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State-of-Charge Estimation for Li-ion Batteries:
A More Accurate Hybrid Approach

George S. Misyris, Student Member, IEEE, Dimitrios I. Doukas, Member, IEEE,
Theofilos A. Papadopoulos, Senior Member, IEEE, Dimitris P. Labridis, Senior Member, IEEE

and Vassilios G. Agelidis, Fellow, IEEE

Abstract—Modeling of battery energy storage systems (BESS)
used for applications, such as electric vehicles and smart grids,
emerged as a necessity over the last decade and depends heavily
on the accurate estimation of battery states and parameters.
Depending on the battery-cell type and operation, a combination
of algorithms is used to identify battery parameters and define
battery states. This paper deals with robust Li-ion batteries
modeling with a specific focus on a hybrid approach for a more
accurate state-of-charge (SOC) estimation. The analysis presents
a detailed description of the state-of-the-art stand-alone SOC
estimation methods and focuses on a hybrid SOC estimation
technique to improve accuracy under varying conditions. Em-
phasis is given on performance improvements of the proposed
hybrid approach compared to the conventional methods, whereas
a thorough experimental validation is presented to evaluate the
accuracy of the proposed method.

Index Terms—Battery energy storage systems (BESS), capacity
estimation, Coulomb Counting, equivalent circuit model (ECM),
model-based methods, parameter identification, state estimation
algorithms, state-of-charge (SOC) estimation.

I. INTRODUCTION

L I-ion batteries have been recently deployed in a wide
range of energy-storage applications, ranging from

energy-type batteries of a few kilowatt-hours in residential
systems to multi-megawatt batteries for the provision of grid
ancillary services [1]. This trend brought to the fore, a series
of requirements in high-energy and high-power applications,
which strongly depend on the accurate state-of-charge (SOC)
estimation [2]. Accurate SOC estimation contributes to better
protected battery packs against over-charging/discharging [3].
Failure to estimate SOC accurately may result in a reduction of
the power-output capability and the whole energy management
system might be lowered severely, as discussed in [4].

Based on the literature, SOC is defined as the present battery
capacity and usually is expressed as a percentage of a reference
capacity [5]. The preferred SOC reference can be either the
rated capacity of a new battery or more often the current
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maximum capacity of the battery. Several approaches have
been proposed regarding SOC estimation of Li-ion batteries.
Among them the Coulomb Counting (CC) [3], [6], the so-
called open circuit voltage (OCV)-based methods [7], [8] and
the model-based methods [9] have mainly drawn the attention
of researchers over the last decades.

Model-based methods provide in the long term robust results
and are more accurate compared to CC and OCV-based meth-
ods [5]. However, they cannot compete the accuracy of the CC
method in the short-term or of the OCV-based approaches after
a long relaxation period of the battery [10]. To that end, the
SOC estimation methods can be categorized in terms of the es-
timation model/algorithm, advantages, drawbacks, estimation
accuracy and computational burden. More recently, in [11] and
[12], SOC estimation alternatives have been summarized and
classified based on different criteria.

A number of hybrid approaches related to SOC estimation
can be found in the literature as well. In [13], particle filter
and multi-models data fusion methodologies are combined
for a robust real-time SOC estimation tool that outperforms
stand-alone model-based techniques. Moreover, in [14], an
alternative approach that is based on iterated extended Kalman
particle filter (IEKPF) is proposed, achieving SOC estimation
results of high accuracy.

The scope of this paper is to provide a holistic modeling
approach for Li-ion batteries, especially for online applica-
tions. The detailed mathematical formulation for all modeling
parts is described, whereas focus is given on the SOC estima-
tion module. Regarding parameter identification and capacity
estimation, the Fast Upper-triangular and Diagonal Recursive
Least Squares (FUDRLS) with varying forgetting factors [15]
and the Approximate Weighted Total Least Squares (AWTLS)
algorithms are used [16]. Regarding the SOC estimation, CC,
Linear Kalman Filter (LKF) and OCV-based methods are
utilized, either stand-alone or combined to hybrid setups.

The contribution of this paper is to propose a new hy-
brid accurate SOC estimation method by combining different
methods presented in the literature. The proposed solution
ensures safe battery operation within the acceptable SOC
limits and prolong its lifetime. Different estimation techniques
advantages are combined towards SOC error minimization,
limiting the computational burden and thus making the pro-
posed method suitable for online applications. A detailed
mathematical formulation for the SOC estimation module and
the other modeling parts is presented. Extensive experimental
validation, based on different setups and operating conditions
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is included to evaluate the accuracy of the proposed method.
The paper is structured as follows: Section II focuses on

the main phenomena that need to be taken into consideration
for an accurate Li-ion battery modeling. Section III presents
the mathematical formulation of the utilized algorithms. In
Section IV, the main contribution of the paper, i.e. a more
accurate hybrid SOC estimation solution, is presented. In Sec-
tion V, results are summarized together with the experimental
validation, whereas information about the case studies and the
simulation setup are given. Section VI concludes the paper.

