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Abstract

This paper considers an integrated optimization problem enhancing productivity in printed circuit board (PCB)

manufacturing. The problems of assigning component types to feeder locations and sequencing component placements

on the PCB are simultaneously formulated in a mathematical model. Our model differs from earlier studies by allowing

component types to be placed in multiple feeders. Although such flexibility adds complexity to the original problem, we

develop an integrated solution that has promising results. We develop an integrated algorithm that finds the optimal

solution when the optimal solutions for the multi-depot vehicle routing problem (MDVRP) are given. Otherwise, given

an e-approximation algorithm for the MDVRP, our integrated solution has a theoretical e-error guarantee for PCB
problem. The effectiveness of the integrated approach is shown with extensive computational experiments.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Printed circuit board (PCB) manufacturing entails challenging optimization problems. In this paper, two

problems, the assignment of component types (chips) to feeder locations in a computerized numerically

control machine (CNC) and the sequencing of the placement of these components on the PCB, are con-

sidered together. Although the decisions regarding these problems are stated to be dependent on each other
(see [4,5,8,18]), most previous research has studied them independently as part of interrelated problems.

One motivating factor for our research is that these problems need to be formulated in a single model in

order to obtain system-wide optimal solutions and increase the productivity of PCB manufacturers. In this

paper, we propose an integrated approach that accounts for both of these problems simultaneously. Our

study differs from earlier works by introducing the flexibility to assign a component type to multiple

feeders. Although this flexibility adds complexity to the formulation and the solution method, our results
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indicate that the benefits are plenty. While the sequencing of the placement of components on a PCB re-
sembles the vehicle routing problem (VRP), having a component type located in several feeders creates

multiple number of depots. Therefore, it becomes necessary to consider the multi-depot vehicle routing

problem (MDVRP) in the formulation. To accomplish our goal, we first structure the problem. By using

optimization techniques, we develop an integrated method that finds the optimal solution if the MDVRP

can be solved optimally. However, MDVRP belongs to NP-hard class of problems and it is unlikely to find

optimal solution in polynomial time. Therefore, we develop an integrated solution method that has a

theoretical e-error guarantee under the presence of an e-approximation algorithm for the MDVRP. We

show the effectiveness of our integrated algorithm by testing it on various PCB types.
There are many different processing designs used in the surface mount technology CNCs that produce

the PCBs. The CNC machine that is studied in this problem is a widely used one with a rotary head. The

rotary head enables the machine to pick up a certain number of components (of the same type) from a

feeder and mount them on the PCB in one tour. A CNC has three main parts: a board that the PCB is

placed on, a feeder locator where the components are located, and a head that picks up components from

feeders and mounts them on the board. The head uses a nozzle to grasp the component located in the

feeder. Since each component type requires a different nozzle, the head cannot mount various component

types on the board in the same tour. The head changes the nozzle at the tool magazine which is generally
located at the mid-point of the feeder locator. Most widely used heads have the capability of picking up

more than just one component at a time, and are called ‘‘rotary heads.’’ This capability of rotary heads

resembles a VRP and differs from other technologies used in the PCB manufacturing. For example, a

single-head CNC can only pick up one component at a time and resembles a Chinese postman problem (see

[4]). It is also different from technologies such as the double-head CNC (or the dual-head CNC) which picks

up components and mounts them on the board using two independent heads. As the technology varies, so

does the formulation and complexity.

Fig. 1 illustrates an example CNC studied in this paper as well as exemplifying the intertwined decisions
of assigning component types to feeders and routing the head to mount the components on the PCB. In this

example, there are two component types, 1 and 2, and eight possible feeder locations, and the rotary head

can pick up four components of the same type at a time. The PCB requires seven components of type 1 and

three of type 2 to be mounted. The example shows that component type 1 is assigned to feeders two and

eight while component type 2 is located only in feeder 4. Assigning component types to multiple feeders is
Fig. 1. The mounting of components onto PCBs by the computerized numerically controlled machines.

(Note: The arm moves in the y-axis whereas the head moves in the x-axis. Furthermore, component type 1 is assigned at two different

feeders.)



372 B. Kazaz, K. Altınkemer / European Journal of Operational Research 150 (2003) 370–394
the flexibility that our model provides while previous models in literature restrict each component type to be
located in one and only one feeder. Our model allows both single and multiple-feeder assignments. This

study sheds light to most PCB manufacturers� concern about whether their throughput can increase by
allowing multiple feeders for a component type. In the figure, the head picks up three components of type 1

from feeder two and mounts them on the board by following the route indicated with arcs. Then, the head

travels to feeder eight and picks up four more and mounts them on the PCB. Next, the head goes to feeder

4, changes the nozzle and picks up four components of type 2. After completing the tour as indicated, the

example PCB is completed. It should be noted that component type 1 could have been located at a single

feeder, such as at feeder five. However, it is visually evident that the head would have to make longer trips if
the head capacity is equal to four. The impact of such flexibility becomes even more significant when the

number of components from each component type increases. Similarly, it can be less costly to assign

component type 2 at feeders four and seven. Therefore, the PCB manufacturing problem requires an in-

tegrated formulation and a solution method for both the assignment and the VRP using multiple feeders for

a component type.

The head of the CNC can move both in horizontal and in vertical directions simultaneously. This

corresponds to a Chebychev metric for distance (cost) calculations. Therefore, the distance between points i

and j on the PCB for component type k, ckij, can be written as
ckij ¼ max xi
��� � xj

��; yi
�� � yj

���;

where xi, xj represent the horizontal and yi, yj are the vertical coordinates, respectively. The distance be-
tween any two points is the maximum of the distances in either horizontal or vertical axes. The head also

moves up and down in the z-coordinate in order to mount the component on the PCB. However, due to the

importance of precision in the mounting task, it does not move in this axis while moving in horizontal and

vertical axes. Since the total number of components that are mounted is constant for a given PCB, these
movements exhibit a constant for the total z-coordinate movements and it can be dropped from consid-

eration.

The paper is organized in the following way: Section 2 contains a literature review. In Section 3, we

present the mathematical model and the integrated algorithm designed to develop feasible solutions for the

PCB manufacturing problem. Structural and theoretical developments are also included in this section.

Next, computational experiments that show the efficiency of the integrated algorithm and the benefits of

using multi-feeder assignments over the single-feeder approach are presented in Section 4. Finally, con-

clusions are provided in Section 5, as are future research directions.
2. Literature review

The PCB manufacturing problem is best described in Ball and Magazine [4] by using an insertion

technology CNC. They define the following three subproblems in the PCB manufacturing problem:

(i) allocation of component types to machines,
(ii) allocation of component types to feeders at each machine,

(iii) pick-and-placement sequencing.

Many studies examined the PCB manufacturing problem as part of interrelated papers. An extensive

survey of problems studied in PCB manufacturing can be found in [6]. While Ball and Magazine [4] focus

on the third subproblem, Drezner and Nof [8] concentrate on the component assignment. For a different

technology, an insertion machine, Gavish and Seidmann [13], McGinnis et al. [17], Or and Demirkol [18],

and Leipala and Nevalainen [16] state the importance of an integrated approach. In our paper, we study a
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CNC with a rotary head that can pick a certain number of components at a time. This resembles the VRP,
however, since a component type can be assigned to more than one feeder location, the formulation re-

quires the use of the MDVRP. Examples of MDVRP studies include [1,7,19]. Because the rotary head is a

different technology, none of these studies can provide a solution for the technology presented here.

Altınkemer et al. [3] provides a solution, however, it assumes that each component type is assigned to a

single feeder. In a slightly different setting, Crama et al. [5] considers multiple-feeder assignment for a

component type while using a rotary-head CNC, however, their solution heuristic cannot assign a com-

ponent type to more than two-feeder locations. One motivating factor for our study is that our formulation

relaxes this assumption, therefore it results in a different formulation and a solution technique. It should be
noticed that relaxing such an assumption complicates the problem and increases the number of binary

variables in the formulation factorially.
3. The integrated model and a heuristic

In this section, we present a formulation for the PCB manufacturing problem. By using Lagrangian

relaxation, we decompose our formulation into two subproblems: an assignment-like and a multi-depot
vehicle routing-like problem. This analysis enables us to develop a lower bound for the PCB problem. An

integrated algorithm is inspired by the same structural analysis. Next, we show that given an e-approxi-
mation for the MDVRP, our integrated algorithm has an error bound that is less than or equal to e.
The following two assumptions are made in order to keep the problem tractable:

1. The head completes the tour by returning to the feeder location before going to the tool magazine.

2. The travel time between two coordinates is approximately linear.

We begin our analysis by presenting the mathematical model used for the PCB manufacturing problem.

It corresponds to an integer programming formulation.

3.1. The mathematical model

An integer programming model is used to formulate the PCB manufacturing problem. One set of integer

variables corresponds to the decisions regarding the assignment of component types to feeder locations. A
second set of integer variables are defined in a manner which is similar to traditional VRP formulations.

The decisions regarding the next point on which a component will be mounted on the PCB are determined

by these variables. The objective function aims to minimize the total distance traveled by the rotary head so

that the throughput can be increased in the system. The mathematical model is as follows.

