MAY **17-20** 2021

Better Buildings® U.S. DEPARTMENT OF ENERGY

SUMMERSHIP SYMPOSIUM

Learn more: betterbuildingssolutioncenter.energy.gov/summit

Best of the Betters: 2021 Better Project Presentations

Tuesday, May 18, 2021 2:00-3:15 pm ET

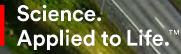
Eli Levine U.S. Department of Energy

Agenda

Video Presentations

- 3M Prasath Vinayagamoorthy (Senior Energy Engineer) & Brian Mohr (Maintenance Engineer)
- 2. Flowers Foods Margaret Ann Marsh (VP Environmental & Sustainability)
- 3. Graham Packaging Scott Christensen (Operations Engineering Manager)
- 4. Lockheed Martin Michael Stein (Facilities Energy Manager)
- 5. Nissan North America Brett Rasmussen (Senior Manufacturing Engineer)
- 6. Owens Corning Don Scarsella (Energy Program Manager)
- 7. SugarCreek Packing Co. Todd Jackson (Maintenance Administrator)
- 8. Tyson Foods Alex Floyd (Senior Manager, Sustainability)

Q&A Session



3M – for implementing a real-time, battery-less steam trap cloud monitoring system that saves 10.6 million pounds of steam per year

Prasath Vinayagamoorthy (Senior Energy Engineer) & Brian Mohr (Maintenance Engineer)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Energy Management

Real-time, batteryless, cloud steam trap monitoring system

Prasath Vinayagamoorthy Brian Mohr

May 18, 2021

3M Company

Since 1902...

Our Vision

3M Technology Advancing Every Company 3M Products Enhancing Every Home 3M Innovation Improving Every Life

Corporate Sustainability Goals

Raw Materials

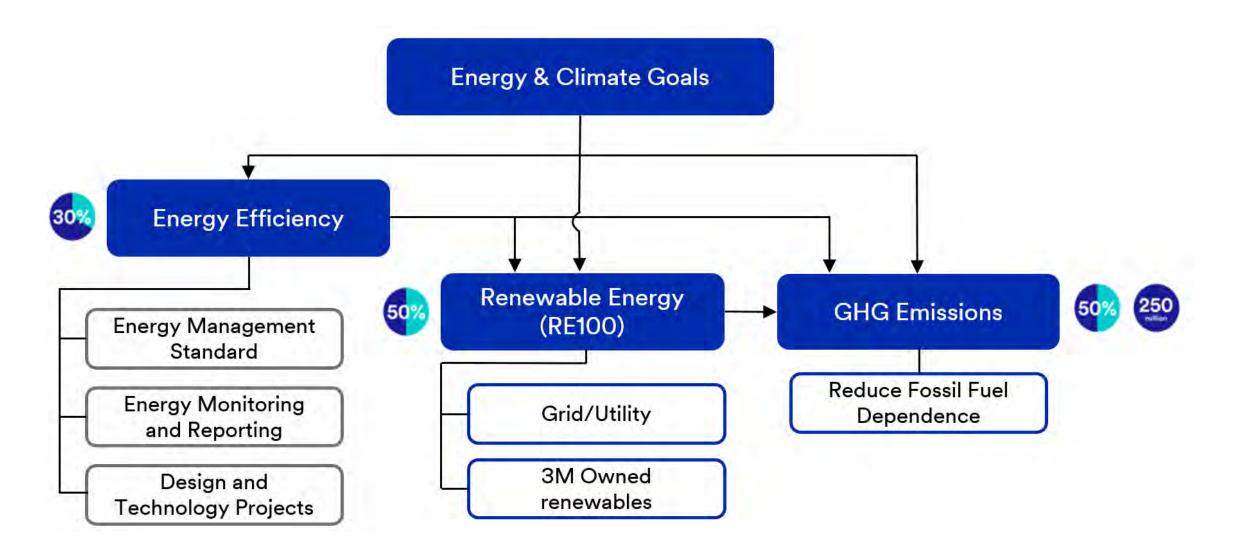
Climate & Energy

Health & Safety

Education & Development

- 1. 2019 will be the baseline measure year for these new commitments
- 2. Expanded commitment from 10% between 2015 and 2025
- Expanded 3M's 2025 goal to stay below 50% of our 2002 baseline, meaning 3M's 2030 Scope 1 and 2 emissions will now be reduced more than 85% from 2002 levels

Climate & Energy


Improve energy efficiency indexed to net sales by 30 percent.

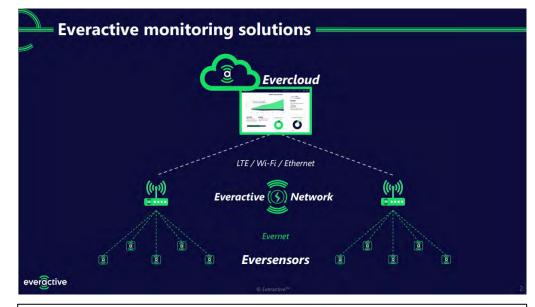
Increase renewable energy to 50% of total electricity use.

Reduce Scope 1 and 2 market-based GHG emissions by at least 50% by 2030, 80% by 2040, and achieve carbon neutrality in our operations by 2050.^{1,3}

Help our customers reduce their GHGs by 250 million tons of CO₂ equivalent emissions through use of 3M products.

Strategies for Climate and Energy Goals

Everactive System: Overview

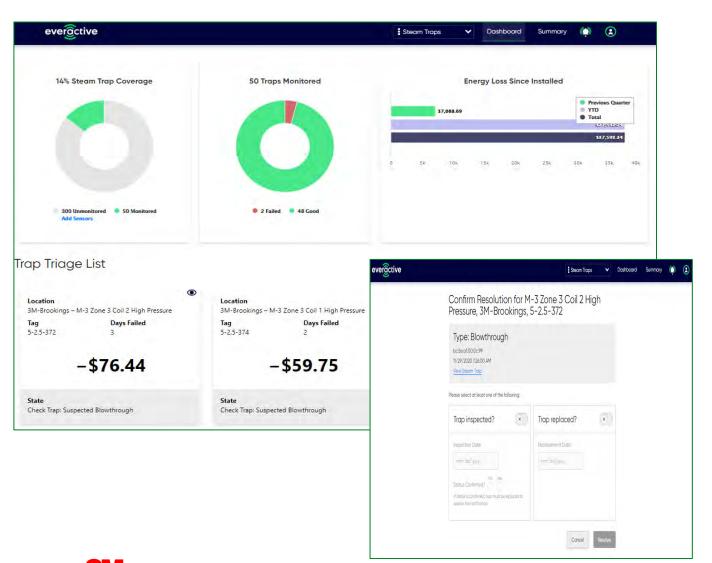

Everactive entered the market with a self-powered IoT sensing technology application around steam traps.

The Eversensors are a unique technology that provide an easy connection to detect leaks on its own, reliably, without human intervention and the need for maintenance (ex: replacing batteries).

The sensor harvests energy from its surroundings through multiple sources including indoor solar, thermal gradients, RF, vibration and more.

It then connects to the cloud via ultra-low-power, proprietary integrated radios to communicate wirelessly to the cloud.

The sensor collects analog data of temperature, humidity, vibration, acceleration, and pressure for a digital front.



EverActive System: Dashboard

Enhanced dashboard available to review the steam trap status, sensor status, energy loss, energy saved, cost loss and cost saved.

Receive email and text notification regrading the failure and failure details.

