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Vorliegende Arbeit ist fast gänzlich einem einzigen Prob lem gewidmet, nämlich
dem der De f in i t i on der Wahrhe i t; sein Wesen besteht darin, dass man — im
Hinblick auf diese oder jene Sprache — eine sach l i ch zutre f f ende und formal
kor rec te De f in i t i on des Terminus „wahre Aussage“ zu konst ru i e ren
hat. Dieses Problem, welches zu den klassischen Fragen der Philosophie gezählt wird,
verursacht bedeutende Schwierigkeiten. Obgleich nämlich die Bedeutung des Terminus
„wahre Aussage“ in der Umgangssprache recht klar und verständlich zu sein scheint, sind
alle Versuche einer genaueren Präzisierung dieser Bedeutung bis nun erfolglos geblieben
und manche Untersuchungen, in welchen dieser Terminus verwendet wurde und welche
von scheinbar evidenten Prämissen ausgingen, haben oft zu Paradoxien und Antinomien
gefürt [. . . ].

Alfred Tarski [11, Einleitung]

Tarski’s theorem on the undefinability of truth [11] tells us that the satisfaction predicate is
not definable in any model of arithmetic. It is then natural to ask whether one can strengthen a
theory by adding a satisfaction predicate. The answer depends on what one means by satisfaction
predicates. The aim of this lecture is to show that satisfaction defined by Tarski’s inductive
conditions [11] alone does not lead to any extra strength, in accordance with the deflationary theory
of truth in philosophy.

Definition. All of following make sense over I∆0+exp. Let L be a recursive language extending LA

which has no new function symbol. Fix an LA-formula TermL (t) that expresses ‘t is an L -term’,
an LA-formula FmaL (θ) that expresses ‘θ is an L -formula’, and an LA-formula VAsn(ε, θ) that
expresses ‘ε is a variable assignment for θ’. Here, a variable assignment for an L -formula θ is
simply a function whose domain is precisely the set of free variables in θ. If t is a term and ε is a
variable assignment, then eval(t, ε) denotes the evaluation of t under ε. This can also be defined
within LA with I∆0 + exp. We formulate Tarski’s (inductive) clauses for satisfaction in LA as
follows. The predicate S(θ, ε) is intended to mean ‘θ is true under the variable assignment ε’.

(T0) S(θ, ε)→ VAsn(ε, θ) ∧ FmaL (θ).

(T1) Whenever R is a relation symbol of arity n in L ,

∀t1, t2, . . . , tn

 n∧∧
i=1

TermL (ti)→

S(R(t1, t2, . . . , tn), ε)

↔

(
VAsn(ε,R(t1, t2, . . . , tn))

∧R
(
eval(t1, ε), eval(t2, ε), . . . , eval(tn, ε)

)))

.

(T2) S(¬η, ε)↔ VAsn(ε,¬η) ∧ ¬S(η, ε).

(T3) S(ϕ ∨ ψ, ε)↔ VAsn(ε, ϕ ∨ ψ) ∧ ∃ε′⊆ε
(
S(ϕ, ε′) ∨ S(ψ, ε′)

)
.

(T4) S(∃v η, ε)↔ VAsn(ε, ∃v η) ∧ ∃ε′⊇ε S(η, ε′).
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Tarski’s clauses are weak because they are local, in the sense that the Tarski clause for a formula
is about its finitely many direct subformulas only. This weakness will be exploited in our proofs in
important ways.

Definition (Krajewski [7], Enayat–Visser [1]). Let M |= I∆0 + exp and F ⊆ FmaMLA
, where

FmaMLA
= {x ∈M : M |= FmaLA

(x)}.

Then an F -satisfaction class for M is some S ⊆ F ×M that satisfies Tarski’s clauses (T0)–(T4)
restricted to η, ϕ, ψ ∈ F . A full satisfaction class for M is a FmaMLA

-satisfaction class.

Note that nonstandard formulas exist in nonstandard models. The class of formulas F above,
however, does not need to be definable or internal in the model in any way. In view of clause (T2),
every F -satisfaction class decides all formulas in F .

Example 14.1. Let M |= I∆0 + exp. Then the LA-formula Σn-Sat from Lecture 7 defines a
ΣMn -satisfaction class for M for every n ∈ N. The elementary diagram ElemDiag(M) is essentially
the unique FmaNLA

-satisfaction class for M . In particular, the standard model of arithmetic N has
a full satisfaction class.