Notation:

K the total number of component types
L the total number of feeder locations; L > K
nðkÞ number of components of type k

V ðkÞ the node set of component type k including the feeder locations (starting nodes) V ðkÞ ¼
f1; . . . ; nðkÞ; . . . ; nðkÞ þ LgeVV ðkÞ the node set excluding the indices of feeder locations eVV ðkÞ ¼ fLþ 1; . . . ; nðkÞ þ Lg

Q the maximum number of components from one component type that the head can pick up at a time

(equivalently, the maximum number of components that can be mounted in one tour)

ckij the cost of traveling (distance) from point i to point j (i < j and i 6¼ j, i 2 V ðkÞ, j 2 eVV ðkÞ) for
component type k, ckii ¼ 1; ckij ¼ ckji for i 2 ðV kð Þ � eVV ðkÞÞ and j 2 eVV ðkÞ
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dl the round-trip distance between the feeder location l and the tool magazine

mðkÞ the minimum number of tours the arm needs to make for component type k, mðkÞ ¼ dnðkÞ=Qe
U the maximum number of feeders that a component type can be assigned to (the minimum of either

one more than the difference between the total number of feeders, L, and the total number of

component types, K, i.e. U ¼ L� K þ 1, or the number of components of a component type k, i.e.
U ¼ nðkÞ).

U ¼ min Lf � K þ 1; n kð Þg
Decision variables:
yk;nlk1 ;lk2 ;...;lkn
¼ 1 if component type k is assigned to n feeder locations : lk1 ; lk2 ; . . . ; lkn ;

0 otherwise;

�
xkij ¼

1 if arc ði; jÞ is traversed for component type k; i < j and i 6¼ j; i 2 V kð Þ; j 2 eVV ðkÞ;
0 otherwise;

�

xkji ¼
1 if arc ðj; iÞ is traversed for component type k; i < j and i 6¼ j; i 2 V kð Þ � eVV ðkÞ

� �
;

j 2 eVV ðkÞ;
0 otherwise:

8><>:

It should be noted that this variable represents the return arc from the PCB to the feeder location.
zk;nlk1 ;lk2 ;...;lkn

¼ total cost of assigning component type k to n feeder locations: lk1 ; lk2 ; . . . ; lkn .

Objective function:

The objective is to minimize the total distance traveled by the rotary head. When a component type is

assigned to a feeder location, the head travels from the tool magazine to the feeder and picks up a certain

number of components, tours on the board mounting these components, and returns to the feeder location

before visiting the tool magazine for the next component type. In order to understand the total distance

traveled by the head, consider the following example. Suppose a component type k is assigned to two-feeder
locations lk1 and lk2 , thus yk;2lk1 ;lk2

¼ 1. First, the head travels the round-trip distances between the tool
magazine and these two feeders, dlk1 and dlk2 . z

k;2
lk1 ;lk2

is the total of the distances traveled on the board when

component type k is located in feeders lk1 and lk2 . Therefore, the total distance traveled by the head for
component type k becomes the sum of zk;2lk1 ;lk2 þ dlk1 þ dlk2 . In the objective function, this total distance is

multiplied by a binary decision variable, yk;2lk1 ;lk2
. The term

PK
k¼1
PL�1

lk1¼1
PL

lk2¼lk1þ1
yk;2lk1 ;lk2

ðzk;2lk1 ;lk2 þ dlk1 þ dlk2 Þ
represents the total cost (distance) of assigning each component type k ¼ 1; . . . ;K to all possible two-feeder
combinations. It should be noted that a component type can be assigned to at least to one and at most U

feeders. Therefore, the objective function consists of the sum of the total distances that the head travels

from all of the feeder combinations (e.g. one-feeder assignment to U feeder assignment).
ðP1Þ: Z1
 ¼MinZ1 ¼
XK
k¼1

XL
lk1¼1

yk;1lk1
zk;1lk1

�
þ dlk1

�
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
zk;2lk1 ;lk2

�
þ dlk1 þ dlk2

�

þ � � � þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
zk;Ulk1 ;lk2 ;...;lkU

�
þ dlk1 þ dlk2 þ � � � þ dlkU

�
:

ð1Þ

Constraints:

• At most one component type will be assigned at each feeder location; while doing so, all feeder assign-

ment combinations (assigning to one feeder, two feeders, up to U feeders) for each component type
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should be considered. It should also be noted that a component type cannot be assigned to more than U

feeder locations:

XK
k¼1

yk;1l þ
XK
k¼1

Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ
XK
k¼1

Xl�2
lk1¼1

Xl�1
lk2¼lk1þ1

yk;3lk1 ;lk2 ;l

0@ þ
Xl�1
lk1¼1

XL
lk3¼lþ1

yk;3lk1 ;l;lk3

þ
XL�1

lk2¼lþ1

XL
lk3¼lk2þ1

yk;3l;lk2 ;lk3

1Aþ � � � þ
XK
k¼1

Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �

Xl�1
lkU�1¼lkU�2þ1

yk;Ulk1 ;lk2 ;...;l

0@ þ � � �

þ
XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A6 1 for each feeder location l ¼ 1; . . . ; L: ð2Þ

• Each component type should be assigned to a feeder configuration (combination of feeders). In a feeder

configuration, a component type can be assigned to at least one feeder and at most U feeders:XL
lk1¼1

yk;1lk1
þ
XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
þ � � � þ

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
¼ 1

for each component type k ¼ 1; . . . ;K: ð3Þ

• The cost of component type assignment is calculated by touring cost:Xn
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j
þ
Xn
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh
þ

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j ¼ zk;nlk1 ;lk2 ;...;lkn

for each feeder location combination ðlk1 ; lk2 ; . . . ; lknÞ and component type k ¼ 1; . . . ;K: ð4Þ

• The minimum number of arcs departing from feeder locations should be greater than or equal to the
minimum number of tours:Xn

h¼1

XnðkÞþL

j¼Lþ1
xklkh j

PmðkÞyk;nlk1 ;lk2 ;...;lkn
for each feeder location combination ðlk1 ; lk2 ; . . . ; lknÞ and

component type k ¼ 1; . . . ;K: ð5Þ

• There should be at least one outgoing arc from a feeder if a component type is assigned to it:

XnðkÞþL

j¼Lþ1
xklj P yk;1l

0@ þ
Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ � � � þ
Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �
Xl�1
lkU

yk;Ulk1 ;lk2 ;...;l

0@ þ � � �

þ
XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A1A for each feeder location l ¼ 1; . . . ; L and

component type k ¼ 1; . . .K: ð6Þ

• The number of outgoing arcs from each feeder should be equal to the number of incoming arcs to that

feeder:XnðkÞþL

j¼Lþ1
xklj ¼

XnðkÞþL

j¼Lþ1
xkjl for each feeder location l ¼ 1; . . . ; L and component type k ¼ 1; . . . ;K: ð7Þ
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• The total number of outgoing arcs from each point on the PCB and incoming arcs to that point should

be equal to two:

XL
l¼1

xklj þ
Xj�1
i¼Lþ1

xkij þ
XnðkÞþL

i¼jþ1
xkji þ

XL
l¼1

xkjl ¼ 2 for each point j ¼ Lþ 1; . . . ; nðkÞ þ L on the PCB for

component type k ¼ 1; . . . ;K: ð8Þ

• The total number of outgoing arcs from the feeders to points on the PCB and from the points to other

points on the PCB should be equal to the total number of components of that type:

XnðkÞþL�1

i¼1

XnðkÞþL

j¼iþ1
xkij ¼ nðkÞ for each component type k ¼ 1; . . . ;K: ð9Þ

• Subtour elimination constraints as shown in [11]:
X
i2SðkÞ

X
i<j2SðkÞ

xkij 6 SðkÞj j � LSðkÞ for each component type k ¼ 1; . . . ;K;

8SðkÞ � eVV ðkÞ; LSðkÞ P 1; SðkÞj jP 2: ð10Þ
• Integrality and non-negativity constraints:
yk;nlk1 ;lk2 ;...;lkn
¼ 0=1f g for each component type k ¼ 1; . . . ;K and

feeder location combination ðlk1 ; lk2 ; . . . ; lknÞ; ð11Þ

xkij ¼ 0=1f g for each component type k ¼ 1; . . . ;K and arc ði; jÞ; ð12Þ

zk;nlk1 ;lk2 ;...;lkn
P0 for each component type k ¼ 1; . . . ;K and feeder location combination ðlk1 ; lk2 ; . . . ; lknÞ:

ð13Þ

The above formulation is a combination of assignment-like and multi-depot vehicle routing-like

problems where the decision variables yk;nlk1 ;lk2 ;...;lkn
represent the decisions of the assignment problem and

variables xkij represent the decisions of the MDVRP. Sets (2), (3) and (11) are the constraints of the
assignment-like problem. Sets (5)–(10), (12) and (13) represent the constraints of MDVRP for each

component type k. Set (10) is subtour elimination constraints where LSðkÞ represents an optimal so-

lution of a one dimensional bin packing problem where bins have length Q and each item to be

packed in the bins has a weight of one unit. A detailed description of these constraints can be found

in [11,15]. Set (4) determines the total travel distance (cost) of each component type. It should be
noted here that it is not hard to show that problem (P1) is NP-hard since MDVRP belongs to the

class of NP-hard problems (see [10]). Thus, it is less likely to obtain the optimal solution for a large-

scale problem in polynomial time. Therefore, we next focus on generating an integrated algorithm for

the above formulation. In order to investigate the efficiency of this algorithm, we also develop a lower

bound.