II. BATTERY MODEL

Accurate battery modeling requires the incorporation of a
number of phenomena, the most important of which are:

• The OCV-SOC relationship.
• The Hysteresis effect.
• Temperature and C-Rate impact.
• Capacity degradation.
A thorough discussion on these phenomena and their impli-

cation on battery modeling is presented in [17] and the need to
identify the trade-off between good model accuracy and low
complexity is addressed. Therefore, for brevity, only a brief
presentation of them is given.
• The non-linear relationship between OCV and SOC is de-

scribed by a piece-wise linear representation of each operation
point of the battery [18] as expressed by (1)

VOC = b0 + b1 · SOC (1)

where b0 is the y-intercept and b1 is the slope of the linear
approximation.
• The hysteresis effect is expressed as voltage Vh in (2) and

is incorporated as an additional state in the battery state-space
model [19]

dVh
dt

= −ρ · (η · icell− υ ·SD) · [Vhmax + sign(icell) · Vh] (2)

where υ is a self-discharge multiplier for hysteresis expression,
SD is the self-discharge rate, η is the coulombic efficiency,
Vhmax is the maximum hysteresis voltage, ρ is the hysteresis
parameter, which represents the convergence rate and icell is
the current flowing through the battery cell. In Li-ion batteries
the self discharge is very low, therefore it can be ignored to
reduce the model complexity.
• Temperature and C-rate impact are included during the

real-time operation of the battery, by means of online param-
eter identification. Since battery parameters can vary due to
temperature and C-rate impact as much as 800% [20], the SOC
estimation can be affected significantly if they are neglected.
• The capacity degradation modeling is carried out using

the AWTLS method [5]. It is an important parameter for SOC
estimation using the CC method, thus it must be specified
accurately.

Finally, the selection of the appropriate equivalent circuit
model (ECM) is important, especially for online studies. The
battery ECM of Fig. 1 is selected to simulate the battery
operation and its electrical components are calculated using
the FUDRLS method.

i
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Fig. 1: Generic Li-ion battery cell equivalent circuit.

An increased number of RC branches may lead to higher
accuracy, while on the other hand it will also increase the
model complexity. Therefore, the number of the selected
RC components, is a trade-off between model accuracy and
complexity. Although in most cases, two RC branches are
considered [21], it is proved that a single RC can result in
sufficiently accurate results [9] if the excitation of the system
is high [22], while the complexity is minimized. Further details
on the state-space model of the ECM of Fig. 1 can be found
in [5].

III. MATHEMATICAL FORMULATION

A. Parameter Identification

For the ECM of Fig. 1 the system transfer function equals:

Y(s)− b0
U(s)

=
R0s

2 + ( b1QR
+ 1

C1
+ R0

R1C1QR
)s+ b1

R1C1QR

s(s+ 1
R1C1

)
(3)

where R0, R1, C1 and QR are the ECM parameters illustrated
in Fig. 1. QR is the nominal capacity of battery pack/cell.
Therefore, by using the voltage and current responses, battery
parameters can be identified as well as their relation to aging
and temperature, since the voltage output and the current
includes this information.

Using the bi-linear transformation ( s → 2
T
z−1
z+1 ), we get

the discrete transfer function (4) regarding sample time Ts

Y(z
−1)− b0

U(z−1)
=
x3 + x4z

−1 + x5z
−2

1 + x1z−1 + x2z−2
(4)

The coefficients of (4) are estimated by means of FUDRLS
with variable forgetting factor (VFF) λ, using an alternative
matrix form of the Bierman’s equations in triangularization
form. Factor λ is updated by means of (5)–(6) based on [15].

λ(k + 1) = 1− v(k)

σ2
0 ·N0

, λmin 6 λ 6 λmax (5)

v(k) = δ · v(k − 1) + (1− δ) · e(k)2 (6)

where δ is a weighting factor varying between λmin and λmax,
e(k) is the prediction error, v(k) is time-average expressions
of e(k)2 and σ2

0 is the mean value of the error variance. N0

is a constant that represents the system’s memory.
Since the coefficients have been determined, the ECM

parameters are calculated at each Ts based on (7)–(10).

R0 = −x3 (7)



0885-8969 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2018.2861994, IEEE
Transactions on Energy Conversion

SUBMITTED FOR REVIEW IN IEEE TRANSACTIONS ON ENERGY CONVERSION 3

R1 =
x2x4 + x3x

2
2 + x5

(x2 − 1)2
(8)

τ = − Ts
lnx2

(9)

C1 =
τ

R1
(10)

Parameters identifiability and persistence of excitation are
critical when identifying the ECM parameters. FUDRLS was
chosen to address both issues and based on the comparative
analysis presented in [23]. Note, that the FUDRLS algorithm is
used to update R0, R1 and C1, whereas b0 and b1 are updated
based only on the SOC at a given time t.

