does not show any sharp variations, a worst case formulation [15, 14]
considering only three cases is expected to give good results. The robust optimization problem is formulated
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ûR [µm/kN]

 

 
0 0.5 1 1.5 2

Figure 10: Real part of the displacement field û
R in the homogeneous halfspace for excitation at (a) 30Hz, (b) 50Hz, and

(c) 70Hz, with the reference design for excitation at (d) 30Hz, (e) 50Hz, and (f) 70Hz, and with the design maximizing the
frequency averaged insertion loss ILxy for excitation at (g) 30Hz, (h) 50Hz, and (i) 70Hz.

as follows:
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Figure 11: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) version of the optimized design
maximizing the insertion loss ILxy at a frequency of 25Hz (figure 4a) and (d) the influence of the projection threshold η on
the insertion loss ILxy at 25Hz.

(a) (b) (c)

η [−]

In
se
rt
io
n
lo
ss

IL
x
y
[d
B
]

0

0 0.25 0.5 0.75 1
−10

10

20

30

40

50

60

(d)

Figure 12: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) version of the optimized design
maximizing the insertion loss ILxy at a frequency of 50Hz (figure 6a) and (d) the influence of the projection threshold η on
the insertion loss ILxy at 50Hz.

where ρ̄de, ρ̄
i
e, and ρ̄

e
e are the dilated (η = η0 −∆η), intermediate (η = η0) and eroded (η = η0 +∆η) volume

densities, respectively, with corresponding stiffness matrices K̂
(

ρ̄de
)

, K̂
(

ρ̄ie
)

, and K̂ (ρ̄ee), corresponding
displacements ûd, ûi, and ûe, and corresponding Lagrange multipliers χd, χi, and χe.

As before, the dilated design corresponds to a value of the Heaviside projection threshold equal to
η = 0.25, the intermediate design to a value η = 0.5, and the eroded design to a value η = 0.75. Figure
15 shows the resulting robust design and insertion loss. The design is rather similar to the deterministic
design in figure 9a and also results in a peak value of the insertion loss at the higher frequencies of the range
considered. The thin connection in the left upper part and the small inclusion in the lower right part of
the deterministic design (figures 9a) have disappeared, however. The changes in geometry lead to a slightly
lower (deterministic) performance for the intermediate design, resulting in a frequency averaged insertion
loss of 13.1 dB instead of 14.2 dB.

The robust design is less sensitive to thickness variations, as can be seen in figure 16, where the frequency
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Figure 13: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) version of the optimized design
maximizing the minimal insertion loss minfn ILxy(fn) for the frequency range 20 − 80Hz (figure 8a) and (d) the influence of
the projection threshold η on the minimal insertion loss minfn ILxy in the frequency range 20− 80Hz.
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Figure 14: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) version of the optimized design
maximizing the frequency averaged insertion loss ILxy for the frequency range 20 − 80Hz (figure 9a) and (d) the influence of
the projection threshold η on the frequency averaged insertion loss ILxy in the frequency range 20− 80Hz.

averaged insertion loss ILxy is plotted as a function of the projection threshold η. There are some small
peaks at η = 0.25, η = 0.5, and η = 0.75, but these are not as distinct as the peak at η = 0.5 in figure 14.
The frequency averaged insertion loss is therefore larger than 11.0 dB over the entire range η = [0.25, 0.75].

Because of manufacturing constraints, it may be difficult to reproduce the design in figure 15. Since the
design is robust to thickness variation, a simplification of the geometry is not expected to significantly affect
the performance of the design. Figure 17 shows a manually simplified design and the corresponding insertion
loss ILxy by intuitively positioning three parallelograms where the stiffened material is concentrated in the
topology optimized design. Comparing figures 15b and 17b shows that the performance of the latter design
is similar to the performance of the design obtained with robust topology optimization. The peak value
of the insertion loss at higher frequencies is lower, and the frequency averaged insertion loss is equal to
9.1 dB instead of 13.1 dB, but the robust design still outperforms the reference design which has a frequency
averaged insertion loss of 3.2 dB.
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Figure 15: (a) Optimized design maximizing ILxy for the frequency range 20 − 80Hz (discretized with 10 frequencies) using
a worst case robust approach, and (b) resulting insertion loss ILxy (Eq. (23)) as a function of the frequency for the reference
design in figure 2a (dash-dotted line) and the optimized design (solid line).
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Figure 16: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) version of the robust optimized
design maximizing the frequency averaged insertion loss ILxy for the frequency range 20 − 80Hz (figure 15a) and (d) the
influence of the projection threshold η on the frequency averaged insertion loss ILxy in the frequency range 20− 80Hz.