Since the problem has a special structure, the formulation can be decomposed into two subproblems

when constraint set (4) is relaxed. The corresponding Lagrangian variables are denoted by ak;n
lk1 ;lk2 ;...;lkn

(unrestricted in sign). The resulting Lagrangian relaxation is presented as (P1LR).
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ðP1LR að ÞÞ:MinZ1LR ¼
XK
k¼1

XL
lk1¼1

yk;1lk1
ðzk;1lk1 þ dlk1 Þ

þ
XK
k¼1

XL
lk1¼1

ak;1
lk1

 
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xklk1 ;j
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xkj;lk1
�

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;1lk1

!

þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
ðzk;2lk1 ;lk2 þ dlk1 þ dlk2 Þ þ

XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

ak;2
lk1 ;lk2

�
 

�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j
�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh
�

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;2lk1 ;lk2

!

þ � � � þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU

� zk;Ulk1 ;lk2 ;...;lkU

�
þ dlk1 þ dlk2 þ � � � þ dlkU

�
þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

ak;U
lk1 ;lk2 ;...;lkU

 
�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j

�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh
�

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;Ulk1 ;lk2 ;...;lkn

!
s:t: ð2Þ; ð3Þ; ð5Þ–ð13Þ ð14Þ
where ak;n
lk1 ;lk2 ;...;lkn

is unrestricted in sign. Recall that in a Lagrangian relaxation the formulation can be

represented as maxa Z1LRðaÞf g6 Z1
 subject to suitable sign restrictions on a. In this case, a is unrestricted

in sign. a
, which maximizes the Lagrangian relaxation, Z1LR, gives the tightest lower bound to the original
problem [9,14]. Furthermore, (1) is minimized when zk;nlk1 ;lk2 ;...;lkn

is equal to the sum of the distances traveled

by the head,
Pn

h¼1
PnðkÞþL

j¼Lþ1 c
k
lkh ;j

xklkh ;j
þ
Pn

h¼1
PnðkÞþL

j¼Lþ1 c
k
lkh ;j

xkj;lkh
þ
PnðkÞþL�1

i¼Lþ1
PnðkÞþL

j¼iþ1 cki;jx
k
i;j. When this is the

case, the value of zk;nlk1 ;lk2 ;...;lkn
is equal to the optimal cost of the MDVRP when component type k is assigned

to feeder locations lk1 ; lk2 ; . . . ; lkn , denoted as z
k;n;opt
lk1 ;lk2 ;...;lkn

. Constraint sets (5) and (6) tie all the assignment and

touring decisions. If constraint set (5) is enumerated by assigning each yk;nlk1 ;lk2 ;...;lkn
value to be equal to 1 and

solving for the MDVRP, one can obtain all zk;n;optlk1 ;lk2 ;...;lkn
values.

3.2. The integrated algorithm

In this algorithm, we first solve a MDVRP for each component type at every possible feeder location
combination lk1 ; lk2 ; . . . ; lknð Þ. The feasible solution obtained from the MDVRP is used as the cost of as-

signing the component type to the particular feeder locations. By using the feasible solution value as the

cost of assigning component types to feeder locations, an assignment problem can be solved. The optimal

solution of this assignment problem is a solution to the original problem.

Problem (P1) presents a special structure. The variables of the assignment-like subproblem, yk;nlk1 ;lk2 ;...;lkn
,

and the variables of the multi-depot vehicle routing-like subproblem, xkij, are tied by constraint sets (5) and
(6). When constraint set (5) is enumerated by assigning each yk;nlk1 ;lk2 ;...;lkn

¼ 1 and solving a MDVRP, we
obtain the optimal sum of the distances traveled, zk;n;optlk1 ;lk2 ;...;lkn

, when component type k is located in feeder

locations lk1 ; lk2 ; . . . ; lkn . This special structure inspired the proposed algorithm that is developed for the

original integrated formulation of (P1).
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The integrated algorithm:

Step 1.

for each k {for each component type}

for lk1 ; lk2 ; . . . ; lkn {for each possible combination of feeder locations}
Find the heuristic solution of the MDVRP when component type k

is assigned to feeder locations lk1 ; lk2 ; . . . ; lkn .
DPk;n

lk1 ;lk2 ;...;lkn
¼ the cost of the MDVRP when component type k

is located in feeders lk1 ; lk2 ; . . . ; lkn .
DPk;n

lk1 ;lk2 ;...;lkn
¼ zk;nlk1 ;lk2 ;...;lkn

þ
Pn

h¼1 dlkh
(Note that dlkh is a constant and does not depend on the touring decision)

Step 2. Solve the assignment problem by using DPk;n
lk1 ;lk2 ;...;lkn

as the cost of assigning component type k to

feeder locations lk1 ; lk2 ; . . . ; lkn .
Min Z1 ¼
XK
k¼1

XU
n¼1

Xn
h¼1
DPk;h

lk1 ;lk2 ;...;lkh
yk;hlk1 ;lk2 ;...;lkh

ð15Þ

s:t: ð2Þ; ð3Þ:
While constraint set (2) ensures that at most one component type is assigned at each feeder, constraint

set (3) guarantees each component type is assigned to feeders, in particular, to at least one and at most U

feeders. We can solve this assignment problem by using an efficient assignment code.

We next present structural properties pertinent to the integrated algorithm developed to solve the PCB
manufacturing problem by using a rotary-head CNC. We begin our analysis with a theorem showing that if

the MDVRP is solved optimally and the cost is used as the cost of assigning component type k to feeder

locations lk1 ; lk2 ; . . . ; lkn , DP
k;n
lk1 ;lk2 ;...;lkn

, then the proposed integrated algorithm finds the optimal solution for

the original problem.

Theorem 1. The assignment problem with cost parameters equal to zk;n;optlk1 ;lk2 ;...;lkn
(optimal MDVRP cost when

component type k is assigned to feeder locations lk1 ; lk2 ; . . . ; lkn ) solves the original problem (P1) to optimality.

Proof. See Appendix A. �

The MDVRP is an NP-hard problem, and may not be solved optimally in polynomial time for large-

scale versions. Therefore, we show that if the feasible solution generated for the MDVRP with an error of e
is used as the cost of assigning a component type to feeder locations, then the original problem (P1) has an

error bound of e as well. This is important because it establishes a theoretical error bound for the proposed
integrated algorithm.

Theorem 2. Suppose there exists zk;n;flk1 ;lk2 ;...;lkn
(feasible solution cost of the MDVRP when component type k is

assigned to feeder locations lk1 ; lk2 ; . . . ; lkn) where
zk;n;flk1 ;lk2 ;...;lkn
� zk;n;optlk1 ;lk2 ;...;lkn

zk;n;optlk1 ;lk2 ;...;lkn

6 e
(zk;n;optlk1 ;lk2 ;...;lkn
is the optimal MDVRP cost when component type k is assigned to feeder locations lk1 ; lk2 ; . . . ; lkn)

for every component type k in feeder locations lk1 ; lk2 ; . . . ; lkn . If these zk;n;flk1 ;lk2 ;...;lkn
values are used in the inte-

grated heuristic, then the error for the integrated algorithm for (P1) is less than or equal to e as well, i.e.
Z1f � Z1


Z1

6 e
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(Z1f is the feasible solution generated by using zk;n;flk1 ;lk2 ;...;lkn
values and Z1
 is the optimal solution to problem

(P1)).

Proof. See Appendix A. �

This theorem establishes a theoretical error guarantee under the presence of an e-approximation algo-
rithm for the MDVRP. Later, we show that this result can also be extended to empirical error guarantees.

The following theorem shows that relaxing the assumption of assigning all components of a component
type into the same feeder location enables us to improve the solution found for the PCB problem. The

models found in the literature consider the component types as assigned to only one feeder. Our formu-

lation and solution algorithm provides the flexibility of assigning a component type into multiple feeders.

The following theorem proves that the solution obtained from the proposed algorithm of this study yields

improved results, or at least of the quality of solutions obtained from earlier work.

Theorem 3. The objective function value of (P1) is less than or equal to that of the problem when component
types are assigned to only one location.

Proof. See Appendix A. �

The theoretical error guarantee of Theorem 2 can be extended to empirical error bounds. Cordeau et al.

[7] present a tabu search heuristic for the MDVRP and compare it empirically with other heuristics. Their

experiments show that the tabu search heuristic provides approximately at least 1% better results. In our

analysis, we used the heuristic presented in [2]. If their algorithm is used to develop the feasible MDVRP

cost values, zk;n;fl1;l2;...;ln
, then as shown in the following remark, the empirical percentage error of the integrated

algorithm would be improved.

Remark 4. Suppose there exists an empirical e-approximation algorithm for the MDVRP. Hence, from

Theorem 2, the integrated algorithm is an empirical e-approximation algorithm for the original problem

(P1) as well.

These results highlight another important aspect of Theorem 2 regarding future improvements in the

solutions of the MDVRP. Whenever a new algorithm that performs better than the available MDVRP
algorithms is established, the error guarantee of the integrated algorithm for the PCB problem also im-

proves. This increases the significance of the result obtained through Theorem 2. The above remark

demonstrates that the proposed algorithm of this paper is also practical. When a promising algorithm for

the MDVRP is used, our proposed method provides solutions of at least the same quality of results, and is

likely to yield better performances. This is because the solutions from the MDVRP usually have varying

error percentages. When these solutions are used in the proposed algorithm, the integrated solution might

contain the results of better performance MDVRP solutions. This means that the solution for the PCB

manufacturing problem is likely to have a better performance than the MDVRP. In the worst case scenario,
the solution of the proposed algorithm has the same performance of the MDVRP.

Remark 5. If the maximum empirical error bound of the MDVRP is emax, then the maximum empirical

error bound of the integrated algorithm is less than or equal to emax.