We will see in the rest of the lecture that a countable nonstandard model of PA has a full
satisfaction class if and only if it is recursively saturated. On the one hand, this tells us some
nonstandard models of PA fail to have a full satisfaction class. So full satisfaction classes have
nontrivial consequences on a model of arithmetic. On the other hand, it tells us every model of PA
is elementarily equivalent to one that carries a full satisfaction class. So full satisfaction classes
have no influence on the LA-theory of a model of arithmetic.

14.1 Constructing full satisfaction classes
Theorem 14.2 (Kotlarski–Krajewski–Lachlan [4]). Every countable recursively saturated M |=
I∆0 + exp has a full satisfaction class.

This theorem was originally proved using a version of M -logic that operates also on nonstandard
formulas. In that setting, maximally consistent sets of formulas are precisely the full satisfaction
classes. Here we follow an alternative approach via resplendency, which is simpler. The key auxiliary
theorem is the following.

Theorem 14.3 (Enayat–Visser [1]). Fix M |= I∆0 + exp. Let F0 ⊆ FmaMLA
that is closed under

taking direct subformulas, and S0 be an F0-satisfaction class for M . Then there is K <M which
has a FmaMLA

-satisfaction class S ⊇ S0.

This theorem says we can always find a satisfaction class deciding all the existing formulas if we
move to an elementary extension. Of course, there are new formulas in the elementary extension,
but then we can apply this theorem again, and again. After ω-many steps, we obtain a model
with a full satisfaction class. Notice there are only finitely many Tarski clauses. So if the model
we started with is resplendent, then it already has a full satisfaction class. Since all countable
recursively saturated structures are resplendent by Theorem 7.6, the Kotlarski–Krajewski–Lachlan
theorem follows. Notice, however, that there is an uncountable non-resplendent model of PA which
admits a full satisfaction class [8, p. 296]. There are also uncountable recursively saturated models
of PA that do not have full satisfaction classes [10].

It remains to establish the auxiliary theorem by Enayat and Visser. The main idea of the proof
is that, since Tarski’s clauses are local properties, we can deal with any finitely many of them easily;
so by compactness, we can put all of them together in an elementary extension.

Proof. Let L ∗A = LA ∪ {Uθ : θ ∈ FmaMLA
}, where each Uθ is a new unary predicate symbol. In the

elementary extension K, we will have

S = {(θ, ε) : θ ∈ FmaMLA
and ε ∈ Uθ},

so that each Uθ is to be interpreted by the set of all satisfying assignments for θ. Therefore, we
want each Uθ to satisfy the corresponding Tarski clause τθ, as defined below.
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Figure 14.1: From Enayat–Visser to Kotlarski–Krajewski–Lachlan
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Figure 14.2: Ranks in the partially ordered sets (Θ, /)

(U1) If θ = R(t1, t2, . . . , tn), where R is a relation symbol of arity n in LA and t1, t2, . . . , tn are
LM

A -terms, then τθ is

∀ε
(
Uθ(ε)↔ VAsn(ε, θ) ∧R

(
eval(t1, ε), eval(t2, ε), . . . , eval(tn, ε)

))
.

(U2) If θ = ¬η, where η ∈ FmaMLA
, then τθ is

∀ε
(
Uθ(ε)↔ VAsn(ε, θ) ∧ ¬Uη(ε)

)
.

(U3) If θ = ϕ ∨ ϕ, where ϕ,ψ ∈ FmaMLA
, then τθ is

∀ε
(
Uθ(ε)↔ VAsn(ε, θ) ∧ ∃ε′⊆ε

(
Uϕ(ε′) ∨ Uψ(ε′)

))
.

(U4) If θ = ∃v η, where η ∈ FmaMLA
, then τθ is

∀ε
(
Uθ(ε)↔ VAsn(ε, θ) ∧ ∃ε′⊇ε Uη(ε′)

)
.

We are done if we can show the consistency of the L ∗A(M)-theory

T = ElemDiag(M) + {τθ : θ ∈ FmaMLA
}+ {Uθ(ε) : (θ, ε) ∈ S0}+ {¬Uθ(ε) : (¬θ, ε) ∈ S0}.