Brookings Pilot

3M

Pilot in Brookings, South Dakota (US)*	
Plant Operation	24*7
Monitored traps	50
Duration of trail	6 months
Trap issues detected	12
Percentage of failed traps ¹	24%
No. of failed steam trap days - Before	45 days
No. of failed steam trap days - After	12 days
Pay back	6 Months

*Estimates based on Napier's Equation for Steam Loss

¹⁼ Typical failure rate is 10-15% across an entire production facility

Benefits	
Emission reduction	0.55 MtCo2
Cost Saving	74%
Steam Loss Saving	10,600 klbs
Maintenance time reduction	25-30%
Quality Issues due to Steam	Nil
Downtime due to Steam	Nil
Safety Risk	Zero risk

EverActive Sensors installed at 3M Brookings

Corporate Replication

- The Corporate Energy Team is currently looking at increasing participation with other 3M sites for real-time steam trap monitoring.
- The team has put together a proposal for top management.
- Evaluate cost-savings for site to site based on actual condition.
- Evaluate cost-savings for different regions (LATAM, APAC, EMEA)

USAC Proposal (16 Tier 1 Sites)

Steam trap Counts	9371+
Cost saving @15% failure rate:	24%
Emission reduction @15% failure rate	160 KtCO2
Pay Back @15% failure rate	4.2 Months
Cost saving @10% failure rate	12%
Emission reduction @10% failure rate	94 KtCO2
Pay Back @10% failure rate	6.2 Months

3M Energy Management Recognition

Clean Energy Ministerial Global Awards	2019 – Excellence in Energy Management (Corporate)
	2017,2019 – Insight Award (3M Company, 3M Canada)
Dow Jones Sustainability Index	2019 – 20 th Consecutive year of recognition
DOE BBBP	2021 - Better Projects Award – Batteryless, cloud steam trap monitoring system 2020 – iTEAM Awards (Cynthiana & Cottage Grove)
Association of Energy Engineers	2019 – Corporate Energy Management 2019 – Energy Engineer of the Year Award (Canada)
Canadian Industry Program for Energy Conservation (CIPEC)	2014/2018 – Corporate Stewardship
IESO (Crown Corp.)	2018 – Energy Manager of the Year Award

Questions?

Flowers Foods, Inc. – for redesigning and rebuilding an existing bread plant to produce organic bread and includes a variety of sustainability features that reduced annual energy and water consumption by 22% and 64%, respectively

Margaret Ann Marsh (VP Environmental & Sustainability)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Graham Packaging – for upgrading a facility air and water management system that led to an 11% reduction in annual electricity usage

Scott Christensen (Operations Engineering Manager)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Better Plants Presentation | 18 May 2021 Florence Energy Savings Project

The Graham Story

We are the Experts in

At the heart of the new Graham brand is the idea of being "Always Inspired."

Always Inspired isn't just a concept, it's a mentality. A commitment to and focus on the possibilities for a better product, a happier customer, and a cleaner world. SUSTAINABLE Our commitment to sustainability goes beyond just the bottle. We are committed to minimizing our impact through sustainable operations and creating a circular economy.

SC CREA

Packaging Solutions

INNOVATIVE

Superior technology with a long history of innovation in PET and Polyolefin. We provide safe, attractive and convenient packaging that meets the demands of today's consumer.

CREATIVE

We have the talent, tools and experience to help craft new bottle shapes to meet branding and manufacturing needs of our customers.

Our Commitment to Sustainability Goes Beyond Just the Bottle.

We recognize that climate change is real, and we're taking steps to reduce our greenhouse gas (GHG) emissions. Those efforts include lightweighting packaging, diverting plastics from landfills, developing lower carbon products, offering co-locations with customers and reducing our energy usage.

Minimizing Our Impact

There isn't a bottle in the world that threw itself in the trash. All parties - from plastic manufacturers to recyclers to consumers - must do their part to create a circular economy.

Up to 52% Lower ESG Risk Than Our Direct Competitors.

Graham Packaging was named <u>best of all</u> rated plastic, glass and metal packaging companies in our risk profile in the areas of environmental, social and governance (ESG) from Sustainalytics.

Our Commitments to Creating a Better Tomorrow

We are positioning ourselves for the future through strong sustainability partnerships and commitments to several long-term goals.

Increase Recycled Content

Lightweighting

Sustainable Operations

Our Goals are Your Goals!

We work to always be the partner of choice by helping customers meet their sustainability goals now and in the future. We have our sights set on protecting the planet, and we know we'll be ready to meet the needs of the markets we serve. And in turn, we'll help our customers be ready, too.

100%

Committed to designing for recyclability across all products to achieve our goal of 100% recyclability by 2025.

Committed to increasing our use of PCR by incorporating an average of 20% PCR across all bottles by 2025

20%

25%

As a member of the U.S. Department of Energy's Better Plants Program, we've committed to achieving 25% energy reduction by 2028.

30%

From our 2020 baseline, we've committed to a sustainability goal of 30% GHG emission reduction by 2030.

Project Kick-Off

- Graham's Florence, KY plant produces 283 million PET bottles and 384 million preforms.
- A team tasked with looking at operational efficiencies set a goal to provide energy and water savings.
 - Started by completing an assessment and in-depth audit of the facility. During this process, the team compiled records of production demand, kilowatt usage and water usage.
 - The analysis showed that significant energy savings were attainable through power and water usage controls.
- We identified that a set of comprehensive energy efficiency measure packages, instead of a standalone measure, would have an estimated return on investment of less than 24 months.
- A multi-disciplinary team of different stakeholders, include a technology company, a control system developer and a utility company, was formed to execute the project.

Energy Savings Solutions

- During the team's discussions, it was determined that any energy savings measures implemented needed to also ensure that the plant could continue to operate the equipment at peak performance. Defined the project to include:
 - Variable speed drives on cooling tower pumps
 - Variable speed drives on chiller pumps and cooling tower fans
 - Replacement of an older inefficient centrifugal chiller with a new VSD Magnetic Bearing technology chiller
 - Precision air flow regulators on all bottle blow machines.
- Also installed comprehensive systems management controls for both air and water systems to meet production demand requirements using temperature, flow and pressure with real-time data.

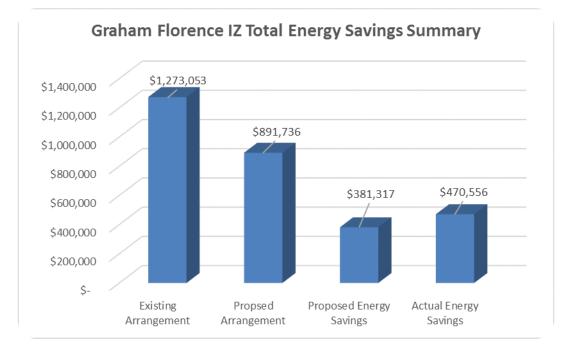
Overcoming Obstacles

- The project was not without expected challenges. Significant barriers included:
 - The need to maintain precise water temperatures, flows and pressure to key systems and production equipment.
 - The need to limit the downtime of the equipment during implementation as to continue to meet customer demand.

• How we overcame them:

- Building to the project thermal control valves.
- Combining the developed project timeline with other projects that were completed during scheduled shutdowns of the facility in order to lessen the impact on production.

Project Implementation and Execution


- Working in partnership with IZ Systems, Johnson Controls, and Duke Energy, Graham was able to create and implement a vigorous timeline:
 - Started first quarter of 2019, completed in July 2019
- To help stay on budget, the maintenance staff at the facility was trained in the operation, management, preventative maintenance, and limitations of the newly installed system.
 - Also proved to be a cost savings in the future by allowing Graham staff to continue to provide the proper care and maintenance of the equipment.
- Johnson Controls provided the York YMC2 VSD chiller, which can handle condenser water temperatures below 50°F.
 - This allows the plant to take advantage of the colder environmental temperatures within the region to lower energy use while maintaining a production chilled water temperature, and increase cycles of concentration of the cooling towers due to less evaporation created by heat load of the system.
- IZ Systems provided the audit, instrumentation and measurements systems along with its assistance in engineering, installation and implementation of the new system, and assisting the plant to work with Duke Energy to secure any and all rebates and incentives.

Outcomes

- Impressed with the real savings that were recorded and tracked using remote access to the management system.
- By putting in metrics to track water and kilowatt usage, Graham was able to recognize and reduce the required energy to produce air and chilled water for the process of bottle and preform production.
 - Saw an 11% reduction in kWh usage from 2018 to the end of 2020.
 - Saw energy usage drop from an average of 1,267 kWh/1,000 lbs produced in 2018 to 1,127 kWh/1,000lbs produced in 2020.
 - Total kWh savings since project implementation of roughly 7,497,953 kWh in 18 months.

Sustained Impact

- With the project success of the Florence, Kentucky facility, Graham has strengthened its commitment to investing in more of their facilities with this technology.
- So far, Graham has implemented similar energy saving projects at five plants throughout the United States, with plans to grow the program even further.
- While this technology is not a one-size-fits-all solution for eliminating excessive energy usage, it is an example of Graham's commitment to reduce energy usage throughout all of its 60+ locations, and its work towards its long-term goal of achieving 25% energy reduction by 2028.