This remark is a result of Theorem 2. When there are varying error gaps in the solutions of the MDVRP,

the solution of the proposed algorithm is bound by the worst error gap, and is likely to have smaller error

gaps. Therefore, the integrated algorithm�s worst case error guarantee depends on that of the MDVRP.
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We next develop a solution procedure by using Lagrangian relaxation. This procedure establishes the
basis for our computational experiments.

3.3. Lagrangian relaxation

Lagrangian relaxation for problem (P1) provides further insight for the structural properties which are

explored in our experimentation. We begin our analysis by relaxing several constraint sets. First, we divide

constraint set (10) into two parts as follows:
X
i2SðkÞ

X
i<j2SðkÞ

xkij 6 SðkÞj j � 1 for each component type k ¼ 1; . . . ;K;

8SðkÞ � eVV ðkÞ; LSðkÞ ¼ 1; SðkÞj jP 2; ð10aÞX
i2SðkÞ

X
i<j2SðkÞ

xkij 6 SðkÞj j � LSðkÞ for each component type k ¼ 1; . . . ;K;

8SðkÞ � eVV ðkÞ; LSðkÞ P 2; SðkÞj jP 2: ð10bÞ
Next, we relax constraint sets (4)–(6), (8) and (10b) by using the following Lagrangian multipliers re-

spectively:
ak;n kð ¼ 1; . . . ;K; n ¼ 1; . . . ;UÞ; ak;n is unrestricted in sign;

/k;n kð ¼ 1; . . . ;K; n ¼ 1; . . . ;UÞ; /k;n
6 0;

nk;n kð ¼ 1; . . . ;K; n ¼ 1; . . . ;UÞ; nk;n
6 0;

bj;k jð ¼ Lþ 1; . . . ; nðkÞ þ L; k ¼ 1; . . . ;KÞ; bj;k is unrestricted in sign;

pk;SðkÞ k
�

¼ 1; . . . ;K; 8SðkÞ � eVV ðkÞ; LSðkÞ P 2; SðkÞj jP 2
�
; pk;SðkÞ

6 0:
The resulting formulation, denoted by, P1LR1, is as follows:
ðP1LR1 a;/; n; b; pð ÞÞ: Min Z1LR1

¼
XK
k¼1

XL
lk1¼1

yk;1lk1
zk;1lk1

�
þ dlk1 þ mðkÞ/k;1

lk1

�
þ
XK
k¼1

XL
lk1¼1

ak;1
lk1

  
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xklk1 ;j
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xkj;lk1

�
XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;1lk1

!
� /k;1

lk1

XnðkÞþL

j¼Lþ1
xklk1 j

 !!
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
zk;2lk1 ;lk2

�
þ dlk1 þ dlk2

þ mðkÞ/k;2
lk1 ;lk2

�
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

ak;2
lk1 ;lk2

  
�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j
�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh

�
XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;2lk1 ;lk2

!
� /k;2

lk1 ;lk2

X2
h¼1

XnðkÞþL

j¼Lþ1
xklkh j

 !!
þ � � �

þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
zk;Ulk1 ;lk2 ;...;lkU

�
þ dlk1

þ dlk2 þ � � � þ dlkU mðkÞ/
k;U
lk1 ;lk2 ;...;lkU

�
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þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

ak;U
lk1 ;lk2 ;...;lkU

  
�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;jx

k
lkh ;j

�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;jx

k
j;lkh

�
XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j þ zk;Ulk1 ;lk2 ;...;lkn

!
� /k;U

lk1 ;lk2 ;...;lkU

XU
h¼1

XnðkÞþL

j¼Lþ1
xklkh j

 !!

þ
XK
k¼1

XL
l¼1

nk;l yk;1l

0@0@ þ
Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ � � � þ
Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �
Xl�1
lkU

yk;Ulk1 ;lk2 ;...;l

0@
þ � � � þ

XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A1A�
XnðkÞþL

j¼Lþ1
xklj

1Aþ
XLþnðkÞ

j¼Lþ1

XK
k¼1

bj;k 2

 
�
XL
l¼1

xklj

�
Xj�1
i¼Lþ1

xkij �
XnðkÞþL

i¼jþ1
xkji �

XL
l¼1

xkjl

!
þ
XK
k¼1

X
8SðkÞ�eVV ðkÞ

LSðkÞ P 2; SðkÞj jP 2

pk;SðkÞ SðkÞj j � LSðkÞ �
X
i2SðkÞ

X
i<j2SðkÞ

xkij

 !

s:t: ð2Þ; ð3Þ; ð7Þ; ð9Þ; ð10aÞ; ð11Þ–ð13Þ:

Problem (P1LR1) is now separable into two subproblems. One of the problems formed by this Lagrangian

relaxation is an assignment-like problem. It contains Lagrange multipliers ak;n
lk1 ;lk2 ;...;lkn

, /k;n
lk1 ;lk2 ;...;lkn

, nk;l, bj;k,

and pk;SðkÞ, and decision variables yk;nlk1 ;lk2 ;...;lkn
and zk;nlk1 ;lk2 ;...;lkn

.

ðP1LR1AÞ ¼Min Z1LR1A

¼
XK
k¼1

XL
lk1¼1

zk;1lk1 yk;1lk1

�h
þ ak;1

lk1

�
þ yk;1lk1

dlk1

�
þ mðkÞ/k;1

lk1
þ nk;lk1

�i
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

zk;2lk1 ;lk2 yk;2lk1 ;lk2

�h
þ ak;2

lk1 ;lk2

�
þ yk;2lk1 ;lk2

dlk1

�
þ dlk2 þ mðkÞ/k;n

lk1 ;lk2
þ nk;lk1 þ nk;lk2

�i
þ � � � þ

XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

zk;Ulk1 ;lk2 ;...;lkU
yk;Ulk1 ;lk2 ;...;lkU

�h
þ ak;U

lk1 ;lk2 ;...;lkU

�
þ yk;Ulk1 ;lk2 ;...;lkU

dlk1

�
þ dlk2 þ � � � þ dlkU þ mðkÞ/k;U

lk1 ;lk2 ;...;lkU
þ nk;lk1 þ nk;lk2 þ � � � þ nk;lkU

�i
þ
XLþnðkÞ

j¼Lþ1

XK
k¼1
2bj;k þ

XK
k¼1

X
8SðkÞ�eVV ðkÞ

LSðkÞ P 2; SðkÞj jP 2

pk;SðkÞ SðkÞj j � LSðkÞ
� �

s:t: ð2Þ; ð3Þ; ð11Þ; ð13Þ:

The first subproblem, P1LR1A, can be solved by using an efficient assignment algorithm.
The second subproblem, P1LR1B, becomes a degree-constrained minimal spanning tree problem with the

decision variables xkij.
ðP1LR1BÞ¼Min Z1LR1B

¼
XK
k¼1

XL
lk1¼1

ak;1
lk1

  
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xklk1 ;j
�
XnðkÞþL

j¼Lþ1
cklk1 ;j

xkj;lk1
�

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j

!
�/k;1

lk1

XnðkÞþL

j¼Lþ1
xklk1 j

 !!

þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

ak;2
lk1 ;lk2

  
�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j
�
X2
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh
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�
XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j

!
� /k;2

lk1 ;lk2

X2
h¼1

XnðkÞþL

j¼Lþ1
xklkh j

 !!

þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

ak;U
lk1 ;lk2 ;...;lkU

  
�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j

�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh
�

XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j

!
� /k;U

lk1 ;lk2 ;...;lkU

XU
h¼1

XnðkÞþL

j¼Lþ1
xklkh j

 !!

þ
XK
k¼1

XL
l¼1

nk;l

 
�
XnðkÞþL

j¼Lþ1
xklj

!
þ
XLþnðkÞ

j¼Lþ1

XK
k¼1

bj;k

 
�
XL
l¼1

xklj �
Xj�1
i¼Lþ1

xkij �
XnðkÞþL

i¼jþ1
xkji �

XL
l¼1

xkjl

!

þ
XK
k¼1

X
8SðkÞ�eVV ðkÞ

LSðkÞ P 2; SðkÞj jP 2

pk;SðkÞ �
X
i2SðkÞ

X
i<j2SðkÞ

xkij

 !

s:t: ð7Þ; ð9Þ; ð10aÞ; ð12Þ:
The second subproblem, P1LR1B, can be solved by using an augmented Lagrangian relaxation algorithm,
which was originally introduced by Gavish [12], and later efficiently utilized in the delivery problem by

Altınkemer and Gavish [2].
3.4. The subgradient optimization procedure

In this section we present a subgradient optimization procedure that is used for generating a lower

bound. The objective function of the Lagrangian problem, Z1LR, for a given set of Lagrange multipliers, a,
/, n, b, and p, gives a lower bound to the objective function value of the original problem (P1).

