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When we are proving theorems in Peano Arithmetic we accept the existence of
natural numbers and certain properties of them (e.g. complete induction). However the
most often used models for computational complexity (e.g. polynomial time hierarchy)
suggest that we really accept only the existence of natural numbers up to a certain large
natural number n and larger numbers (for example, subsets of a set of size n) “exist”
only if we can compute them with some kind of algorithm. Therefore it is natural to
consider a system of axioms where the universe is the set of natural numbers from 0
to n and the relations are the arithmetic operations and ordering up to n. [. . . ] It is
also natural to accept the axiom of complete induction up to n or, which is the same,
up to a fixed power of n.

Miklós Ajtai [2, page 420]

In this lecture, we study initial segments of models of arithmetic that have a top element. Such
an initial segment cannot possibly be closed under addition or multiplication. So we view the
inherited operations as relations.

Definition. Let a ∈ M |= I∆0 + exp. Then a+ 1 = {0, 1, . . . , a} is naturally an Ltop-structure,
where Ltop = {+,×, <, a}. Here +,× are ternary relation symbols, < is a binary relation symbol,
and a is a constant symbol. An M -coded expansion of a+ 1 is an expansion A of a+ 1 in which all
new functions and relations are in Cod(M).

Informally speaking, the M -coded expansions are those about which the universe M can easily
reason. The top element can help bound quantifiers and hence reduce quantifier complexity. So one
can simulate the truth of formulas of arbitrary quantifier complexity in an initial segment with a
top by a formula of bounded quantifier complexity in the universe.

Definition. If L ⊇ Ltop, then LNP6a(L ) denotes the L -theory consisting of all sentences

∀z̄
(
∃x6a η(x, z̄)→ ∃x6a

(
η(x, z̄) ∧ ∀x′<x ¬η(x′, z̄)

))
,

where η ∈ L .

Proposition 13.1 (Lessan [7, Chapter 4]). Let a ∈ M |= IΣ1 and A be an M -coded expansion
of a+ 1 in a finite language L ⊇ Ltop.

(a) There is an LA(M)-formula SatA(θ, s) which is ∆1 over M such that

A |= θ(x̄) ⇔ M |= SatA(θ, [x̄])

whenever θ ∈ L and x̄ ∈ A.

(b) A |= LNP6a(L ).

(c) If M 6= N, then A is recursively saturated.
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Proof sketch. (a) SupposeA = (a+1, R1, R2, . . . , Rm). Let r1, r2, . . . , rm ∈M codeR1, R2, . . . , Rm
respectively. We associate to each θ ∈ L a ∆0-formula θ̂ recursively as follows, with v0 = a
and vi+1 = ri+1 for all i < m in mind.

• x = a is x = v0.

• x+ y = z is x+ y = z.

• x× y = z is x× y = z.

• x < y is x < y.

• Ri+1(x) is x ∈ Ack(vi+1) for each i < m.

• ¬θ is ¬θ̂ for each L -formula θ.

• θ ∧ η is θ̂ ∧ η̂ for all L -formulas θ, η.

• ∀x θ is ∀x6v0 θ̂ for each L -formula θ.

With I∆0 + exp, we can define this function in M such that θ̂ = ϕ is represented by a
Σ1-formula. Then an induction on θ shows

A |= θ(x̄) ⇔ M |= θ̂(a, r̄, x̄) ⇔ M |= ∆0-Sat(θ̂, [a, r̄, x̄])

for every θ ∈ L and every x̄ 6 a. So we can set SatA(θ, [x̄]) to be ∆0-Sat(θ̂, [a, r̄, x̄]).

(b) Replace η(x, z̄) ∈ L by SatA(η, [x, z̄]) ∈ LA(M), and use LΣ1 in M .

(c) Let p(v̄) = {θi(v̄, c̄) : i ∈ N} be a recursive type over A. Then

M |= ∃v̄6a ∀i<k SatA(θi, [v̄, c̄])︸ ︷︷ ︸
Σ1︸ ︷︷ ︸

Σ1 over BΣ1

for every k ∈ N. A Σ1-overspill in M then gives us v̄ 6 a that realizes p in A.

Remark 13.2. By a more careful construction of ∆0-Sat, we can make SatA in part (a) above ∆0.
Therefore, requiring M |= I∆0 + exp is actually enough for this proposition. See the Further
exercises for an improvement of part (b).