Lockheed Martin – for optimizing a facility's cogeneration system and central utility plant, saving \$1.5 million in annual energy costs with a 2.2-year payback

Michael Stein (Facilities Energy Manager)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Lockheed Martin / Sikorsky Central Utility Plant Optimization Project

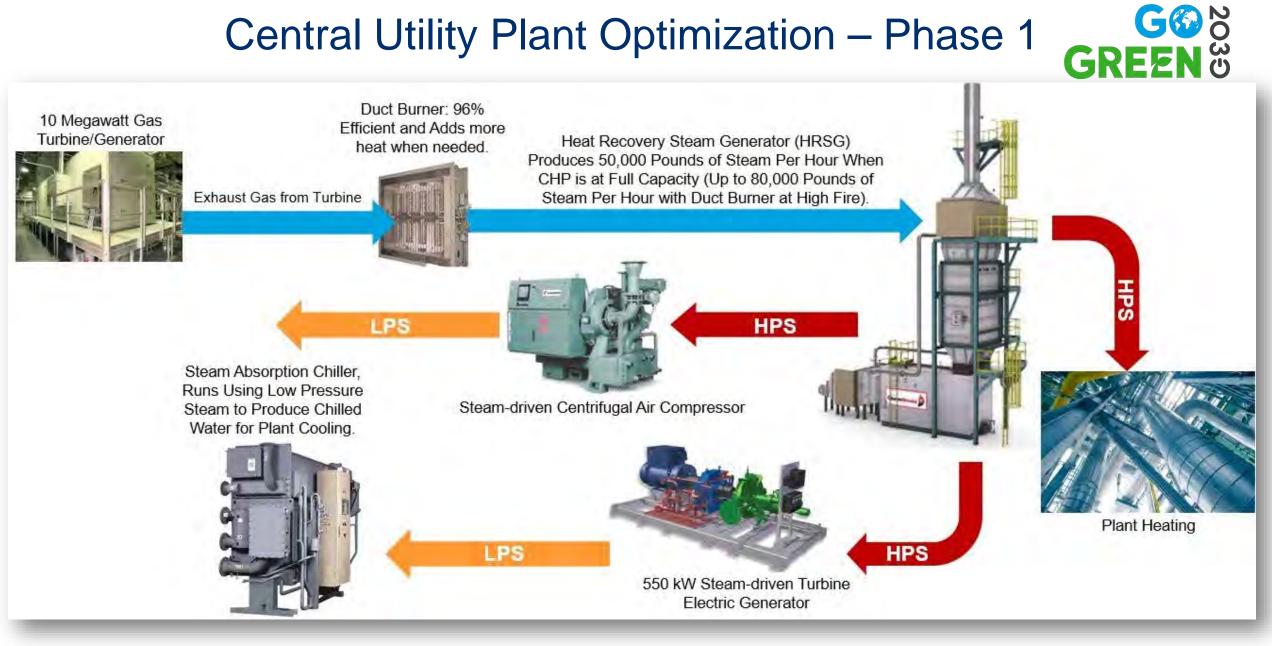
May 18, 2021

Site Project Manager – Jonathan Kuczenski, Sikorsky Aircraft Corporation, Stratford, CT Presenter / Energy Manager – Michael Stein, Sikorsky Aircraft Corporation, Stratford, CT

©2021 Lockheed Martin Corporation

Sikorsky Aircraft Corporation; Stratford, CT

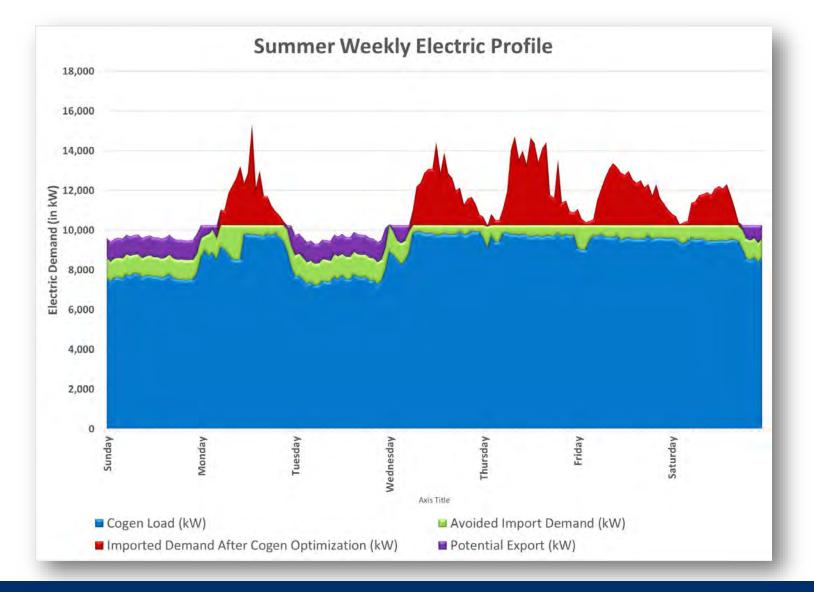
Central Utility Plant


Cogeneration (pre-existing conditions):

- 10.265 MW maximum output capacity
- Installed in 2012
- Provides 75% of facility's annual electric load
- Waste heat used to satisfy heating loads

Central Utility Plant Optimization – Phase 1

Central Utility Plant Optimization – Phase 2


Cogen Challenges :

- 600 kW minimum import requirement
- 5MW minimum output capacity on Cogen
- Demand reductions
 - Time of Day
 - Energy Conservation Measures (ECM)
 - 550 kW Steam Turbine Generator

Central Utility Plant Optimization – Phase 2

êsh

Interconnection Agreement:

- Operate new 550-kW STG
- 1 MW export limit
- Elimination of 600 kW import requirement

Savings Overview

êsh

Phase 1 – Annual Savings:

- Absorption Chiller = 635,000 kWh
- Air Compressor = 732,000 kWh
- 550-kW STG = 1,800,000 kWh

Phase 2 – Annual Savings:

- Avoided Import = 7,100,000 kWh
- Export = 3,200,000 kWh

Total Project Annual Savings

- Import Energy = 10,267,000 kWh
- Export Energy = 3,200,000 kWh
- Cost Avoidance = \$1.5M

Payback = 2.2 years

Nissan North America – for upgrading air handling unit-controls to enable automatic maintenance of temperature and air quality, saving over \$200,000 and 1,800 metric tons of CO2 per year

Brett Rasmussen (Senior Manufacturing Engineer)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

2021 Better Project Award from U.S. Department of Energy's Better Plants Program

U.S. FOOTPRINT

Vehicle Assembly Plant (Smyrna, Tenn.) Nissan Technical Center (Farmington Hills, Mich.)

Powertrain Plant (Decherd, Tenn.)

Nissan Design America (San Diego, Calif.) More than **22,000** employees in the U.S.

Nissan Motor Acceptance Corporation (Dallas, Texas)

Advanced Research Center (Silicon Valley, Calif.)

U.S. MANUFACTURING

Accelerating toward carbon neutrality

Battery innovations for cost-competitive and more efficient EVs

Greater energy efficiency of our e-POWER electrified powertrains

Develop a battery ecosystem to support decentralized renewable energy generation

Greater energy and material efficiencies during the manufacturing process

2050 Carbon neutrality across vehicle life cycle

Electrification

- Nissan Ariya
- e-Power (Electric Powertrain w/Generator)

Battery Innovations

- Battery to Grid (Vehicle to X)
- Battery Re-Use
- Solid State Batteries

NISSAN MOTOR CORPORATION

Electrifying every all-new vehicle offering in key markets by early 2030s

Nissan Intelligent Factory

- Bringing Craftsmanship to Robots
- Making Better Workplaces with Robots
- Building the Future of Mobility