The subgradient optimization procedure is utilized to estimate the vectors of a, /, n, b, and p. It has

effective applications in a variety of problems including [1–3,12]. Letting xkij am;/m; nm; bm; pmð Þ,
yk;nlk1 ;lk2 ;...;lkn

am;/m; nm; bm; pmð Þ, and zk;nlk1 ;lk2 ;...;lkn
am;/m; nm; bm; pmð Þ be the optimal solution of the Lagrangian

problem Z1LR1 for a fixed vector of am;/m; nm; bm; pmð Þ at the mth subgradient iteration, the subgradient
directions are calculated as follows:
ck;n ak;n
m

� �
¼ zk;nlk1 ;lk2 ;...;lkn

�
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

Xn
lkU ¼lkU�1þ1

 
�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xklkh ;j
�
XU
h¼1

XnðkÞþL

j¼Lþ1
cklkh ;j

xkj;lkh

�
XnðkÞþL�1

i¼Lþ1

XnðkÞþL

j¼iþ1
cki;jx

k
i;j

!
for each k ¼ 1; . . . ;K; n ¼ 1; . . . ;U ; and

feeder location combination of ðlk1 ; lk2 ; . . . ; lknÞ;

ck;n /k;n
m

� �
¼ mðkÞyk;nlk1 ;lk2 ;...;lkn

�
Xn
h¼1

XnðkÞþL

j¼Lþ1
xklkh j

for each k ¼ 1; . . . ;K; n ¼ 1; . . . ;U ; and

feeder location combination of ðlk1 ; lk2 ; . . . ; lknÞ;
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ck;l nk;l
m

� �
¼ yk;1l

0@ þ
Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ � � � þ
Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �
Xl�1
lkU

yk;Ulk1 ;lk2 ;...;l

0@ þ � � �

þ
XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A1A�
XnðkÞþL

j¼Lþ1
xklj

for each feeder location l ¼ 1; . . . ; L and component type k ¼ 1; . . .K;

cj;k bj;k
m

� �
¼ 2�

XL
l¼1

xklj �
Xj�1
i¼Lþ1

xkij �
XnðkÞþL

i¼jþ1
xkji �

XL
l¼1

xkjl for each j ¼ Lþ 1; . . . ; nðkÞ þ L; k ¼ 1; . . . ;K;

ck;SðkÞ pk;SðkÞ
m

� �
¼ SðkÞj j � LSðkÞ �

X
i2SðkÞ

X
i<j2SðkÞ

xkij

for each k ¼ 1; . . . ;K; 8SðkÞ � eVV ðkÞ; LSðkÞ P 2; SðkÞj jP 2:
The vector multipliers for the mþ 1st subgradient iteration are found by:
ak;n
mþ1 ¼ ak;n

m þ tmck;n ak;n
m

� �
;

/k;n
mþ1 ¼ min 0;/k;n

m

�
þ tmck;n /k;n

m

� ��
;

nk;l
mþ1 ¼ min 0; nk;l

m

�
þ tmck;l nk;l

m

� ��
;

bj;k
mþ1 ¼ bj;k

m þ tmcj;k bj;k
m

� �
;

pk;SðkÞ
mþ1 ¼ min 0; pk;SðkÞ

m

�
þ tmck;SðkÞ pk;SðkÞ

m

� ��
;

where
tm ¼ sm
Z1� Z1LR1 a;/; n; b; pð Þ

a;/; n; b; pk k2
for all k ¼ 1; . . . ;K; j ¼ Lþ 1; . . . ; nðkÞ þ L;

8SðkÞ � eVV ðkÞ; LSðkÞ P 2; SðkÞj jP 2:
Z1 is an upper bound of the objective function value of the original problem that corresponds to the

feasible solution obtained from the heuristic. sm is a scalar whose value is halved whenever no improvement
in Z1LR1 is observed in a predetermined number of iterations. Below, we explain the procedure in detail:

Step 1. Initialization:
Set the upper bound for the feasible solution value to the heuristic solution (Z1 ¼ feasible solution value

obtained from the heuristic) and choose initial values of a0, /0, n0, b0, p0 for the Lagrange multipliers. Set

a
 ¼ a0, /

 ¼ /0, n


 ¼ n0, b

 ¼ b0, p


 ¼ p0, non-improvement counter IMP ¼ 0, the iteration counter m ¼ 0,
the step size sm ¼ s (the value is generally between 0 and 2 as suggested in [9]). We use zero as the initial
values of all Lagrangian multipliers in our computer experiments.

Step 2. Solving the Lagrangian problem:
Solve the Lagrangian subproblem P1LR1 am;/m; nm; bm; pmð Þ using the current multipliers am, /m, nm, bm,

and pm and obtain the values of
Z1LR1 am;/m; nm; bm; pmð Þ; xki;j am;/m; nm; bm; pmð Þ; yk;nlk1 ;lk2 ;...;lkn
am;/m; nm; bm; pmð Þ; and

zk;nlk1 ;lk2 ;...;lkn
am;/m; nm; bm; pmð Þ:
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Step 3. Testing and updating the parameters:
3.1. If Z1LR1 am;/m; nm; bm; pmð Þ is greater than the current Z1LR1 a
;/
; n
; b
; p
ð Þ, then set Z1LR1 a
;/
;ð

n
; b
; p
Þ ¼ Z1LR1 am;/m; nm; bm; pmð Þ.
3.2. If xki;j am;/m; nm; bm; pmð Þ, yk;nlk1 ;lk2 ;...;lkn

am;/m; nm; bm; pmð Þ, and zk;nlk1 ;lk2 ;...;lkn
am;/m; nm; bm; pmð Þ are feasible

for problem P1, compute the corresponding value of Z1, and if it is less than Z1, then set Z1 ¼ Z1.
3.3. If Z1LR1 am;/m; nm; bm; pmð Þ < Z1LR1 a
;/
; n
; b
; p
ð Þ, set IMP ¼ IMPþ 1. If the value of IMP has

reached a prespecified limit, set m ¼ mþ 1, sm ¼ sm�1=2, am ¼ a
, /m ¼ /
, nm ¼ n
, bm ¼ b
, and pm ¼ p
.

3.4. Check the termination conditions. The algorithm terminates whenever the total number of iterations
exceeds a prespecified limit, the step size sm becomes exceedingly small, or when the values of overestimate
and of the Lagrangian are acceptably close, i.e. the algorithm has converged within tolerance limit.

Step 4. Updating the multipliers:
The multipliers for the next step are computed as follows:
ak;n
mþ1 ¼ ak;n

m þ tmck;n ak;n
m

� �
/k;n

mþ1 ¼ min 0;/k;n
m

�
þ tmck;n /k;n

m

� ��
nk;l
mþ1 ¼ min 0; nk;l

m

�
þ tmck;l nk;l

m

� ��
bj;k
mþ1 ¼ bj;k

m þ tmcj;k bj;k
m

� �
pk;SðkÞ
mþ1 ¼ min 0; pk;SðkÞ

m

�
þ tmck;SðkÞ pk;SðkÞ

m

� ��

Step 5. Recursion:
Set m ¼ mþ 1, and go to Step 2.

We now can develop further structural properties of our solution procedure in light of the analysis

presented in Section 3.2. Remark 5 stated that the maximum empirical error bound of the Integrated

Algorithm is equal to that of the MDVRP. One algorithm for the MDVRP is presented in [1] where a k-
iterated tour partitioning algorithm is used to develop feasible solutions for a given set of multiple depots. If

this algorithm is used in generating solutions for our integrated algorithm, we present the worst case error
guarantee. We also state that the resulting algorithm is non-polynomial.

Remark 6. If the polynomial k-iterated tour partitioning algorithm in [1] is used to generate the feasible

solution for the MDVRP, then the worst case error guarantee for problem (P1) is 4� ð3=2QÞ where Q is the
capacity of the rotary head and QP 3. Furthermore, the size of the assignment problem increases

factorially in the number of feeder combinations. Therefore, the resulting algorithm would be non-

polynomial.

The computational complexity of the integrated algorithm is therefore dependent on the number of com-

ponents that aremounted on the PCB from each component type. The assignment of the proposedmethod has

a computational complexity of O K � LUð Þ. For each component type, the assignment problem considers the
combinations of assigning to one feeder, to two feeders, up to U feeders. The integrated algorithm completes
the assignment of component types to feeders in such a way that all the components are mounted on the PCB

in one iteration. This provides the flexibility of having some feeders to be empty. However, it does not

allow multiple iterations. As a result, the computational complexity of the integrated algorithm is

O K � LU þ
PK

k¼1 n kð Þð Þ3
� �

. It should be noted that the second term, O
PK

k¼1 n kð Þð Þ3
� �

, is the dominating

factor and comes from the computational complexity of the MDVRP. This is certainly a computationally

demanding method. However, this is not unusual for NP-Hard problems such as the VRP, and most solution

methods for the VRP have similar computational complexities. Furthermore, some of the exact methods use
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branch-and-bound procedures that have computational complexity of O 2Nð Þ where N represents the number
of components to be placed on the PCB. In the next section, we show the results of a computational study.
4. Computational experiments

In this section, we present the computational experiments that show the benefits of using the integrated

approach provided in Section 3. We use twenty different examples of PCBs manufactured on a CNC with a

rotary head as explained in the Introduction. Table 1 presents the characteristics of each PCB. For example,
the first PCB has 11 component types and 1400 components in total, and PCB 4 has 27 component types and

1272 components. In order to represent the real characteristics of a PCB, we define five classes of component

types. Class I components are allocated on a vertical line, Class II on a horizontal line, Class III on a di-

agonal line, Class IV on a circular line, while a majority of them are on random points on the board as Class

V component types. The first PCB, for example, has two component types from Class I that are allocated on

a vertical line. We have at most three component types from each of the first four classes on a PCB. Fur-

thermore, we do not allow more than 24 components to be allocated on a single line. For example, the first

component type of Class I has 120 components that need to be mounted on the first PCB. These components
are located on five different vertical lines and the location of these lines are randomly determined. Class V

component types represent those with completely random locations on the board which is rectangular with

dimensions of 500 units of length and 200 units of width. We use uniform random generation to populate

these components on the board. In the first PCB, there are four Class V component types, two of them with

240 components each and the other two with 80 components each. As stated in Table 1, we assume that there

are 30 possible feeder locations for component type assignments in all of our experiments. It should be noted

that these PCBs are fairly large as the total number of components to be mounted is relatively high.

