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In the Georgian
Caucasus, unregulated
grazing has damaged
grassland vegetation
cover and caused
erosion. Methods for
monitoring and control of
affected territories are
urgently needed.
Focusing on the

high-montane and subalpine grasslands of the upper Aragvi
Valley, we sampled grassland for soil, rock, and vegetation
cover to test the applicability of a site-specific
remote-sensing approach to observing grassland
degradation. We used random-forest regression to

separately estimate vegetation cover from 2 vegetation
indices, the Normalized Difference Vegetation Index (NDVI)
and the Modified Soil Adjusted Vegetation Index (MSAVI2),
derived from multispectral WorldView-2 data (1.8 m).
The good model fit of R2 5 0.79 indicates the great potential
of a remote-sensing approach for the observation of
grassland cover. We used the modeled relationship to
produce a vegetation cover map, which showed large areas
of grassland degradation.

Keywords: Grassland degradation; erosion; overgrazing;
NDVI; MSAVI2; WorldView-2; Georgia; Caucasus.
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Introduction

Grassland ecosystems provide multiple goods and services
such as food products from ruminants, erosion control,
and recreation. Globally, vast grassland areas have
undergone degradation that has been triggered by the
impacts of climate change and anthropogenic activities
such as overgrazing (Gang et al 2014). Grassland
degradation from overgrazing is common in developing
countries, in which local populations suffer from the
consequences of degradation such as socioeconomic
hardship and increased natural disasters (Liu and
Diamond 2005).

Similar processes can be observed in Central Asian
and Caucasian countries where a transition in livestock
management has taken place (Suttie et al 2005). During
the Soviet period, sheep husbandry was practiced with
summer grazing in mountain sites and winter grazing in
the lowlands. On their migration routes, large sheep herds
damaged the vegetation layer of steep slopes (Körner
1980). Nowadays, in most parts of Georgia, migratory
sheep husbandry has been replaced by localized cattle
farming. Further, in the Georgian Caucasus, erosion is
caused by unregulated cattle grazing and logging of

protected forests; both have increasingly negative effects
on soil stability (Ministry of Environment Protection et al
2009). To control land degradation, the Georgian national
risk assessment report defined areas in the Georgian
Caucasus that are prone to natural disasters (CENN
and Faculty of Geo Information Science and Earth
Observation, University of Twente 2012). Restoration
and sustainable use of pastures are urgently required.
Furthermore, the growing popularity of hiking and
downhill skiing requires sustainable management of
sensitive recreational sites.

Approaches to recording the extent of grassland
degradation in developing countries have emerged in
China, where about 90% of grasslands are considered
degraded due to overgrazing and other factors (Liu and
Diamond 2005). Akiyama and Kawamura (2007) proposed
grassland monitoring by means of remote sensing (RS) as
a promising tool for restoring and sustainably managing
affected regions. For a long time, the use of RS to monitor
arid and semiarid grassland cover has been recognized as
essential to determining livestock capacity in order to
prevent desertification (Purevdorj et al 1998).

The observation of vegetation cover on a larger scale
at multiple time points makes RS approaches beneficial
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for monitoring purposes. Liu et al (2005) used RS
methods to estimate the vegetation cover of alpine
grassland in Qinghai Province in China. Their results
showed high accuracy levels, which indicate the
applicability of RS methods for mountainous terrain.

Previous studies on the estimation of vegetation cover
relied on examinations at a rather coarse spatial resolution
of 30 m 3 30 m. Such a scale is unlikely to show the
heterogeneity of grass cover (Zha et al 2003), as variations
occur within a few meters in mountainous terrain (Asner
and Lobell 2000). Consequently, there is a need to detect
small-scale vegetation damage points, in order to prevent
further erosion in mountainous regions (Alewell et al
2008). Increasing the spatial resolution of space-borne
sensors broadens RS options; resolution should be chosen
in accordance with the spatial scale of the environmental
pattern that is analyzed (Feilhauer et al 2013). We chose
imagery from WorldView-2, one of the multispectral
sensors with the highest available spatial resolution for our
area of interest. The applicability of vegetation indices for
the estimation of vegetation cover has been tested with
field spectrometers and satellite images (Gessner et al 2013;
Lehnert et al 2015). From a wide range of vegetation
indices, the Normalized Difference Vegetation Index
(NDVI) and the Modified Soil Adjusted Vegetation Index
(MSAVI2) have been proposed as good predictors of arid
and semiarid grassland vegetation cover (Purevdorj et al
1998; Liu et al 2007).