Greener Supply

- **Entergy Targets**
- TVA Targets

Raw material

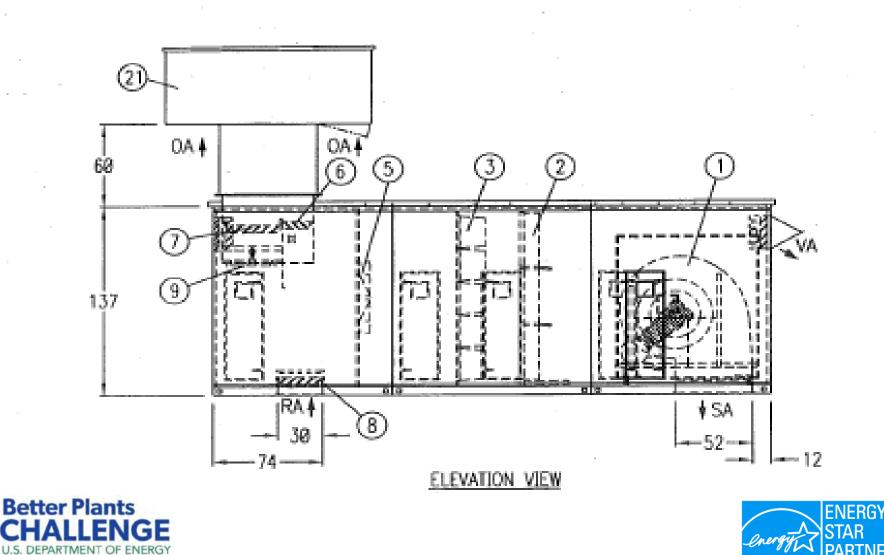
extraction Ŵ VEHICLE LIFE CYCLE --0--> Vehicle End-of-life vehicle recycling or reuse use

Manufacturing

Nissan Canton Plant AHU Control Upgrade

Canton Plant

Typical AHU

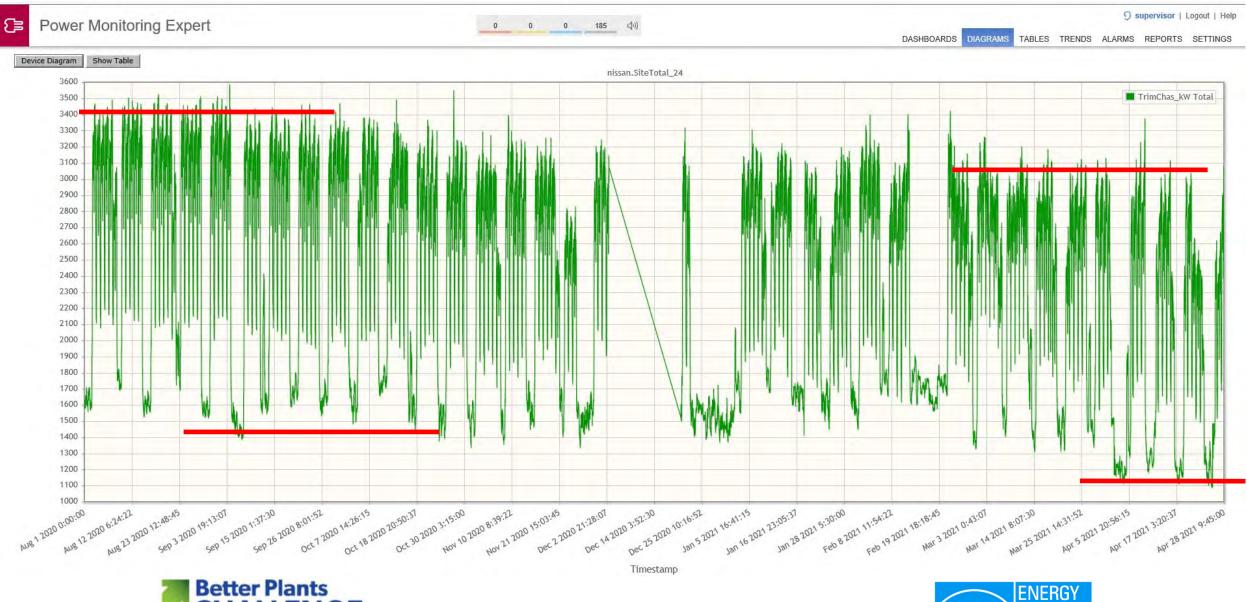


All Units have VFDs on the Fan Motors

Canton Plant Temp Overview

Trim Zone 2	Trim Zo	one 3 Trin	Zone 4	Zone 4 Plant Overview		1	Home Nissa	Nissan Site Overview	
	5	Smoke Exhaus	t Ovrd	Tr	im_Zone_1	Zone 1 Set	point		
AHU_40_	_06	AHU_40_07	AHU_4	40_08	AHU_40_09	AHU_40_10	AHU_40_11	AHU_40_12	
Column N	141 (Column R41	Colum	in T40	Column V40	Column X40	Column Z40	Column AB40	
75.1 °	F	74.9 °F	73.9	9 °F	73.2 °F	72.1 °F	73.1 °F	71.8 °F	
41.0 H	z	21.4 Hz	37.8	8 Hz	37.9 Hz	49.3 Hz	35.8 Hz	43.5 Hz	
CLG VLV P		LG VLV POS:		V POS:	CLG VLV POS:		CLG VLV POS:		
1.4 %		73.8 %	2.8	%	3.6 %	99.2 %	1.4 %	100.0 %	

AHU_40_15	AHU_40_18	AHU_40_19	AHU_40_20	AHU_40_21
Column N38N	Column P35	Column U35	Column X35	Column AB35
76.1 °F	73.5 °F	72.8 °F	72.0 °F	70.7 °F
28.2 Hz	23.9 Hz	36.4 Hz	41.1 Hz	40.8 Hz
CLG VLV POS:				
1.4 %	2.2 %	38.6 %	99.7 %	98.8 %


Unit without Controls

	2.1 - [ES.070 (SN 34100018).fca]	/ / - 			
File View Settings H	elp en File 🛛 🕷 New File 💭 Export Report				- 4
Project Manager	Energy Study PQ+ Study Advan				
RMS Power Demand	Calendar View Fundamental Power V, A, Hz,	THD			
V, A, Hz, THD overview	v table			S Ful	l Screen 👔 Copy 🖌 Add Bookm
ES.070 Voltage [V]	AB	BC	CA	N	Logging Information
	482.3 V	480.3 V	481.3 V	N	
Max	2/9/2019 1:46:00 AM	2/9/2019 12:06:00 AM	2/7/2019 11:14:00 AM		Study type: Energy study
Avg	477.1 V	475.2 V	473.4 V		Topology:
Min	0.0000 V 2/7/2019 11:14:00 AM	0.0000 V 2/7/2019 11:14:00 AM	0.044 V 2/7/2019 11:14:00 AM		3-ph IT Start date:
Current [A]	A	B	2/7/2019 11:14:00 AM	N	2/7/2019 11:13:00 AM
Max	200.4 A 2/9/2019 12:39:00 AM	197.2 A 2/9/2019 12:39:00 AM	219.4 A 2/9/2019 12:39:00 AM		End date: 2/9/2019 11:34:00 AM
Avg	50.4 A	51.0 A	51.9 A	51.1 Amps	Duration: 2d 0h 21m 0s
-	0.0000 A	0.0000 A	0.0000 A	JI.I Amps	Averaging interval:
Min	2/7/2019 11:14:00 AM	2/7/2019 11:14:00 AM	2/7/2019 11:14:00 AM		1min
Frequency [Hz]	61.78 Hz				Number of averaging intervals: 2901 (2901)
Мах	2/7/2019 11:14:00 AM				* series contained invalid value
Avg	60.01* Hz				that have been discarded for the shown result.
Min	57.08 Hz 2/7/2019 11:14:00 AM				
THD-V [%]	AB	BC	CA	N	
Max	21.8 % 2/7/2019 11:14:00 AM	37.4 % 2/7/2019 11:14:00 AM	25.6 % 2/7/2019 11:14:00 AM		
Avg	5.0* %	5.0* %	5.1* %		
-	3.9 %	3.9 %	3.9 %		
Min	2/9/2019 6:27:00 AM	2/9/2019 5:55:00 AM	2/9/2019 6:46:00 AM		
THD-A [%]	A 62.2* %	B 65.1* %	C 63.0* %	N	
Мах	2/8/2019 3:03:00 AM	2/8/2019 4:09:00 PM	2/8/2019 4:04:00 PM		
Avg	52.3* %	55.2* %	54.1* %		
Min	11.2* %	11.9* %	11.8* %		
Unbalance [%]	2/7/2019 10:25:00 PM AB	2/7/2019 10:25:00 PM BC	2/7/2019 10:25:00 PM CA	Total	
Max				0.590* %	
A				2/8/2019 7:47:00 PM 0.468* %	
Avg				0.345* %	
Min	Better Plants CHALLENGE			2/7/2019 1	ENERGY STAR PARTNER