In our computational analysis we compare single-feeder and multiple-feeder assignments for component
types and show that multi-feeder assignments can improve the total cost (by reducing the total distance

traveled). In the single-feeder assignment analysis, each component type is assigned to only one feeder. The

feasible solutions for this approach are generated by using the method presented in Altınkemer et al. [3]

where we solve a VRP for each component type at each feeder location. The multi-feeder assignment

approach of this paper enables component types to be allocated in more than one feeder. In our experi-

ments, we restrict each component type to be allocated to at most three feeders in order to reduce the

computational time necessary to develop feasible solutions. Therefore, we solve a MDVRP for each

combination of two and three feeders for component types. When a component type is assigned to adjacent
feeders the savings from multi-feeder analysis would be small. Therefore, we do not allow adjacent feeder

locations for feeder assignments of a component type. For this reason, when two-feeder and three-feeder

assignments are considered, we require at least five feeders in between each feeder in the combination. This

restriction reduces the number of MDVRPs solved for each component type. When two-feeder assignments

are considered for a component type, there is a total of 325 alternative feeder assignment combinations.

Similarly, when three-feeder assignments are investigated for a component type, there is a total of 1540

different alternatives. In total, we solve a MDVRP for 1865 different multi-feeder assignment alternatives

for each component type considered in multi-feeder analysis.
In our computational analysis, we report the average, maximum, and minimum ‘‘percentage error gaps’’

for each approach. We experiment with ten replications for each PCB type and record the percentage error

gap. The percentage error gap is calculated as the difference between the costs of the integrated algorithm

(feasible solution) and the lower bound divided by the value of the lower bound. It can be mathematically

expressed as follows:
Percentage error gap ¼ Z1� Z1LR1

Z1LR1
� 100%



Table 1

Characteristics of 20 different PCB types and the associated number of components from each component type

Example

PCB

Type

Total no.

of compo-

nents on

PCB

Total no. of

component

types on

PCB

Total

no. of

feeders

Class I component

types

Class II

component types

Class III

component types

Class IV

component types

1 2 3 1 2 3 1 2 3 1 2 3

1 1400 11 30 120 80 0 120 120 0 80 80 0 160 0 0

2 1368 22 30 100 56 40 120 60 48 96 60 0 96 48 12

3 1304 21 30 80 76 0 96 84 0 80 44 0 80 32 12

4 1272 27 30 80 64 40 120 60 24 80 40 24 60 60 24

5 1240 19 30 100 80 0 120 60 0 80 60 0 80 60 0

6 1208 22 30 80 56 40 60 60 0 80 28 28 80 28 28

7 1144 26 30 100 36 0 60 36 24 60 40 28 72 28 28

8 1080 11 30 160 0 0 120 0 0 60 60 0 120 0 0

9 1054 20 30 92 48 0 128 18 0 128 20 0 128 20 0

10 1002 20 30 72 28 28 124 12 12 68 20 20 68 20 20

11 950 13 30 80 60 0 60 30 0 60 40 0 60 40 0

12 898 18 30 84 48 0 36 36 6 48 44 0 44 40 8

13 872 27 30 100 16 12 54 12 6 66 12 8 66 12 8

14 820 20 30 96 12 12 48 6 6 40 40 0 32 32 16

15 808 27 30 96 12 8 42 12 6 32 32 16 32 32 16

16 784 13 30 84 12 12 54 6 0 80 0 0 80 0 0

17 760 27 30 76 12 12 48 6 6 56 16 8 56 16 8

18 736 25 30 68 12 12 36 18 6 48 24 8 48 24 8

19 700 11 30 80 0 0 48 6 6 80 0 0 80 0 0

20 560 27 30 24 24 16 24 18 6 24 24 16 24 24 16
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Class V component types

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1400 11 30 80 240 240 80 0 0 0 0 0 0 0 0 0 0 0

2 1368 22 30 80 120 72 48 120 72 40 40 16 6 8 0 0 0 0

3 1304 21 30 80 80 120 72 48 96 88 32 32 2 24 16 0 0 0

4 1272 27 30 40 40 72 48 72 48 40 40 40 0 32 20 40 16 8

5 1240 19 30 40 40 120 72 48 80 80 40 40 4 16 0 0 0 0

6 1208 22 30 40 40 72 72 48 48 56 56 80 0 48 0 0 0 0

7 1144 26 30 32 32 36 144 48 48 128 24 24 4 32 16 8 8 8

8 1080 11 30 140 120 120 72 60 48 0 0 0 0 0 0 0 0 0

9 1054 20 30 40 40 40 40 40 40 40 40 40 0 40 32 0 0 0

10 1002 20 30 80 168 48 80 80 30 16 8 0 0 0 0 0 0 0

11 950 13 30 80 200 160 40 40 0 0 0 0 0 0 0 0 0 0

12 898 18 30 40 40 72 112 80 80 40 40 0 0 0 0 0 0 0

13 872 27 30 48 32 24 32 32 32 32 24 32 2 64 32 32 32 20

14 820 20 30 80 80 64 16 80 64 16 40 40 0 0 0 0 0 0

15 808 27 30 32 32 16 48 48 48 8 48 48 8 16 24 16 24 16

16 784 13 30 80 112 24 112 48 80 0 0 0 0 0 0 0 0 0

17 760 27 30 56 16 32 32 32 16 32 16 48 2 32 16 32 24 24

18 736 25 30 40 16 16 8 48 56 64 64 32 6 16 32 16 0 0

19 700 11 30 80 80 80 80 80 0 0 0 0 0 0 0 0 0 0

20 560 27 30 24 24 16 24 24 16 48 48 32 6 16 8 8 8 8

Note: Ten different PCBs are generated from each PCB type for computational experiments.
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where Z1 is the feasible solution value obtained from the integrated approach and Z1LR1 is the value
of the lower bound for the multi-feeder PCB problem as presented in Section 3.1. We use the

subgradient optimization procedure in our computational experiments, as explained in Sections 3.3

and 3.4.

The computational results in Table 2 show that the integrated algorithm that uses multi-feeder as-

signments reduces the total cost significantly. The integrated algorithm of Section 3.2 has average per-

centage error gaps ranging between 1.68% and 7.04%. The minimum and maximum error gaps are

recorded as 1.62% and 7.10%, respectively. Considering the combinatorial complexity of the problem and
the size of the PCBs considered, these results are favorable. Table 2 also presents the results of the

integrated algorithm where each component type is assigned to a single feeder. The average percentage

error gap ranges between 1.87% and 19.36% with a minimum and maximum of 1.84% and 19.52%,

respectively. Our experiments conclude that in all of the PCB types, the multi-feeder approach has a

lower percentage error gap than the single-feeder approach. This is illustrated with the last column of

Table 2 where we report the average percentage improvement that the multi-feeder solution value pro-

vides over the single-feeder feasible solution. We only report the average percentage improvement be-

cause the minimum and maximum percentage improvements are close to the averages. The multi-feeder
assignment improves the feasible solution value by at least 0.15% and at most 10.32% in our experiments.

We observe that as the number of components from a component type increases, our VRP algorithm

does not generate the same quality of feasible solutions resulting in higher percentage error gaps. This is

typical of most combinatorial problems including the VRP. However, when these component types with

a higher number of components were divided into multiple feeders, the solutions improve dramatically.

In particular, we find our Class V component types (randomly located on the board) to provide higher

savings with MDVRP solutions (versus VRP solutions) than other classes of component types. Therefore,

in our multi-feeder analysis we allow only Class V component types to be assigned to multiple (two or
three) feeders. This is because the VRP solutions for the first four classes provide relatively superior

results with less savings from multiple-feeder assignments. We conjecture that this is an outcome of the

algorithm that we use to develop feasible solutions. Therefore, we cannot conclude that it is better to

allocate randomly located component types into multiple feeders than those located on lines. However, it

is easy to conclude that a multi-feeder assignment yields higher savings when there are relatively less

component types (compared to the total number of available feeders) with a high number of components

from each type. PCB types 1, 8, 11, 16 and 19 are good examples of this observation. When the total

number of component types is close to the number of available feeders, the savings from multi-feeder
assignments reduce. Similarly, PCB types 4, 9, 13, 15, 17 and 20 present smaller savings from multi-feeder

assignments. It should be noted that the parallel savings algorithm of Altınkemer [1] is used to develop

feasible solutions for the individual MDVRP solutions. We conjecture that if the MDVRP algorithm

presented in [7] were used, our percentage error gaps would have been improved. Nonetheless, the results

presented in this paper are the first of its kind and serve as a basis for future algorithms. A final ob-

servation is made regarding the utilization of feeders. In almost all problems, we achieve the maximum

utilization of feeders in optimal solutions. This indicates that locating component types in multiple

feeders can significantly improve the quality of the solution for large PCBs as experimented in this study.
Component types that were assigned to single feeders had a higher percentage of error gaps than those

located in multiple feeders. This enables us to conclude that utilizing more feeder locations for com-

ponent types that have higher number of components can be significant in terms of the quality of the

solution.