In this study, we developed a site-specific RS approach
to assessing grassland degradation based on vegetation
cover. This assessment can inform management of
vulnerable grasslands in the upper Aragvi Valley, where
grassland degradation, erosion, and mudflows frequently
occur. We tested the 2 multispectral vegetation indices
MSAVI2 and NDVI for their appropriateness to detect
changes in grassland cover from high-resolution satellite
images. To evaluate the indices’ ability to assess
heterogeneous mountain terrain, we determined the
compositional cover values of rock, soil, and vegetation
across varying degradation intensities. From the data of
the NDVI we mapped the high-montane and subalpine
grassland cover for our area of interest.

Methods

Study area

The study was conducted in the upper Aragvi Valley in
the vicinity of the village of Mleta in the Greater Caucasus
in Georgia (Figure 1). Mleta (42u259520N, 44u299520E,
1535 m above sea level [masl]) is situated on the Georgian
Military Road, which connects Tbilisi, the capital of
Georgia, with Russia. Mleta consists of 2 parts, Zvemo
(Upper) Mleta and Kvemo (Lower) Mleta. South of Mleta,
at the bottom of the upper Aragvi Valley, lies the village
of Pasanauri (42u21980N, 44u419160E, 1050 masl). Climate

data were contributed by the National Environmental
Agency and modified by Ina Keggenhoff. The study area
has a mean annual temperature of 8.2uC and a mean
annual precipitation of 1011 mm. January, the coldest
month, has a mean temperature of 23.3uC and 50 mm
mean precipitation. The hottest month, July, has a mean
temperature of 18.9uC and a mean precipitation of
103 mm.

The upper Aragvi Valley is formed by andesite-basalt
in alternation with clay shale, shale marls, and enclosures
of limestone and sandstone (Khetskhoveli et al 1975;
Gobejishvili et al 2011). Close to Mleta, the upper Aragvi
Valley is asymmetrically shaped. The slightly inclined,
north-facing side is covered by loose sediment, which is
prone to erosion and mudflows (Lichtenegger et al 2006).
In the Aragvi Valley, mountain meadow and forest soil
can be found (Georgian Institute of Public Affairs 2007).
According to the World Reference Base for soil (IUSS
Working Group WRB 2007), soil types in the mountain
meadows include Leptosols, Cambisols, and Cryosols.
The mountain forest soil mainly consists of Dystric
Cambisol. Along the river valley, alluvial deposits have
built up Calcaric Fluvisols.

The slopes near Mleta range from the river valley
bottom at approximately 1500 masl to the ridges at about
2200 masl. The north-facing slopes are characterized by
beech forests (Fagus orientalis), large erosion gullies, and
grassland, which is mainly used for cattle grazing. Cattle
tracks and erosion can be observed on the steep slopes of
the grassland (Figure 2A). Due to anthropogenic impact
and topographic features, no clear demarcation line can
be drawn between the high-montane and subalpine zones
of the Greater Caucasus (Lichtenegger et al 2006;
Nakhutsrishvili et al 2006). We defined the high-montane
zone border at about 1900 masl, where scattered
rhododendron shrubs (Rhododendron luteum) indicate
a transition to the subalpine zone. The high-montane
grassland comprises grass species such as Agrostis planifolia,
Cynosurus cristatus, Festuca pratensis, Poa pratensis, and
Trisetum flavescens (Khetskhoveli et al 1975; Lichtenegger
et al 2006). The subalpine grassland is characterized by
Astrantia maxima, Betonica macrantha, Festuca varia, Inula
orientalis, and a strong infestation of Veratrum lobelianum
(Figure 2C).