AHU Controls

Eluke Energy Analyze Dius	2.1 - [ES.069 (SN 34100018).fca]				X
File View Settings					
	pen File 🛛 New File 💭 Export Report				
Project Manager	Energy Study PQ+ Study Advanced	Report			
RMS Power Demand	Calendar View Fundamental Power V, A, Hz, TH	D			
V, A, Hz, THD overvie	w table			조국 Full Scr	een 👔 Copy 🛃 Add Bookmark
ES.069					
Voltage [V]	AB	BC	CA	N	Logging Information
Мах	501.6 V 2/6/2019 3:07:00 PM	482.1 V 2/7/2019 4:14:00 AM	479.9 V 2/7/2019 4:14:00 AM		Study type: Energy study
Avg	476.8 V	475.9 V	473.8 V		Topology:
Min	0.0000 V	0.0000 V	0.0000 V		3-ph IT Start date:
Current [A]	2/6/2019 3:07:00 PM A	2/6/2019 3:07:00 PM	2/6/2019 3:07:00 PM C	N	2/6/2019 3:06:00 PM
Мах	2/7/2019 11:12:00 AM	51.88 A 2/6/2019 3:32:00 PM	54.03 A 2/6/2019 3:32:00 PM		End date: 2/7/2019 11:12:00 AM
Avg	21.22 A	21.39 A	23.95 A	22.186 Amps	Duration: 20h 6m 0s
Min	0.0000 A	0.0000 A 2/6/2019 3:07:00 PM	0.0000 A 2/7/2019 11:09:00 AM	22.100 Amps	Averaging interval: 1min
Frequency [Hz]	AB	2/0/2019 3:07:00 PM	2/1/2013 11:05:00 AM		Number of averaging intervals:
Мах	60.46* Hz 2/7/2019 11:10:00 AM				1206 (1206) * series contained invalid values
Avg	59.99* Hz				that have been discarded for the shown result.
Min	57.93* Hz 2/7/2019 11:10:00 AM				
THD-V [%]	AB	BC	CA	N	
Мах	10.5* % 2/7/2019 11:10:00 AM	18.4* % 2/7/2019 11:10:00 AM	11.6* % 2/7/2019 11:10:00 AM		
Avg	5.5* %	5.4* %	5.7* %		
Min	4.9* % 2/6/2019 3:09:00 PM	4.9* % 2/7/2019 2:03:00 AM	5.1* % 2/6/2019 3:09:00 PM		
THD-A [%]	A	B	C	N	
Мах	182.3* % 2/6/2019 3:09:00 PM	203.9* % 2/6/2019 3:09:00 PM	189.0* % 2/6/2019 3:09:00 PM		
Avg	81.4* %	81.9* %	74.3* %		
Min	48.5* % 2/6/2019 3:32:00 PM	50.4* % 2/6/2019 3:32:00 PM	30.2* % 2/6/2019 3:11:00 PM		
Unbalance [%]	AB	BC	CA	Total	
Мах				9.889* % 2/7/2019 11:09:00 AM	
Avg				0.382* %	
Min	Better Plants CHALLENGE			an anaut	ENERGY STAR PARTNER
🛨 V, A, Hz, THD graph					

Trim Shop Power Usage

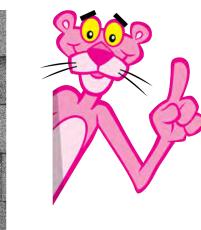
STAR PARTNER

Thank you

PARTNER OF THE YEAR Sustained Excellence **Owens Corning** – for implementing an advanced HVAC control system at two facilities that optimizes the use of outside air and adjusts equipment sequences and setpoints, saving a combined \$350,000 per year

Don Scarsella (Energy Program Manager)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations



Don Scarsella May 18, 2021

OWENS CORNING AT A GLANCE

Serving residential, commercial, and industrial markets

INSULATION | ROOFING | COMPOSITES

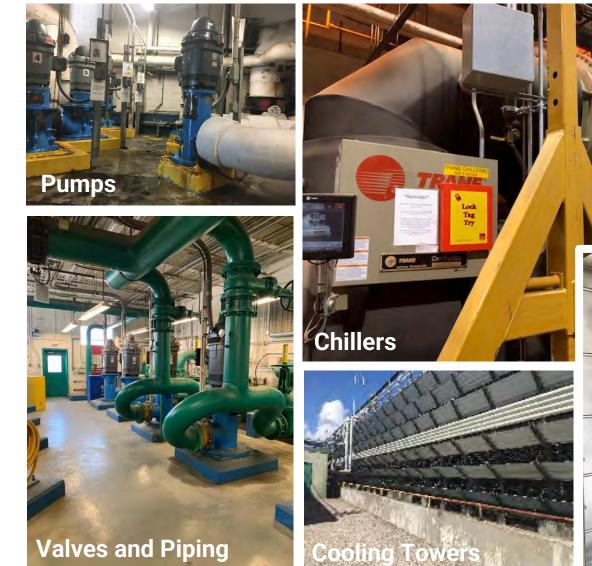
OWENS CORNING INNOVATION IS ALL AROUND US

And More!

WHAT SUSTAINABILITY MEANS TO US

NET-POSITIVE COMPANY

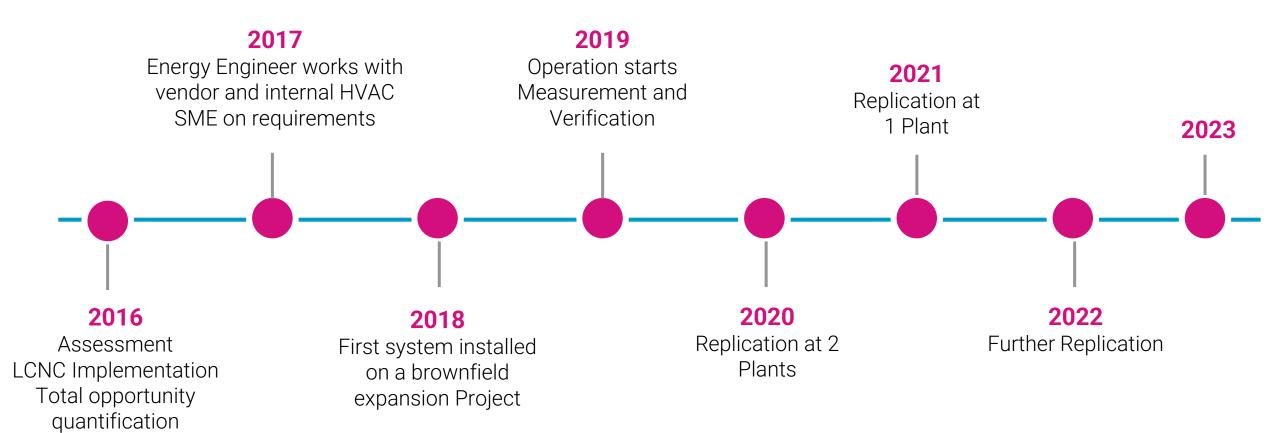
ASPIRATION


"Meeting the needs of the present while leaving the world a better place for the future."

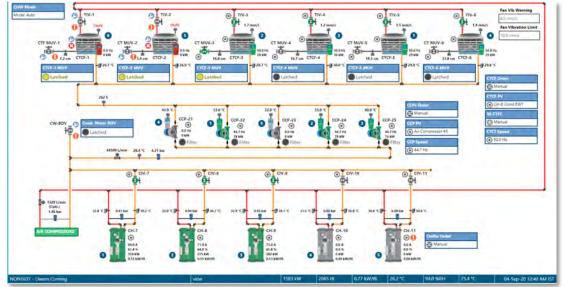
DEMAND SIDE ENERGY MANAGEMENT AT OWENS CORNING

- Plant Energy Teams
- Assessments and Kaizens (Treasure Hunts)
- Dedicated Energy Project Fund
- Low Cost / No Cost Implementations
- Best Practice Sharing
- Reporting, Metrics, Scorecards, Software Tools
- Working across the organization to achieve goals
- Replication
- Benchmarking
- Communications
- Taking advantage of the Better Plants Program!

