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Abstract

Randomized decision making refers to the process of taking decisions randomly according to the
outcome of an independent randomization device such as a dice roll or a coin flip. The concept is
unconventional, and somehow counterintuitive, in the domain of mathematical programming, where de-
terministic decisions are usually sought even when the problem parameters are uncertain. However, it
has recently been shown that using a randomized, rather than a deterministic, strategy in non-convex
distributionally robust optimization (DRO) problems can lead to improvements in their objective val-
ues. It is still unknown, though, what is the magnitude of improvement that can be attained through
randomization or how to numerically find the optimal randomized strategy. In this paper, we study the
value of randomization in mixed-integer DRO problems and show that it is bounded by the improvement
achievable through its continuous relaxation. Furthermore, we identify conditions under which the bound
is tight. We then develop algorithmic procedures, based on column generation, for solving both single-
and two-stage linear DRO problems with randomization that can be used with both moment-based and
Wasserstein ambiguity sets. Finally, we apply the proposed algorithm to solve three classical discrete
DRO problems: the assignment problem, the uncapacitated facility location problem, and the capacitated
facility location problem, and report numerical results that show the quality of our bounds, the com-
putational efficiency of the proposed solution method, and the magnitude of performance improvement
achieved by randomized decisions.

1 Introduction

Distributionally robust optimization (DRO) is a relatively new paradigm in decision making under uncer-
tainty that has attracted considerable attention due to its favorable characteristics (Parys et al. 2017).
In DRO, a decision maker typically minimizes the worst-case risk of a random cost, i.e., taken with
respect to a probability distribution that belongs to a distributional ambiguity set. In fact, DRO can
be considered both a unifying framework and a viable alternative to two classical approaches for dealing
with uncertainty in decision problems: stochastic programming (SP) and robust optimization (RO). Un-
like SP, it alleviates the optimistic, and often unrealistic, assumption of the decision maker’s complete
knowledge of the probability distribution governing the uncertain parameters. Hence, it can prevent
the ex-post performance disappointment often referred to as the optimizer’s curse that is common in SP
models (Smith and Winkler 2006). Moreover, the DRO counterparts of many decision problems are more
computationally tractable than their SP formulations (see Mohajerin Esfahani and Kuhn (2018) for a
discussion). On the other hand, DRO avoids the inherent over-conservatism of RO that usually leads to
poor expected performances, and allows for better utilization of the available data. In this sense, it can
be considered a data-driven approach. With a careful design of the ambiguity set, one can often obtain a
statistical guarantee on the out-of-sample performance of the DRO problem’s solution (e.g., see Delage
and Ye (2010) and Mohajerin Esfahani and Kuhn (2018)).

Recently, Delage et al. (2019) introduced the idea of exploiting randomized strategies in DRO prob-
lems that arise when using worst-case risk measures, e.g., worst-case expected value, worst-case condi-
tional value-at-risk, etc. A randomized strategy describes the process of implementing an action that
depends on the outcome of an independent randomization device, such as a dice roll or a coin flip. The
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concept is somewhat counterintuitive (and at first sight computationally unattractive) in the domain
of mathematical programming, where the optimal decisions sought are usually deterministic ones even
when the problem parameters are uncertain. In particular, Delage et al. (2019, Theorem 13) showed that
when the feasible set of a DRO problem is nonconvex, deterministic decisions can be sub-optimal. More
precisely, there might exist a randomized strategy that exposes the decision maker to a strictly lower risk
measured using a worst-case risk measure than what can be achieved by any deterministic one. Despite
its significance, this result is still more theoretical than practical given that it is still unclear how much
improvement can be obtained in real application problems and whether optimal randomized strategies
can be found efficiently.

In this paper, we focus on studying the value of randomized solutions in DRO problems with a
mixed-integer linear representable decision space. The contribution is three-fold.

• On the theory side, we prove that the value of randomization in mixed-integer DRO problems
with convex cost functions and convex risk measures is bounded by the difference between the
optimal values of the nominal DRO problem and that of its continuous relaxation, which is typically
straightforward to compute. Furthermore, we show that when the risk measure is an expected value
and the cost function is affine with respect to the decisions, this bound becomes tight and can be
used to design an efficient solution scheme. Finally, we demonstrate, for the first time, how a finitely
supported optimal randomized strategy always exists for this class of problems.

• On the algorithmic side, we devise finitely convergent column generation algorithms for solving
single- and two-stage mixed-integer linear DRO problems with randomization and expected value
as the risk measure. The two-stage problem algorithm iterates between solving a restricted primal
problem to generate new candidates to be added to the list of possible worst-case scenarios, and
solving a restricted dual problem to generate new candidates to be added to the randomized strategy.
Unlike the scheme proposed in Zeng and Zhao (2013), our formulation of the primal subproblem
ensures that the number of integer variables does not depend on the size of the support set of the
randomized strategy. We also show how the algorithm can be extended to the general mixed-integer
case through projection while preserving its finite convergence property, and discuss the cases in
which the linearity assumptions do not hold, showing the generic nature of the proposed approach.
Despite the theoretical complexity of the problem, the solution algorithm shows surprisingly good
performance relative to the deterministic strategy case.

• We provide some empirical evidence that randomization can indeed significantly improve the perfor-
mance of decisions. This is done using synthetic, yet realistic, instances of three popular stochastic
integer programming problems: an assignment problem, and both an uncapacitated and a capac-
itated facility location problem. For some of the assignment problem test instances, a relative
improvement of up to 47% in the worst-case expected cost was achievable by a randomized strat-
egy compared to the best deterministic one. In comparison, the improvement achieved in facility
location problems appears to be more modest.

The rest of this paper is organized as follows. In the next section, we review the literature that is
related to our work. We then motivate our work by solving in Section 3 an example of distributionally
robust uncapacitated facility location problem to illustrate how worst-case risk in mixed-integer DRO
problems can be reduced through randomization. A second example involving a distributionally robust
newsvendor problem can be found in Appendix A. In Section 4, we study the relationship between
randomization and convex relaxation and the structure of optimal randomized strategies. Section 5
encompasses the algorithmic part of the paper. We devise column generation algorithms for solving
single- and two-stage distributionally robust integer linear programming problems and explain how they
can be modified to solve mixed-integer problems. These algorithms are then used to solve three classical
discrete problems in Section 6: the assignment problem, the uncapacitated and capacitated facility
location problem. Section 7 presents numerical results for the aforementioned problems that demonstrate
the value of randomized solutions and the performance of the proposed solution algorithms. Finally,
conclusions are drawn and directions for future research are proposed in Section 8. We note that all
the proofs of our theorems are deferred to Appendix B while Appendix G presents a discussion on the
difficulty of adoption of randomized strategies in practice.

Remark 1. It is worth clarifying for the reader the distinction between the two related concepts of
“risk aversion” and “ambiguity aversion”. Following the work of Ellsberg (1961) and Epstein (1999), the
notion of risk refers “to situations where the perceived likelihood of events of interests can be represented
by probabilities”, whereas ambiguity “refers to situations where the information available to the decision
maker is too imprecise to be summarized by a probability measure”. Similarly, the notions of risk aversion
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and ambiguity aversion refer to how a decision maker behaves when being exposed to random variables with
known, or with unknown distributions, respectively. Both types of random variables emerge in a decision
problem with distributional ambiguity, especially in contexts when randomization can be used (see Section
3 for two examples). Throughout the paper, risk aversion will be modeled using a law-invariant convex
risk measure, e.g., the expected value (referred to as the “risk neutral” attitude), conditional value-at-risk,
etc. On the other hand, following an axiomatic motivation proposed in Delage et al. (2019), ambiguity
aversion will be modeled by measuring the risk associated with a random variable when the distribution
is fixed to a worst-case realization from the distributional ambiguity set. This gives rise to the notion
of “ambiguity averse risk measure” (i.e., worst-case risk measure) minimization, which is the class of
DRO problems that we focus on.

Notation: We use lower case letters for scalars and vectors and upper case letters for matrices.
However, depending on the context, upper case letters are also used to denote random variables (e.g., X)
or randomized strategies/distributions (e.g., Fx). Special matrices and vectors used include I, identity
matrix of appropriate size, e, all-ones vector of appropriate size and ei, vector of all zeros except for 1
at position i. Unless specifically indicated, all vectors are column vectors and the operation [xᵀ1 x

ᵀ
2]ᵀ is

used to denote the concatenation of the vectors x1 and x2. We denote by R+ and Z the non-negative
reals and the integers, respectively. F1 × F2 refers to a distribution on the product space such that for
(ξ1, ξ2) ∼ F1 × F2, ξ1 is independent of ξ2 and each has marginal distribution F1 and F2, respectively.
We use C(X ) to denote the convex hull of a set X , and ∆(X ) as the set of all probability measures on
the measurable space (X ,BX ), with BX as the Borel σ-algebra over X . We denote by ρ an arbitrary
law-invariant convex risk measure, while supFξ∈D ρξ∼Fξ (X) refers to the worst-case risk measured using ρ
when letting the distribution of ξ take on any distribution in the set D. Finally, when LP duality is used,
the dual/primal variables are included, between parentheses, right after their corresponding primal/dual
constraints in the mathematical formulations.

2 Related Work

The idea of using randomization in DRO problems is related to the concept of a mixed strategy in
two-person zero-sum games (von Neumann 1928), where players choose and communicate probability
distribution over their respective set of actions. In both fields, a decision maker is considered to solve a
minimax problem over a set of distributions. It is important, though, to note two differences between
the use of randomization in DRO compared to game theory. First, the notion of an “adversary” is
not explicit in DRO problems but rather follows from axiomatic assumptions that are made about how
the decision maker perceives risk in an ambiguous environment. Second, randomization in DRO raises
significant computational challenges given that such models can employ risk measures that are non-linear
with respect to the distribution function and optimize over highly structured distribution sets defined
on a continuous parameter space (e.g., the Wasserstein ambiguity sets proposed by Mohajerin Esfahani
and Kuhn (2018)). Comparatively, zero-sum games usually treat risk aversion using the expected utility,
which is linear with respect to the distribution functions and consider discrete action spaces and a simple
probability simplex for the distribution sets.

Our study of randomized strategies in DRO problems is also related to some recent unpublished
and independent work of Bertsimas et al. (2018). Herein, the authors study RO in combinatorial opti-
mization problems against an adaptive online adversary, which acts after the decision maker but only
exploits information about the decision maker’s randomized strategy (see Ben-David et al. (1990) for an
application of this concept in online optimization). Similarly as shown in Delage et al. (2019) for this
kind of problems, the authors show that an ambiguity averse risk neutral decision maker can strictly
benefit from using randomized instead of a deterministic strategy. They also show that the value of ran-
domization can be computed in polynomial time if the cost function is linear and the nominal problem
is tractable. They, however, leave open the question of identifying an optimal randomized strategy. This
work significantly extends these results to the case where a more general risk measure, cost function, and
ambiguity set are used, and propose numerical schemes for determining optimal randomized strategies.

Another closely related work is that of Mastin et al. (2015). These authors studied a randomized
version of a regret minimization problem, where the optimizing player selects a probability distribution
(corresponding to a mixed strategy) over solutions and the adversary selects a cost function with knowl-
edge of the players distribution, but not of its realization. They studied two special cases of uncertainty,
namely uncertainty representable through discrete scenarios and interval (i.e., box) uncertainty. For
these two cases, they showed that if the nominal problem is polynomially solvable, then the randomized
regret minimization problem can also be obtained in polynomial time. However, they do not address
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more general convex uncertainty sets arguing that the problem becomes NP-hard for these cases. They
also provide uniform bounds for the value of randomization for the two cases of interest. Our work, in
contrast, addresses more general uncertainty models, i.e., moment-based and Wasserstein distributional
ambiguity sets, with an ambiguity averse risk measure (instead of regret) as the objective. We devise ex-
act solution algorithms applicable for single-stage and two-stage decision problems with a mixed-integer
(instead of purely combinatorial) action space. Finally, the numerical bounds that we described can be
computed for any ambiguity averse risk measure and convex support set.

In this work, we extensively use column generation algorithms to solve problems with large discrete
feasible sets efficiently. Column- and/or constraint-generation algorithms have been utilized frequently
for solving robust and distributionally robust optimization problems. Atamtürk and Zhang (2007) used a
cutting-plane algorithm for solving a two-stage network flow design problem, in which separation problems
are solved iteratively to eliminate infeasibility and to tighten the bound. A Benders decomposition (i.e.,
delayed constraint-generation) algorithm was proposed by Thiele et al. (2010) to solve robust linear
optimization problems with recourse. Similar Benders-type constraint generation algorithms were used,
for example in Brown et al. (2009), Agra et al. (2018), and Ardestani-Jaafari and Delage (2018). Zhao and
Guan (2018) utilized this Benders-based approach to solve a two-stage DRO problem with a Wasserstein
ambiguity set, similar to the deterministic strategy problem presented in Section 4. Recently, Luo
and Mehrotra (2017) proposed a decomposition approach to solve DRO problems with a Wasserstein
ambiguity set. They proposed an exchange method to solve the formulated problem for the general
nonlinear model to ε-optimality and a central cutting-surface algorithm to solve the special case when
the function is convex with respect to the decision variables. Another approach for solving two-stage
robust optimization problems is the column-and-constraint generation method proposed by Zeng and
Zhao (2013). They showed that it computationally outperforms Benders-based approaches. Chan et al.
(2018) used a similar row-and-column generation approach to solve a robust defibrillator deployment
problem.

Both the Benders-based constraint generation and the column-and-constraint generation algorithms
are well-suited for deterministic strategy problems, for which the objective is to find a pure strategy.
Since we are dealing with a randomized strategy problem that aims to find a probability distribution
over multiple solutions, we devise a new two-layer column generation algorithm that iterates between
a primal perspective to generate feasible adversary actions and a dual perspective to generate feasible
actions for the decision maker. We note that our algorithm is similar in spirit to the double oracle
method proposed by McMahan et al. (2003) for large-scale zero-sum matrix games, which has found
applications particularly in security games (Jain et al. 2011, Yang et al. 2018) and Natural Language
Processing (Wang et al. 2017). However, as mentioned earlier, the algorithm that we present in Section
5 address more general and complicated problems than the two-person zero-sum matrix games found
in the literature. Namely, in our model both “players”’ action spaces can be continuous and the set of
feasible mixture strategies is richly configured thus making the application of this type of algorithm far
from trivial.

3 Illustrative Example

In this section, we present an example that illustrates how randomization can reduce risks in mixed-
integer DRO problems. Note that a second example involving the popular newsvendor problem can be
found in Appendix A, where randomization can encourage the decision maker to act less conservatively,
and where we hint at how randomized strategies could be implemented in practice by designing contracts
that outsource the act of randomization.