B. SOC Estimation

SOC is an indicator of the present battery capacity and
is used to regulate the charging/discharging process, while
ensuring safe operation. Therefore, accurate SOC estimation
is crucial for battery management systems (BMS). The main
issues that arise in SOC estimation are the voltage inverse
mapping, uncertainties in models, mapping nonlinearity, cycle-
to-cycle characteristics variations, and measurement errors
[24]. The typical methods for online SOC estimation are:

1) CC method: This method is based on constant current
measurements by computing the accumulated charge to es-
timate the SOC. This method is easy-to-implement and is
suitable for online applications, thus is applied to several
BMSs. However, CC method suffers from a long-term drift,
due to measurement errors related to device sensitivity as well
as errors depending on the integration process (numerical,
trapeziodal etc.) [3]. Besides drifting, CC uses the previously
measured capacity to calculate SOC, so if the battery capacity
fades due to degradation, this may cause an additional SOC
estimation error. Moreover, when the initial point of SOC is
not known then the error might persist or even increase during
battery operation. To improve the accuracy of the method, the
SOC must be re-calibrated on a regular basis, such as resetting
the SOC to 100 % when the charger determines that the battery
is fully charged or taking OCV after relaxation period. The CC
method formulation is given by:

SOC(t2) = SOC(t1) +

∫ t2

t1

η · i(t)
3600QR

dt (11)

where η is the coulombic efficiency, i(t) the current at time t,
QR the capacity and SOC(t1), SOC(t2) the SOC at t1, t2.

2) Model-based methods: Model-based methods use an
electrical or electrochemical ECM to design an observer for
real-time SOC estimation, presenting higher computational
complexity than methods like CC. Most commonly used
methods in this category are Kalman filter and its variants [25],
[26], sliding-mode observer [27], smooth variable structure
filter [28] to mention a few. These methods require accurate
ECM parameters identification, which vary with temperature,
aging and SOC of the battery cell. A state-space model is used
to describe the battery system operation as shown in (12), in

which the hysteresis effect is simulated by adding a hysteresis
voltage as a state.

ẋ︷ ︸︸ ︷ ˙SOC
˙VRC

V̇h

 =

A︷ ︸︸ ︷ 1 0 0

0 e
− 1

R1C1 0

0 0 e−ρ|iL|Ts


x︷ ︸︸ ︷ SOC

VRC

Vh



+

B︷ ︸︸ ︷
1
QR

0

R1(1− e
− 1

R1C1 ) 0

0 (e−ρ|iL|Ts − 1)sign(iL)


u︷ ︸︸ ︷[
iL

Vhmax

]

VT︸︷︷︸
y

=
[
b1 1 1

]
︸ ︷︷ ︸

C

 SOC

VRC

Vh


︸ ︷︷ ︸

x

+
[
R0 0

]
︸ ︷︷ ︸

D

[
iL

Vhmax

]
︸ ︷︷ ︸

u

+b0

(12)
The state variables of the system are the SOC and the

voltage drop on the RC branch. The unknown variables of
the system are R0, R1 and C1, while the known ones are b1,
b0 and the nominal capacity QR that are extracted from the
OCV-SOC curve and laboratory measurements, respectively.

Moreover, it is noteworthy that for Li-ion batteries that do
not suffer from the hysteresis effect, a simpler model-based
method that makes use of LKF and consists of a two-state-
space model, as in [5], can be used.

3) OCV-based methods: Assuming that the output voltage
of Li-ion battery equals to the OCV after long resting period,
OCV can be calculated. Therefore, using look-up tables of
OCV as a function of temperature and SOC, the battery SOC
can be estimated. This method is easy-to-implement either in
case the battery C-Rate is very small, since the relaxation
effect is very small [7], or after long resting periods between
cycling in order to reach balance. Although it is a simple
method offering high precision, its main drawback is the need
for long time intervals to reach an equilibrium. The time to
reach from an operating state to a stable state depends on the
SOC states and temperature. Experiments conducted at low
temperatures revealed that LiFePO4 cell need more than two
hours to reach equilibrium. Thus, such methods are applicable
only when the battery is not operating for long periods.

IV. PROPOSED HYBRID METHOD ALGORITHM

In this section, all modeling parts of the proposed technique
are presented and a hybrid solution for SOC estimation is
proposed. Modeling advantages and limitations of parts of the
process are analyzed having as a goal to minimize the SOC-
estimation error. Special emphasis is given on the algorithms
operation and their interactions.