Field data

In July 2012 and 2013, we sampled plots (25-m2) of
high-montane and subalpine grassland for vegetation
cover, soil cover, and rock cover. In our study area, July is
the month of peak plant development; thus, that period
offered ideal conditions for vegetation sampling. In the
plots, we arranged three 1 m2 subplots in a triangle with
the tip aligned uphill (Figure 3). We selected plots
according to their total vegetation cover to sample
a gradient of grassland coverage. All plots were located
on the slope; the flat terrain was not sampled.
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Vegetation and soil cover are essential indicators
of grassland health or degradation (Zhang et al 2013).
Therefore, we visually estimated the percentages of
vegetation, soil, and rock cover. However, due to observer
estimation error, the vegetation cover estimates did not
yield satisfying model results. To increase accuracy, we
photographed the ground vegetation cover and further
used these digital images to determine vegetation cover.
Therefore each subplot was photographed with
a handheld digital camera (Panasonic LUMIX DMC-TZ1,
5 Megapixel). Photos were taken from a distance to the
canopy height over plain ground at nadir 140 cm. We
used the image processing program Photoshop CS5
version 12 (Adobe Systems, Mountain View, CA) to

calculate the vegetation cover of each subplot. Within
each subplot image, we identified pixels that represented
vegetation and used the ratio of vegetation pixels to total
image pixels to define the percentage of vegetation cover.
We further distinguished between the covers of vascular
plants and mosses, as mosses considerably contribute to
the greenness of sparsely vegetated terrain (Karnieli et al.
2002, 1996). Finally, the plot vegetation cover was
computed from the mean of the embedded subplot values
calculated before. Altogether, 5 plots were detected as
outliers and were removed from further analysis.
The remaining 93 plots were then grouped into 4 classes
of degradation intensity, based on their percentage of
vegetation cover (Table 1), a classification comparable to

FIGURE 1 Map of the study area and its location within the Caucasus region. (Map by Martin Wiesmair)
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those used in other studies. We used the Wilcoxon rank
sum test with Bonferroni correction method for post-hoc
class comparisons. All analyses were performed using
the R Project statistical computing software
(R Core Team 2014).

To extract spectral information from the satellite
image, we sampled the geographic position of each plot.
The 4 coordinates of our plot corners were recorded with
a GPS device (Garmin GPSMap 62s) with a 3–5 m position
accuracy. To increase geographic position accuracy, we
repeated positioning on a different date, marking plot
centers with magnetic markers to locate the plots with
a metal detector (Figure 3). We further used the mean
center function of ArcGIS10 (ESRI, Redlands, CA) to
compute the geographic mean of 8 GPS points for
each plot.

Multispectral data and analysis
We chose the WorldView-2 satellite sensor, which
provides 8 spectral bands from visible (400 nm) to
near-infrared (1040 nm) at a spatial resolution of 1.84 m.
The sensor provides a radiometric resolution of 11 bit
and 16.4 km swath width with a revisiting time of
3.7 days (Digitalglobe 2013). Compared to other satellite
sensors, WorldView-2 offers a very high spatial resolution

(Ünsalan and Boyer 2011). Recently launched sensors such
as WorldView-3 have an even higher spatial resolution
but were not yet available when our studies took place.
Our WorldView-2 image was acquired on 8 July 2011,
during the period of highest vegetation density. The
image was atmospherically corrected with the ATCOR 2
module of ERDAS 2013 (DLR, Wessling, Germany).

The vegetation indices MSAVI2 and NDVI were
calculated for our plots from the satellite image following
Equations 1 and 2:

MSAVI2¼ 2rNIRþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2rNIRþ1Þ2�8ðrNIR�rREDÞ

q� �.
2;

ð1Þ

NDVI¼rNIR�rRED
rNIRþrRED

ð2Þ

where rNIR and rRED are the simulated reflectance values
in near-infrared and red.

We used NDVI and MSAVI2 separately as predictors
for vegetation cover in our random-forest regression
analyses. The random-forest approach has been
successfully used to analyze RS data (Lawrence et al 2006;
Rodriguez-Galiano et al 2012; Feilhauer et al 2014). From

FIGURE 2 Grassland of the upper Aragvi Valley. (A) Cattle tracks and erosion from grazing on steep slopes near the villages; (B) cattle grazing on nondegraded,
high-montane grassland; (C) subalpine grassland with an infestation of Veratrum lobelianum; (D) grassland degradation along a hiking trail. (Photos by
Martin Wiesmair)
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the R-package “randomForest 4.6-7” (Liaw and Wiener
2002; Breiman and Cutler 2012) we chose the default
setting for the number of predictors sampled for the
splitting at each node. As suggested by Breiman (2003), we
tested other values, but the default parameterization
produced the best results. The number of trees to grow
was set to 5000.