The uncapacitated facility location problem seeks to select a subset of a discrete set of potential
locations to open facilities and to assign the demands originating from a discrete set of nodes to open
facilities in order to minimize the setup and shipping costs. We focus on the case when demands are
uncertain and the entire demand of each node must be assigned to a single facility. Consider the following
2-node Distributionally Robust Uncapacitated Facility Location Problem (DRUFLP):

minimize
x,y

max
Fξ∈D

E(ξ1,ξ2)∼Fξ [f · (x1 + x2) + c · (ξ1y12 + ξ2y21)]

subject to
∑

j∈{1,2}
yij = 1 ∀i ∈ {1, 2}

yij ≤ xj ∀i ∈ {1, 2}, j ∈ {1, 2}
xj , yij ∈ {0, 1} ∀i ∈ {1, 2}, j ∈ {1, 2},
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where each xj denotes the decision to open a facility at location j, each yij denotes the decision to assign
all the demand at location i to the facility at location j, and where ξi ∈ R+ is the random demand
realized at location i and (ξ1, ξ2) are jointly distributed according to Fξ. Moreover, the coefficients
f ∈ R+ and c ∈ R+, respectively, denote the facility setup cost and unit transportation cost. Note that
there is no transportation cost if the demand is served by the facility at the same location. We also let
the distributional ambiguity set take the form:

D :=
{
Fξ : P(ξ1,ξ2)∼Fξ ((ξ1, ξ2) ∈ U) = 1

}
,

with
U := {(ξ1, ξ2) ∈ R× R | ξ1 ∈ [0, d̄], ξ2 ∈ [0, d̄], ξ1 + ξ2 ≤ d̄} ,

which simply captures the fact that the only information available about the random vector [ξ1 ξ2]ᵀ is
that the sum of any subset of its terms cannot be strictly greater than d̄.

When f > cd̄, i.e., the setup costs are larger than the worst-case transportation costs, one can easily
demonstrate that opening a single facility at either location 1 or 2 to serve the entire demand is optimal
and reaches a worst-case expected total cost of f + cd̄. In particular, for all feasible (x, y) pairs:

max
Fξ∈D

E(ξ1,ξ2)∼Fξ [f · (x1 + x2) + c · (ξ1y12 + ξ2y21)] = max
ξ∈U

f · (x1 + x2) + c · (ξ1y12 + ξ2y21)

= max
(ξ1,ξ2)∈{(d̄,0), (0, d̄),(0, 0)}

f · (x1 + x2) + c·(ξ1y12 + ξ2y21)

= f ·(x1 + x2) + max{cd̄y12 , cd̄y21}
≥ f + cd̄ = max

Fξ∈D
E(ξ1,ξ2)∼Fξ [f · (1 + 0) + c · (ξ1 · 0 + ξ2 · 1)] .

One can, however, verify that the following randomized strategy reduces the worst-case expected cost to
f + cd̄/2:

(X1, X2, Y11, Y12, Y21, Y22) ∼ Fx,y :=

{
(1, 0, 1, 0, 1, 0) with probability 50%
(0, 1, 0, 1, 0, 1) with probability 50%

.

Indeed, for this strategy, which randomly chooses a location that will serve all the demand, we have that

maximize
Fξ∈D

E(X,Y )∼Fx,y,(ξ1,ξ2)∼Fξ [f · (X1 +X2) + c · (ξ1Y12 + ξ2Y21)]

= max
ξ∈U

f +
1

2
cξ1 +

1

2
cξ2 = max

d∈U
f +

1

2
c · (ξ1 + ξ2) = f + cd̄/2 .

With this randomized strategy, the maximum reduction in worst-case expected cost is realized when
f = cd̄, in which case the reduction amounts to 25%.

4 The Value of Randomized Solutions

The example presented in the previous section illustrated how randomization can immunize against
distributional ambiguity. While the reduction achieved in worst-case expected cost might already make a
randomized strategy appear attractive, questions remain on the magnitude of improvements that decision
makers can expect through randomization in other instances and problems, and how to efficiently find the
optimal randomized strategies in larger-scale problems. This section tries to answer the first question by
providing useful bounds on the value of randomized solutions, whereas the second question is addressed
in Section 5.

Consider the mixed-integer distributionally robust optimization problem, which we also refer to as
the deterministic strategy problem,

[DSP] : minimize
x∈X

sup
Fξ∈D

ρξ∼Fξ (h(x, ξ)) , (1)

where X ⊂ Zn1 ×Rn2 is a compact set and ξ ∈ Rm is a random vector having a multivariate distribution
function Fξ that belongs to the distributional set D containing distributions supported on some Ξ ⊆ Rm.
Finally, h(x, ξ) : X × Ξ 7→ R is a cost function and ρξ∼Fξ (h(x, ξ)) refers to a law-invariant convex risk
measure on the probability space (Ξ,BΞ, Fξ), with BΞ as the Borel σ-algebra over Ξ.

In DSP, the decision maker selects a single action (i.e., a deterministic strategy) x∗ ∈ X aiming to
minimize the worst-case risk associated to a random cost h(x, ξ). For example, when ρξ∼Fξ (h(x, ξ)) =
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Eξ∼Fξ [h(x, ξ)], as discussed in Remark 1, we will say that the decision maker has an ambiguity averse
risk neutral (AARN) attitude. Intuitively, such an attitude can be interpreted as the attitude of a
player trying to achieve the lowest expected cost when playing a game against nature (the adversary)
who chooses the distribution Fξ from D. More generally and reasonably speaking, as shown by Delage
et al. (2019), the decision model referred as DSP emerges in any context where the decision maker is
considered ambiguity averse (satisfies the axioms of ambiguity aversion and ambiguity monotonicity)
and is considered to agree with the monotonicity, convexity, and translation invariance axioms of convex
risk measure (Föllmer and Schied 2002).

An important result in Delage et al. (2019) consists in establishing that whenever the risk measure
ρ(·) satisfies the Lebesgue property, an ambiguity averse decision maker might benefit from employing a
randomized strategy instead of a deterministic action. Namely, the decision maker’s overall risk might
be reduced by solving the randomized strategy problem

[RSP] : minimize
Fx∈∆(X )

sup
Fξ∈D

ρ(X,ξ)∼Fx×Fξ (h(X, ξ)) , (2)

where ∆(X ) is the set of all probability measures on the measurable space (X ,BX ), with BX as the Borel
σ-algebra over X . Moreover, (X, ξ) should be considered as a pair of independent random vectors with
marginal probability measures characterized by Fx and Fξ, respectively.

Definition 1. Let vd and vr refer to the optimal value of problems (1) and (2), respectively. We define
the value of randomized solutions as the difference between vd and vr,

VRS := vd − vr .

Conceptually, the VRS (and bounds on this value) serves a similar purpose to what is known as the
value of stochastic solutions for a stochastic program. Namely, it allows one to judge whether it is worth
investing a significant amount of additional computational efforts in the resolution of problem (2). Yet,
VRS might additionally be used to quantify whether the additional implementation difficulties (both
operational and psychological) associated to randomized strategies are worth the investment.

While we will later provide an algorithmic procedure to solve the RSP, or at least bound the VRS, we
start here with a tractably more attractive way of bounding this quantity.

Proposition 1. Given that ρ is a law-invariant convex risk measure and h(x, ξ) a convex function with
respect to x for all ξ ∈ Ξ. Let X ′ be any closed set known to contain the convex hull of X , then

VRS ≤ V̂RS := vd − min
x∈X ′

sup
Fξ∈D

ρξ∼Fξ (h(x, ξ)) . (3)

Moreover, if the following conditions are satisfied:

1. the decision maker has an AARN attitude, i.e., ρ(·) = E[·],
2. the function h(·, ξ) is affine in x for all ξ ∈ Ξ,

3. the set X ′ is the convex hull of X ,

then this bound is tight and vr is achieved by any strategy F ∗x ∈ ∆(X ) such that

EF∗x [X] ∈ arg min
x∈X ′

sup
Fξ∈D

Eξ∼Fξ [h(x, ξ)],

hence F ∗x is optimal in RSP.

Proposition 1 provides a mean of bounding the value of randomization using any convex relaxation X ′
of X . In particular, in many applications of DRO, the ambiguity averse risk measure supFξ∈D ρξ∼Fξ (h(x, ξ))

is known to be conic representable (see Bertsimas et al. (2017)). Hence, when it is also the case for X ′,
evaluating VRS can be numerically as difficult as solving the deterministic strategy problem. Proposition
1 also states that when the risk measure ρ(·) is an expected value and the cost function is affine in x,
determining the optimal value of the randomized strategy problem reduces to solving the deterministic
strategy problem over the convex hull of X and that the unresolved optimal solution x∗ of this new DSP

provides the expected decision vector under some optimal randomized strategy F ∗x for the RSP. Using
this result, an optimal randomized strategy should, therefore, be found by solving

minimize
Fx∈∆(X )

‖x∗ − EX∼Fx [X]‖1. (4)

Since, by definition, we have that x∗ ∈ C(X ), problem (4) is necessarily feasible and has an optimal value
of 0. Another interesting property of problem (4) and the RSP is presented in the following proposition.
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Proposition 2. If the decision maker’s attitude is AARN, i.e., ρ(·) = E[·], and the function h(·, ξ) is
affine for all ξ ∈ Ξ, then there necessarily exists a discrete distribution F ∗x , supported on at most n + 1
points, that achieves optimality in problems (2) and (4).

In Section 6, we show how Proposition 2 can be applied to find the optimal randomized strategy for
a stochastic assignment problem under distributional ambiguity. Note that, in general, the solution of
(4), and more generally problem (2), is not unique. In other words, multiple randomized strategies might
achieve the same optimal value vr. These randomized strategies are supported on different subsets of
X of arbitrarily large sizes, potentially even infinite. From an algorithmic point of view, the hope is to
quickly identify the n+ 1 support points that are needed to characterize an optimal F ∗x .

In the context of applications that involve cost functions h(x, ξ) that are convex in x, while it is
unclear whether a result similar to Proposition 2 still holds, we can nevertheless guarantee that there
always exists an optimal randomized strategy that takes the form of a discrete distribution with finite
support. This result will be used in Section 5 to design exact solution schemes.

Proposition 3. If the decision maker’s attitude is AARN, i.e., ρ(·) = E[·], and the function h(·, ξ)
is convex for all ξ ∈ Ξ, then there necessarily exists a discrete distribution F ∗x , supported on a finite
number of points, that achieves optimality in problem (2). Moreover, F ∗x can be parameterized using
{(x̄k1 , xk2 , pk)}k∈K ⊂ Zn1 × Rn2 × R, such that PF∗x (x = [x̄kᵀ1 xkᵀ2 ]ᵀ) = pk where

{x̄k1}k∈K = {x1 ∈ Zn1 | ∃x2 ∈ Rn2 , [xᵀ1 xᵀ2]ᵀ ∈ X}

is the set of feasible joint assignments for the integer variables and K is its set of indexes.

Remark 2. In a private communication we received (Bertsimas et al. 2018), the authors study the VRS
for the case where the DSP reduces to a robust linear programming problem, i.e., ρ(·) = E[·], h(x, ξ) :=
ξTx, and D := {Fξ |PF (ξ ∈ Ξ) = 1}. Under these conditions, they establish that the bound presented
in Proposition 1 is tight and can be solved in polynomial time if the DSP can be solved in polynomial
time. Furthermore, using an argument that is based on Carathéodory’s theorem (similar to our proof of
Proposition 2), they prove that the ratio vd/vr is always bounded by n+ 1, which can be tightened when
Ξ ⊂ Rm+ is convex, compact and “nearly symmetric”. They, however, do not present any method for
identifying optimal randomized strategies. In comparison, this work studies a DSP model that is more
general with respect to the risk attitude, the structure of the cost function, and the ambiguity set. Given
that in this case equation (3) does not always provide a tight bound, we will focus next on developing
numerical procedures that tighten this gap and as a side product identify optimal (or nearly optimal)
randomized strategies.

5 Exact Algorithms for Two-Stage Linear AARN Prob-
lems

In this section, we propose an algorithmic procedure based on column generation to find the optimal
randomized strategy in a class of discrete two-stage linear DRO problems described as follows:

minimize
x∈X

sup
Fξ∈D

cᵀ1x+ Eξ∼Fξ [h(x, ξ)], (5)

where X := X̄ ∩ Zn1 × Rn2 for some bounded polyhedron X̄ := {x ∈ Rn |Cxx ≤ dx} with Cx ∈ Rsx×n
and dx ∈ Rsx , c1 ∈ Rn, and ξ ∈ Rm is a random vector with a distribution known to be supported on
a subset of the bounded polyhedron Ξ := {ξ ∈ Rm |Cξξ ≤ dξ} with Cξ ∈ Rsξ×m and d ∈ Rsξ . The
expectation is taken with respect to the probability distribution Fξ that belongs to an ambiguity set D,
and is applied to the objective value of the second-stage problem

h(x, ξ) := minimize
y

cᵀ2y (6a)

subject to Ay ≥W (ξ)x+ b, (6b)

where W : Rm → Rs×m is an affine mapping defined as W (ξ) :=
∑m
i=1 Wiξi + W0 for some Wi ∈ Rs×n

for each i = 1, . . . ,m. We assume that problem (5) has relatively complete recourse, i.e., for all x ∈ X
and ξ ∈ Ξ, the recourse problem (6) has a feasible solution, and assume that the optimal value of the
recourse problem is bounded for all x ∈ X and ξ ∈ Ξ.
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Remark 3. In describing problem (5), we make a list of assumptions that focuses our algorithmic efforts
on problems that fall in the class of two-stage linear optimization models. While the structure of these
models limits applicability, this class of problems does encompass a large number of interesting decision
problems encountered in practice: e.g., in power systems (Dehghan et al. 2017), lot-sizing (Bertsimas
and de Ruiter 2016), and supply chain management (Buhayenko and den Hertog 2017). Our assump-
tion about Ξ also prevents us from modeling situations in which one would like to include distributions
with unbounded support such as a multi-variate normal or exponential distributions. However, this is a
common assumption that is made about DRO problems to help with either the theoretical or numerical
analysis (e.g., see Assumption 1 in Delage and Ye (2010)). Finally, in sharp contrast with Section 4, our
algorithmic contribution will focus on the ambiguity averse risk neutral case where ρ(·) = E[·]. Extend-
ing our proposed algorithms to accommodate more general frameworks constitutes a natural direction for
future research.

To simplify the exposition, we start by making the following assumption which will be relaxed in
Section 5.5.

Assumption 1. The feasible set is a discrete set, i.e., X := X̄ ∩ Zn.