The proposed hybrid scheme illustrated in Fig. 2 and model
inputs, i.e. battery current and voltage signals are obtained
from the corresponding sensors. The remaining battery capac-
ity is estimated by applying AWTLS and is used to update
the capacity both in the model-based and CC methods. ECM
parameters are identified in order to prevent any abnormal
operation of Li-ion battery.
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Fig. 2: Flow-chart representation of the proposed method.

SOC estimation is based on CC, model- and OCV-based
methods and it is structured according to the following steps:

• Step 1. Short-term SOC estimation: use of CC.
• Step 2. Long-term SOC estimation: use of model-based

methods, e.g. LKF to recalibrate SOC and solve the long-
term drifting problem (for operation that exceeds tA).

• Step 3. SOC recalibration based on OCV-method for
battery being idle for more than tB.

Note, that tA and tB refer to the timestamps at which the
model- and OCV-based methods are activated, respectively.

A. Short-term and Long-term SOC Estimation

As mentioned above, regarding SOC estimation with model-
based methods, a combination of algorithms, e.g. FUDRLS
and LKF needs to be applied. Consequently, the computa-
tional burden -especially for online applications- increases.
Therefore, LKF can be used either after battery relaxation so
that SOC estimation converges to its actual value or every
tA in order to solve the long-drifting problem of the CC
method. Considering that by using the LKF a convergence to
the actual value of SOC can be achieved within 2.5 minutes,
a combination of a model-based solution and CC is proposed
after an idle period of a battery and for three minutes. The
convergence time depends on a number of parameters, such as
the battery models’ complexity, gains, and selected covariance
matrices for difference applications. Therefore, although the
proposed time is not expected to have a negative impact on
the SOC initial error, such values need to be selected carefully.
Since LKF attains SOC estimation, a trigger is used in order
the corrected SOC, which is derived from the model-based
method, to update the initial SOC of CC. Thus, the estimation
error introduced by CC to the initial SOC value is eliminated.

LKF-based SOC estimation is almost independent on the
capacity degradation, considering that battery-cells assumed as
dead when the capacity has faded 20 % from its nominal value
[5]. The reason is that the solution of the Riccati equation in a
time invariant system converges to steady state co-variance if
the matrices A, C of (12) are observable. Note, that the SOC
estimation accuracy depends on the parameter identification
and hysteresis voltage estimation.

Afterwards, CC is utilized for SOC estimation in order to
benefit from the lowest possible computational burden. As
mentioned in Section III, CC offers great accuracy and very
low estimation error during a period of time before the long-
term drift problem appears. Since, the time at which this
phenomenon appears is not well determined in the literature,
LKF is reactivated at every tA to assist SOC convergence to
its actual value. Reactivation of LKF has been decided every
60 mins (tA = 60 min) after a trial and error approach, since
it depends on the BESS technology and is operation specific.
Typical values for tA are > 30 mins. As highlighted in [17],
LKF can be used not only for robust SOC estimation but also
for auto-correction of the SOC estimation process as well, even
under extreme measurement errors. Therefore, the periodic
utilization of LKF is proposed as a solution that ensures
accurate SOC estimation but does not burden the operation.

Note, that LKF introduces high estimation error for battery
operation within the areas that OCV-SOC curve presents high
non-linearity, i.e., before 15 % and after 85 % of SOC. Thus,
for battery operation in these areas, the CC method should be
used for SOC estimation.

B. SOC Recalibration

Since an OCV-based method is very accurate when the
battery is not operating for long time periods (tB usually
exceeds 45 mins and depends on battery type), it can be
used for SOC recalibration. When the battery does not operate
on-load for more than tB, voltage equals to OCV and by
using the OCV-SOC look-up tables, the SOC can be extracted.
Therefore, the initial point of SOC in CC method can be
updated. In this way the initial SOC point in CC method is
known and the estimation problem that CC adds to the overall
model is overcome. In case the battery is idle for a period
of time shorter than tB, LKF is preferred to implement SOC
estimation for on-load battery operation [29].

C. Interaction with capacity estimation CC & AWTLS

To estimate capacity degradation, an AWTLS algorithm is
used [16]. The algorithm identifies the slope of the equation
y = QRx̂, where x = SOC(t2) − SOC(t1) and y =∫ t1
t1

ηi(t)
3600dt. It is assumed that η = 1 at all current values and

temperature within normal operating conditions. Literature [5],
[16] indicates that AWTLS offers accurate results regarding
the remaining capacity of the battery. Note, that the selected
algorithm for the model-based method is independent of the
capacity degradation [5]. Therefore, the SOC step that is used
in AWTLS algorithm is updated by the estimated SOC of LKF.

AWTLS is considered as an accurate capacity estimation
method, since the estimation error is in the range of 5 % or
lower [16]. AWTLS requires only simple mathematical opera-
tions, is computed in a recursive manner and its coefficients are
updated only when additional data points become available.
The method is superior to the other TLS methods since it
allows individual weighting on SOC and current data points,
it gives bounded estimation error and is robust to different
operating conditions. Furthermore, CC typically introduces an
estimation error, due to the strong relation to the remaining
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capacity of the battery as it can be seen in (11). Therefore,
the capacity needs to be estimated and systematically updated
in order to improve the accuracy of the CC method and also
overcome the limitations of both algorithms.