Remark 13.3. Observe that the proof of Proposition 13.1(c) is essentially the same as that of
(b)⇒ (a) for Theorem 7.4. Both of these proofs hinge on the existence of a definable satisfaction
relation. So a similar argument shows that structures constructed by means of the Arithmetized
Completeness Theorem (as in Lecture 4) in a model (M,X ) |= WKL0, where M 6= N, are all
recursively saturated.

The model theory of initial segments with top elements have close connections with complexity
theory. It is conceivable that different models of arithmetic can share a common initial segment.
When initial segments have top elements, curious situations can occur.

Definition. Let A be a structure in a language extending Ltop. An expanded end extension of A
is an expansion of an extension of A in which no new element is added below a.

Theorem 13.4 (Ajtai [1]). Fix a ∈ M |= PA, where M is countable and a > N. Let A be an
M -coded expansion of a+ 1 in a finite L ⊇ Ltop. Then there is S ⊆ a+ 1 in Cod(M) such that

(a) there is a bijection f ∈ Cod(M) from S to some odd c ∈M ; and

(b) the expansion (A,S) has an expanded end extension K |= PA in which S ∈ Cod(K) and
there is a bijection g ∈ Cod(K) from S to some even d ∈ K.

The proof of this theorem is highly combinatorial, and is thus outside the scope of this course.
We will, however, investigate necessary and sufficient conditions for the existence of such expanded
end extensions. As motivation, let us start with a classical approach via a generalization of ω-logic.
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Figure 13.1: Changing parity

Definition. Let A be a structure in a language L . Then Diag(A) denotes the set of atomic and
negated atomic L (A)-sentences true in A.

Definition. Let a ∈M |= PA− and A be an expansion of a+ 1 in the language L ⊇ Ltop. Then
A-logic operates on all languages extending L (A). In addition to the usual deduction rules for
classical first-order logic, its deduction system has

θ(0) θ(1) · · · θ(a)
A-rule∀v6a θ(v)

where θ ∈ L , and we include the elements of Diag(A) as axioms. A deduction in A-logic is also
called an A-proof.

A straightforward adaptation of the ω-Completeness Theorem holds.

Fact 13.5 (essentially Henkin [6], Orey [8]). Fix a ∈M |= PA−, where M is countable. Let A be
an expansion of a+ 1 in a countable L ⊇ Ltop, and T be a theory in a countable L ∗ ⊇ L . Then
the following are equivalent.

(a) T is consistent in A-logic.

(b) A has an expanded end extension K |= T .

Proof sketch. Suppose (b) holds. Then a transfinite induction on the height of the A-proof shows
that every L ∗(A)-sentence provable from T in A-logic is true in K. In particular, there can be no
proof of contradiction from T in A-logic, making (a) true.

Conversely, suppose (a) holds. Then the type p(v) = {v 6 a} ∪ {v 6= c : c ∈M} is non-isolated
over T . So we get (b) by the Omitting Types Theorem.

While theorems of this kind are useful in many other situations, it is not informative enough in
complexity-theoretic contexts, because A-proofs can be wildly infinitary (when A is infinite). So we
restricted our attention to A-proofs that are definable in A.
Remark 13.6. Fix M |= PA− and a ∈M \ N. Let A be an expansion of a+ 1 in a finite L ⊇ Ltop,
and L ∗ be a finite extension of L . We adopt a well-behaved coding of L ∗(A)-formulas and
A-proofs that can A-definably handle all finite syntactical operations and uniformly A-definable
operations. Formulas are to be coded as elements of A<ω. Proofs, represented as partial orders
(P,P) with a P-minimum element in which the P-predecessors of every element are linearly ordered,
are to be coded as elements of

⋃
n∈N P(An). Recall

Def(A) =
⋃
n∈N
{S ⊆ An : S is definable in A}.
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∴ u is P-minimal
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<

∴ v ∈ U
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<

/

P

Figure 13.2: Transferring the least number principle to all definable partially ordered sets

So we can meaningfully talk about when a proof is definable in A. As a feature of our coding, if
P is a proof coded in A, then there is ` ∈ N that bounds the lengths of all formulas appearing in P .
Section 3 in Garlík’s paper [5] contains the precise definitions of this coding.

The rest of this lecture is devoted to a proof the following. One can view this as the soundness–
completeness theorem for A-definable A-logic.