Now, instead of choosing a single action/solution x∗, let us consider the case as in RSP where the
decision maker can randomize between multiple actions/solutions. Following Assumption 1, since X
is a discrete set, let K := {1, 2, . . . , |X |} be the index set of all members of X , i.e., X = {x̄k}k∈K.
The randomized strategy problem then reduces to determining an optimal distribution function Fx
parametrized by p ∈ R|K|+ such that PFx(X = x̄k) = pk, i.e., each pk is the probability that the randomized

strategy selects the feasible action x̄k. Mathematically, the randomized strategy problem can be rewritten
as

minimize
p∈R|K|

∑
k∈K

cᵀ1x̄
kpk + sup

Fξ∈D
Eξ∼Fξ [g(p, ξ)] (7a)

subject to pk ≥ 0 ∀ k ∈ K,
∑
k∈K

pk = 1 , (7b)

where g(p, ξ) :=
∑
k∈K

h(x̄k, ξ)pk is used for ease of exposition. Note that to obtain this reformulation, one

should start from problem (2) and exploit the facts that X and ξ are independent, that X is discrete,
and that the expectation operator is linear:

minimize
Fx∈∆(X )

sup
Fξ∈D

E(X,ξ)∼Fx×Fξ [cᵀ1X + h(X, ξ)]

≡ minimize
Fx∈∆(X )

sup
Fξ∈D

EX∼Fx
[
cᵀ1X + Eξ∼Fξ [h(X, ξ)]

]
≡ minimize

p:pk≥0,
∑
k∈K

pk=1

∑
k∈K

cᵀ1x̄
kpk + sup

Fξ∈D

∑
k∈K

Eξ∼Fξ
[
h(x̄k, ξ)

]
pk

≡ minimize
p:pk≥0,

∑
k∈K

pk=1

∑
k∈K

cᵀ1x̄
kpk + sup

Fξ∈D
Eξ∼Fξ

[∑
k∈K

h(x̄k, ξ)pk

]

≡ minimize
p:pk≥0,

∑
k∈K

pk=1

∑
k∈K

cᵀ1x̄
kpk + sup

Fξ∈D
Eξ∼Fξ [g(p, ξ)] .

As usual, the first step in dealing with DRO problems is to try to reformulate them as finite di-
mensional robust optimization problems. Indeed, whether such a reformulation exists depends on the
definition of the ambiguity set D. In what follows, we show how to reformulate problem (7) for two
important classes of ambiguity sets: moment-based and Wasserstein ambiguity sets.

5.1 A reformulation for moment-based ambiguity sets

We first consider a moment-based ambiguity set defined as

D(Ξ, µ, γ) :=
{
Fξ | Pξ∼Fξ (ξ ∈ Ξ) = 1, Eξ∼Fξ [ξ] = µ, Eξ∼Fξ [πl(ξ)] ≤ γl, ∀l ∈ L

}
, (8)

where µ ∈ Rm is the known mean of ξ, and where for each l ∈ L with |L| finite, the function πl : Rm → R
is piecewise-linear convex and its expectation bounded by γl ∈ R. This ambiguity set can be considered a
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special case of the set presented in Bertsimas et al. (2017), where both Ξ and πl(·) are considered second-
order cone representable (implications of our results to this more general case will be briefly discussed in
Remark 4). A notable example of a piecewise linear function is when πl(ξ) := |aᵀl (ξ−µ)|, which places an
upper bound on absolute deviation along the direction of al. On the other hand, a function that places
an upper bound on variance, i.e., πl(ξ) = (ξ − µ)2 would need to be treated as discussed in Remark 4.

Following the work of Wiesemann et al. (2014), we can redefine D(Ξ, µ, γ) using a lifting to the space
of [ξᵀ ζᵀ]ᵀ with ζ ∈ R|L| capturing a vector of random bounds on each πl(ξ) so that problem (7) with
D(Ξ, µ, γ) is equivalent to

minimize
p:pk≥0,

∑
k∈K

pk=1

∑
k∈K

cᵀ1x̄
kpk + sup

F(ξ,ζ)∈D(Ξ′,[µᵀ γᵀ]ᵀ)

E(ξ,ζ)∼F(ξ,ζ)
[g(p, ξ)]

where

D(Ξ′, [µᵀ γᵀ]ᵀ) :=

F(ξ,ζ)

∣∣∣∣∣∣∣
P(ξ,ζ)∼F(ξ,ζ)

((ξ, ζ) ∈ Ξ′) = 1

E(ξ,ζ)∼F(ξ,ζ)
[ξ] = µ

E(ξ,ζ)∼F(ξ,ζ)
[ζ] = γ

 ,

with

Ξ′ :=

{
(ξ, ζ)

∣∣∣∣ ξ ∈ Ξ
πl(ξ) ≤ ζl ≤ ζmax, ∀ l ∈ L

}
,

where ζmax := supl∈L,ξ∈Ξ πl(ξ) and where ζl ≤ ζmax is added to make Ξ′ bounded without affecting
the quality of the reformulation. One can readily verify that Ξ′ is polyhedral under the piecewise-linear
convexity assumption of each πl(ξ). Using the reformulation proposed by Wiesemann et al. (2014), which
is based on strong duality of semi-infinite conic programs (Shapiro 2001, Theorem 3.4), one can simplify
the worst-case expectation expression as follows:

sup
F(ξ,ζ)∈D(Ξ′,[µᵀ γᵀ]ᵀ)

E(ξ,ζ)∼F(ξ,ζ)
[g(p, ξ)] = max

[ξᵀ ζᵀ]ᵀ∈Ξ′
inf
q,λ

g(p, ξ) + (µ− ξ)ᵀq + (γ − ζ)ᵀλ

= inf
q,λ

µᵀq + γᵀλ+ max
[ξᵀ ζᵀ]ᵀ∈Ξ′

g(Fx, ξ)− ξᵀq − ζᵀλ,

which can then be reintegrated in the main optimization problem as

minimize
p,q,λ,t

∑
k∈K

cᵀ1x̄
kpk + µᵀq + λᵀγ + t (9a)

subject to max
(ξ,ζ)∈Ξ′

g(p, ξ)− ξᵀq − ζᵀλ ≤ t (9b)

p ≥ 0,
∑
k∈K

pk = 1. (9c)

We are left with a finite dimensional robust two-stage linear optimization problem which could in theory
be solved either approximately using linear decision rules (see Ben-Tal et al. (2004)) or exactly using, for
example, the column-and-constraint generation method in Zeng and Zhao (2013). Unfortunately, in both
cases, the problem is highly intractable since it potentially involves an exponential number of decision
variables due to |K|. The numerical difficulty associated with the exact resolution of this problem will
be addressed shortly using a two-layer column generation method.

5.2 A reformulation for Wasserstein ambiguity sets

The second class of ambiguity sets that we consider consists of an ambiguity set defined by a Wasserstein
ball centered at some empirical distribution F̂ξ as introduced in Mohajerin Esfahani and Kuhn (2018).

Specifically, we let D(F̂ξ, ε) be a ball of radius ε > 0 centered at the empirical distribution F̂Ω
ξ constructed

based on a set {ξ̂ω}ω∈Ω ⊂ Ξ of i.i.d. observations. More specifically,

D(F̂Ω
ξ , ε) :=

{
Fξ ∈M(Ξ) | dW(Fξ, F̂ξ) ≤ ε

}
, (10)

whereM(Ξ) is the space of all distributions F supported on Ξ with Eξ∼F
[
‖ξ‖
]

=
∫

Ξ
‖ξ‖F (dξ) <∞ and

dW :M(Ξ)×M(Ξ)→ R is the Wasserstein metric defined as

dW(F1, F2) := inf

{∫
Ξ2

‖ξ1 − ξ2‖Π(dξ1, dξ2)

∣∣∣∣ Π is a joint distribution of ξ1 and ξ2
with marginals F1 and F2 respectively

}
,

9



where ‖ · ‖ represents an arbitrary norm on Rm. This ambiguity set has become very popular in the
recent years given that it can directly incorporate the information obtained from past observations of ξ
while letting the decision maker control, through his selection of ε, the optimism of the model regarding
how close the future realization will be from any of the observed ones. We refer the reader to Kantorovich
and Rubinshtein (1958) and Fournier and Guillin (2015, Theorem 2) for more technical details about

D(F̂Ω
ξ , ε) and for statistical methods that can be used to calibrate ε so that D(F̂Ω

ξ , ε) has a probabilistic
guarantee of containing the true underlying distribution from which the observations were drawn.

Using similar steps as used in Mohajerin Esfahani and Kuhn (2018), problem (7) can be reformulated
as

minimize
p,λ≥0,{tω}ω∈Ω

∑
k∈K

cᵀ1x̄
kpk + λε+

1

|Ω|
∑
ω∈Ω

tω (11a)

subject to max
ξ∈Ξ

(
g(p, ξ)− λ‖ξ − ξ̂ω‖

)
≤ tω ∀ω ∈ Ω (11b)

p ≥ 0,
∑
k∈K

pk = 1 , (11c)

where each tω ∈ R.
In order to make problem (11) take the form of a finite dimensional robust two-stage linear optimiza-

tion problem as was done for the moment-based ambiguity set in (9) for each of the constraints indexed
by ω ∈ Ω, we assume that the l1-norm is used in the Wasserstein metric and use the lifted bounded
polyhedral uncertainty set

Ξ′ω :=

{
(ξ, ζ) ∈ Rm × R

∣∣∣∣ ξ ∈ Ξ

‖ξ − ξ̂ω‖1 ≤ ζ ≤ ζmax

}
,

where ζmax := supξ∈Ξ ‖ξ− ξ̂ω‖1 is, again, chosen such that ζ ≤ ζmax makes Ξ′ω bounded while preserving
the exactness of the reformulation. With that, our two-stage DRO problem with randomization and a
Wasserstein ambiguity set can be reformulated as the robust two-stage linear optimization problem:

minimize
p≥0,λ≥0,{tω}ω∈Ω

∑
k∈K

cᵀ1x̄
kpk + λε+

1

|Ω|
∑
ω∈Ω

tω (12a)

subject to sup
(ξ,ζ)∈Ξ′ω

(∑
k∈K

h(x̄k, ξ)pk − λζ

)
≤ tω ∀ω ∈ Ω (12b)

∑
k∈K

pk = 1 . (12c)

5.3 A column generation algorithm for single-stage problems

We just established that under fairly weak assumptions, i.e., piecewise-linear functions πl(·) in (8) and
l1-norm in (10), one can reformulate problem (7) under both the moment-based and the Wasserstein
ambiguity sets as robust two-stage linear optimization problems yet with an excessively large number of
decision variables. However, before addressing the general two-stage case, this section presents a simple
column generation algorithm that can be used to identify an optimal randomized strategy when problem
(7) reduces to a single-stage problem, i.e., h(x, ξ) := ξᵀC2x with C2 ∈ Rm×n. Also, for simplicity of
exposure, our discussion will focus on the case of a Wasserstein ambiguity set, yet can easily be modified
to accommodate problem (9). Hence, the robust constraint (12b), indexed by ω ∈ Ω, can be written as
sup(ξ,ζ)∈Ξ′ω

∑
k∈K

ξᵀC2x
kpk − λζ ≤ tω, or equivalently

maximize
ξω,ζω≥0,δω≥0

∑
k∈K

ξᵀωC2x
kpk − λζω ≤ tω (13a)

subject to Cξξω ≤ dξ (αω) (13b)

ζω ≤ ζmax (βω) (13c)

eᵀδω ≤ ζω (γω) (13d)

ξω − ξ̂ω ≤ δω (ψ+
ω ) (13e)

− ξω + ξ̂ω ≤ δω, (ψ−ω ) (13f)
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where αω ∈ Rsξ+ , βω, γω ∈ R+ and δω, ψ
+
ω , ψ

−
ω ∈ Rm+ . Note that the tuple (ξ, ζ) is indexed by ω to

emphasize that each constraint (12b) is individually reformulated. By applying LP duality on (13) for
each ω ∈ Ω and reintegrating the resulting dual formulations into (12), we get the following large-scale
LP:

minimize
pk≥0,λ≥0

αω≥0,βω≥0,γω≥0

ψ+
ω≥0,ψ−ω≥0

∑
k∈K

cᵀ1x
kpk + λε+

1

|Ω|

(∑
ω∈Ω

dᵀξαω + ζmaxβω + ξ̂ᵀω(ψ+
ω − ψ−ω )

)
(14a)

subject to Cᵀ
ξαω + ψ+

ω − ψ−ω =
∑
k∈K

C2x
kpk ∀ω ∈ Ω (ξω) (14b)

βω + λ ≥ γω ∀ω ∈ Ω (ζω) (14c)

ψ+
ω + ψ−ω ≤ eγω ∀ω ∈ Ω (δω) (14d)∑
k∈K

pk = 1. (w) (14e)

Given the exponential size of K, it is usually not possible to enumerate all of its elements at the
outset. Instead, we will solve problem (14) using a smaller set K′ and progressively add new candidates
to this set until an ε-optimal randomized strategy is found. This so-called column generation algorithm
can be seen as performing constraint generation on the following dual problem:

maximize
ξω,ζω≥0,δω≥0,w

w (15a)

subject to w ≤ cᵀ1x
k +

∑
ω∈Ω

ξᵀωC2x
k ∀k ∈ K (pk) (15b)

∑
ω∈Ω

ζω ≤ ε (λ) (15c)

Cξξω ≤
1

|Ω|dξ ∀ω ∈ Ω (αω) (15d)∥∥∥∥∥ξω − ξ̂ω
|Ω|

∥∥∥∥∥
1

≤ ζω ≤
ζmax

|Ω| ∀ω ∈ Ω. (15e)

Hence, the column generation algorithm can be described as follows.

1. Initialize the subset K′ ⊂ K to any singleton (e.g., so that {xk}k∈K′ contains the solution x∗d to
the deterministic strategy problem (5)). Set the upper bound UB := ∞ and the lower bound
LB := −∞.

2. Solve the restricted master problem, i.e., problem (14), with the subset K′ instead of K to obtain
a new upper bound and the dual variables ξ̄ω of (14b).

3. Solve the subproblem

w = min
x∈X

(
cᵀ1 +

∑
ω∈Ω

ξ̄ᵀωC2

)
x

to obtain a new feasible solution x̄k and update the lower bound as LB := max(LB,w). If UB −
LB < ε, terminate the algorithm and declare the current solution p∗k of the restricted master
problem to be optimal for the randomized strategy problem. Otherwise, add the new index k to K′
and repeat steps 2 and 3.

