

A Comparison of the BioCyc™ and KEGG® Pathway Databases and Web Portals March 2023

Peter D. Karp SRI International ® pkarp@ai.sri.com

Introduction

- This document compares the KEGG and <u>BioCyc</u> pathway databases and websites
- Main criteria for comparison are:
 - Database content
 - Software tools

KEGG[®] is a U.S. registered trademark owned by Minoru Kanehisa and is not affiliated, endorsed, or sponsored in any way by SRI International. BioCycTM and MetaCycTM are trademarks owned by SRI International.

Number of Genomes and Curation Levels

	BioCyc version 26.5 December 2022	KEGG v104.0+ December 2022
Genome Databases*	20,028	8,611
Curated Genome Databases	69**	***
Curated Publications****	138,452	74,938

BioCyc genome-specific databases undergo substantial manual literature-based curation to correct computational inferences and add additional information from the scientific such as experimentally determined gene functions

^{*} Includes non-viral genomes only

^{**} For list of BioCyc curated organism databases click here

^{***}Unknown

^{****}We assume that all publications cited by KEGG and BioCyc have been curated. This is true for BioCyc; it may or may not be true of KEGG.

MetaCyc Curated Metabolic DB Compared to KEGG

- MetaCyc is a reference metabolic pathway database containing pathways from all domains of life
- MetaCyc, like KEGG Reference, is the source of pathways predicted in individual organisms – more reference pathways means more pathways can be computationally predicted in genome databases
- Mini-reviews are multi-paragraph summaries of pathways and gene functions authored by curators. The numbers given are the sum of the length in characters of all mini-reviews in each database.

	MetaCyc version 26.5 December 2022	KEGG v104.0+ December 2022
Pathways	3,085	425 metabolic modules
Reactions	18,391	11,860
Metabolites	18,785	19,019
Mini-reviews (textbook pages)	10,392	1,557

Summary of BioCyc/KEGG Comparison December 2022

- BioCyc has more data (2.3x genomes, 7.3x pathways, 1.5x reactions)
- BioCyc has more accurate data (curated from 138,000 publications)
- BioCyc has broader types of data
- BioCyc has many more informatics tools

Comparison of Data Content – March 2023 • Each database contains a number of additional types of data – some

 Each database contains a number of additional types of data – some is curated and some is computationally predicted

	BioCyc	KEGG
Genes, proteins	✓	✓
Reactions	✓	✓
Metabolic pathways	✓	✓
Signaling pathways		✓
Metabolites	✓	✓
Enzyme activators, inhibitors, cofactors, kinetic constants, localization	✓	
Protein features	✓	
Protein subunit composition	✓	
Protein 3-D structures		✓
Gene Ontology terms	✓	
Evidence codes	✓	
Reaction atom mappings	✓	
Gene essentiality data	✓	
Phenotype Microarray data	✓	
<u>Transcriptional regulatory networks</u>	11 organisms	0 organisms
Diseases, drugs		✓

Comparison of Informatics Tools – March 2023

- This comparison does not consider KEGG software tools that are not present in BioCyc, such as KEGG genome annotation
- Clicking on hyperlinks in this table will show an example of the tool

	BioCyc	KEGG
Genome browser	✓	✓
Genome browser depicts sequence, regulatory elements, customizable tracks	✓	
Comparative genome browser	✓	
Regulatory network browser	✓	
SmartTables	✓	
Advanced search tools	✓	
BLAST search, sequence pattern search	✓	✓
Multiple sequence alignments	✓	
Depicts substrate-level and genetic regulation	✓	
Metabolic Network Explorer	✓	
Metabolic Route Search	✓	✓
Comparative analysis tool suite	✓	

Example BioCyc Visualization Tools

Gene Expression Data Analysis Tools – March 2023

	BioCyc	KEGG
Paint Gene Expression Data onto Pathway Diagram	✓	✓
Paint Gene Expression Data onto Pathway Collage*	✓	
Paint Gene Expression Data onto Zoomable Metabolic Network Diagram	✓	✓
Omics Dashboard	✓	
Enrichment analysis for metabolic pathways and GO terms	✓	

 A pathway collage is a multi-pathway diagram where the user chooses what pathways to include

Metabolomics Data Analysis Tools – March 2023

	BioCyc	KEGG
Metabolic Pathway Enrichment Analysis	✓	
Paint Metabolomics Data onto Pathway Diagram	✓	✓
Paint Metabolomics Data onto Zoomable Metabolic Network Diagram	✓	✓
Omics Dashboard	✓	
Metabolite Translation Service	✓	
Pathway Covering Sets	√	
Search by Monoisotopic Mass	✓	
Search by Molecular Weight	✓	
Search by Chemical Formula	✓	
Search by Chemical Substructure	√	✓
Search by InChI or InChI Key	√	

P.D. Karp et al, "Computational Metabolomics Operations at BioCyc.org," © 2022 SRI Intern Metabolite 5:291-310 2015

BioCyc: Gene Expression Data on Single Pathway

BioCyc: Pathway Collage with Gene Expression Data

BioCyc Omics Dashboard with Gene Expression Data

- A series of panels summarize omics data for different cellular systems
- Each panel contains a set of **plots** (subsystems)
- Large dots average measurements
- Drill down to individual genes (far right)

BioCyc: Metabolic Network Diagram and Pathway Diagram Painted with Metabolomics Data

BioCyc SmartTables for Metabolomics

- Collect and save lists of database objects
 - Metabolites, pathways, genes, sequence regions, ...
- Import from files, explore interactively
- Filter and combine (union, intersection, subtraction)
- Transform them into related objects (eg: metabolite list → pathway list)
- Share with public or specific collaborators, publish
- Pathway enrichment analysis for metabolites

Using SmartTables: Browsing Database Attributes

Using SmartTables: Browsing Database Attributes

•	column 1 column 1	\$ SMILES ✓	Structure of compound
□ 1	3-hydroxyanthranilate	C1(C=C(C(N)=C(O)C=1)C([O-])=O)	NH ₂
_ 2	acetoacetate	CC(=0)CC([0-])=0	
<u> </u>	3-mercaptopyruvate	C(C(C(=0)[O-])=O)S	HS O

More Information on BioCyc

- BioCyc subscriptions
 - https://biocyc.org/Product-summary.shtml
 - biocyc-sales@biocyc.org

- BioCyc publication
 - "The BioCyc collection of microbial genomes and metabolic pathways", BMC Bioinformatics