We used 100 times bootstrapping with replacement to
validate the data sample. A predicted vegetation
cover value for each plot was calculated from the mean of
each bootstrap sample. The random-forest model fit was
validated through a linear regression of the predicted
versus the observed (ground truth) values. For each model
we calculated the total root mean square error of
prediction (RMSEP), a commonly used criterion for
judging the performance of a multivariate calibration
model (Faber 1999). For comparisons to other studies, we
additionally extracted the RMSEP of each degradation
class. All analyses were based on the continuous vegetation
cover range. Afterward the classification levels were
applied to the model results. The RMSEP was calculated
following Equation 3:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0
ðXi � YiÞ2=n
� �s

ð3Þ

where X is the predicted value from the model, Y the
observed value, and n the number of predictions.

A grassland vegetation cover map was predicted from
NDVI values, which were extracted from the WorldView-2
satellite image. We applied a continuous vegetation cover
scale to a map, where we masked out larger forested areas,
streams, clouds, the Aragvi River bed, and settlements.

Results

Grassland management
During our fieldwork, we witnessed the grassland
management of the upper Aragvi Valley. Grassland is

commonly used by all village inhabitants, mainly for cattle
grazing on all vegetation cover densities. Most of the
grassland area was used as pasture; only small parcels of
meadows were fenced off to exclude grazing animals.
In order to make use of the whole grassland area, some of
the cattle remained close to the villages while others were
driven to nearby grazing grounds each morning
(Figure 2B). The cattle roamed freely during the day and
returned to the village in the evening. Small herds of
free-roaming horses were met on plateaus with dense
vegetation cover. We observed controlled sheep herding
on distant pastures southeast of Mleta near the village of
Kvesheti. The hiking trails leading to a monastery on top
of the mountain range attracted many tourists and
pilgrims. The trails lie within the grassland, and we
detected severe vegetation damage spots along them
(Figure 2D). Minor work to restore parts of one hiking
trail has been undertaken.

Site cover variables and vegetation cover models

Site variables are displayed as median values for each
degradation class in Table 2. Soil cover ranged from 4 to
24% and rock cover from 0 to 50%. The soil and rock
cover were lowest in sites of no degradation and highest
in extremely degraded sites. All classes differed
significantly, except that the soil cover of moderately to
severely degraded sites did not differ from that of light to
moderately degraded and extremely degraded sites. Soil
and rock cover were strongly negatively correlated with
vegetation cover.

Table 3 displays the validated results of both random-
forest regression models with corresponding model errors
within vegetation cover classes. The validation was
calculated from bootstrapped predicted versus observed
data. Values for each vegetation cover class were extracted
from themodel results, whichwere previously run from the
full range of vegetation cover. NDVI and MSAVI2 were
calculated from aWorldView-2 satellite image. To visualize
the model fits, we plotted values predicted by the model
versus the observed values (Figure 4). We observed
identicalmodel fits for both vegetation indices atR2 5 0.79.
Minor differences in total errors or errors of individual
degradation classes were observed between NDVI and
MSAVI2. The RMSEP for MSAVI2 was 0.02% cover higher
on severely and nondegraded classes. For extremely
degraded sites, MSAVI2 was 0.11% cover higher thanNDVI
and did not differ on moderately degraded sites. With

FIGURE 3 Arrangement of subplots and magnetic marker.

TABLE 1 Classification of degradation intensity of Georgian high-montane and
subalpine grassland based on vegetation cover (modified from Purevdorj et al
1998, Gao et al 2006, and Liu et al 2007).

Vegetation cover (%) Degradation class

80–100 None

60–79 Light to moderate

30–59 Moderate to severe

0–29 Extreme
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decreasing vegetation cover, the model error increased for
both indices.

We found the largest proportions of grassland
degradation within the high-montane zone (Figure 5).
Through visual interpretation we identified errors that
corresponded to the given RMSEP values of about
15% cover on the extremely degraded sites, which are
attributed to erosion gullies and zones of accumulation
of debris flow.