5.4 A two-layer column generation algorithm

In this section, we propose a two-layer column generation algorithm that can identify an optimal ran-
domized strategy for problem (7) together with its optimal value vr. For simplicity of exposure, our
discussion will focus on the case of a Wasserstein ambiguity set yet can easily be modified to accom-
modate problem (9). First, we note that since h(x̄k, ξ) is convex in ξ (see chapter 3.2.5 of Boyd and
Vandenberghe (2004) for a proof of convexity) and the inner optimization in equation (12b) is a convex
maximization over a bounded polyhedral set, its maxima is attained at one of the vertices of Ξ′ω. Hence,
we replace the maximization over Ξ′ω with a maximization over the set of vertices {ξhω , ζhω}hω∈Hω for

11



Dual(𝒦′,ℋ′)

Primal (𝒦′,ℋ)

Solve MP1(𝒦′,ℋ′)

Solve SP1𝜔 ∀ 𝜔 ∈ Ω

Update
𝑝𝑘
∗ , 𝜆∗

𝐿𝐵1

Generate vertices

(𝜉ℎ𝜔
′
, 𝜁ℎ𝜔

′
) ∀ 𝜔 ∈ Ω

ℋ′𝜔 ← ℋ′𝜔 ∪ {ℎ𝜔
′ }

𝑈𝐵1

Dual (𝒦,ℋ′)

Solve SP2

𝑈𝐵,ℋ′

𝐿𝐵,𝒦′

𝑥0 = 𝑥𝑑
∗

While 𝑈𝐵1 − 𝐿𝐵1 ≥ 𝜀/2

While 𝑈𝐵 − 𝐿𝐵 ≥ 𝜀

Solve MP2(𝒦′,ℋ′)

Generate solution

𝑥𝑘
′

𝒦′ ← 𝒦′ ∪ {𝑘′}
𝐿𝐵2

While 𝑈𝐵2 − 𝐿𝐵2 ≥ 𝜀/2

Update
𝑞ℎ𝜔
𝜔∗

𝑈𝐵1

𝑝𝑘
∗ ∀ 𝑘 ∈ 𝒦′

Figure 1: An outline of the two-layers column generation algorithm.

each ω ∈ Ω, where Hω is the index set for the vertices of Ξ′ω. Hence, problem (12) can be rewritten as
the large-scale LP:

minimize
p≥0,λ≥0,{tω}ω∈Ω

∑
k∈K

cᵀ1x̄
kpk + λε+

1

|Ω|
∑
ω∈Ω

tω (16a)

subject to
∑
k∈K

h(x̄k, ξhω )pk − ζhωλ ≤ tω ∀hω ∈ Hω, ω ∈ Ω (qωhω ) (16b)

∑
k∈K

pk = 1. (w) (16c)

Except for very small instances, it is impossible to enumerate and include the entire sets of all |K|
decision variables and

∑
ω∈Ω |Hω| vertices in this problem. Instead, we begin with subsets K′ ⊂ K and

H′ω ⊂ Hω for each ω ∈ Ω, and employ a two-layer column generation algorithm to generate and add
new elements iteratively, as needed. The algorithm operates as follows (an outline of the algorithm is
provided in Fig. 1 and a pseudocode description is also presented in Appendix C):

1. Initialize the subset K′ ⊂ K to any singleton (e.g., so that {xk}k∈K′ contains the solution x∗d to
DSP). Initialize the sets H′ω = ∅ for all ω ∈ Ω. Finally, set the upper bound UB :=∞ and the lower
bound LB := −∞.

2. Solve the primal master problem which seeks an optimal randomized strategy supported on {xk}k∈K′
while considering the full set of vertices Hω for all ω ∈ Ω,

[Primal(K′,H)] : minimize
p≥0,λ≥0,{tω}ω∈Ω

∑
k∈K′

cᵀ1x̄
kpk + λε+

1

|Ω|
∑
ω∈Ω

tω

subject to
∑
k∈K′

h(x̄k, ξhω )pk − ζhωλ ≤ tω ∀hω ∈ Hω, ω ∈ Ω

∑
k∈K′

pk = 1,

where p ∈ R|K
′| and where H := {Hω}ω∈Ω. The solution of Primal(K′,H) provides a feasible

solution to problem (16) hence an upper bound which will be used to update UB. Unfortunately,
one cannot handle all the constraints of this problem indexed with hω ∈ Hω. Therefore, we generate
the ones that are needed to confirm optimality through the following sub-procedure:
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(a) Set LB1 := LB and UB1 :=∞.

(b) Initialize p∗ and λ∗ to any arbitrary solution that satisfies p∗ ≥ 0, λ∗ ≥ 0, and
∑
k∈K′ p

∗
k = 1.

(c) For each ω ∈ Ω, solve the subproblem

[SP1ω] maximize
(ξ,ζ)∈Ξ′ω

∑
k∈K′

p∗kh(x̄k, ξ)− λ∗ζ ,

to generate a new worst-case vertex (ξhω , ζhω ) in each support set Ξ′ω. This can be done by
solving a mixed-integer linear program as will be described in Proposition 4.

(d) Let t∗ω be the optimal value of SP1ω for all ω ∈ Ω. Update the upper bound as

UB1 := min

(
UB1,

∑
k∈K

cᵀ1x̄
kp∗k + λ∗ε+

1

|Ω|
∑
ω∈Ω

t∗ω

)
.

(e) Add the index of each new vertex generated (ξhω , ζhω ) to its respective index subsetH′ω, ω ∈ Ω
and solve the primal master problem (MP1), defined as the restricted version of Primal(K′,H′)
where each set Hω is replaced with its subset H′ω, to update (p∗, λ∗) and obtain a lower bound
LB1. Note that for each k ∈ K′ the values of h(x̄k, ξhω ) for all hω ∈ H′ω only need to be
computed once when a new vertex is added to H′ω.

(f) If UB1 − LB1 < ε/2 terminate the sub-algorithm and set UB := UB1. Otherwise, return to
Step 2c.

3. Solve the dual master problem which seeks an optimal randomized strategy supported on the whole
{xk}k∈K set while considering the set of vertices H′ω for all ω ∈ Ω. This problem is derived by
taking the dual of the large-scale LP (16) with multipliers qωhω and w for constraints (16b) and
(16c), respectively, and considering, for all ω ∈ Ω, the subset H′ω ⊂ Hω instead of the complete
index sets Hω. The resulting dual master problem is

[Dual(K,H′)] : maximize
w,{qω}ω∈Ω

w (17a)

subject to w ≤ cᵀ1x̄
k +

∑
ω∈Ω

∑
hω∈H′ω

h(x̄k, ξhω )qωhω ∀k ∈ K (pk) (17b)

∑
ω∈Ω

∑
hω∈H′ω

ζhωqωhω ≤ ε (λ) (17c)

∑
hω∈H′ω

qωhω =
1

|Ω| ∀ω ∈ Ω (tω) (17d)

qω ≥ 0 ∀ω ∈ Ω. (17e)

The optimal value of Dual(K,H′) provides a lower bound for problem (16) which should be used to
update LB. Note that the optimal dual variables can also be used to initialize p∗ and λ∗ in Step
2b. Since we cannot handle the full set of actions X implemented by the randomized strategy, we
progressively construct an optimal support set of reasonable size using the following sub-procedure:

(a) Set LB2 := −∞ and UB2 := UB

(b) Initialize each qω∗hω to an arbitrary solution that satisfy constraints (17c), (17d) and (17e). In
practice, one can obtain such a valid assignment based on the optimal assignment for the dual
variables of Primal(K′,H).

(c) Solve the subproblem minimize
x∈X

cᵀ1x +
∑
ω∈Ω

∑
hω∈H′ω

h(x, ξhω )qω∗hω , which reduces to the mixed-

integer linear program

[SP2] : minimize
x∈X ,y

cᵀ1x+
∑
ω∈Ω

∑
hω∈H′ω

qω∗hωc
ᵀ
2yhω

subject to Ayhω −W (ξhω )x ≥ b ∀hω ∈ H′ω.

Consider the optimal x∗ to be a new support point for the optimal randomized strategy.

(d) Let w∗ be the optimal value obtained for SP2. The lower bound is updated as LB2 :=
max(LB2, w

∗).
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(e) Add the index of the new support point x∗ to K′ and solve the dual master problem (MP2),
defined as the restricted version of Dual(K′,H′) where K is replaced with K′, to update qω∗hω
and obtain an upper bound UB2. Note that for each hω ∈ H′ω the values of h(x̄k, ξhω ) for all
k ∈ K′ needs to be computed once only when a new support point is added to K′.

(f) If UB2 − LB2 < ε/2, terminate the sub-algorithm and set LB := LB2. Otherwise, return to
Step 3c.

4. Iterate between the steps (2) and (3) until UB − LB < ε.

To complete the presentation of the two-layer column generation algorithm, we present how problem
SP1ω can be reformulated as a mixed-integer linear program.

Proposition 4. Problem SP1ω is equivalent to the following mixed-integer linear program:

maximize
ξ,ζ,δ,α,β,ψ,φ≥0

Bin1,Bin2,Bin3,Bin4,Bin5,Bin6,Bin7

∑
k∈K′

(W0x̄
k + b)ᵀφk + dᵀξα+ ζmaxγ + ξ̂ᵀω(ψ+ − ψ−)

subject to Aᵀφk = c2p
∗
k ∀k ∈ K′ (18a)

m∑
i=1

(∑
k∈K′

φTkWixk

)
ei = CTξ α+ ψ+ − ψ− (18b)

0 ≤ d− Cξ ≤M(1−Bin1) (18c)

0 ≤ α ≤MBin1 (18d)

0 ≤ ζ − eᵀδ ≤M(1−Bin2) (18e)

0 ≤ β ≤MBin2 (18f)

0 ≤ ζmax − ζ ≤M(1−Bin3) (18g)

0 ≤ γ ≤MBin3 (18h)

0 ≤ δ − ξ + ξ̂ω ≤M(1−Bin4) (18i)

0 ≤ ψ+ ≤MBin4 (18j)

0 ≤ δ + ξ − ξ̂ω ≤M(1−Bin5) (18k)

0 ≤ ψ− ≤MBin5 (18l)

0 ≤ ζ ≤M(1−Bin6) (18m)

0 ≤ λ∗ + γ − β ≤MBin6 (18n)

0 ≤ δ ≤M(1−Bin7) (18o)

0 ≤ β − ψ+ − ψ− ≤MBin7 (18p)

Bin1 ∈ {0, 1}sξ , Bin2 ∈ {0, 1}, Bin3 ∈ {0, 1}, Bin4 ∈ {0, 1}m,

Bin5 ∈ {0, 1}m, Bin6 ∈ {0, 1}, Bin7 ∈ {0, 1}m, (18q)

where φk ∈ Rs+, α ∈ Rsξ+ , β ∈ R+, γ ∈ R+, ψ
+ ∈ Rm+ and ψ− ∈ Rm+ , while M is a large enough constant.

It is worth emphasizing that, in contrast to the reformulation that would be obtained by applying
the scheme of Zeng and Zhao (2013) directly, our MILP reformulation ensures that the number of binary
variables does not increase with the size of the support K′ of the randomized strategy. This alternative
approach leads to a significant reduction in the solution time for SP1ω.

Theorem 1. The two-layer column generation algorithm presented in Algorithm 1 converges in a finite
number of iterations.

Remark 4. In Theorem 1, the convergence in a finite number of iteration follows from our assumption
that X is a bounded discrete set, Ξ is a bounded polyhedron and that the Wasserstein ambiguity set
employs a metric that is based on the l1-norm (or alternatively that π(ξ) is piecewise-linear in the case
of a moment-based ambiguity set). However, Algorithm 1 is generic and can be used for more general
forms of decision spaces and ambiguity sets. In particular, we will discuss in the next section how the
algorithm can be modified to handle the case where X is mixed-integer, namely n2 > 0. The case of
general ambiguity sets can also be accommodated but requires one to design an alternative scheme for
solving SP1ω. In particular, one might suspect that, following the work of Zeng and Zhao (2013), if
Ξ′ω (for Wasserstein ambiguity set) or Ξ′ (for the moment-based ambiguity set) are second-order cone
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representable, then similar arguments as those used in the proof of Proposition 4 could be used to design an
equivalent mixed-integer second-order cone programming problem. The question of whether the algorithm
would still be guaranteed to converge in a finite number of iterations for such ambiguity sets remain open
for future research.

5.5 The case of mixed-integer feasible region

We briefly outline how the algorithm presented in Section 5.4 can be modified to handle more general
mixed-integer feasible sets X that do not satisfy Assumption 1, i.e., X = X̄ ∩ Zn1 × Rn2 with n2 6= 0.
Similarly as was done in Proposition 3, we let {x̄k1}k∈K ⊂ Zn1 describe the finite set, indexed using
k ∈ K, of feasible assignments for the integer decision variables, i.e., {x̄k1}k∈K := {x1 ∈ Zn1 | ∃x2 ∈
Rn2 , [xᵀ1 x

ᵀ
2]ᵀ ∈ X} .

Proposition 5. Let X be mixed-integer, the decision maker’s attitude be AARN, and the cost function
h(x, ξ) capture a two-stage decision problem as described in equation (6). Then, the RSP presented in
equation (2) is equivalent to

minimize
p≥0,{zk}k∈K

∑
k∈K

cᵀ1z
k + sup

Fξ∈D
Eξ∼Fξ

[∑
k∈K

h′(pk, z
k, ξ)

]
(19a)

subject to Cxz
k ≤ dxpk ∀k ∈ K (19b)

PZz
k = x̄k1pk ∀k ∈ K (19c)∑

k∈K
pk = 1, (19d)

where each zk ∈ Rn, where PZ ∈ Rn1×n is the projection matrix that retrieves the n1 first elements of
a vector in Rn, i.e., PZ := [I 0], and finally where h′(pk, z

k, ξ) denotes the perspective of the recourse
function h(x, ξ), i.e.,

h′(pk, z
k, ξ) := min

y′
cᵀ2y
′

s.t. Ay′ ≥W (ξ)zk + bpk.

In particular, both problems achieve the same optimal value and an optimal randomized strategy F ∗x for
(2) is supported on the collection of points {zk∗/p∗k}k∈K:p∗

k
6=0 with respective probabilities {p∗k}k∈K:p∗

k
6=0.

Following similar steps as in Section 5.4, one can obtain the following large-scale convex optimization
problem when employing the Wasserstein ambiguity set D(F̂ξ, ε):

minimize
p≥0,{zk}k∈K,λ≥0,{tω}ω∈Ω

∑
k∈K

cᵀ1z
k + λε+

1

|Ω|
∑
ω∈Ω

tω

subject to
∑
k∈K

h′(pk, z
k, ξhω )− ζhωλ ≤ tω ∀hω ∈ Hω, ω ∈ Ω

Cxz
k ≤ dxpk ∀k ∈ K

PZz
k = x̄k1pk ∀k ∈ K∑

k∈K
pk = 1.