The main drawback of AWTLS, for online capacity esti-
mation, is the introduction of a fluctuation when it comes to
update the remaining capacity. Assuming that the results of
AWTLS are not filtered, the SOC estimation error will be
increased, since the capacity fluctuation will add noise to the
SOC estimation results. Therefore, a moving average (MA)
filter is suggested to calculate the average value of the data
during a specific time window. The window is of fixed length
and slides by one sample as each new measurement point is
received. At each step the filter calculates the new value.

QR,rem =
1

M

∫ t+M

t

QRdt (13)

where QR,rem is the MA-smoothed estimated capacity, QR is
the estimated capacity derived from AWTLS and M (M = 20)
is the length of the time window. The value of M has been
chosen after conducting a trial and error approach. Having
estimated QR,rem, the nominal capacity value used in CC
formulation of (11) is updated and replaces QR. As a result
CC becomes more accurate during battery lifetime and does
not increase the error when there is a significant capacity
degradation.

Note, that the algorithms for AWTLS and FUDRLS are
presented in detail, i.e. mathematical expressions, coefficients
and initialization, in [16] and [15], respectively.

V. RESULTS & EXPERIMENTAL VALIDATION

In this section, simulation results as well as experimental
validation for all modeling parts, are provided. Emphasis
is given on the SOC estimation results and the improved
accuracy that can be achieved by the proposed hybrid solution
when compared to the conventional SOC estimation methods.
Extreme operating conditions, such as high C-Rate and tem-
perature, were not examined in this work although they are
expected to affect the accuracy of SOC estimation, since in
such extraordinary cases the BMS is expected to intervene
providing protection for the equipment.

A. Simulation Setup & Case Studies

To verify the accuracy and efficiency of the proposed model
four test setups, i.e., Test 1, 2, 3 and 4 were carried out.
For all tests, measurements of voltage V and current I were
recorded. Using the measured V and I responses the battery
states of (12) are estimated. Tests were performed at varying
temperatures and different C-Rates while the sample time was
selected equal to 0.5 s [5]. The LifeTest SBT0550 battery
cell tester of PEC Corporation, offering very accurate current
measurements at a rate of 1 ms, was used. The current
measurement was used to integrate current for CC-based SOC
estimation and served as a reference for SOC estimation.

1) Test 1: The first test case, refers to the supply of an
electric-vehicle profile. A Li-ion battery cell with LTO/Mixed
Oxide chemistry is used. The load profile in terms of measured
current and voltage is shown in Figs. 3a and 3b, respectively.
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(a) Load-profile (current) for Test 1.
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(b) Load-profile (voltage) for Test 1.

Fig. 3: Load-profile (current & voltage) for Test 1.

2) Test 2: A dynamic load profile is used to examine
the SOC estimation accuracy, while cycling Li-ion in a mid-
range of SOC with high C-rates. A Li-ion battery cell with
Graphite/LMO-Spinel chemistry is operated and the measured
current and voltage profiles are presented in Figs. 4a and 4b.
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(a) Load-profile (current) for Test 2.
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(b) Load-profile (voltage) for Test 2.

Fig. 4: Load-profile (current & voltage) for Test 2.

3) Test 3: Figures 5a and 5b refer to the current and voltage
profiles of a pulse test, in which 10 s and 30 s pulses are
repeated at 10% SOC increments. The same LMO battery cell
from Test 2 was used. A complete charge and discharge of the
battery is performed to validate the performance of the hybrid
method. After any discharging step of 10% of SOC, battery
remains idle for 45 mins. As a result, the OCV-based method
is triggered to recalibrate the SOC.

4) Test 4: Figures 6a and 6b correspond to the current
and voltage profile of a test which was performed to validate
the effect of the capacity fade on the SOC estimation. The
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Fig. 5: Load-profile (current & voltage) for Test 3.
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Fig. 6: Load-profile (current & voltage) for Test 4.

LMO battery used for Tests 2 and 3 was also adopted. The
experiment consists of a complete discharge and charge of the
battery, gradual discharge by 10 % of SOC until full discharge
of the battery, step-by-step charge by 10 % of SOC until full
charge and cycling of the battery between 80 % and 20 % of
SOC with a 3C C-Rate.

B. Parameter Identification & Capacity Estimation

Concerning parameter identification, the results of R0, R1

and C1 for Test 1 can be found in [23], while the respective
ones for Test 2 are summarized in Fig. 7. For brevity, results
for Tests 3 and 4 are not presented. As illustrated in [15],
[23], using FUDRLS algorithm for the parameter identification
improves SOC estimation accuracy of model-based methods.
This occurs due to the fact that FUDRLS provides fast
convergence to the real values. As a result by updating the
internal parameters of the state-space model used in LKF, the
accuracy of the model based method increases.