Theorem 13.7 (Ajtai [3]). Fix a ∈ M |= IΣ1, where M is countable and a > N. Let A be an
M -coded expansion of a + 1 in a finite L ⊇ Ltop. Take any theory T in a finite L ∗ ⊇ L in
Cod(M/N) which proves < is a linear order and LNP6a(L ∗). The following are equivalent.

(a) There is no A-definable A-proof of contradiction from T .

(b) A has an expanded end extension K |= T .

13.1 Soundness
As is usual, Ajtai’s soundness theorem is proved using some kind of induction. However, induction
is not immediately available because the partial orders that we use to code proofs are not required
to be well-founded. So we need to prove induction. This is where we use the top element: without
a top, nonempty definable sets can have no maximum.

Lemma 13.8. Let K be a structure for L ∗ ⊇ Ltop in which < is a linear order and LNP6a(L ∗)
is true. If (P,P) is a nonempty partial order definable in K such that x̄ 6 a for all x̄ ∈ P , then P
has a P-minimal element.

Proof. We only consider the case when x̄ is of length one; other cases reduce to this one via the
lexicographic order. Consider U = {u ∈ P : ∀xPu x > u}. Notice min6 P exists by LNP6a(L ∗),
and it is in U . Thus U 6= ∅. If u ∈ U , then the 6-minimum element v that is strictly P-less than u
must also be in U . So if u ∈ U with some element strictly P-below it, then there is v ∈ U strictly
6-bigger than u. If we take the 6-maximum u ∈ U , which exists by LNP6a(L ∗) via a standard
argument, then there can be no v ∈ U strictly P-below it, so that u must be P-minimal.

Proof sketch of (b)⇒ (a) for Theorem 13.7. Suppose (b) holds. Let K be an expanded end exten-
sion of A satisfying T . Take any A-definable A-proof (P,P) from T . Find ` ∈ N that bounds the
lengths of all formulas appearing in P . This exists by Remark 13.6. Since L ∗ is finite, there are
only finitely many L -formulas whose lengths are at most `. So

`-ThA(K) = {θ ∈ L ∗(A) : θ is of length at most ` and K |= θ} ∈ Def(K).

It suffices to show that every formula in P is in `-ThA(K), because then a contradiction cannot
appear in P . Thanks to Lemma 13.8, we can do this by induction along P. Pick θ ∈ P . If θ is
a P-maximal element of P , then it is either a logical axiom or an element of T ∪ Diag(A), and
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so it must be in `-ThA(K). Suppose θ is not a P-maximal element. Then it is deduced from its
immediate P-successors by one of the deduction rules of A-logic. On the one hand, truth is preserved
by the usual deduction rules of first-order logic. On the other hand, since K is an expanded end
extension of A, truth in K is preserved by the A-rule. So by the induction hypothesis, we know
θ ∈ `-ThA(K). This concludes the induction.

Notice the model M need not be countable for this direction to hold. We may also weaken the
requirement that M |= IΣ1 to M |= PA− here. The codedness of T is not used yet.

13.2 Completeness
For the completeness direction, we follow Garlík [5]. As in the proof of Fact 13.5, the appropriate
type needs to be omitted. We employ a resplendency argument, which is made available to us by
Proposition 13.1(c) and Theorem 7.6. Let us isolate this into a separate proposition. Recall that if
A is an L -structure, then Th(A) denotes the set of all L -sentences true in A.

Definition. Let L ⊇ Ltop. If θ is an L -formula, then θ6a denotes the L -formula obtained from
θ by replacing each occurrence of Qv, where Q ∈ {∀,∃}, by Qv6a. If Θ is a set of L -formulas,
then Θ6a = {θ6a : θ ∈ Θ}.

Proposition 13.9. Fix a ∈ M |= IΣ1, where M is countable. Let A be an M -coded expansion
of a + 1 in L = Ltop ∪ {R1, R2, . . . , Rm}. Take any theory T in L ∗ = L ∪ {S1, S2, . . . , Sn} in
Cod(M/N). The following are equivalent.

(a) T + Th(A)6a is consistent.

(b) A has an expanded end extension K |= T .

Proof. Clearly if K is an expanded end extension of A satisfying T , then K |= T + Th(A)6a. So
(b)⇒ (a).