CHILLED WATER SYSTEM COMPONENTS


Dehumidifiers

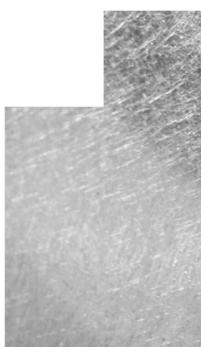
Copyright © 2021 Owens Corning. All Rights Reserved.


Drives

Project Timeline

Operator Interface

Chilled Wa	ter System	0	llers.	Chilled Wa	itim Pumps		Condenser 1	Nater Pumps	Coaling	lowers (Chillers)
Energy (kW-hrs)	Cost (Rupees)*	Energy (kW-hrs)	Cost.(Rupees)*	Energy.(kW-hrs) This Hour	Cost (Rupees)*		Energy (kW-hrs)	Cost (Rupees)*	Energy (kW-h	(s) Cost (Rupees)
1325 xW-hr	10733 Ri	936 kW-M	7585 Ri	100 kW-n/	812.6		T90 xW-W	1538.Ri	100 KW-IN	807 Fi
Last Hour	Last Hour	Last Hour	Last Hour	Last Hour	Last Hour	- 11	Last Hour	Last Hour	Last Hour	Last Hour
1599 klV-ltr	12950 R.	5114 kW-hr	9022 Kz	124 kW-te	1003 Rs		242 KW-ht	1963 łb.	118 kW-hr	955 %
Today	Today	Today	Today	Today	Today	-11	Today	Today	Today	Today
1325-xW-hr	10733 Re	936 kW-hr	7585 Rs	100 kW-hr	812.A		190 kW-hr	1538 A	100 kW-hr	807 R
Yesterday	Yesterday	Yesterday	Yesterday	Yesterday	Yesterday	-11	Yesterday	Yesterday	Yesterday	Yesterday
42877 kW-te	347305 Ab	29553 kW-nr	239378 Rt	4329 kW-hr	35068 Ri		6153 kW-N	498-40 Rs	2841 kW-Hz	23014.4
This Week	This Week	This Week	This Week	This Week	This Week		This Week	This Week	This Week	This Week
200482 kW-hr	1623906 Bt	138075 kW-lin	1118409 Rs	18536 kW-h/	150145 R		30342 kW-8r	245773 %	13528 kW-hr	109578 R
Last Week	Last Week	Last Week	Last Week	Last Week	Last Week	-11	Last Week	Last Week	Last Week	Last Week
200482 kW-hr	2226022 Rs	338075 kW-hr	1523923 R	18536 kW-Hr	193961 Ri	וור	30342 kW-hr	359395 R	13528 kW-hr	148750 R
This Month	This Month	This Month	This Month	This Month	This Month	-11	This Month	This Month	This Month	This Month
124706 kW-ter	1010117 fk	85895 kW-Hr	695751 Rs	12054 kW-hr	97639 Rs		18386 kW-hr	148924 %	8371 kW-lhs	67806 R.
Last Month	Last Month	Last Month	Last Month	Last Month	Last Month	- 11	Last Month	Last Month	Last Month	Last Month
1265951 kW-ki	10261743 Ri	866572 kW-#+	7024498 RL	122411 XW-hr	992288 Ri		193836 KW-hr	1571079 R	83133 kW-hr	673879 R
This Year	This Year	This Year	This Year	This Year	This Year	-11	This Year	This Year	This Year	This Year
6741365 kW-PY	55690942 Rx	4722162 kW-IV	39023903 Rs	580113 kW-hr	4782486 Rs		935825 kW-hr	7722205 R	503272 kW-ft/	4162409 Rs
Last Year	Last Year	Last Year	Last Year	Last Year	Last Year	711	Last Year	Last Year	Last Year	Last Year
12302196 kW-tu	103000459 Rs	8946761 WW4hr	74888918 Ru	1126457 kW-hr	9456109 Rs		1317345 xW-mr	11025899 Rs	911636 kW-hr	7629561 Ru
Manthly	Averaged	Monthly	Annages	te	sed			-		
		This H	our Today	This Week	This Mo	ath	This Year			
		1727 1				tR-br	9179558 tR-8r			
		Last H	our Yester	day Last Week	Last Mo	ath	Last Year			
		2062.1					17304179 tR-b			*Utility Cost per kW



Copyright © 2021 Owens Corning. All Rights Reserved.

THE PINK PANTHER™ & © 1964–2021 Metro-Goldwyn-Mayer Studios Inc. All Rights Reserved

SugarCreek Packing Co. – for utilizing a sonic imaging tool to improve leak detection surveys in a plant's compressed air system, leading to energy cost and non-energy benefits totaling \$60,000 per year

Todd Jackson (Maintenance Administrator)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Leak Detection Utilizing Fluke ii900 Ultrasonic Imager

Leak Detection

Leaks can be a significant source of wasted Energy-

- Leak detection is most often done utilizing devices with directional microphones, amplifiers, and audio filters, which utilize either earphones or visual indicators to help detect the leak.
- These devices typically need to be used during a period of no or low production to provide the best results
- An inefficient leak detection program can result in up to a 30% reduction in the efficiency of a compressed air system.

Costs Money and Time

- Compressed air systems at the Washington Court House facility accounts for roughly 15% of the energy use for the building.
- Typically, personnel would manually survey the 120,000 sq ft and would hire external contractors to make trips to the facility upwards of 20 times per year to fix leaks in multiple systems.

Through the Better Plants Program Enabled We:

- Request the Ultrasonic imager via our Technical Accounts Manager
- > Received the Ultrasonic imager within a few weeks with no shipping costs
- > Was able to utilize the device for 2 weeks.

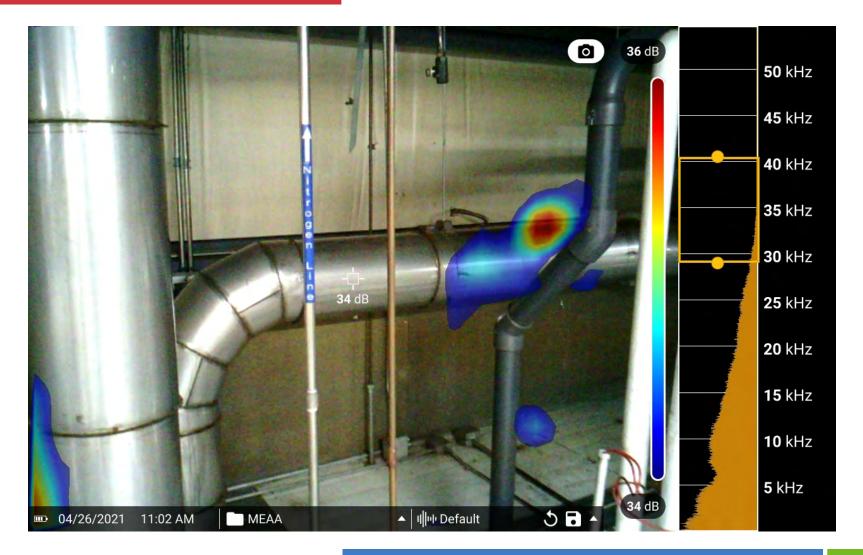
Success!

In two weeks, time, not only were we able to check the compressed air system for leaks. We also were able to find leaks in remote areas and difficult overhead locations, along the ceiling in fire suppression systems as well as in our Nitrogen system.

Outcomes

Saved Money and Time:

Instead of taking upwards of 150 hours to locate a minimal number of leaks. The sonic imager enabled personnel to walk the entire production area – roughly 55,000 sq ft. in 20 hours while production was running!


About 30 leaks were located during this audit including some that would have previously gone undetected due to the size and location of the leak.

High Temperature Area

Cost Savings

- Reduce contractor visits
- Reduce maintenance costs
- Reduce labor costs
- Reduce energy loss

The ability to survey pipes located in elevated locations without the use ladders or scaffolding reduced risk to personnel and reduced time to perform leak checks

Overhead Leaks Detected

Out Of Reach Areas

Sustained Impact

The newer technology improved the efficiency of leak detection program, streamlined compressor operations, and expanded leak surveillance to include other plant systems (steam, vacuum, and nitrogen).

The use of the Ultra Sonic imager has allowed for:

- More frequent leak checks,
- Leak identification by frequency and location,
- Identifying high occurrence areas, leading topossible changes in equipment,
- Improved maintenance practices and specifications.