Discussion

Grassland management

Our vegetation cover map indicates a higher pressure of
cattle grazing on pastures near the village of Mleta, where
we found more degraded areas. Similar developments
have been observed within other former Soviet countries
in Central Asia (Iniguez et al 2005). As the animals remain
longer in nearby areas, these grasslands are more
intensively grazed (Suttie et al 2005). In addition to land
use, topographical conditions affect the severity of
erosion. Tasser et al (2003) found that a slope inclination
of 30–40% increased the risk of alpine grassland
erosion in the Alps. Therefore, steep slopes near villages
can be considered to be of higher risk for grassland
degradation. Slope inclination was not considered in
our model but should be incorporated in future
management plans.

The weeds Veratrum lobelianum and Cirsium obvallatum,
which have been reported in grazing areas in the
Caucasus (Callaway et al 2000), primarily occur in the
subalpine zone in areas with dense vegetation cover.

Therefore, the influence of varying spectral
characteristics of grazing weeds, as has been proposed by
Liu et al (2015), is mainly restricted to the subalpine zone.
The subalpine zone of the study region is further
interspersed with rhododendron shrubs, which might
further contribute to variation in the spectral
characteristics of dense vegetation cover. Nevertheless,
the degradation spots along the hiking trails are well
displayed on our vegetation cover map for the
subalpine zone.

Vegetation cover assessment

Grassland in the study region showed higher proportions
of soil and rock cover with increasing degradation
intensity. This is in accordance with described erosion
processes on steep slopes of the Alps. First, the
vegetation layer is damaged, and then clods of soil are
washed downward until the base rock layer becomes
exposed (Stahr 1997). Although revegetation can be
observed to some extent on these extremely
degraded sites, the natural formation of a new soil
layer on degraded mountain slopes is an extremely slow
process.

Considering the differing site coverages of our study
region, the differences in the spectral reflectance of rock,
soil, and vegetation have to be considered for RS methods
(Elvidge and Lyon 1985; Clark 1999). Purevdorj et al
(1998) showed that MSAVI2 produced fewer errors than
NDVI in the estimation of very low vegetation cover. In
our model, differences between NDVI and MSAVI2 were
negligible, which is most likely attributable to different
site conditions: Sampling plots in our study area included

TABLE 3 Validated model fit of random forest regression models.

Vegetation index R2

RMSEP

Extreme

degradation

Moderate to

severe

degradation

Light to

moderate

degradation

No

degradation Total

NDVI 0.79 16.11 14.25 13.29 9.81 12.61

MSAVI2 0.79 16.22 14.27 13.29 9.79 12.63

TABLE 2 Median values of environmental variables for each degradation intensity class.

Environmental variable

Degradation class

Re)None Light to moderate

Moderate

to severe Extreme

Vegetation cover (%) 91.5 70.2 42.2 23.7 –

Soil cover (%) 4.0a) 12.5a),b) 20.0b),c) 24.0c) –0.73

Rock cover (%) 0.0a) 8.0b) 31.5c) 50.0d) –0.87

a),b),c),d)Significant variable differences for the Wilcoxon rank sum test of a post-hoc cluster comparison using the Bonferroni correction method (P , 0.05).
e)Spearman correlation coefficient of vegetation cover to soil and rock cover at P , 0.05.
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steep slopes up to 43u inclination, and the soil cover
values did not exceed those for vegetation or rock cover.
It is possible that the stronger topographic influence and
high rock cover values interfered with the MSAVI2, which
therefore did not mitigate the soil background effect and
did not strongly differ from NDVI. The similarity between
the 2 vegetation indices at high vegetation cover has also
been demonstrated by Qi et al (1994). Furthermore, both
indices were found to be strongly influenced by variations
in spectral signals of rock–soil brightness (Elvidge and
Lyon 1985).

Considering our model errors and map interpretation,
the high rock cover within erosion gullies is most likely
causing the higher errors in the prediction of vegetation
cover , 30%. Even though Liu et al (2007) and Purevdorj
et al (1998) showed high model accuracies for vegetation
cover , 30%, our results indicate restricted applicability
of the vegetation indices for very high rock covers in
mountainous terrain. Novel approaches for grassland
monitoring by means of multispectral reflectance
incorporate several vegetation indices and performed
well on the Tibetan plateau (Lehnert et al 2015).
Topographic correction methods, an incorporation of
further vegetation indices, and advanced regression
methods such as the support vector machine, which were
presented by Lehnert et al (2015), might further improve
model results.