We can proceed as before, meaning that we start with sets K′ ⊂ K and H′ω ⊂ Hω, ∀ω ∈ Ω and
progressively identify which indexes to add to K′ and H′ω, ∀ω ∈ Ω. The so-called primal problem now
takes the shape of

[Primal′(K′,H)] : minimize
p≥0,{zk}k∈K′ ,λ≥0,{tω}ω∈Ω

∑
k∈K′

cᵀ1z
k + λε+

1

|Ω|
∑
ω∈Ω

tω

subject to
∑
k∈K′

h′(pk, z
k, ξhω )− ζhωλ ≤ tω ∀hω ∈ Hω, ω ∈ Ω

Cxz
k ≤ dxpk ∀k ∈ K′

PZz
k = x̄k1pk ∀k ∈ K′∑

k∈K′
pk = 1,
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which in its restricted form can be reformulated as an LP that integrates the recourse variables as follows:

minimize
p≥0,λ≥0,{tω}ω∈Ω,{zk}k∈K′
{yk,hω }k∈K′,hω∈H′ω,ω∈Ω

∑
k∈K′

cᵀ1z
k + λε+

1

|Ω|
∑
ω∈Ω

tω

subject to
∑
k∈K′

cᵀ2yk,hω − ζ
hωλ ≤ tω ∀hω ∈ H′ω, ω ∈ Ω

Ayk,hω ≥W (ξhω )zk + bpk ∀k ∈ K′, hω ∈ H′ω, ω ∈ Ω

Cxz
k ≤ dxpk ∀k ∈ K′

PZz
k = x̄k1pk ∀k ∈ K′∑

k∈K′
pk = 1,

with a subproblem

[SP1′ω] : maximize
(ξ,ζ)∈Ξ′ω

∑
k∈K′

p∗kh(zk∗/p∗k, ξ)− λ∗ζ ,

which can again be cast as the mixed-integer linear program presented in (18).
An additional challenge arises when attempting to identify a new support point k ∈ K to add to K′.

First, one needs to show (see Appendix D) that the dual problem takes the form:

[Dual′(K,H′)] : maximize
w,q≥0

w (20a)

subject to w ≤ min
xk∈Xk

cᵀ1x
k +

∑
ω∈Ω

∑
hω∈H′ω

h(xk, ξhω )qhω ∀k ∈ K (pk) (20b)

∑
ω∈Ω

∑
hω∈H′ω

ζhωqhω ≤ ε (λ) (20c)

∑
hω∈H′ω

qhω =
1

|Ω| ∀ω ∈ Ω, (tω) (20d)

where Xk := {x ∈ Rn |Cxx ≤ dx, PZx = x̄k1}. Hence, the restricted dual problem with K′ ⊂ K can be
solved as a LP by replacing constraint (20b) by the dual problem associated to:

minimize
x∈Xk,{yωhω }hω∈Hω,ω∈Ω

cᵀ1x+
∑
ω∈Ω

∑
hω∈H′ω

qhωc
ᵀ
2y
ω
hω

subject to Ayωhω ≥W (ξhω )x+ b ∀hω ∈ H′ω, ω ∈ Ω .

On the other hand, the subproblem used in Step 3 to add a new support point in K′ takes the same
form as SP2.

6 Application on Distributionally Robust Integer Prob-
lems

In this section, we apply the column generation algorithms presented in Section 5 to solve the RSP that
emerges in three classical applications of discrete optimization: the assignment problem (as an example
of problems with integer polyhedron feasibility sets), the uncapacitated facility location problem (as
an example of single-stage problems), and the capacitated facility location problem (as an example of
two-stage problems). To simplify exposition, we again focus on the case when D is the Wasserstein
ambiguity set defined in Section 5.2 with a l1-norm Wasserstein ball and a polyhedral support set Ξ :=
{ξ | Cξξ ≤ dξ}.

6.1 Distributionally Robust Assignment Problem

The assignment problem aims to find the minimum weighted matching over a bipartite graph. It belongs
to a class referred to as minimum-cost network flow (MCNF) problems. It is well-known that the
constraint matrix of this class of problems is totally unimodular, meaning that, under mild conditions,
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the relaxed feasible set is an integer polyhedron, hence X̄ = C(X ). For more details about MCNF
problems and total unimodularity, the reader is referred to Ahuja et al. (1993).

The distributionally robust assignment problem (DRAP) can be stated as follows:

minimize
x∈XAP

sup
Fξ∈D

Eξ∼Fξ

[∑
i∈I

∑
j∈J

ξijxij

]
(21)

where

XAP :=

x ∈ {0, 1}|I|×|J |
∣∣∣∣∣∣
∑
j∈J

xij = 1 ∀ i ∈ I∑
i∈I

xij = 1 ∀ j ∈ J

 .

In this formulation, I and J are sets of demand and supply points, respectively, with |I| = |J |, each
xij is a binary assignment variable and ξij is an uncertain assignment cost.

Corollary 1. For the DRAP presented in equation (21), the value of randomized solutions is equal to

VRS = min
x∈XAP

δ∗ (x|U)− min
x′∈X ′

AP

δ∗
(
x′
∣∣U) ,

where

X ′AP :=

x ∈ [0, 1]|I|×|J |

∣∣∣∣∣∣
∑
j∈J

xij = 1 ∀ i ∈ I∑
i∈I

xij = 1 ∀ j ∈ J

 ; (22)

while δ∗(v|U) := sup
µ∈U

∑
i∈I

∑
j∈J

vijµij is the support function of the set:

U := C
(
{µ ∈ R|I|×|J |

∣∣∣ ∃Fξ ∈ D, µij = Eξ∼Fξ [ξij ] ∀i ∈ I, ∀ j ∈ J }
)
.

Corollary 1 follows straightforwardly from Proposition 2, which enables us to find the value of the
randomized solution simply by solving a continuous relaxation of DRAP. Note that while an integer
solution can always be obtained by solving the continuous relaxation of the deterministic assignment
problem, this is not true for DRAP since the worst-case expected cost function is convex with respect
to x (instead of being linear). Let, for instance, the distributional set D be a Wasserstein set similar to
the one presented in Section 5.2. Using Corollary 5.1 in Mohajerin Esfahani and Kuhn (2018), one can
reformulate DRAP as the mixed-integer program

minimize
x∈XAP,λ,{tω}ω∈Ω,{νω}ω∈Ω

λε+
1

|Ω|
∑
ω∈Ω

tω (23a)

subject to
∑
i∈I

∑
j∈J

ξ̂ijωxij +
(
d− Cξ̂ω

)ᵀ
νω ≤ tω ∀ω ∈ Ω (23b)

‖Cᵀνω − x‖∞ ≤ λ ∀ω ∈ Ω (23c)

νω ≥ 0 ∀ω ∈ Ω , (23d)

where each νω ∈ Rsξ and where ξ̂ω is short for [ξ̂11ω ξ̂21ω . . . ξ̂|I|1ω ξ̂12ω . . . ξ̂|I|2ω . . . ξ̂|I||J |ω]ᵀ.
We can also use Corollary 1 to find the optimal value of the randomized strategy problem. Let

x∗ = arg min
x∈X ′

AP

δ∗ (x|U) be the optimal solution of problem (23) with XAP replaced with X ′AP. As discussed

in Section 4, the optimal randomized strategy can then be found by solving the problem:

minimize
p≥0

‖x∗ −
∑
k∈K

pkx̄
k‖1

subject to
∑
k∈K

pk = 1 .
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This problem can be rewritten as

minimize
p≥0,θ

∑
i∈I

∑
j∈J

θij (24a)

subject to θij +
∑
k∈K

pkx̄
k
ij ≥ x∗ij ∀i ∈ I, j ∈ J (ψ+

ij) (24b)

θij −
∑
k∈K

pkx̄
k
ij ≥ −x∗ij ∀i ∈ I, j ∈ J (ψ−ij) (24c)

∑
k∈K

pk = 1, (φ) (24d)

where θ ∈ R|I|×|J |. Since the number of extreme points is extremely large, we generate the elements of
K and add them progressively, as needed, using a column generation approach. To do so, we first write
the dual problem as

maximize
ψ+≥0,ψ−≥0,φ

∑
i∈I

∑
j∈J

(ψ+
ij − ψ

−
ij)x

∗
ij − φ

subject to
∑
i∈I

∑
j∈J

(
ψ+
ij − ψ

−
ij

)
x̄kij ≤ φ ∀k ∈ K (pk)

ψ+
ij + ψ−ij ≤ 1 ∀i ∈ I, ∀j ∈ J , (θij)

where ψ+ ∈ R|I|×|J |, ψ− ∈ R|I|×|J |, and φ ∈ R. We then choose a subset K′ ⊂ K (which can
initially include only the index of the deterministic problem’s solution) and solve the restricted version of
problem (24) to obtain an upper bound. Then, the dual variables ψ+ and ψ− are used in the subproblem
max
x∈XAP

(
ψ+ − ψ−

)ᵀ
x to generate a new extreme point x̄k. The set K′ is updated by adding the index of

the new extreme point and the restricted master problem is resolved to obtain a new upper bound and
new values for the dual variables. The algorithm iterates between the restricted master problem and the
subproblem until the solution of the restricted master problem’s objective value becomes smaller than
some tolerance ε ≥ 0.

6.2 Distributionally Robust Uncapacitated Facility Location

We now revisit the DRUFLP problem presented in Section 3 in its more general form:

minimize
(x,y)∈XUFLP

maximize
Fξ∈D

Eξ∼Fξ

[∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

ξicijyij

]
,

where each xj denotes the decision to open a facility at location j, while each yij denotes the decision to
serve the demand at node i using the facility opened at j, in particular

XUFLP :=

{
(x, y) ∈ {0, 1}|I| × {0, 1}|I|×|J |

∣∣∣∣∣
∑
j∈J

yij = 1 ∀ i ∈ I

yij ≤ xj ∀ i ∈ I, j ∈ J

}
.

The uncertain parameters in this problem are ξi, i.e., the demand at each customer location i ∈ I and
that must be served by one of the open facilities. We focus on the classical single-stage, single assignment
version of the DRUFLP, in which both the locations of facilities and the assignment of demand to them
are determined before the demand is revealed and each demand is fully assigned to a single open facility.

With a randomized strategy, the problem can be stated as:

minimize
pk≥0,

∑
k∈K

pk=1
sup
Fξ∈D

Eξ∼Fξ

[∑
k∈K

(∑
j∈J

fjx
k
j +

∑
i∈I

∑
j∈J

ξicijy
k
ij

)
pk

]
, (25)

where K is the index set of feasible (x, y) pairs in XUFLP. One can implement the column generation
algorithm described in Section 5.3 to solve this problem. In every iteration, we solve the master problem
(14) with a partial set K′ ⊆ K, and with the terms cᵀ1x

k and ξᵀC2x
k replaced, respectively, with

∑
j∈J

fjx
k
j

and
∑
j∈J

ξicijyij .
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6.3 Distributionally Robust Capacitated Facility Location Problem

We formulate the distributionally robust capacitated facility location problem (DRCFLP) with ran-
domization as a two-stage stochastic program with distributional ambiguity. Similar to the DRUFLP
presented in the previous section, we consider uncertainty in the demand quantity ξi. The here-and-
now decision is a potentially randomized set of facility locations parametrized using a probability vector
p ∈ R|K|+ where K captures the set of indices for all members of {0, 1}|J |. With that, the DRCFLP can
be stated as follows:

min
p:p≥0,

∑
k∈K

pk=1

∑
k∈K

∑
j∈J

fjx
k
j pk + sup

Fξ∈D
Eξ∼Fξ

[∑
k∈K

h(xk, ξ)pk

]
, (26)

where

h(x, ξ) := min
z≥0

∑
i∈I

∑
j∈J

cijzij (27a)

s.t.
∑
j∈J

zij = ξi ∀i ∈ I (27b)

∑
i∈I

zij ≤ vjxj ∀j ∈ J , (27c)

is the second-stage (recourse) problem that is solved to find the assignment of demand to opened facilities
once the uncertain demand quantities become known. Unlike the classical formulation of the Capacitated
Facility Location Problem that uses the variable yij ∈ [0, 1] to denote the fraction of customer i’s demand
served by facility j (see, e.g., Fernández and Landete (2015)), we equivalently use zij = ξiyij to denote
the quantity of customer i’s demand served by facility j as the recourse decision variable. This choice of
the allocation variables enables us to write the second-stage problem in the form presented in equation
(6).

The DRCFLP formulation provided in equations (26) and (27) can be seen as a special case of the
problem described by equations (5) and (6), respectively. Therefore, the two-layer column generation
algorithm presented in Section 5.4 can be used to solve it. The implementation details for solving a
DRCFLP with a Wasserstein ambiguity set are provided in Appendix E.

7 Numerical Results

We conducted a series of numerical experiments to assess the quality of the bounds proposed in Section 4
and the numerical performance of the solution algorithms presented in Section 5 on the three applications
presented in Section 6. All algorithms were implemented using Matlab R2017a, and Gurobi 5.7.1 was
called to solve the master and subproblems. All tests were run on a personal computer with an Intel Core
i-7 7700 3.6 GHz processor and 16 GB of RAM. For all problems, we used a sample set of 10 observations
(i.e., |Ω| = 10) selected uniformly at random from the set Ξ to construct the empirical distribution F̂ξ.
The ambiguity set was then defined as a Wasserstein ball of radius ε around the empirical distribution.
In all algorithms, we set the optimality tolerance to ε = 0.02. We further refer the reader to Appendix F
for additional experiments that investigate the effect of increasing the sample size (i.e., the support size

of the empirical distribution F̂Ω
ξ ) on the computational times of the algorithms and the solution support

sizes. The Matlab codes used to generate the results can be found on GitHub1 .

7.1 Experiments with the DRAP

We experimented with 10 random instances of size |I| = |J | = 100. The support set for ξ was a
hypercube defined as

Ξ :=
{
ξ ∈ R|I|×|J |+ : ξnomij (1−∆ij) ≤ ξij ≤ ξnomij (1 + ∆ij)

}
,

where ξnom was a nominal cost vector drawn uniformly at random in [10, 20]|I|×|J | while, for each i ∈ I
and j ∈ J , the relative maximum deviation ∆ij was drawn uniformly and independently at random from
[0.5, 1]. We studied for each instance a range of different values of ε ∈ [0, 25000]. For each test instance,

1GitHub repository: https://github.com/AhmedSaifDal/ValueRandomizedSolutions.
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Figure 2: (a) Average and maximum improvement achieved by randomization. (b) Average and maximum
support size of the optimal randomized strategy and computational time. Both based on 10 DRAP instances.

the DRAP with a deterministic strategy was first reformulated into a mixed-integer linear program using
the approach proposed in Mohajerin Esfahani and Kuhn (2018, Corollary 5.1) and solved to obtain vd.
We then solved a continuous relaxation of the deterministic strategy problem and used its solution to
find an optimal randomized strategy using the algorithm outlined in Section 6.1. Figure 2-(a) presents
statistics about the relative improvement achieved by a randomized strategy compared to a deterministic
strategy on the 10 test instances and as a function of ε. Both the average and the maximum improvements
observed in the test instances are reported. Note that the bound obtained from Theorem 1 is exact for

this application thus VRS = V̂RS .
Looking at Figure 2-(a), one should notice that when the ambiguity set contains only the empirical

distribution (i.e., ε = 0), there is no value in randomization. This is due to the fact that the problem
reduces to a simple expected value minimization problem (with a known distribution) which is known
to be “randomization-proof” (see Definition 8 in Delage et al. (2019)). On the other hand, when ε
becomes very large, the adversary can place all the probability mass at any vertex of Ξ. Given that a box
support set is used, the problem reduces to a deterministic assignment problem with ξij = ξnomij (1+∆ij),
and randomization becomes ineffective for the same reason. Between these two extreme cases, we can
confirm that employing a randomized strategy can lead to a significant reduction in the worst-case
expected assignment cost. For example, at ε = 1200 an average improvement of 44.48% was achieved,
whereas the maximum improvement observed in the 10 test instances was 47.14%. Intuitively, this
might be explained by the fact that randomization allows the decision maker to mitigate his ambiguity
aversion by diversifying the types of cost cij to which his expected cost is sensitive. In particular, while a
deterministic strategy’s expected cost only depends on the quality of n different cost values, a randomized
one has the potential of making the expected cost depend on the quality of all n2 terms in the cost matrix
c, effectively distributing the risks accordingly.