THANK YOU

SugarCreek.com

Tyson Foods – for leveraging Virtual In-Plant Trainings on industrial refrigeration systems to help identify annual energy savings opportunities of more than \$4 million

Alex Floyd (Senior Manager, Sustainability)

Submit Questions <u>www.slido.com</u> event code **#DOE**, Best of the Betters: Better Project Presentations

Utilizing Virtual In-Plant Training During the Pandemic - Industrial Refrigeration

U.S. Department of Energy's Better Buildings, Better Plants Summit May 18, 2021

THE PROTEIN COMPANY

"Continuous learning is nothing without continuous doing."

Richie Norton

WAR AN ANY AVAN

How do we drive success during a pandemic?

* 3 20 0 fx									
В	С	D	E	F	G H		J	K	1
Tyson Foods AMMONIA REFRIGERATION AMN Plant Business Unit	I SYSTEM ENERGY EFFIC								
Division									
City				Compre	essors Col	ndenser	s Evap	orator	s
Annual kWh	19,459,666	kWh							
Annual Electricity Cost	\$1,344,037.05								
Avg Electric Rate	0.0691	\$/kWh			8%				
Refrigeration System	Energy Consumption	Energy Cost	% of Total Electricity		11%				ompressors ondensers
Compressors	8,129,596	\$561,493.63	41.8%						
Condensers	1,052,817	\$72,715.81	5.4%					III EV	aporators
Evaporators	788,628	\$54,468.80	4.1%			81%	A		
			51%						
Measure	Energy Savings	Energy Cost Savings	% of Total Electricity						
Reduce Discharge Pressure	60,940	\$4,209.02	0.3%						
ncrease Suction Pressure	1,523,033	\$105,192.63	7.8%						
Compressor Sequencing	585,744	\$40,456.05	3.0%						
Superheat	124 14 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-						
	*Add to Discharge Pressure	Reduction							
Non-Condensables Optimize Defrost									

Season	# Months per Year	System	Discharge Pressure															
	Tedi		(psig)		Additional Notes (if needed)	-												
Summer		High Stage																
Fall Winter		High Stage																
Spring		High Stage																
spring		High Stage					7.											
Stage	Compressor Name	Compressor Type	Oil Cooling	Compressor Control	Control Panel	vi	System Type	Suction Pressure Setpoint	Actual Suction Pressure	Actual Suction Temp	Calculated Suction Temp (°F)	Nameplate HP	Motor Efficiency	Avg Slide Valve %	kW	% Run Time	Annual Run Hours	Annual kWh
						-	-	-				-				-		
	-					-		-		-	-					-		
			-			-		-		-		-				-		
						-		-			-							
						-				-			-			-		
											-		-	-				
					-	-		-				-						
												-	-					
		-				-		2		0	-					-		
					-								-					
					-			-			-		-		-	-		
											-		-	-			-	
					-						-							
											-	-	-			-		
		-	-				-	8		-	-				-	-		
						-	-				-	-	-					
											-				-	-		
		-		-						-			-	-		-		
							-			-								
											-						1	
											-				-			
											-							
	1										-							
	1																	
											-							
	1					-		0										
					1					-		-	-					
					-	-				-							-	

										Contractor of	Description Below		
Condenser Name	System #	Nominal Capacity (MBH)	Total Fan Power (HP)	Motor Efficiency	kW	Total Pump Power (HP)	Motor Efficiency	kW	Fan Part Load Control	Auguara Fan 0/	Online Condenser Operation (%)	Annual Pump Duty (%)	Annual kWh
			-		_				-	_			
	-								-	-	-	-	
					_					-		-	
				1	-					-			
						1			1				
					-)				
										1			
									1	-			
			-										
	-				_			_	-	-			
	-					-	_	_	-			-	
	-			-		-			-				
										-			
					-								
										1			
									1			1	
					_				1				
									1				
									1				
			-										
	-								1	-			
	1				-				-	-		-	
				-		-			-				
									1				
							-		1				
	1									-			

Evaporators

Pump Name	Pump Power (HP)	Avg Pump Efficiency (%)	Annual Pump Duty (%)	kW	Annual kWh
		-			
	_				
	-				
					-
					0

How often is

Zone Name	What Type of Load?		How Are the Fans or Processing Equipment Controlled?	Annual Zone Duty (%)	Refrigeration Load (TR)	Design Temp Difference (TD) (°F)	Room Temp Setpoint (°F)	Suction or Fluid Temp (°F)	Total Power (HP)	Avg Motor Efficiency (%)	Annual kW
		-		-			-				
			1								
		5									
			1								
	-					-			_		
		-		-		-			-		
		-				-	-				
			1		2				-		-
			-		-				-		
									-		
									-		
											-
			1								
									-		-
			2						-		
					-			1	_		
									_		

Home	Insert Page	Layout Formulas Data	Review View D	eveloper Help	EnPl						ß	Share	Comr
	1 20 0 f	k l											
	В	C	D	E		F	G	H	i i	1	j	к	1
Tyson Fo AMMONIA	REFRIGERATIC	3			4								
	Divisior City					Con	presso	rs Co	nden	sers	Evapo	rators	5
	Annual kWł	19,459,666	kWh				-						
Annua	al Electricity Cost	\$1,344,037.05											
	Avg Electric Rate	• 0.0691	\$/kWh		. 1		11%	8%					
Refrigeratio	on System	Energy Consumption	Energy Cost	% of Total Elect	ricity		IIM					Con	pressors
Compressor		8,129,596	\$561,493.63	41.8%	inter							Con	densers
Condensers		1,052,817	\$72,715.81	5.4%								Eva:	oorators
vaporators		788,628	\$54,468.80	4.1%	_				81%				
				51%	_		<		01/0				
Aeasure		Energy Savings	Energy Cost Saving	s % of Total Elect	ricity				-				
educe Disc	charge Pressure	60,940	\$4,209.02	0.3%				-					
ncrease Su	ction Pressure	1,523,033	\$105,192.63	7.8%									
ompressor	r Sequencing	585,744	\$40,456.05	3.0%									
uperheat				-									
Ion-Conder		*Add to Discharge Pressure	Reduction										
Optimize De	CHOSE	_	2,169,718	\$149,857.70									

Reducing Discharge Pressure

What Drives Discharge Pressure Setpoint?

- Condenser Capacity / Heat Rejection (Ex: Higher in the summer because of high outdoor wetbulb temps)

- Liquid Injection Oil Cooling Requirements

- DX Valve Requirements

- Defrost Pressure Requirements

- Can Cause Oil Carry Over in Compressors at Lower Head Pressures

Energy Efficiency Rules of Thumb

* Reducing Discharge Temp Increases Compressor Efficiency 1.5% per 1°F Increase

		and the sec			Current	Proposed	Annual kWh
	Season	# Months per Year	System	Total kWh	Discharge Pressur	e Discharge Pressure	Savings
	Summer		High Stage				
Engine Room A.B.C	Fall		High Stage				
Engine Room A,B,C	Winter		High Stage				
	Spring		High Stage	-			

	Pressure Increa	ases Compresso	r Efficiency 2% per	1°F Increase	_
25:					
			1		
	1 Same			% Of The Time	
Compressor	Suction		Proposed Suction	That The Setpoint	
Contraction of the second	Pressure	(°F)	Temp (°F)	Can Change	Annual kW
	_			currentinge	Savings
		1			
		21 III III III		2	
		1			
	1				
		1			
		1.1			
)			
		01			
		1			
		1111			
		1.1.1			
		1		2	
		1		h	
			-		

Compressor Sequencing

Screw compressors operate most efficient at 90-100% fully loaded. They perform very inefficient at part load, so we should minimize multiple compressors operating at part load for extended periods of time. Look through the compressor log and identify opportunities to turn off compressors. Log which compressors could be turned off and the hours per week that each can be turned off.