Take a finite T0 ⊆ T . Let Θ = {θ ∈ FmaMLA
: Uθ appears in T0}. If η, θ ∈ Θ, then η / θ means

τθ ∈ T0 and η is a direct subformula of θ.

The /-related pairs are precisely those of which we will need to make Tarski’s clauses true. Since Θ
is finite, every θ ∈ Θ has a well-defined /-rank in N satisfying

rankΘ(θ) =

{
max{rankΘ(η) + 1 : θ . η ∈ Θ}, if this set is nonempty;

0, otherwise.
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0 6= 0 ∨ · · · ∨ 0 6= 00 6= 0

0 6= 0 ∨ 0 6= 0 ∨ · · · ∨ 0 6= 0 ≡ δ

¬δϕ

¬δ ∨ ϕ

>⊥

>

¬>ϕ

¬> ∨ ϕ

Figure 14.3: A /-component in Θ containing δ, and a valid truth assignment for it

We will define Uθ ⊆M for each θ ∈ Θ such that (M,Uθ)θ∈Θ |= T0. This will finish the proof. These
Uθ’s are defined by recursion along /. Notice, by the shape of τθ, if ϕ,ψ / θ ∈ Θ and ϕ ∈ Θ, then
ψ ∈ Θ too. Here VAsn(M, θ) = {ε ∈M : M |= VAsn(ε, θ)}.

(1) If rankΘ(θ) = 0, then

Uθ =

{
{ε ∈ VAsn(M, θ) : (θ, ε) ∈ S0}, if θ ∈ F0 or if θ is atomic;
∅, otherwise.

(2) If rankΘ(θ) = i+ 1 and θ = ¬η, then Uθ = {ε ∈ VAsn(M, θ) : ε 6∈ Uη}.

(3) If rankΘ(θ) = i+ 1 and θ = ϕ ∨ ϕ, then Uθ = {ε ∈ VAsn(M, θ) : ∃ε′⊆ε (ε′ ∈ Uϕ ∪ Uψ)}.

(4) If rankΘ(θ) = i+ 1 and θ = ∃v η, then Uθ = {ε ∈ VAsn(M, θ) : ∃ε′⊇ε (ε′ ∈ Uη)}.

The expansion (M,Uθ)θ∈Θ clearly satisfies ElemDiag(M). We defined the Uθ’s according to Tarski’s
clauses; so τθ is satisfied for each θ ∈ Θ. The Uθ’s with rankΘ(θ) = 0 are defined to agree with S0,
and S0 obeys the Tarski clauses by assumption; so all our Uθ’s agree with S0.

It may seem that formulas made true by a satisfaction class should look at least plausible. This
is entirely false, as observed already in the Kotlarski–Krajewski–Lachlan paper [4]. Consider

0 6= 0 ∨ 0 6= 0 ∨ · · · 0 6= 0︸ ︷︷ ︸
a-many disjuncts

,

where a is nonstandard. Call this formula δ. We adapt the proof of the Enayat–Visser theorem to
make this true in a satisfaction class. Let F0 be the set of standard LA-formulas, and let S0 be the
standard satisfaction class for M , i.e.,

S0 = {(θ, ε) ∈ F0 ×M : θ is true in M under the variable assignment ε}.

Add the sentence Uδ(0) to T . Let θ ∈ Θ in the /-component containing δ. If θ has lower /-rank
than δ, then either it is 0 6= 0, in which case it must be false, or it is a nonstandard disjunction of
0 6= 0’s, in which case it can be set true. If θ has higher /-rank than δ, then its truth value can
be settled by treating δ as the constant >. All other parts of the proof goes through as before.
Therefore, every resplendent M |= I∆0 + exp has a full satisfaction class that makes such a δ true.
If the satisfaction class satisfies some induction, then pathologies of this kind cannot occur.

Notice the Enayat–Visser theorem does not say that we can have (K,S) < (M,S0) in general.

14.2 Using satisfaction classes
Theorem 14.4 (Lachlan [8]). Every nonstandard M |= PA that admits a full satisfaction class is
recursively saturated.
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Figure 14.4: Our type p(v) = {θi(v) : i ∈ N} over M

Notice if the satisfaction class is additionally required to satisfy induction, then the proof is
only a simple overspill similar to what we did when showing Proposition 13.1(c). However, it is
known [5, 7] that if a model of I∆0 + exp has a full satisfaction class satisfying ∆0

0-induction, then
it satisfies PA + Con(PA). So such satisfaction classes are too strong for this lecture.