Providing the flexibility of multi-feeder assignments come at a cost of computational time. The model

presented in Section 3 suggests solving a MDVRP for each possible feeder combination for every

component type. This can increase the computational needs exponentially. In order to illustrate the

benefits of multi-feeder assignments without extensive computational time, we restrict the number of



Table 2

Computational experiments comparing single-feeder versus multi-feeder assignments over 20 PCB types

Example

PCB type

Total no.

of compo-

nents on

PCB

Total no.

of compo-

nent types

on PCB

Total no.

of feeders

Single feeder Multiple feeders Avg. %

impove-

ment from

using

multiple

feeders

Avg. %

error gap

Min. %

error gap

Max. %

error gap

Avg. %

error gap

Min. %

error gap

Max. %

error gap

1 1400 11 30 19.36 19.24 19.52 7.04 6.97 7.10 10.32

2 1368 22 30 11.58 11.50 11.68 6.90 6.84 6.97 4.19

3 1304 21 30 9.75 9.70 9.81 6.55 6.43 6.67 2.91

4 1272 27 30 7.08 7.03 7.13 6.33 6.17 6.48 0.70

5 1240 19 30 8.33 8.24 8.39 6.07 5.84 6.30 2.09

6 1208 22 30 6.96 6.92 7.00 5.85 5.66 6.03 1.04

7 1144 26 30 8.50 8.42 8.59 5.57 5.33 5.80 2.70

8 1080 11 30 12.67 12.52 12.78 5.46 5.36 5.55 6.40

9 1054 20 30 5.51 5.46 5.55 5.35 5.28 5.44 0.15

10 1002 20 30 12.25 12.13 12.36 5.00 4.94 5.10 6.46

11 950 13 30 16.09 15.89 16.23 4.70 4.63 4.82 9.81

12 898 18 30 6.41 6.37 6.46 4.42 4.35 4.57 1.87

13 872 27 30 4.55 4.49 4.60 4.31 4.24 4.47 0.24

14 820 20 30 6.65 6.58 6.71 4.16 4.09 4.25 2.33

15 808 27 30 4.11 4.07 4.15 3.92 3.81 4.01 0.18

16 784 13 30 7.99 7.90 8.07 3.35 3.24 3.44 4.29

17 760 27 30 3.01 2.97 3.07 2.87 2.73 2.97 0.23

18 736 25 30 4.23 4.19 4.28 2.42 2.24 2.56 1.73

19 700 11 30 6.02 5.99 6.08 1.78 1.75 1.81 3.99

20 560 27 30 1.87 1.84 1.90 1.68 1.62 1.74 0.18

Notes: (1) Average percentage error gap, minimum percentage error gap, and maximum percentage error gap are calculated after 10

experiments for each PCB. (2) Average percentage improvement from using multiple feeders is calculated by dividing the difference

between feasible solution values of single-feeder assignment and multi-feeder assignment problems by the feasible solution value of the

single-feeder assignment problem.
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component types for consideration. Although our approach is computationally demanding in an ex-

haustive search, the computational time for our experiments is relatively modest for such complexity.

Table 3 provides a detailed summary of the CPU times for both the single-feeder approach utilizing VRP

solutions and the multi-feeder approach using MDVRP solutions. The number of VRPs solved is de-
termined by multiplying the number of component types in each PCB with the total number of feeders

(30 in our experiments). In order to reduce the total computational time, we allow only Class V com-

ponent types to be assigned to multiple feeders. We first calculate the number of feeders available for

multi-feeder assignments. For example, PCB 4 has 27 component types and 30 feeders. It means that we

have at most three component types that can be assigned to multiple feeders for PCB 4. Therefore, we

solve MDVRPs for only three component types, the ones that have the highest number of (components

from Class V component types) on PCB 4. The number of component types considered for multi-feeder

assignment for each PCB type is also given in Table 3. This number, multiplied with 1852 different feeder
assignment alternatives, gives the total number of MDVRPs solved for each PCB type. We report the

average CPU time that was necessary to complete the multi-feeder analysis for each PCB type. Next, we

provide the average, minimum, and maximum CPU times for the entire problem. The total CPU time

includes the single-feeder, multi-feeder, and the assignment procedure CPU times. While the maximum

computation time is recorded as 47,346.6 CPU seconds on a Pentium IV 1.7 GHz computer, the min-

imum computation time is 8,835.3 CPU seconds. At this point a PCB manufacturer has to decide on a



Table 3

Analysis of computational time in experiments

Example

PCB type

Total no. of

components

on PCB

Total no. of

component

types on PCB

Total no.

of feeders

No. of

VRPs

solved

No. of com-

ponent types

considered

for MDVRP

No. of

MDVRPs

solved

Single-feeder

average CPU

time

Multi-fee-

der average

CPU time

Average

total CPU

time

Min. total

CPU time

Max. total

CPU time

1 1400 11 30 330 3 5595 3453.2 43,659.4 47,162.7 46,997.3 47,346.6

2 1368 22 30 660 5 9325 2230.4 44,129.2 46,409.5 46,211.1 46,587.7

3 1304 21 30 630 5 9325 2029.7 40,495.5 42,573.1 42,361.2 42,710.8

4 1272 27 30 810 2 3730 1268.0 12,223.6 13,539.2 13,445.6 13,632.9

5 1240 19 30 570 4 7460 1912.3 18,431.6 20,390.4 20,213.3 20,522.4

6 1208 22 30 660 4 7460 1456.4 17,347.7 18,848.5 18,741.4 18,972.5

7 1144 26 30 780 2 3730 2286.7 13,943.5 16,273.5 16,143.1 16,364.8

8 1080 11 30 330 4 7460 2618.6 21,789.5 24,450.7 24,290.8 24,611.9

9 1054 20 30 600 3 5595 1092.8 11,289.9 12,424.1 12,316.7 12,586.9

10 1002 20 30 600 4 7460 3149.0 18,104.0 21,292.9 21,134.7 21,428.8

11 950 13 30 390 3 5595 3077.4 27,211.9 30,328.0 30,276.4 30,491.2

12 898 18 30 540 4 7460 3078.1 20,919.4 24,035.4 23,911.8 24,182.3

13 872 27 30 810 2 3730 1110.4 10,274.4 11,421.3 11,345.2 11,534.1

14 820 20 30 600 3 5595 1391.1 12,371.0 13,797.7 13,673.5 13,924.5

15 808 27 30 810 3 5595 1135.0 9864.9 11,034.3 10,895.2 11,176.6

16 784 13 30 390 4 7460 1946.2 18,759.2 20,739.8 20,586.9 20,881.3

17 760 27 30 810 2 3730 1117.3 8276.0 9426.6 9323.7 9510.3

18 736 25 30 750 4 7460 1107.1 14,402.1 15,541.7 15,437.0 15,703.6

19 700 11 30 330 5 9325 1657.2 16,793.6 18,481.9 18,392.1 18,588.2

20 560 27 30 810 3 5595 1088.7 7801.0 8920.0 8835.3 8997.6

Notes: (1) No. of VRPs solved is calculated by multiplying the total no. of component types with the total no. of feeders. (2) For each component type considered for

MDVRP, there is a total of 1865 two-feeder and three-feeder assignment combinations. (3) No. of MDVRPs solved is calculated by multiplying the no. of component

types considered for MDVRP with 1865. (4) Total CPU Time includes the CPU times of single-feeder and multi-feeder analysis as well as the solution of the assignment

problem.
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trade-off between the quality of the solution and the time to obtain it. Our proposed multi-feeder ap-

proach can benefit the manufacturers who produce large quantities of the same PCB. Considering that

the multi-feeder PCB problem is solved once for millions of PCBs manufactured for large manufacturers,

this computational time is a relatively small effort on behalf of the manufacturer. Alternatively, if the

manufacturer does not produce large quantities of the same PCB our method becomes costly in time.

Thus, it is better for such a manufacturer to impose the single-feeder restriction in order to save com-

putational time. It should also be noted here that as the number of components in a component type

increases, the computational time increases exponentially as can be observed in all VRP and MDVRP
problems.
5. Conclusions

The PCB manufacturing problem presents a series of optimization problems which need to be formu-

lated and solved together in order to increase productivity. The integrated approach presented in this paper

simultaneously accounts for the problems of component assignment to feeders and the sequencing of
placement while minimizing the total head movement.

We prove that when the optimal solution for the MDVRP is known, our proposed algorithm finds

the optimal solution for the PCB manufacturing problem which belongs to NP-hard class. However,

the MDVRP is also an NP-hard problem, and it is unlikely to obtain optimal solutions in polynomial

time. Therefore, we theoretically show that our integrated algorithm provides a feasible solution with

an error bound less than or equal to the maximum error bound of the MDVRP. Furthermore, if all

the error bounds of the MDVRP are equal to e, then our proposed algorithm has an e-error
guarantee. Otherwise, the error guarantee can be determined by the largest error bound in the
MDVRP. We present the results of a computational study that support these theoretical findings. The

computational analysis shows that there are significant benefits when component types are assigned to

multiple feeders for densely populated PCBs. Such flexibility brings additional computation time. It

can be argued that solving a MDVRP for each component type and possible feeder locations is a

time-consuming process. Reducing the number of component types to be considered for multi-feeder

assignments decreases the computational needs dramatically. Furthermore, the additional computa-

tional time is justified by solving the integrated problem once for extremely large quantities of a PCB

type with the same setup. Therefore, our proposed method is beneficial for manufacturers who
produce large quantities of the same PCB. When this is the case, this integrated algorithm is not

repetitive and does not require extensive effort on the part of the manufacturer. For other manu-

facturers, we suggest imposing the single-feeder restriction for each component type in order to save

computational time.