The results for the capacity estimation of the LMO battery
cell can be seen in Fig. 8. The rms estimation error is
approximately 2%. As for the LTO battery cell due to the

0 1000 2000 3000 4000 5000 6000 7000 8000

1.973

1.974

1.975

1.976

x 10
−3

Time t (s)

R
 0

 (
Ω

)

(a) Battery cell - R0 identification.

0 1000 2000 3000 4000 5000 6000 7000 8000
8.2

8.4

8.6

8.8

9

9.2

x 10
−4

Time t (s)

R
 1

 (
Ω

)

(b) Battery cell - R1 identification.

0 1000 2000 3000 4000 5000 6000 7000 8000
270

280

290

300

310

Time t (s)

C
1
 (

F
)

(c) Battery cell - C1 identification.

Fig. 7: Parameter identification with FUDRLS for Test 2.
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Fig. 8: Battery cell - capacity estimation.

cell chemistry no capacity drop during the experiment is
observed. The capacity remained constant and for brevity is
not presented. Capacity estimation results can be found in
[5]. Results that last up to 20000 s are presented due to the
battery type. An experiment that lasts significantly longer than
expected is needed in order capacity degradation to be evident.

Although the 0.4 Ah capacity drop - from 11.6 to 11.2 Ah -
looks negligible, such a drop within only nine operation cycles
corresponds to a 2.6 % drop of the nominal battery capacity,
which is significant when considering that there are applica-
tions for which a 20 % drop could lead to battery replacement.
To achieve such an intense drop, extreme charging/discharging
conditions within a range of -4C to 4C C-Rates were imposed
in the experiments.
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(a) Cycle1 - SOC estimation.
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(c) Cycle1 - rms error.
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(d) Cycle9 - SOC estimation.
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(e) Cycle9 - SOC estimation error.
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(f) Cycle9 - rms error.

Fig. 9: Test 1: Summarized SOC estimation results for Cycle1 and Cycle9.

C. Short-term and Long-term SOC Estimation

SOC reference is extracted by using the CC method with a
sample time equal to 1 ms, to minimize the SOC estimation
error. Details on SOC reference extraction can be found in
[17]. The efficiency of the hybrid model is examined while the
battery used for Test 1 completes 9 cycles of the load profile
that is presented in Figs. 3a and 3b and while the battery
used for Test 2 completes 16 cycles of the load profile that is
presented in Figs. 4a and 4b, respectively.

In Fig. 9, results regarding SOC estimation and the rms
error, for Test 1, are summarized. Results considering the first
and ninth cycle are presented in Figs. 9a–9c and Figs. 9d–
9f, respectively. Likewise in Fig. 10, results for Test 2 are
summarized, for the first cycle (Figs. 10a–10c) or cycle 16
(Figs. 10d–10f) of the respective battery. To perform a SOC
estimation error assessment, the root mean square (RMS) error
metric is deployed. RMS error is a quadratic scoring rule
that measures the average magnitude based on the following
formulation:

RMSerror =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (14)

where yj is the reference and ŷj the estimated value and n
the number of sample data.

SOC estimation accuracy comparative results, between the
CC method, LKF and the proposed hybrid implementation,
are illustrated in the bar-graphs in terms of the rms error.
As expected, at the beginning of both batteries cycling the
rms error in case of the CC method is the lowest, i.e. in the
range of approximately 1 %. Therefore, in Figs. 9a, 9b, 10a
and 10b, CC and Hybrid curves overlap. However, after some
cycles, the estimation accuracy of the CC method decreases,

presenting an rms error of approximately 4%, making it
difficult to track the battery SOC correctly.

On the other hand, although model-based methods present
higher SOC estimation error compared to the CC method at
the beginning of the batteries cycling, they can track SOC
more accurately after a few cycles. From Figs. 9f and 10f,
it is evident that the SOC estimation of the LKF method
improves with cycling operating time and becomes more
accurate compared to the CC method when more cycles are
reached.

As presented in Figs. 9 and 10, exploitation of both methods
advantages by means of the hybrid implementation (blue
color) can lead to more accurate SOC estimation over battery
lifetime. The rms SOC estimation error of the proposed hybrid
solution is analyzed in Figs. 9c, 9f, 10c and 10f. It is illustrated
that at the beginning of cycling, results are close to the corre-
sponding of the CC method, while for higher cycling times, the
proposed solution outperforms the others. As expected, since
the SOC initialization is very accurate and contains minimum
error, in short-term, CC outperforms model-based alternatives,
whereas the opposite behavior occurs for long-term. Note that
the noise level in measurements of both Figs. 9 and 10, is
typically four orders of magnitude smaller than the reference
current value, therefore it cannot be seen in the plots.