Figure 2-(b) presents statistics about the support size of the optimal randomized strategy in the
DRAP instances tested and the computational time of the solution algorithm. One can notice that in
order to reap the full benefit of randomization, the optimal strategy randomizes among a number of
feasible solutions (i.e., assignment plans) that ranges between 5 and 1890 plans (excluding the case of
ε = 0, where randomization has no value). Although the support size seems quite large, it is still well
below the theoretical bound of 10,001 plans obtained from Proposition 2. The average computational
time over all instances was 22,682 seconds and, on average, produced optimal randomized strategies
supported on 649 assignment plans. The longest computational time observed was 136,651 seconds
and in this case produced a strategy supported on 1879 assignment plans. In comparison, solving the
deterministic strategy DRAP took an average of 33,268 seconds, with some instances taking more than
48 hours to solve on Gurobi. We note that while a near-optimal solution is approached considerably fast,
only a little progress per iteration is made close to the optimum, a well-known phenomenon in column
generation algorithms known as the tailing-off effect (see Gilmore and Gomory (1961), for instance).
Therefore, despite the apparently long computational time and large support size at optimality, most
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Figure 3: (a) Average and maximum V̂RS bound and actual improvement achieved by randomization. (b)
Average and maximum support size of the optimal randomized strategy and computational time. Both
based on 10 DRUFLP instances.

(typically > 90%) of the improvement was achieved in the first few iterations. Hence, the decision maker
can terminate the algorithm prematurely and still obtain a feasible randomized strategy that considerably
outperforms the deterministic strategy.

7.2 Experiments with the DRUFLP

We experimented with 10 random instances of size |I| = |J | = 300. The coordinates of demand points
(which are also the potential facility locations) were selected uniformly at random on a unit square, and
we used the Euclidean distance between any two points as the unit shipping cost cij . The set-up cost was
fj = 10 for all potential locations while the uncertain demand was supported on a hypercube defined as

Ξ :=
{
ξ ∈ R|I|+ : ξnomi (1−∆i) ≤ ξi ≤ ξnomi (1 + ∆i)

}
,

where each nominal demand ξnomi ∈ [10, 20] and each maximum relative deviation ∆i ∈ [0.5, 1], were
uniformly drawn at random. We, again, studied the performances under a wide range of ε values. For
each problem instance, we solved the DRUFLP without and with randomization to obtain vd and vr,
respectively, and a relaxed version of the deterministic problem, as prescribed by Proposition 1, to

compute the bound V̂RS . To solve the deterministic strategy problem, we first reformulated it into
a mixed-integer linear program using the approach proposed in Mohajerin Esfahani and Kuhn (2018,
Corollary 5.1).

Figure 3-(a) presents statistics about the relative V̂RS bound and about the actual relative improve-
ments achieved by the optimal randomized strategy in the 10 test instances and under different levels of
distributional ambiguity, parameterized by ε ∈ [0, 4000]. Similar to the case of the DRAP, we observe
again that randomization does not lead to a reduction in worst-case expected cost when ε = 0 or when it
becomes too large. Unlike the case of DRAP, however, we observe here that the improvement obtained
from randomization remains relatively small for this set of 10 instances. In particular, it never exceeds
1.87% and peaks with an average improvement of 1.37% at ε = 1600. Interestingly, it appears that for
this set of problem instances, one does not actually need to solve the DRUFLP with randomization to

draw this conclusion. Indeed, the V̂RS bound proposed in Proposition 1 can be computed much more
efficiently and already confirms that the improvement is below 2% for all problem instances and values

of ε. The V̂RS bound was even able in 5 test instances to recognize that at ε = 0, there was no possible
improvement for randomized strategies. Even in the other 5 test instances, the identified potential of
improvement was nearly inexistent (always below 0.05%). This evidence supports an observation made
by Morris (1978) that solving a linear relaxation of the uncapacitated facility location problem typically
leads to identifying an integer solution.

21



0%

5%

10%

15%

20%

25%

30%

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Im
p

ro
v
em

en
t 

%

є

Average relative VRS Maximum relative VRS

Average relative VRS Maximum relative VRS

(a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Im
p

ro
v
em

en
t 

%

є

Average relative VRS Maximum relative VRS

Average relative VRS Maximum relative VRS

(b)

0

1

2

3

4

5

6

7

0

5

10

15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

C
P

U
 T

im
e 

(s
ec

.)

T
h
o

u
sa

n
d

s

S
u

p
p

(F
x)

є

Support (average) Support (max)  CPU Time (average) CPU Time (max)

(c)

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e 

(s
ec

.)

T
h

o
u

sa
n

d
s

S
u

p
p

(F
x)

є

Support (average) Support (max)  CPU Time (average) CPU Time (max)

(d)

Figure 4: (a,b) Improvements due to randomization and relaxation with r = 3 and 5, respectively. (c,d)
Optimal solution support size and computational time with r = 3 and 5, respectively. All based on 10
DRCFLP test instances.

In Figure 3-(b), we report on the average and the maximum support size of the optimal randomized
strategies obtained for the test instances with different values of ε, as well as the computational times
for the column generation algorithm. One can first notice that the average support size of the optimal
randomized strategies is somewhat proportional to the extent of relative improvement. In fact, the
largest average support size of 39.7 plans was reached at ε = 1600, which nearly coincides with the peak
performance improvement reached at ε = 1200. One can also confirm that in all cases, the support size of
the optimal randomized strategy is always far below the theoretical limit of 301 (see Proposition 2). The
average computational time for the DRUFLP with randomization was 7321 seconds whereas the largest
computational time among all instances was 44,000 seconds. Most of the computational time was spend
on solving the binary integer programming subproblems. The tailing-off effect was also observed in this
problem. In comparison, the deterministic strategy problem took on average 3951 seconds to solve.

7.3 Experiments with the DRCFLP

We studied the value of randomization in 10 randomly generated instances of the DRCFLP of size
|I| = |J | = 20. For each of these instances, the setup costs f , transportation costs c, and the support
set Ξ were constructed exactly as in Section 7.2. We assumed that all facilities have the same capacity of

v =
r
∑
i∈I ξ

nom
i

|J | , where r controls how scarce the capacity is (i.e., larger r implies less scarcity). To solve

the deterministic strategy problem, we used the algorithm proposed in Saif and Delage (2020), which is
based on the column-and-constraint generation algorithm developed in Zeng and Zhao (2013) for solving
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two-stage RO problems.

Figures 4-(a) and (b) present statistics about the relative V̂RS bound and the actual relative im-
provement achieved by the optimal randomized strategy in the 10 test instances under different levels
of distributional ambiguity, parameterized by ε ∈ [0, 300], and with r ∈ {3, 5}, respectively. Looking

at these figures, one immediately notices that the V̂RS bound is, in general, a poor indicator of the
maximum improvement that can be achieved by randomization for this class of problems. The quality
of this bound also seems to degrade as the capacity becomes less scarce. On the other hand, the actual
improvement achieved by randomized strategies in this class of problems appears to be more significant
than in the DRUFLP. It reaches a maximum of 3.77% in a problem instance with ε = 80 and r = 5.
Otherwise, the average relative improvement was at 0.67% and 1.00% for problems with r = 3 and 5
respectively, when computed over all test instances with ε ∈ [10, 300], and peaked at 2.05% for problems
with ε = 120 and r = 5.

Figures 4-(c) and (d) show the average and maximum support size of the optimal randomized strate-
gies and the computational time for the column generation algorithm obtained for the different test
instances and values of ε and r. Among test instances with ε ∈ {20, 40, . . . , 300}, the average optimal
support sizes were 5.65 and 5.16 for r = 3 and 5, respectively, while the maximum optimal support
size was 14 in both cases. This seems to indicate that the structure of optimal randomized strategies
becomes slightly simpler as the capacity scarcity is reduced and that, perhaps, in practice the optimal
support size remains comparable to n, although Proposition 2 does not apply for this class of problems.
The effect of ε on the value of randomization is similar to what was observed in the experiments with
the DRAP and the DRUFLP, namely that the value of randomization peaks at mid-range values for ε
while it degrades to zero as ε gets closer to zero or grows to infinity. The average computational times
needed to solve the proposed two-layer column generation algorithm for problem instances with r = 3
and 5 were 1111 and 268 seconds, respectively, whereas the largest computational time in all tested
instances was less than two hours. In comparison, the average computational times for the deterministic
strategy problems on Gurobi were 3317 and 1870 seconds, respectively. These results clearly show that
the proposed algorithm can handle reasonably sized problems quite effectively. We observed also that
the bottleneck of the algorithm in terms of efficiency was in solving SP2.

8 Conclusions and Future Directions

In this paper, we investigated the value of randomization in a general class of distributionally robust
two-stage linear program with mixed-integer first stage decisions. We established, for the first time,
how the value of randomization in problems where the cost function and risk measures are both convex
can be bounded by the difference between the optimal value of the nominal DRO problem and of its
continuous relaxation. We further demonstrated that if the decision maker is AARN, then a finitely
supported optimal randomized strategy always exists. This allowed us to design an efficient two-layer
column generation algorithm for identifying this compact optimal support and its associated probability
weights in two-stage problems where uncertainty appears in the right-hand side of the constraint sets. Our
numerical experiments provided empirical evidence that 1) the proposed algorithm can address reasonably
sized version of assignment problems, and both uncapacitated and capacitated facility location problems;
2) randomization is especially effective in applications, such as the assignment problem, where the vector
of binary variables is constrained to be very sparse compared to the number of potential perturbations,
e.g., O(

√
n) non-zeroes compared to O(n) perturbations in the assignment problem. The latter should

imply that randomization can be especially beneficial in other problem classes that have this property
such as shortest path, traveling salesman problems, etc.

Although the theoretical results presented in Section 4 are general and can be used for DRO problems
with any law-invariant convex risk measure and support set, the algorithms described in Section 5 are
suitable only for cases when the decision maker has an AARN attitude, i.e., ρ(·) = E[·], and when
the support set Ξ is bounded. As a future extension, it would be interesting to see how the column
generation algorithm can be modified to handle unbounded support sets. In such a case, it might be
possible to reduce the two-layer column generation algorithm to a single-layer one, given that Hanasusanto
and Kuhn (2018) have shown that some two-stage Wasserstein-distance-based DRO problems with no
support constraints and an l1-norm can be tractably reformulated as linear programs.

From an algorithmic point of view, it should be possible to extend relatively easily the algorithm
to two-stage problems with uncertainty in the objective function, or problems with worst-case expected
utility objectives where the utility function is piecewise linear. On the other hand, significant additional
development would need to be achieved in order to handle more general two-stage decision problems
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or risk functions such as value-at-risk, conditional value-at-risk, expectiles, etc. For instance, it remains
open to establish whether a finitely supported optimal randomized strategy necessarily exists under more
general conditions than the AARN attitude.
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A A Distributionally Robust Newsvendor Problem Exam-
ple

In the classical newsvendor problem, a vendor needs to decide how many newspapers he should order for
his stand without knowing in advance the number of customers that will be buying the product. In his
seminal work, Scarf (1958) makes a hypothesis that has been heavily popularized, namely that only the
mean and variance of the distribution describing the likelihood that any number of customers show up
to purchase the item is known. This leads to the following so-called “min-max newsvendor” problem.

max
x≥0

inf
F∈D(R+,µ,σ)

ED∼F [rmin(x,D)− cx] ,

where x ∈ R represents the number of newspapers that are ordered, D is the random number, drawn
from the distribution F , of customers that will visit the stand to purchase a newspaper, r is the unit
selling price, and c is the unit ordering cost. Note also that D(R+, µ, σ

2) represents the set of all possible
distributions for a non-negative random variable with mean µ and variance σ2.

In this example, we revisit this problem with the notion of a fixed delivery cost f and a penalty cost
in case of excessive loss sales. In particular, we consider the following problem:

min
z∈{0,1}, 0≤x≤Mz

sup
F∈D(R+,µ,σ)

E[cx+ fz − rmin(x,D)] + pmax(D − x−∆, 0) ,

where z captures the decision to make an order of newspapers, f is the fixed delivery cost, and p is the
cost for every loss sales that exceeds some threshold ∆ > 0. The latter cost can for instance capture
the fact that if more than ∆ customers are unable to obtain a copy of their favorite newspaper, the
reputation of the newsstand will be negatively affected. Letting the problem parameters take on the
following values, r = $1, c = $0.5, f = $300, p = $1, µ = 1000, σ = 500, and ∆ = 4000, the newsvendor
needs to decide whether he will ask for a delivery of newspapers, and if so in what quantity. In this
context, one can actually show numerically that if the decision is not to make an order, then the worst-
case expected profit is achieved by the distribution that puts 99.3% probability on a demand of 959 units
and 0.007% on a demand of 7041 units and achieves a worst-case expected loss of $20.7. Alternatively,
if he does make an order then it should optimally be of 1000 units to reach a worst-case expected loss of
$50, where the worst-case distribution puts 50% on a demand of 500 and 50% on 1500. Necessarily, this
analysis should motivate the newsvendor to make no order.