6. Conclusion

In this paper, topology optimization is used to design wave barriers for the reduction of elastodynamic
wave transmission. An elastic halfspace is modeled using finite elements, and a PML technique is adopted
to avoid spurious wave reflections at the boundaries. Topology optimization is used to minimize wave
transmission by optimally distributing a stiffer material in a design domain. The insertion loss is used to
quantify the effectiveness of the mitigation measure and is maximized at an output point.

Three cases are considered. First, a harmonic source at a fixed frequency is considered, resulting in a
distribution of the stiffened material that optimally reflects and guides waves away from the surface. At
higher frequencies, high values of the insertion loss are obtained due to interference patterns. Second, for
harmonic sources at a frequency in a given range, the minimal insertion loss is maximized, leading to a
uniform increase of the insertion loss over the frequency range of interest. Third, in the case where the
frequency averaged insertion loss is maximized, the resulting optimized design mainly reduces the insertion

17



(a)

In
se
rt
io
n
lo
ss

IL
x
y
[d
B
]

Frequency [Hz]

−5

0

0

5

10

15

20

20

25

30

40 60 80 100

(b)

Figure 17: (a) Simplified design after a manual post-processing of the optimized design maximizing ILxy for the frequency
range 20 − 80Hz (discretized with 10 frequencies) using a worst case robust approach (figure 15a), and (b) resulting insertion
loss ILxy (Eq. (23)) as a function of the frequency for the reference design in figure 2a (dash-dotted line) and the post-processed
optimized design (solid line).

loss at the highest frequencies, where it is easier to achieve a high insertion loss.
Geometric imperfections can have an important influence on the performance of designs obtained by

topology optimization. The design optimized for the frequency averaged insertion loss is found to be more
sensitive to deviations in design geometry than the one optimized for the minimal insertion loss. A worst
case robust approach is applied to improve the former design. The use of the robust approach makes it
possible to simplify the topology with little deterioration of performance. The resulting design outperforms
the classical rectangular wave barrier.
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A. Derivation of the sensitivities

For the derivation of the sensitivities, the objective function Φ = 10 log

(

ûHLû

ûH
origLûorig

)

is extended by

the conditions of the equilibrium equation given in Eq. (12) (multiplied by the vectors λ and µ):

Φadj = Φ+ λT
(

K̂û+QTχ− p̂
)

+ λH
(

K̂∗û∗ +QTχ∗ − p̂∗

)

+ µTQû+ µHQû∗ (A.1)
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where a star denotes the complex conjugate. The derivatives of the objective function with respect to the
design variable are then computed as:

∂Φadj

∂ρ̄e
=

∂Φ

∂ûR

∂ûR

∂ρ̄e
+

∂Φ

∂ûI

∂ûI
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û+ K̂

∂û
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+QT ∂χ
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+QT ∂χ

∗

∂ρ̄e

)

+ µTQ
∂û

∂ρ̄e
+ µHQ

∂û∗

∂ρ̄e

(A.2)

In this equation, the displacement vectors are decomposed in a real and imaginary part: û = ûR + iûI and
û∗ = ûR − iûI . Rearranging gives:

∂Φadj

∂ρ̄e
= λT ∂K̂

∂ρ̄e
û+ λH ∂K̂

∗

∂ρ̄e
û∗

+

(

∂Φ

∂ûR
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)

∂ûR

∂ρ̄e

+

(

∂Φ

∂ûI
+ iλT K̂− iλHK̂∗ + iµTQ− iµHQ

)

∂ûI
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+
(

λTQT + λHQT
) ∂χR

∂ρ̄e
+
(

iλTQT − iλHQT
) ∂χI
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(A.3)

In order to eliminate the expressions involving the derivatives of û and χ, the bracketed terms must be
equal to zero:

λT K̂+ λHK̂∗ + µTQ+ µHQ = −
∂Φ

∂ûR
(A.4)

iλT K̂− iλHK̂∗ + iµTQ− iµHQ = −
∂Φ

∂ûI
(A.5)

λTQT + λHQT = 0 (A.6)

iλTQT − iλHQT = 0 (A.7)

This leads to the following system of equations:
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K̂ QT

Q 0

]{

λ

µ

}
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1
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∂ûR
− i

∂Φ

∂ûI

)T

0







(A.8)

If λ and µ satisfy this adjoint equation, the sensitivities in Eq. (A.3) become:

∂Φadj

∂ρ̄e
= 2Re

{

λT ∂K̂

∂ρ̄e
û

}

(A.9)

If û and χ satisfy Eq. (12), this means that Φadj = Φ, implying that the expressions on the right hand side
of Eq. (A.9) provide the sensitivities of the actual objective function Φ.
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