Our model’s error rate is comparable to that of visual
field interpretations, which can range from 10%
(Kennedy and Addison 1987) to 15–40% (Tonteri 1990).

We assume that the NDVI’s high sensitivity to changes in
vegetation cover enabled the good model results. In our
study, NDVI derived from multispectral reflectance was
shown to detect grassland degradation at a high spatial
resolution of 1.84 m, which seems to be appropriate to
detect small vegetation damage spots in heterogeneous
grassland terrain.

Practical implications

Our models proved to be most suitable for mapping
vegetation cover of 30–100%. To control erosion in high-
montane grassland, vegetation cover of at least 70% is
needed (Moismann 1984). Therefore, our models’
coverage range is of highest interest for early detection of
grassland degradation to enable the implementation of
appropriate grazing management and restoration
practices.

The manual classification of vegetation cover from
photographs of ground cover was highly time consuming,
and automated classification methods have been
presented as time-saving alternatives by other authors
(eg Vanha-Majamaa et al 2000; Zhou and Robson 2001).
Although novel methods to retain the fractional
vegetation cover from satellite images have been
developed (eg Li et al 2014), monitoring should
always be supported by field surveys (Gintzburger and
Saidi 2010).

Regarding the satellite acquisition date, our model
results proved that the period of optimum vegetation
growth is an appropriate time to differentiate vegetation

FIGURE 4 Model fits for NDVI and MSAVI2 based on predicted and observed vegetation cover values, given as percentage.
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cover from soil and rock cover. This has also been
demonstrated for other regions with highest separability
of green vegetation cover from soil/rock cover (Dennison
and Roberts 2003; Marsett et al 2006; Feilhauer and
Schmidtlein 2011).

Because of their cost, WorldView-2 images can
generally be applied only to small areas. Their use in
transitional and developing countries can be limited to
areas near villages that have been defined as vulnerable by
larger assessments (such as the Georgian national risk
assessment—CENN and Faculty of Geo Information
Science and Earth Observation, University of Twente
2012), skiing slopes, and intensively used hiking trails.

For mountainous areas, general assumptions about
grassland degradation based on vegetation cover should
only be made after incorporating local knowledge about
land use. For the upper Aragvi Valley, the loss of
vegetation cover from land use and erosion has been well
described (eg Khetskhoveli et al 1975; Körner 1980;
Lichtenegger et al 2006). Additional impacts of
overgrazing include reduction of plant diversity and
infestation by unpalatable weed species (Liu et al 2004).

In the upper Aragvi Valley, these additional types of
grassland degradation can be observed. This study,
however, focused exclusively on loss of total vegetation
cover. Its interrelationship with other degradation types
was not tested in the study and would be a fruitful avenue
for further research.

Conclusion

Transitional countries like Georgia have experienced
substantial changes in land use, agricultural systems, and
the tourism industry. Further development needs to take
place in an environmentally sustainable manner. In order
to reduce grassland degradation caused by uncontrolled
grazing, the establishment of case-related, sustainable
grazing management adapted to the vulnerable mountain
grassland is urgently needed.

In the upper Aragvi Valley, the severe grassland
degradation near the village of Mleta indicates that the
local population is threatened by mass wasting events
and the loss of available grazing grounds, and
management measures are therefore necessary to

FIGURE 5 Vegetation cover predicted by NDVI for a high-montane and subalpine grassland in the upper Aragvi Valley in 2011. Inset shows degradation along
a hiking trail. (Map by Martin Wiesmair)
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prevent these risks. While the extremely degraded
slopes require substantial revegetation efforts, more
moderately degraded areas might be restored by
better-regulated cattle grazing. In using RS to
estimate grassland cover, uncertainties due to
changes in plant composition and background signals
have to be considered. Nevertheless, the RS method
presented here can be used to detect changes
in vegetation cover with an error rate that is
comparable to the error rate of on-site field
observations.

We propose the following site-specific management
measures for the upper Aragvi Valley and mountain
regions that face similar environmental problems:

N Take into account the whole range of vegetation cover.
N Accompany RS monitoring with field observations.
N Take information on slope inclination into account.

Maps of vegetation cover produced in the presented
way can play a key role in the evaluation of current
grassland degradation, the decision for potential tourist
development, and the success of futuremanagement plans.
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