Actually, there is still hope to convince this ambiguity averse newsvendor to make an order, albeit a
randomized one. Let us for instance consider the randomized strategy 0⊕85%1000, i.e., a random number
U between 1 and 100 is uniformly drawn to select between 0, if U ≤ 85, and 1000 units otherwise. For a
decision maker that minimizes the worst-case expected cost, the risk of this randomized strategy should
be computed as

inf
F∈D(R+,µ,σ)

E[(c1000 + f)·1{U > 85} − rmin(1000 · 1{U > 85}, D)

+ pmax(D − 1000 · 1{U > 85} −∆, 0)]. (28)

Indeed, mathematically one can demonstrate that this strategy has a risk of $8.2, where the worst-case
expected profit is achieved by the distribution that puts 51.6% probability on 589, 48.2% on 1411, and
0.2% on 6889 units. It is therefore a strategy that outperforms the two deterministic ones described
earlier. This is particularly interesting considering that with this strategy there is a 15% chance that an
order is made.

Note that equation (28) captures the risk at the moment that the newsvendor commits to the ran-
domized strategy and requires the newsvendor to follow through with the strategy once U is observed,
rather than reassessing the risks at that point. This might be difficult to accept from an operational
perspective. Alternatively, let us consider that the newsvendor is willing to sign a randomized contract
with the supplier of the form 0⊕85% 1000, i.e., that the supplier will take on the responsibility of drawing
U and if U > 85 to call the newsvendor at a convenient time and announce his visit. In this context,
once the 0⊕85% 1000 contract is signed, the newsvendor becomes committed to following through with it.
Nevertheless, based on his ambiguity aversion the newsvendor should be convinced that such a contract
constitutes the best option in terms of worst-case risk.
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B Proofs

B.1 Proof of Proposition 1

Our proof exploits the extension of Theorem 2 in Delage et al. (2019) which states that if the objective
function is an ambiguity averse convex risk measure, which canonical form is as presented in equation
(1), and the set of all feasible random costs {h(x, ξ) : x ∈ X} is a convex set, then there is no benefit in
adopting a randomized strategy. Indeed, from this we can conclude that

min
x∈X ′

sup
Fξ∈D

ρξ∼Fξ (h(x, ξ)) ≤ min
x∈C(X )

sup
Fξ∈D

ρξ∼Fξ (h(x, ξ))

= min
g(·)∈G

sup
Fξ∈D

ρξ∼Fξ (g(ξ))

= min
Fg∈∆(G)

sup
Fξ∈D

ρ(G,ξ)∼Fg×Fξ (G(ξ))

= min
Fg∈∆(Ḡ)

sup
Fξ∈D

ρ(G,ξ)∼Fg×Fξ (G(ξ))

= min
Fx∈∆(C(X ))

sup
Fξ∈D

ρ(X,ξ)∼Fx×Fξ (h(X, ξ))

≤ min
Fx∈∆(X )

sup
Fξ∈D

ρ(X,ξ)∼Fx×Fξ (h(X, ξ)) = vr ,

where
G := {g : Rm → R | ∃ x ∈ C(X ), g(ξ) ≥ h(x, ξ) ∀ ξ}

is a convex set of random variables, and where

Ḡ := {g : Rm → R | ∃ x ∈ C(X ), g(ξ) = h(x, ξ) ∀ ξ} .

The first inequality follows from the fact that X ′ ⊇ C(X ), i.e., the convex hull of X . The next four
steps follow, respectively, from the fact that ρ(·) is monotone, the fact that G is a convex set hence the
extension of Theorem 2 in Delage et al. (2019) holds, again the fact that ρ(·) is monotone, and finally
based on the definition of Ḡ. The last inequality follows from the fact that C(X ) ⊇ X .

To identify the special case where the bound is tight, we can proceed as follows:

min
x∈C(X )

sup
Fξ∈D

Eξ∼Fξ [h(x, ξ)] = min
Fx∈∆(X )

sup
Fξ∈D

Eξ∼Fξ [h(EX∼Fx [X], ξ)]

= min
Fx∈∆(X )

sup
Fξ∈D

E(X,ξ)∼Fx×Fξ [h(X, ξ)] ,

where the first step follows from the fact that C(X ) is the convex hull of X and the second step from the lin-
earity of the expectation operator. Hence, if F ∗x is such that EF∗x [X] ∈ arg minx∈C(X ) supFξ∈D Eξ∼Fξ [h(x, ξ)],
one can confirm that

sup
Fξ∈D

E(X,ξ)∼F∗x×Fξ [h(X, ξ)] = sup
Fξ∈D

Eξ∼Fξ [h(EX∼F∗x [X], ξ)]

= min
x∈C(X )

sup
Fξ∈D

Eξ∼Fξ [h(x, ξ)]

= min
Fx∈∆(X )

sup
Fξ∈D

E(X,ξ)∼Fx×Fξ [h(X, ξ)] = vr .

This completes our proof.

B.2 Proof of Proposition 2

The result follows from Carathéodory’s theorem (see, e.g., Eckhoff (1993)), which states that any vector
x ∈ C(X ) can be represented as a convex combination, parameterized by {θk}n+1

k=1 , of at most n+1 affinely
independent vectors {x̄k}n+1

k=1 , with each x̄k ∈ X . We can therefore establish that for any x∗ ∈ C(X )

x∗ =

n+1∑
k=1

θkxk = EX∼F̄θx [X]

where F̄ θx is defined as the discrete distribution that puts probabilities of θ1, θ2, . . . , θn+1 on the points
x̄1, x̄2, . . . , x̄n+1. Note that in problem (4), x∗ is given and assumed to be a member of C(X ), while in
problem (2), x∗ ∈ arg min

x∈C(X )

supFξ∈D Eξ∼Fξ [h(x, ξ)] and the result follows from Theorem 1.
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B.3 Proof of Proposition 3

We start with some definitions. Consider the set of feasible integer vectors

XZ := {x1 ∈ Zn1 | ∃x2 ∈ Rn2 , [xᵀ1 xᵀ2]ᵀ ∈ X} .

and for each x1 ∈ XZ, consider the “slice” of X defined as

XR(x1) := {x2 ∈ Rn2 | [xᵀ1 xᵀ2]ᵀ ∈ X} .

Since X is bounded, it is clear that |XZ| is finite hence XZ = {x̄k1}k∈K where K = {1, . . . , |XZ|} is an
index set for all members of XZ. Furthermore, we have that, for all x1 ∈ XZ, the set XR(x1) is convex.

The proof of Proposition 3 consists in showing that there exists an optimal discrete randomized
strategy parametrized as {(pk, xk)}k∈K, where each pk is the probability of drawing action xk and where
each xk = [x̄k1 xk2 ] for some xk2 ∈ XR(x̄k1). To do so, we consider an arbitrary optimal randomized strategy
F ∗x for the RSP. Next, we can argue that

min
Fx∈∆(X )

sup
Fξ∈D

E(X,ξ)∼Fx×Fξ [h(x, ξ)] = sup
Fξ∈D

E(X,ξ)∼F∗x×Fξ [h(X, ξ)]

= sup
Fξ∈D

∑
k∈K

PX∼F∗x (PZX = x̄k1)E(X,ξ)∼F∗x×Fξ [h(X, ξ)|PZX = x̄k1 ]

= sup
Fξ∈D

∑
k∈K

PX∼F∗x (PZX = x̄k1)E(X2,ξ)∼F∗
x2|x̄k1

×Fξ [h([x̄kᵀ1 Xᵀ
2 ]ᵀ, ξ)]

≥ sup
Fξ∈D

∑
k∈K

PX∼F∗x (PZX = x̄k1)Eξ∼Fξ [h([x̄kᵀ1 EX2∼F∗
x2|x̄k1

[Xᵀ
2 ]]ᵀ, ξ)]

= sup
Fξ∈D

∑
k∈K

p∗kEξ∼Fξ [h([x̄kᵀ1 µk∗ᵀ2 ]ᵀ, ξ)]

= sup
Fξ∈D

E(X,ξ)∼F̄∗x×Fξ [h(X, ξ)]

≥ min
Fx∈∆(X )

sup
Fξ∈D

E(X,ξ)∼Fx×Fξ [h(X, ξ)]

where F ∗
x2|x̄k1

denotes the conditional distribution of X2 given that X1 = x̄k1 , where PZ ∈ Rn1×n is the

projection matrix that retrieves the n1 first elements of a vector in Rn, i.e., PZ := [I 0], and where
p∗k := PX∼F∗x (PZX = x̄k1) and µk∗2 := EX2∼F∗

x2|x̄k1
[X2] are the parametrization of a discrete distribution

F̄ ∗x . We note that the first inequality in this derivation follows from Jensen’s inequality. The second
inequality follows from the fact that F̄ ∗x ∈ ∆(X ) since each [x̄kᵀ1 µk∗ᵀ2 ]ᵀ ∈ X given that

µk∗2 = EX2∼F∗
x2|x̄k1

[X2] ∈ XR(x̄k1) ,

where we exploited the fact that F ∗
x2|x̄k1

is supported on XR(x̄k1) which is a convex set. This confirms that

there always exists a discrete randomized strategy of the form proposed by the proposition that achieves
the optimal value of the RSP.

B.4 Proof of Proposition 4

To obtain the proposed reformulation, one can follow similar steps as are proposed in Zeng and Zhao
(2013) yet before doing so one must employ the so-called “dualized reformulation” trick proposed in
de Ruiter et al. (2014) in order to prevent the introduction of a set of binary variables with size pro-
portional to |K′|. Specifically, we begin by dualizing the minimization problem that defines h(x̄k, ξ) for
each k ∈ K′. We then reintegrate the equivalent maximization problem in SP1ω and linearize the norm

28



constraint to obtain the following bilinear optimization problem:

maximize
ξ,ζ≥0,δ≥0,{φk}k∈K′

∑
k∈K′

(W (ξ)x̄k + b)ᵀφk − λ∗ζ (29a)

subject to Aᵀφk = c2p
∗
k ∀k ∈ K′ (29b)

Cξξ ≤ dξ (29c)

eᵀδ ≤ ζ (29d)

ζ ≤ ζmax (29e)

ξ − ξ̂ω ≤ δ (29f)

ξ̂ω − ξ ≤ δ, (29g)

φk ≥ 0 ∀k ∈ K′ , (29h)

where each φk ∈ Rs is the dual vector associated to constraint (6b). Next, we employ the dualized
reformulation method presented in de Ruiter et al. (2014). This is done by replacing the maximization
problem:

ρ({φk}k∈K′) := max
ξ,ζ≥0,δ≥0

∑
k∈K′

(W (ξ)x̄k + b)ᵀφk − λ∗ζ (30a)

s.t. Cξξ ≤ dξ (α) (30b)

eᵀδ ≤ ζ (β) (30c)

ζ ≤ ζmax (γ) (30d)

ξ − ξ̂ω ≤ δ (ψ+) (30e)

ξ̂ω − ξ ≤ δ. (ψ−) , (30f)

which is feasible when each ξ̂ω ∈ Ξ, with its equivalent dual problem:

ρ({φk}k∈K′) = min
α≥0,β≥0,γ≥0

ψ+≥0,ψ−≥0

∑
k∈K′

(W0x̄
k + b)ᵀφk + dᵀξα+ ζmaxγ + ξ̂ᵀω(ψ+ − ψ−) (31a)

s.t.

m∑
i=1

(∑
k∈K′

φTkWix̄
k

)
ei = CTξ α+ ψ+ − ψ− (31b)

β ≤ λ∗ + γ (31c)

ψ+ + ψ− ≤ β (31d)

where α ∈ Rsξ+ , β ∈ R+, γ ∈ R+, ψ
+ ∈ Rm+ and ψ− ∈ Rm+ are the dual variables of the constraints in

(30). We can now apply the linearization scheme employed in Zeng and Zhao (2013) on the worst-case
linear recourse problem:

max
{φk}k∈K′

ρ({φk}k∈K′) ,

with ρ({φk}k∈K′) as defined in (31). This gives rise to the mixed-integer linear program that appears in
the proposition.

Note that this MILP reformulation is such that the number of binary variables does not increase with
the size of the support K′ of the randomized strategy. This would not be the case if one would apply the
linearization scheme of Zeng and Zhao (2013) directly on SP1ω. In some preliminary experiments, we
established that our chosen approach had a significant impact on reducing the solution time for SP1ω.

B.5 Proof of Theorem 1

The proof revolves around the fact that in each iteration, the algorithm either terminates with UB−LB ≤
ε or adds at least one new member for either the set K′ ⊆ K or H′ω ⊆ Hω among all ω ∈ Ω. Since the
size of K is finite and the number of vertices of each Ξ′ω is finite, the algorithm is guaranteed to converge
in a finite number of steps.
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B.6 Proof of Proposition 5

Since one can verify that h(x, ξ) := cᵀ1x + h(x, ξ) is convex in x, based on Proposition 3, we have that
the RSP reduces to

minimize
p∈R|K|,{xk}k∈K

∑
k∈K

cᵀ1pkx
k + sup

Fξ∈D
Eξ∼Fξ

[∑
K∈K

pkh
′(xk, ξ)

]
subject to Cxx

k ≤ dx , ∀k ∈ K
PZx

k = x̄k1 , ∀k ∈ K
pk ≥ 0 ∀ k ∈ K,

∑
k∈K

pk = 1 .

Using a simple change of variable zk := xkpk and y′ := ypk, we obtain the reduction presented in problem
(19) by exploiting the fact that X̄ := {x ∈ Rn |Cxx ≤ dx} is assumed to describe a bounded set, and the
fact that the recourse problem was assumed to be bounded and feasible for all x ∈ X and all ξ ∈ Ξ.

B.7 Proof of Corollary 1

Based on Theorem 1, we can conclude that VRS = vd − ψ, where

vd := min
x∈XAP

sup
Fξ∈D

Eξ∼Fξ

[∑
i∈I

∑
j∈J

ξijxij

]
.

and

ψ := min
x∈C(XAP)

sup
Fξ∈D

Eξ∼Fξ

[∑
i∈I

∑
j∈J

ξijxij

]
.

Given that the constraint matrix of the assignment problem embodies the total unimodularity prop-
erty, the convex hull of XAP is directly captured by its continuous relaxation X ′AP. Specifically, the
polyhedron defined in equation (22) has only integer vertices.