Conversely, suppose (a) holds. If a ∈ N, then A is finite, and so any model of T + Th(A)6a is
an expanded end extension of A. So suppose a > N. Define

LJK = L ∪ {J,K, α′ : α is a non-logical symbol in L ∗},

where J is a unary function symbol, K is a unary predicate symbol, and each α′ is the same kind
of symbol as α. Let Φ be an LJK(A)-theory expressing

(i) (K,+′,×′, <′, a′, R′1, R′2, . . . , R′m, S′1, S′2, . . . , S′n) |= T ;

(ii) J is an injection with codomain K such that

• ∀x̄
(
α(x̄)↔ α′(J(x̄))

)
for every symbol α ∈ L ; and

• ∀y∈K
(
y 6′ a′ → ∃x J(x) = y

)
.

Then A expands to a model of Φ if and only if A has an expanded end extension satisfying T .
Recall from Lecture 2 that the formula i ∈ Ack(x) is ∆0. So for every small enough code t ∈M

for T below a, we have
A |= σ ∈ Ack(t) ⇔ M |= σ ∈ Ack(t)

for all σ ∈ L ∗. Hence (i) above can be rewritten as

σ ∈ Ack(t)→ (K,+′,×′, <′, a′, R′1, R′2, . . . , R′m, S′1, S′2, . . . , S′n) |= σ

where σ ∈ L ∗, and t is a fixed small enough code for T in M below a. This turns Φ into a recursive
LJK(A)-theory involving only finitely many parameters from A. Therefore, in view of Theorem 7.6,
it suffices to show ElemDiag(A) ∪ Φ is consistent, or equivalently, some elementary extension of A
has an expanded end extension satisfying T . This, in turn, is equivalent to the consistency of
T + ElemDiag(A)6a.
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θ0 θ1 · · ·

−→

θ0 θ1 · · ·

Pθ0 Pθ1

P

θ0, θ1, . . . ∈ Th(A)6a

· · ·

P ′

Figure 13.3: Turning a proof P from T + Th(A)6a to an A-definable A-proof P ′ from T

So take any θ(c̄) ∈ ElemDiag(A), where θ ∈ L and c̄ 6 a. Then

A |= ∃x̄ θ(x̄)

∴ T + (∃x̄ θ(x̄))6a is consistent by (a),

∴ T + ∃x̄6a θ(x̄)6a is consistent

∴ T + θ(c̄)6a is consistent because c̄ is not in the language L ,

as required.

In general, this argument can be used to show that if a countable recursively saturated satisfies
the correct theory to be situated inside a model of a certain recursive theory, then it is indeed
situated inside such a model. The countability of the model is invoked here.

The final lemma is an analogue of the statement that every sentence true in N can be proved in
ω-logic, with some additional uniformity and definability conditions.

Lemma 13.10. Let a ∈M |= PA− with a > N, and A be an M -coded expansion of a+ 1 in a finite
L ⊇ Ltop. Then for every θ(x̄) ∈ L (A), there are ` ∈ N and an A-definable family of partially
ordered sets (Pθ(x̄))x̄∈A of L (A)-formulas of lengths at most ` such that for all c̄ ∈ A |= θ(c̄), the
partially ordered set Pθ(c̄) is an A-definable A-proof of θ(c̄).

Proof sketch. The Pθ(x̄)’s are constructed by recursion on θ. We content ourselves here with an
example. Suppose θ(x̄) is α(x̄) ∧ ∀u ∃v β(u, v, x̄), where α(x̄), β(u, v, x̄) are atomic or negated
atomic L (A)-formulas. Define

f(u, x̄) =

{
(min v)(β(u, v, x̄)), if ∃v β(u, v, x̄);
0, otherwise.

Then Pθ(x̄) is a partially ordered set representing the following tree.

α(x̄)

β(0, f(0, x̄), x̄)

∃v β(0, v, x̄)

β(1, f(1, x̄), x̄)

∃v β(1, v, x̄)
· · ·

β(a, f(a, x̄), x̄)
∃-intro∃v β(a, v, x̄)
A-rule∀u ∃v β(u, v, x̄)

∧-intro
α(x̄) ∧ ∀u ∃v β(u, v, x̄)

Every step in Pθ is a valid deduction rule in A-logic. Therefore, if c̄ ∈ A |= θ(c̄), then A satisfies all
the maximal elements of Pθ(c̄), and so Pθ(c̄) is indeed an A-proof.