Notes:

Compressor	Compressor Type	Hrs per week that compressor can be turned off	Average Slide Valve %	kW	Hrs per week that compressor will be turned on	Average Slide Valve %	kW	Annual kWh Saving
	-			-		-		
						-		
							NG 2000	
	-		-					
						-		-
					-	-		
	-							
				-			-	-
				-				
	-							
	-				-	-		
							1	

Superheat

Common Causes of Excess Superheat:

- Poor Insulation

- Hot Gas Valves Bleeding By

- Improper Liquid Feeding

- Improper Suction Regulator Settings

(IRC EEG Data) - Energy Efficiency Rules of Thumb

* Overfeed & Flooded Systems: Compressor Capacity Decreases 0.25% per 1°F Superheat Increase

* DX Systems: Refrigeration Net Capacity Decreases 0.13% per 1°F Superheat Increase

Compressor	Annual kWh	System Type	Actual Suction Pressure	Actual Suction Temp	Calculated Suction Temp (°F)	Superheat (deg F)	kWh Savings it reduced to SF (overfeed) or 1SF (DX)
	· · · · · · · · · ·						
			1				11
			The second se				
			11				11
	[]		}	a	()		11. · · · · · · · · · · · · · · · · · ·
			1				
	. E				1		
	1	· · · · · · · · · · · · · · · · · · ·	1				1
	· · · · · · · · · · · · · · · · · · ·		Tr				1
			21				
			11 - E				
	2		21			1	
	1						
	1		1			(]	
	1				s		-
			1.1				1.
	1		1				1.1

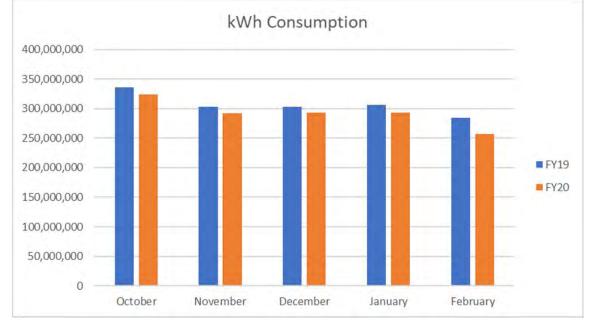
Non-Condensables

Non-condensable gasses reduce the overall efficiency of refrigeration systems.

- Increases electrical power demand

- Decreases Refrigeration system capacity

 Increased pressure leads to increased temperature, which shortens the life of compressor valves and promotes the breakdown of lubricating oil.


Condenser	Coil	Drain Temp	Calculated Drain Pressure	Discharge Pressure	Non- Condensables
	А				
	В				
	А				
	В				
	А				
	В				
	А	1			
	В		1		
	A	1		-	
	В				
	А				
	В	1		-	
	А				
	В	1			
	A	· · · · · · · · · · · · · · · · · · ·			
	В				
	А				
	В				
	А				
	В				
	A				
	В				
	А				
	В				
	A				

*	1 20 / fx												
		C		E	F	<i>c</i>						w.	
	В	L	D	E	T	G	Н	1		J		K	1
Tyson F			and the second states										
AMMONIA	REFRIGERATION	SYSTEM ENERGY EFFIC	CIENCY TOOL, Version	n 1.6									
	AMM	ONIA REFRIGERA	TION SYSTEM I	BASIC DATA									
	Plant												
	Business Unit												
	Division						-						
	City				Comp	ressors	Cond	ense	rs Ev	vapo	prate	ors	
							-						
	Annual kWh	19,459,666	kWh			1		1					
Annu	al Electricity Cost	\$1,344,037.05											
	Avg Electric Rate	0.0691	\$/kWh			8%							
						11%							
D 6 1		5	E									Compre	ssors
Compresso	ion System	Energy Consumption 8,129,596	Energy Cost \$561,493.63	% of Total Electricity 41.8%								Conden	sers
Condensei		1,052,817	\$72,715.81	5.4%								Evapora	tors
vaporato		788,628	\$54,468.80	4.1%			-						
vaporator	2	700,020	\$34,400.00	51%			81%						
						S		1					
Measure		Energy Savings		% of Total Electricity				4					
	scharge Pressure	60,940	\$4,209.02	0.3%									
	uction Pressure	1,523,033	\$105,192.63	7.8%									
	or Sequencing	585,744	\$40,456.05	3.0%									
Superheat		1	-	-									
Non-Conde		Add to Discharge Pressure	Reduction										
Optimize [)efrost		-										
-	atal Refrigeration Fi	nergy Savings Opportunit	y 2,169,718	\$149,857.70									

Performance Tracking

	Total Electric Spend	kWh		% of Total	Total Reduction Opportunity	% of Total	Progress - thru Feb (% Savings)	Progress - thru Feb (kWh Savings)	Progress - thru Feb (\$ Savings
TYSON			26	6.8%	-	2.9%	3.2%		
			2.	2.8%		0.6%	0.7%		
			8.	3.7%		4.1%			
							0.7%		
			54	4.8%		1.1%	7.4%		
			61	1.6%		1.6%	7.0%		
						-	4.0%		
				0.3%		11.0%	10.3%		
			37	7.2%		0.6%	6.2%		
			59	9.1%		1.3%	7.6%		
						-	0.0%		
				3.1%		9.0%	9.8%		
			63	3.3%		0.3%	2.2%		
						-	5.4%		
				1.9%		4.6%	1.1%		
				2.5%		6.1%	-8.8%		
				4.0%		4.8%	6.7%		
			51	1.6%		9.9%	-6.3%		
			47	7.3%		1.7%	0.4%		
						-	8.8%		
			59	9.2%		1.3%	7.6%		
				-		-	-8.5%		
					-		-14.9%		
			37	7.3%		1.9%	2.9%		

Results from Oct 2020 to Feb 2021

Energy Savings in first 5 months: 73,267,160 kWh (4.8%)

* Texas plants did not contain February billing.

** New plants, acquisition plants, and expansion plants not reflected in this data.

These are total energy savings from the project and due to inability to isolate data, we cannot confirm 100% of the savings comes from refrigeration systems.

Questions / Comments

To submit questions, please go to www.slido.com

using your mobile device, or by opening a new window

Enter Event Code

#DOE

Submit Questions
<u>www.slido.com</u> event code #DOE

Better Buildings: Summer Webinar Series

ELECTRIFYING OUR BUILDINGS: CHALLENGES AND SOLUTIONS

June 8

FINANCING IN HIGHER EDUCATION

June 22

KICK THE TIRES: UNDERSTANDING THE ROLE **OF R&D IN THE DEPLOYMENT OF BUILDING ENERGY TECHNOLOGIES** July 6

ENERGY-SAVING ENVELOPE SUCCESS STORIES

July 27

BECOMING ESPC-READY

WHAT'S HOT WITH HEAT

ESPC IN THE EXPRESS

LANE: NEW PROJECT

WASTE REDUCTION:

WHAT COMES NEXT

LESSONS LEARNED AND

TRACKING TOOLS

PUMPS

June 29

July 13

BOOSTING INDUSTRIAL AND MANUFACTURING **EFFICIENCY AND RESILIENCY WITH CHP**

HOW TO IDENTIFY CHP **PROJECTS THAT FIT YOUR GOALS**

July 1

June 17

WORKPLACE **EVOLUTION: SUPPORTING OCCUPANT HEALTH WHILE ACHIEVING ENERGY EFFICIENCY**

July 20

VISUALIZE YOUR ENERGY FUTURE WITH 'SLOPE': THE STATE AND LOCAL PLANNING FOR **ENERGY PLATFORM** August 10

https://betterbuildingssolutioncenter.energy.gov/events-webinars

August 3

Additional Questions?

Please Contact Us

Follow us on Twitter @BetterPlantsDOE @BetterBldgsDOE

Better Buildings Solution Center https://betterbuildingssolutioncenter.energy.gov/

General Inquiries BetterPlants@ee.doe.gov

Program Support Clifton.Yin@ee.doe.gov 3M – Prasath Vinayagamoorthy & Brian Mohr pvinayagamoorthy@mmm.com bmohr@mmm.com

Flowers Foods – Margaret Ann Marsh MargaretAnn.Marsh@flocorp.com

Graham Packaging – Balaji Jayaseelan balaji.jayaseelan@grahampackaging.com

Lockheed Martin – Michael Stein michael.2.stein@Imco.com

Nissan North America – Brett Rasmussen brett.rasmussen@nissan-usa.com

Owens Corning – Don Scarsella Don.Scarsella@owenscorning.com

SugarCreek Packing Co. – Todd Jackson tjackson@sugar-creek.com

Tyson Foods – Alex Floyd Alex.Floyd@tyson.com