In Fig. 11, the influence of the remaining capacity update
on the SOC estimation, in case of Test 2, is documented.
Note, that SOC estimation is conducted using the proposed
method. Given a 3.2 % battery capacity degradation, the SOC
estimation is more accurate by 2.14 % when the remaining
capacity is updated. This difference between SOC estimation
results with or without updating of the remaining capacity will
be even higher if battery deterioration reaches 20 %, i.e. the
life expectancy of a Li-ion battery.
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(c) Cycle1 - rms error.
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(d) Cycle16 - SOC estimation.
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Fig. 10: Test 2: Summarized SOC estimation results for Cycle1 and Cycle16.

In Figs. 12a and 12b, SOC estimation results regarding
Test 4 are presented, to highlight the effects of capacity fade
on SOC estimation. Fig. 12a refers to capacity estimation.
Considering a linear interpolation from 13.754 to 11.818 Ahs,
the estimation error is < 5% for the time range between
0 and 3.5 · 105 s. However, as the algorithm gets more
information for the ∆Q and ∆SOC (update of the value), the
AWTLS algorithm performs better and the estimation accuracy
increases. Thus, the estimation error between 3.5 · 105 and
7.25 · 105 s is reduced to less than 2.5 %.

50 100 150 200 250 300 350 400 450 500 550 600
0.65

0.66

0.67

0.68

0.69

Time t (s)

S
O

C
 (

p
u
)

 

 
Proposed

Proposed without Capacity Update

REF

Fig. 11: SOC estimation and update of the remaining capacity.

In Fig. 12b, SOC estimation compared to reference SOC is
presented for the last charging and discharging pulse, before
the end of the experiment. A comparison between the scheme
in which AWTLS is used to update the capacity of the battery
of the hybrid model and the scheme in which AWTLS is not
utilized is depicted. The estimation performance of the hybrid
model is improved when the remaining capacity is updated.
The error for the proposed approach is 2.32 %, while in case
the capacity is not updated equals 10.87 %.

0 1 2 3 4 5 6 7 8

x 10
5

12

12.5

13

13.5

Time t (s)

C
ap

ac
it

y
 (

A
h
) 

 

 
Capacity Estimation

Linear Approximation

(a) Capacity estimation for Test 4.

7.219 7.22 7.221 7.222 7.223 7.224 7.225 7.226 7.227 7.228 7.229 7.23

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time t (s)

S
O

C
 (

p
u
)

 

 

Proposed

Proposed without capacity update

REF

RMS error:
With Update of Capacity:       2.32%
Without Update of Capacity: 10.87%

(b) SOC estimation and update of the remaining capacity.

Fig. 12: Test 4: Capacity and SOC estimation results.

A literature review [30]–[33] on alternative algorithms for
online capacity estimation revealed the results that are sum-
marized in Table I and proved that the proposed methodology
presents highly accurate capacity estimation results as well.

When a model-based method is used for SOC estimation an
error in the range of 2-3 % is always expected and depends on
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TABLE I: Capacity Estimation Algorithms’ Evaluation

Ref. Algorithm Cell type Error
[30] 2 EKFs Li-NMC 3.00% (max)
[31] Double EKF Li-ion 5.00% (max)
[32] Multi-scale EKF LiPB 3.93% (rms)
[33] Neural Network Ni-MH 2.67% (max)

the non-linear electrochemical dynamics of the battery cells.
Moreover, there are several factors that affect the accuracy of
the CC method including temperature, battery history (number
of cycles, depth of discharge during the cycles), discharge
current etc., whereas the estimation error of CC is increasing
after 10 cycles. If there are no corrective actions, the CC-
based SOC estimation error can reach 9 %. To that end and
in order to reduce that estimation error, the proposed hybrid
combination can be utilized.

D. SOC Recalibration

As already mentioned, both model-based [17] and OCV-
based methods [29] can be utilized for SOC recalibration
and to maintain SOC within accepted estimation error lim-
its. Therefore, based on the proposed implementation, their
periodic triggering can assist to more accurate results, while
not affecting the computational burden significantly.

Under normal operating conditions, i.e. for temperatures
higher than 10 ◦C, the OCV-SOC relationship is static over
battery lifetime and does not vary significantly. Therefore, after
a long period during which battery remains idle equal to tB, a
trigger can be used to recalibrate SOC and minimize the SOC
estimation error. Test 3 can be used, since the battery remains
idle for a long period after each discharge step, i.e. for tB =
45 mins. The impact of the OCV-based method would have
been more significant in case idle periods were even longer.

In Fig. 13, full-range (from 0 to 100%) SOC estimation
results are summarized. More specifically, Fig. 13a illustrates
how the proposed hybrid implementation tracks more accu-
rately than the stand-alone methods the reference SOC while
considering a 20 % SOC initialization error. Moreover Figs.
13b and 13c indicate the timestamps at which either the model-
based or the OCV-based methods were triggered.