Proof sketch of (a)⇒ (b) for Theorem 13.7. Suppose (b) fails. Using Proposition 13.9, find a
proof P of contradiction from T + Th(A)6a. Then we obtain an A-proof P ′ of contradiction from P
by replacing each application of an axiom θ ∈ Th(A)6a with the A-definable A-proof Pθ given by
Lemma 13.10. This P ′ is A-definable because P is finite. So (a) fails.

We have not used the assumption T ` LNP6a(L ∗) in proving this direction. As mentioned in
Remark 13.2, it suffices to require M |= I∆0 + exp.

90



Further exercises
We axiomatize initial segments of models of I∆0 with tops in these exercises.

Definition. PT is an Ltop-theory which expresses the following.

(i) < is a linear order with a minimum element denoted 0 and a maximum element denoted a.

(ii) Every element x not equal to a has an immediate successor denoted Sx. For convenience, set
Sa = a.

(iii) Every element not equal to 0 has an immediate predecessor.

(iv) + and × are graphs of partial functions.

(v) ∀x (x+ 0 = x).

(vi) ∀x, y
(
x+ Sy = S(x+ y)

)
.

(vii) ∀x (x× 0) = 0.

(viii) ∀x, y
(
x× Sy = (x× y) + x

)
.

(ix) Every axiom in LNP6a(Ltop) holds.

First, we verify that subtraction can be meaningfully defined.

(1) Show that PT proves

(a) ∀x, y<a
(
x 6 y ↔ ∃z (z + x = y)

)
; and

(b) ∀x, z, z′ (z + x = z′ + x ∧ z + x < a→ z = z′).

(2) Let a ∈M |= I∆0. Explain why a+ 1 |= PT.

Theorem 13.11 (Paris [4]). Let A |= PT. Then there exist a′ ∈ M |= I∆0 and a bijection
f : A→ a′ under which the interpretations of all LA-symbols are preserved for elements less than,
but not including, the top element a ∈ A.

Proof. Define M = A<ω. We treat an element c = (c0, c1, . . . , cm) as the number with a-ary
expansion cmcm−1 · · · c0. The LA-operations are defined on M accordingly. For instance, the order
on M is defined as follows.

• For all (b0), (c0) ∈M , we have (b0) 6 (c0) if and only if b0 6 c0.

• For all (b0, b1, . . . , bn+1), (c0, c1, . . . , cn+1) ∈M , we have (b0, b1, . . . , bn+1) 6 (c0, c1, . . . , cn+1)
if and only if

– bn+1 < cn+1, or

– bn+1 = cn+1 and (b0, b1, . . . , bn) 6 (c0, c1, . . . , cn).

(3) Convince yourself that M satisfies Robinson’s Q as axiomatized by

(a) ∀x, y (x+ 1 = y + 1→ x = y);

(b) ∀x (x+ 1 6= 0);

(c) ∀x
(
x 6= 0→ ∃y (x = y + 1)

)
;

(d) ∀x (x+ 0 = x);

(e) ∀x, y
(
x+ (y + 1) = (x+ y) + 1

)
;

(f) ∀x (x× 0 = 0);

(g) ∀x, y
(
x× (y + 1)→ (x× y) + x

)
; and

(h) ∀x, y (x 6 y ↔ ∃z (z + x = y)).

91



It remains to show M |= I∆0. Equivalently, we prove M |= L∆0. Take η(x, z) ∈ ∆0 and d ∈ M .
Let d̄ list the elements of A that appear in d. Suppose we have c = (c0, c1, . . . , cn) ∈M |= η(c, d).

(4) Find η′ ∈ Ltop such that for all b = (b0, b1, . . . , bn) 6 c,

M |= η(b, d) ⇔ A |= η′(b̄, d̄).

(5) Show the existence of a least b 6 c in M such that M |= η(b, d).

Further reading
Recall Remark 13.2 says IΣ1 can be replaced by I∆0 + exp in Proposition 13.1. Lessan [7] showed
that actually exp can be replaced by the existence of some b > 2a

N
= sup{2ak : k ∈ N}. Whether

this 2a
N
can be further reduced is related to the collapse of complexity-theoretic hierarchies; see

Paris–Dimitracopoulos [9] for the details.
Theorem 13.4 says the parity problem cannot be decided by certain Boolean circuits. For the

precise statement and for more results of the same type, see Ajtai [3].
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