Furthermore, the adversarial problems involved in computing vd and ψ both take the form:

max
Fξ∈D

Eξ∼Fξ

[∑
i∈I

∑
j∈J

ξijxij

]
= max
Fξ∈D

∑
i∈I

∑
j∈J

Eξ∼Fξ [ξij ]xij

= max
µ∈{µ∈R|I|×|J | | ∃Fξ∈D, µij=Eξ∼Fξ [ξij ]}

∑
i∈I

∑
j∈J

µijxij

= max
µ∈U

∑
i∈I

∑
j∈J

µijxij

= δ∗ (x|U) ,

where the first equality follows from linearity of expectation and the third equality follows from the fact
that the maximum of a linear function over a convex set is always achieved at an extreme point of the
set. Finally, the last equality follows from the definition of δ∗(·|U). This completes our proof.
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C Pseudocode description of Two-layer Column Genera-
tion Algorithm

Input:
{
ξ̂ω, ω ∈ Ω

}
⊂ Ξ, ε ≥ 0, x∗d, ε ≥ 0

Output: ε-optimal randomized strategy F ∗x parametrized with {(xk, p∗k)}k∈K′

K′ ←− {k : x̄k = x∗d}
H′n ←− ∅ ,∀ω ∈ Ω
LB ←− −∞
UB ←−∞
Initialize {p∗k}k∈K′ and λ∗

Initialize qω∗hω
while UB − LB < ε do

// Solve Primal(K′,H):
LB1 ←− LB
UB1 ←−∞
while UB1 ≥ LB1 do

∀ω ∈ Ω, solve SP1ω to get a new vertex (ξh̄ω , ζ h̄ω) and t∗ω
H′ω ←− H′ω ∪ {h̄ω}for all ω ∈ Ω
UB1 = min(UB1,

∑
k∈K

cᵀ1x̄
kp∗k + λ∗ε+ 1

|Ω|
∑
ω∈Ω

t∗ω)

Solve MP1 to obtain new {p∗k}k∈K′ and λ∗ and update LB1

end
UB ←− UB1

// Solve Dual(K,H′):
UB2 ←− UB
LB2 ←− −∞
while UB2 ≥ LB2 do

Solve SP2 to get a new solution xk̄ and the optimal value w∗

K′ ←− K′ ∪ {k̄}
LB2 = max(LB2, w

∗)
Solve MP2 to obtain new q∗hω and update UB2

end
LB ←− LB2

end
Algorithm 1: The Two-layer Column-Generation Algorithm

Figure 5: The Two-Layer column generation Algorithm.
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D Derivation of Dual Problem (20)

Using a Lagrangean duality approach, the optimal value of problem Primal′(K,H) can be reformulated
as follows:

min
p≥0,λ≥0

min
z1∈Z1(p1),...,z|K|∈Z|K|(p|K|)

λε+
∑
k∈K

cᵀ1z
k + max

w≥0
w

(
1−

∑
k∈K

pk

)

+
1

|Ω|
∑
ω∈Ω

max
hω∈Hω

∑
k∈K

h′(pk, z
k, ξhω )− ζhωλ

= min
p≥0,λ≥0

min
x1∈X1,...,x

|K|∈X|K|
λε+

∑
k∈K

cᵀ1x
kpk + max

w≥0
w

(
1−

∑
k∈K

pk

)

+
1

|Ω|
∑
ω∈Ω

max
qω∈Qω

∑
hω∈Hm

qωhω
∑
k∈K

pkh(xk, ξhω )− ζhωλ

= min
p≥0,λ≥0

max
w≥0,q1∈Q1,...,q

|Ω|∈Q|Ω|
λε− 1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

qωhωζ
hωλ+ w

(
1−

∑
k∈K

pk

)

+
∑
k∈K

pk

(
min
xk∈Xk

cᵀ1x
k +

1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

qωhωh(xk, ξhω )

)

≥ max
w≥0,q1∈Q1,...,q

|Ω|∈Q|Ω|
min

p≥0,λ≥0
λε− 1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

qωhωζ
hωλ+ w

(
1−

∑
k∈K

pk

)

+
∑
k∈K

pk

(
min
xk∈Xk

cᵀ1x
k +

1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

qωhωh(xk, ξhω )

)
,

where Zk(pk) := {z ∈ Rn |Cxzk ≤ dxpk, PZz
k = x̄k1pk}, and whereQω := {q ∈ R|Hω| | q ≥ 0,

∑
hω∈Hω qhω =

1}. It is then straightforward to show that the final maximization operation reduces to problem Dual′(K,H)
by replacing qωhω

′ := (1/|Ω|)qωhω . We are left with explaining each step in order, and demonstrating that
the last inequality is actually tight. In order, the first step follows from replacing zk := pkx

k and re-
placing maxhω∈Hω ahω with max

q∈R|Hω|+ :
∑
hω∈Hω qhω=1

∑
ω∈Hω qhωahω . The second step, follows from

applying the minimax theorem on minx1∈X1,...,x
|K|∈X|K| maxw≥0,q1∈Q1,...,q

|Ω|∈Q|Ω| which applies since

each Xk is bounded and the function that is optimized over these two sets of variables is convex in xk’s
and affine in w and each qω. The last step follows from weak minimax theory. One can also confirm
that duality is strong here by finding a strictly feasible point for problem Dual′(K,H) which implies that
Slater’s condition is satisfied. The following lemma completes this proof.

Lemma 1. Given that ε > 0 and that the relative interior of Ξ is non-empty, the polyhedron defined by
Q := {{qω}ω∈Ω |

∑
ω∈Ω

∑
hω∈Hω ζ

hωqωhω ≤ ε,
∑
hω∈H′ω

qωhω = 1
|Ω| , q

ω ≥ 0, ∀ω ∈ Ω} has a strict interior
point.

Proof. Proof. We instead demonstrate that

Q′ :=

{
{qω}ω∈Ω |

1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

ζhωqωhω ≤ ε,
∑

hω∈Hω
qωhω = 1, qω ≥ 0, ∀ω ∈ Ω

}

has a non-empty strict interior. The claim of the Lemma then follows straightforwardly since Q is a
scaled version of Q′. We construct a strict interior point as follows. First, we perturb each ξ̂ω to get
ξ′ω ∈ Ξ such that ‖ξ̂ω − ξ′ω‖1 < min(ε, ζmax) for all ω ∈ Ω and such that each ξ′ω is in the relative interior
of Ξ. We then let ζ′ω := ‖ξ̂ω− ξ′ω‖1. Given that each pair (ξ′ω, ζ

′
ω) ∈ Ξ′ω, by Carathéodory’s theorem (see,

e.g., Eckhoff (1993)), there must therefore exist, for each ω ∈ Ω a convex combination parameterized by
{qωhω}hω∈Hω such that ξ′ω =

∑
hω∈Hω ξ

hωqωhω and ζ′ω =
∑
hω∈Hω ζ

hωqωhω . Furthermore, since (ξ′ω, ζ
′
ω) is

in the relative interior of Ξ′ω, there must actually be an assignment for which each qω > 0, for all ω ∈ Ω.
In particular, one can first construct µξω := (1/|Hω|)

∑
hω∈Hω ξ

hω and µζω := (1/|Hω|)
∑
hω∈Hω ζ

hω and

identify some (νξω, ν
ζ
ω) ∈ Ξ′ω such that (ξ′ω, ζ

′
ω) is the convex combination of (µξω, µ

ζ
ω) and (νξω, ν

ζ
ω). This is

always possible since (ξ′ω, ζ
′
ω) is in the relative interiorHω. The convex combination of the representations
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for (µξω, µ
ζ
ω) and (νξω, ν

ζ
ω) provides us with a representation for (ξ′ω, ζ

′
ω) that has qω > 0 for all ω ∈ Ω.

The constructed assignment for each {qωhω}hω∈Hω is such that

1

|Ω|
∑
ω∈Ω

∑
hω∈Hω

ζhωqωhω =
1

|Ω|
∑
ω∈Ω

ζ′ω =
1

|Ω|
∑
ω∈Ω

‖ξ̂ω − ξ′ω‖1 < ε .

We can therefore conclude that the identified assignment for {qω}ω∈Ω must lie in the strict interior of
Q′.

E Solving the DRCFLP with Randomization

As described in Section 5.4, the two-layer column generation algorithm that is proposed to solve the
DRCFLP with randomization iteratively solves four sets of optimization problems, two master problems,
MP1 and MP2, and two subproblems, SP1ω and SP2. For completeness, we briefly describe the details of
these problems below.

The primal master problem takes the form of the following linear program:

[MP1] : minimize
p≥0,λ≥0,{tω}ω∈Ω

∑
k∈K′

∑
j∈J

fjx
k
j pk + λε+

1

|Ω|
∑
ω∈Ω

tω

subject to
∑
k∈K′

∑
j∈J

∑
i∈I

cijzijkpk − ζhωλ ≤ tω ∀ω ∈ Ω, hω ∈ Hω∑
k∈K′

pk = 1.

Each of the primal subproblems, indexed by ω ∈ Ω, takes the form of the following max-min problem:

[SP1ω] : maximize
(ξ,ζ,δ)∈Υ

min
z≥0

∑
k∈K′

∑
j∈J

∑
i∈I

p∗kcijzijk − λ∗ζ

s.t.
∑
j∈J

zijk = ξi ∀i ∈ I, k ∈ K′ (νik)

vjx
k
j −

∑
i∈I

zijk ≥ 0 ∀j ∈ J , k ∈ K′ (µjk ≥ 0) ,

where Υ := {(ξ, ζ, δ) ∈ R|I| × R × R|I| | ζ ≥ 0, (29c) − (29g)}. Following a similar procedure as used in
the proof of Proposition 4, we obtain the following equivalent mixed-integer linear program:

maximize
ξ,ζ,δ,α,β,ψ,ν,µ≥0

Bin1,Bin2,Bin3,Bin4,Bin5,Bin6,Bin7

dᵀξα+ ζ̄maxγ +
∑
i∈I

ξ̂ωi (ψ+
i − ψ

−
i )−

∑
k∈K′

∑
j∈J

vjx
k
jµjk

subject to νik − µjk ≤ cijp∗k ∀i ∈ I, j ∈ J , k ∈ K′

(18b)− (18q).

On the other hand, the dual master problem takes the form of the following linear program:

[MP2] : maximize
w,q≥0

w

subject to w ≤
∑
k∈K

∑
j∈J

x̄k +
∑
ω∈Ω

∑
hω∈H′ω

h(x̄k, ξhω )qhω ∀k ∈ K (pk)

∑
ω∈Ω

∑
hω∈H′ω

ζhωqhω ≤ ε (λ)

∑
hω∈H′ω

qhω =
1

|Ω| ∀ω ∈ Ω (tω),

while its associated subproblem reduces to

[SP2] : minimize
x∈X ,z≥0

∑
j∈J

fjxj +
1

|Ω|
∑
ω∈Ω

∑
j∈J

∑
i∈I

cijzijhω

subject to
∑
j∈J

zijhω ≥ ξ
hω
i ∀i ∈ I, hω ∈ H′ω∑

i∈I
zijhω ≤ vjxj ∀j ∈ J , hω ∈ H′ω .
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F Effect of sample size on numerical efficiency and solu-
tion’s support

In this appendix, we investigate the effect of increasing the sample size (i.e., the support size of the

empirical distribution F̂Ω
ξ ) on the computational times of the algorithms and the solution support sizes.

For this round of experiments, we tested on DRAP instances of size |I| = |J | = 50, DRUFLP instances
of size |I| = |J | = 150 and DRCFLP instances of size |I| = |J | = 10 with r = 5, while keeping all
other parameters unchanged. Smaller instances, compared to previous experiments, were used so they
could be solved in reasonable times even when much larger sample sizes were used. Specifically, we tested
with sample sizes of |Ω| = 10, 20, 40, 80, 160 and 320. Figure 6 shows the results for the three problems
with different values of ε. The line charts on the left-hand side show the average computational time
in seconds, whereas the bar charts on the right-hand side show the average support size of the optimal
randomized strategies.

It is clear that for the DRAP instances, the sample size has, virtually, no effect on the computational
performance of the algorithm. This observation is easily explainable by the fact that neither the master
problem (24) nor the subproblem depends on |Ω|. Conversely, the computational times for the DRUFLP
and the DRCFLP significantly increased as larger sample sizes were used, with a dramatically larger
effect on the latter. In the case of the DRUFLP, increasing the sample size from 10 to 320 increased the
computational time 10-fold on average. In comparison, the computational time increase in the case of the
DRCFLP was about 190-fold, on average, for the same increase in the sample size. A possible explanation
is that in the DRCFLP, only one subproblem is solved in every iteration and the size of this subproblem
does not depend on the sample size, whereas in the DRCFLP we solve |Ω| primal subproblems, i.e.,
SP1ω, and a dual subproblem SP2 whose size depends on |Ω|. On the other hand, the effect of sample
size on the optimal support size in all problems seems insignificant.

One can also easily notice the significant effect of problem size, i.e., |I| and |J |, on the CPU time.
This is to be expected in integer programming problems which are known to be intractable even in the
deterministic case. Surprisingly, in many cases (especially for DRAP) and despite the high solution
time experienced, solving the randomized strategy problems using the proposed algorithms was easier
than solving their corresponding deterministic strategy problems directly on Gurobi. Indeed, one way
to improve the computational performance of the proposed algorithms could be to use a more efficient
programming language than Matlab like C++ or Julia. We performed some preliminary tests on the
DRAP instances using Julia and the results were promising as the computational times were cut by more
than half.

G On the difficulty of adoption of randomized strategies

Although randomized/mixed strategies are not entirely new and have been proposed in the game theory
literature for decades, practitioners might find the idea of utilizing them with a passive adversary (i.e.,
nature) as a way to protect against distributional ambiguity unappealing. This skeptical view towards
randomization might be caused by the classical rationalization which suggests that randomization can
be used to “trick” or “bluff” a malevolent opponent. Obviously, in DRO this rationalization does not
apply anymore. Moreover, decision makers might be more reluctant to apply randomized strategies in
“one-off” decisions, as opposed to repeated ones where the distribution of actions can be interpreted as
frequencies. This feeling might be especially strong when the amounts at stake are significant or when the
decisions have long-term implications. Another strong obstacle to the adoption of randomized strategies
could come from the operational burden of having to prepare for the different actions that are part of
the randomized strategy until the realized action is revealed. In this regard, one might favor revealing
the random action early at the price of a risk guarantee that is more difficult to interpret: i.e., as the
risk that was faced prior to revealing the action. In fact, this interpretation of risk is exactly the same
as what is offered for the statistical estimation of confidence intervals.

While we consider beyond the purpose of this work to provide irrefutable arguments that would
convince such reluctant adopters, we list below some situations in which decision makers might find
randomized strategies rather appealing.

1. Situations where the value of randomization is large compared to the worst-case expected cost for
pure strategies (see Section 7.1 where approximately 50% reduction in risk could be obtained for
the DRAP);
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Figure 6: Effect of sample size on the computational time and the size of the solution’s support, based on
the average of 10 random tests instances of DRAP (a,b) DRUFLP (c,d) and DRCFLP with r = 5 (e,f),
respectively.
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2. Situations where the value of randomization is strictly positive and the individual risks of the
different actions that compose the optimal randomized strategy are similar to each other (see the
2-node DRUFLP problem example in Section 3);

3. Situations where distributional ambiguity is high and where randomization might be able to elimi-
nate (or significantly reduce) it (see the newsvendor problem example in Section A);

4. Situations in which the decision problem can be considered as belonging to a larger set of decision
problems that will be solved either concurrently or sequentially.

We note that the list above is non-exhaustive and the relevance of each of its elements would still
need to be carefully validated in an empirical study.
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