This paper can be extended in two ways. First, a linear time in distance (cost) for the head movement

is assumed between points on the PCB in our paper. A study that investigates non-linear travel time

could result in better estimates. Furthermore, our study is designed around a technology that uses rotary

heads. Therefore, the solutions do not apply to all machines used for PCB manufacturing. However, our
paper opens the channels for utilizing optimization techniques in other technologies used in PCB man-

ufacturing.
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Appendix A

Proof of Theorem 1. Consider formulation (P1) and relax constraint set (4) multiplying it by vector a (a is

unrestricted in sign). The problem is composed of two subproblems: one assignment-like in variables,

yk;nlk1 ;lk2 ;...;lkn
, and one multi-depot vehicle routing-like in variables xkij. The variables of these two subproblems

are tied by constraint set (5). When each k and (lk1 ; lk2 ; . . . ; lkn) combination of component types and feeder
locations are assigned yk;nlk1 ;lk2 ;...;lkn

¼ 1, a multi-depot vehicle routing-like problem can be solved. This pro-

vides the optimal cost of the MDVRP, zk;n;optlk1 ;lk2 ;...;lkn
, for component type k located in feeders lk1 ; lk2 ; . . . ; lkn .

When zk;n;optlk1 ;lk2 ;...;lkn
is used in the assignment-like problem without constraint set (5), the optimal solution for

the original problem (P1) can be obtained. �

Proof of Theorem 2. Let us consider the optimal solution for the assignment problem:
Z1
 ¼Min
XK
k¼1

XL
lk1¼1

yk;1lk1
zk;1;optlk1

�
þ dlk1

�
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
zk;2;optlk1 ;lk2

�
þ dlk1 þ dlk2

�
þ � � �

þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
zk;U ;opt
lk1 ;lk2 ;...;lkU

�
þ dlk1 þ dlk2 þ � � � þ dlkU

�
s:t:XK
k¼1

yk;1l þ
XK
k¼1

Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ
XK
k¼1

Xl�2
lk1¼1

Xl�1
lk2¼lk1þ1

yk;3lk1 ;lk2 ;l

0@ þ
Xl�1
lk1¼1

XL
lk3¼lþ1

yk;3lk1 ;l;lk3

þ
XL�1

lk2¼lþ1

XL
lk3¼lk2þ1

yk;3l;lk2 ;lk3

1Aþ � � � þ
XK
k¼1

Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �

Xl�1
lkU�1¼lkU�2þ1

yk;Ulk1 ;lk2 ;...;l

0@ þ � � �

þ
XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A6 1 for each feeder location l ¼ 1; . . . ; L;

XL
lk1¼1

yk;1lk1
þ
XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
þ � � � þ

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
¼ 1

for each component type k ¼ 1; . . . ;K:
In the optimal solution, there will be only K of yk;nlk1 ;lk2 ;...;lkn
�s which are equal to 1. Then,
Z1
 ¼ y1;n1;optlk1 ;lk2 ;...;lkn1
� z1;n1;optlk1 ;lk2 ;...;lkn1

þ y2;n2;optlk1 ;lk2 ;...;lkn2
� z2;n2;optlk1 ;lk2 ;...;lkn2

þ � � � þ yK;nK;optllk1 ;lk2 ;...;lknK
� zK;nK;optlk1 ;lk2 ;...;lknK

:

Denote the optimal vector of yk;n;
lk1 ;lk2 ;...;lkn
�s with:� �
yOPT ¼ y1;n1;optlk1 ;lk2 ;...;lkn1
; y2;n2;optlk1 ;lk2 ;...;lkn2

; . . . ; yK;nK;optlk1 ;lk2 ;...;lknK
:

Now, consider the solution for the assignment problem by using the feasible solution of the MDVRP.

When the combination of
yOPT ¼ y1;n1;optlk1 ;lk2 ;...;lkn1
; y2;n2;optlk1 ;lk2 ;...;lkn2

; . . . ; yK;nK;optlk1 ;lk2 ;...;lknK

� �

assignments (assignment of component types to feeders) is used, it will generate a feasible solution for the

integrated algorithm. The cost of this solution, however, will be calculated by using the feasible solution

costs of the MDVRP. The total assignment cost,
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ZAP;F ¼ y1;n1;optlk1 ;lk2 ;...;lkn1
� z1;n1;fllk1 ;lk2 ;...;lkn1

þ y2;n2;optlk1 ;lk2 ;...;lkn2
� z2;n2;flk1 ;lk2 ;...;lkn2

þ � � � þ yK;nK;optlk1 ;lk2 ;...;lknK
� zK;nK;flk1 ;lk2 ;...;lknK

;

of this combination will be greater than or equal to the minimum cost by using the feasible solutions of the

MDVRP, Z1f .
Z1f ¼Min
XK
k¼1

XL
lk1¼1

yk;1lk1
zk;1;flk1

�
þ dlk1

�
þ
XK
k¼1

XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
zk;2;flk1 ;lk2

�
þ dlk1 þ dlk2

�
þ � � �

þ
XK
k¼1

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
zk;U ;f
lk1 ;lk2 ;...;lkU

�
þ dlk1 þ dlk2 þ � � � þ dlkU

�
s:t: XK

k¼1
yk;1l þ

XK
k¼1

Xl�1
lk1¼1

yk;2lk1 ;l

0@ þ
XL

lk2¼lþ1
yk;2l;lk2

1Aþ
XK
k¼1

Xl�2
lk1¼1

Xl�1
lk2¼lk1þ1

yk;3lk1 ;lk2 ;l

0@ þ
Xl�1
lk1¼1

XL
lk3¼lþ1

yk;3lk1 ;l;lk3

þ
XL�1

lk2¼lþ1

XL
lk3¼lk2þ1

yk;3l;lk2 ;lk3

1Aþ � � � þ
XK
k¼1

Xl�Uþ1

lk1¼1

Xl�Uþ2

lk2¼lk1þ1
� � �

Xl�1
lkU�1¼lkU�2þ1

yk;Ulk1 ;lk2 ;...;l

0@ þ � � �

þ
XL�Uþ2

lk2¼lþ1

XL�Uþ3

lk3¼lk2þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ul;lk2 ;...;lkU

1A6 1 for each feeder location l ¼ 1; . . . ; L;

XL
lk1¼1

yk;1lk1
þ
XL�1
lk1¼1

XL
lk2¼lk1þ1

yk;2lk1 ;lk2
þ � � � þ

XL�Uþ1

lk1¼1

XL�Uþ2

lk2¼lk1þ1
� � �

XL
lkU ¼lkU�1þ1

yk;Ulk1 ;lk2 ;...;lkU
¼ 1

for each component type k ¼ 1; . . . ;K:

Next, the objective function of the assignment problem for the combination yOPT is calculated. Notice

that the combination yOPT is also a feasible combination for the integrated algorithm. Then,
ZAP;F ¼ y1;n1;optlk1 ;lk2 ;...;lkn1
� z1;n1;flk1 ;lk2 ;...;lkn1

þ y2;n2;optlk1 ;lk2 ;...;lkn2
� z2;n2;flk1 ;lk2 ;...;lkn2

þ � � � þ yK;nK;optlk1 ;lk2 ;...;lknK
� zK;nK;flk1 ;lk2 ;...;lknK

;

ZAP;F6 y1;n1;optlk1 ;lk2 ;...;lkn1
� z1;n1;flk1 ;lk2 ;...;lkn1

�
þ e � z1;n1;flk1 ;lk2 ;...;lkn1

�
þ y2;n2;optlk1 ;lk2 ;...;lkn2

� z2;n2;flk1 ;lk2 ;...;lkn2

�
þ e � z2;n2;flk1 ;lk2 ;...;lkn2

�
þ � � � þ yK;nK;optlk1 ;lk2 ;...;lknK

� zK;nK;optlk1 ;lk2 ;...;lknK

�
þ e � zK;nK;optlk1 ;lk2 ;...;lknK

�
;

ZAP;F6 y1;n1;optlk1 ;lk2 ;...;lkn1

�
� z1;n1;optlk1 ;lk2 ;...;lkn1

þ y2;n2;optlk1 ;lk2 ;...;lkn2
� z2;n2;optlk1 ;lk2 ;...;lkn2

þ � � � þ yK;nK;optlk1 ;lk2 ;...;lknK
� zK;nK;optlk1 ;lk2 ;...;lknK

�
þ e � y1;n1;optlk1 ;lk2 ;...;lkn1

�
� z1;n1;optlk1 ;lk2 ;...;lkn1

þ y2;n2;optlk1 ;lk2 ;...;lkn2
� z2;n2;optlk1 ;lk2 ;...;lkn2

þ � � � þ yK;nK;optlk1 ;lk2 ;...;lknK
� zK;nK;optlk1 ;lk2 ;...;lknK

�
;

ZAP;F6 Z1
 þ e � Z1
:
We also know that the optimal solution value of the integrated algorithm, Z1f , will be less than or equal
to the cost of this combination.
Z1f 6 ZAP;F;

Z1f 6 Z1
 þ e � Z1
;

Z1f 6 Z1
 � ð1þ eÞ;
Z1f

Z1

6 1þ e;

Z1f � Z1


Z1

6 e: �
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Proof of Theorem 3. The problem that the components of the same type are assigned to a single feeder,

defined as problem (PR), has a feasible region which is only a portion of the feasible region of (P1).

Therefore, the optimal solution of problem (PR) is also feasible for problem (P1) and its value can only be

greater than or equal to the optimal objective function value of (P1). �
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