First, it is clear that there is a high SOC estimation error
above 0.9 and below 0.1 of SOC that is caused by the
high non-linearity and the low excitation that the battery
system presents within these regions. As a result, the model-
based method becomes less accurate, and thus the estimation
accuracy of the hybrid method is negatively affected. However,
between 0.1 and 0.9 of SOC, the estimation accuracy of
the hybrid method is high due to the better performance
of the model-based method. Moreover, since the OCV-based
method is triggered, the estimation error becomes almost zero.
Especially within the range of 0.35 and 0.75 of SOC, where
the rms estimation error of the model-based method is below
3 %, the estimation accuracy of the hybrid method is well
improved. As a result, it is proposed to trigger the model-based
method when the range of SOC is within such values. Finally,
activation of the OCV-based method when the battery is idle
for a long period, results in limiting the estimation error to
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Fig. 13: Test 3: Summarized SOC estimation results.

less than 1 %. The time interval, in which the battery remains
idle, until the OCV-based method is triggered depends on the
battery technology (how much time is needed for the OCV to
become equal to the voltage, when the battery is idle).

Note also, that the CC method never converges to the actual
SOC value and presents a persistent estimation error. On the
other hand, the model-based method can track the actual SOC
value a few seconds after the simulation starts. This leads to
the error correction, achieved by the hybrid method (in the first
seconds). Then, when the OCV-based method is activated the
estimation error is further reduced to less than 1 %. During idle
periods, the OCV-based is triggered with a constant frequency,
since the idle periods are of equal length.

VI. DISCUSSION - EXTENSION TO BATTERY PACKS

The proposed solution can be also applied to battery packs
connected either in series or in parallel. Battery cells/packs are
simulated as black boxes and especially in the case of model-
based methods application, the measured voltage and current
signals are used as inputs to estimate the SOC and the battery
capacity to identify the model parameters.

Compared to cell-level modeling, the main difference in
battery pack level modeling refers to the application of model-
based methods for SOC estimation and mainly on the extrac-
tion of the OCV-SOC curve. More specifically, in case of a
battery pack more SOC breakpoints are required, since more
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nonlinear parts through the OCV-SOC curve exist that need
to be linearized. Therefore, the modeling accuracy depends
significantly on the extraction of the OCV-SOC curve and the
selection of the SOC breakpoints.

Note, that the proposed method can be applied to each cell
of a battery pack in case voltage and current sensors exist,
by extracting the OCV-SOC curve for each individual cell.
Although, the application of the proposed method to each cell
might increase the SOC estimation accuracy, it will also affect
the computational burden, accordingly. Since computational
burden is always an issue with real-time applications, the
impact of the hybrid approach to that end was evaluated
for Test 3 by examining the computational time as well as
the CPU usage. Three simulations have been conducted for
SOC estimation, namely, CC, model-based and the hybrid
method and their comparison results are summarized in Table
II, proving that the proposed approach does not result in
unnecessary increase of computational burden.

TABLE II: Computational Burden Evaluation

Method CPU usage increase (%) Simulation time (s)
CC 11 0.56

Model-based 19 1.24
Hybrid 17 1.08

For longer battery operation periods, the performance im-
provements of the proposed scheme will be far more evident.

VII. CONCLUSIONS

In this paper, an improved solution for the SOC estima-
tion process of Li-ion batteries is presented. The proposed
hybrid approach combines the advantages of three different
SOC estimation approaches and provides more accurate SOC
estimation.

The proposed approach can be used for real-time applica-
tions of Li-ion batteries that require fast actions and accurate
SOC estimation. Although in such applications, usually CC
method is utilized because of its short-term accuracy and its
simplicity, the proposed hybrid solution can be used instead, in
order to provide accurate results over battery lifetime without
increasing the computational burden as model-based solutions
like LKF do, when operated for both short and long term
operation. Each stand-alone approach contributes significantly
depending on the need for short- or long-term SOC estimation
as well as on the need for SOC recalibration. Moreover, the
proposed solution can be attractive for extended battery packs,
where SOC estimation is even more important than in case
of a simple battery cell. Finally, it is noteworthy that the
proposed hybrid methodology is expandable and non-specific,
since alternative algorithms and different ECM with more RC
branches can be considered.

For future work an intelligent machine learning technique
can be developed in order to control the recalibration of SOC
initial point (moment of triggering) that occurs when OCV-
based and model-based methods are used in order to minimize
the estimation error. The impact of the time parameters tA and
tB on the computational burden and the estimation accuracy

can also be assessed. Finally, additional research on techno-
economic level can be conducted to point out what are the
implications with the computational burden and what are
the economical benefits when a hybrid approach for SOC
estimation is deployed.
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