Proof. Let p(v) be a recursive type over M . Without loss of generality, we can assume p(v) =
{θi(v) : i ∈ N} such that

(i) (θi(v))i∈N is recursive;

(ii) θ0(v) is v = v;

(iii) M |= ∀v
(
θi+1(v)→ θi(v)

)
for all i ∈ N;

(iv) for every i ∈ N, there are infinitely v ∈M such thatM |= θi(v), because otherwise, we already
know p is realized in M ;

(v) M |= ∃v
(
θi(v) ∧ ¬θi+1(v)

)
for all i ∈ N, replacing θi+1(v) by θ′i+1(v) = θi+1(v)∧∃v′<v θ′i(v′)

if necessary;

(vi) p is not realized in M .

We used our assumption that M |= PA when ensuring condition (v). Define A0 = ∅ and

Ai+1 = {v ∈M : M |= θi(v) ∧ ¬θi+1(v)}

for each i ∈ N. The Ai+1’s are disjoint and nonempty by (v). Thus (vi) implies

{Ai+1 : i ∈ N} is a partition of M . (∗)

Define B0 = ∅ and for each i ∈ N,

Bi+1 =


A1, if Bi = ∅;
Ak+1, if Bi 6= ∅ and k 6 i is least such that Ak ∩Bi 6= ∅;
∅, if none of the above happens.
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An external induction shows Bi = Ai for all i ∈ N. Notice, however, that these two sequences of
sets are intentionally different. On the one hand, let α0(v) be v 6= v and αi+1(v) be θi(v)∧¬θi+1(v)
for every i ∈ N, so that α0, α1, . . . define A0, A1, . . . respectively. On the other hand, let β0(v) be
v 6= v and βi+1(v) be

¬∃u βi(u) ∧ α1(v)

∨
∨∨
k6i

 ∃u βi(u) ∧
∧∧
j<k

¬∃u
(
βi(u) ∧ αj(u)

)
∧ ∃u

(
βi(u) ∧ αk(u)

)
∧ αk+1(v)


for every i ∈ N, so that β0, β1, . . . define B0, B1, . . . respectively. Here the big disjunctions and
conjunctions are defined as follows.

•
∨∨

k<0 ηk = ⊥ and
∨∨

k<i+1 ηk = η0 ∨
∨∨

k<i ηk+1.

•
∧∧

k<0 ηk = > and
∧∧

k<i+1 ηk = η0 ∧
∧∧

k<i ηk+1.

The argument below would not work if we set
∨∨

k<i+1 ηk =
∨∨

k<i ηk ∨ ηi instead. It is because if
we defined

∨∨
k<i+1 ηk in this way, then in case i is nonstandard, we would need to unravel the big

disjunction nonstandardly many times to reach the ηk’s with k ∈ N. Since Tarski’s clauses are local,
we cannot guarantee a full satisfaction class to behave as it should in such unravellings. Notice
both (αi) and (βi) are recursive as sequences of formulas. So they extend to sequences of length M
via their definitions.

Suppose, towards a contradiction, that M has a satisfaction class S. Define

Bi =
{
c ∈M : S

(
βi, {〈v, c〉}

)}
for all i ∈ M . These agree with our previously defined Bi’s because the Tarski clauses for S at
finite levels are the same as the real Tarski clauses. Observe that

∀i∈M ∃k∈N Bi+1 = Ak+1, (†)

because

• if Bi = ∅, then Bi+1 = A1; and

• if Bi 6= ∅, then Bi meets some Ak, where k ∈ N, by (∗), and so Bi+1 = Ak+1 in this case.

Therefore, we can rewrite the definition of Bi+1 as

Bi+1 =

{
A1, if Bi = A0;
Ak+1, if Bi 6= A0 and k 6 i is least such that Bi = Ak.

This implies, whenever i ∈M and k ∈ N,

Bi+1 = Ak+1 ⇔ Bi = Ak. (‡)

Take ν ∈M \ N. Using (†), find k ∈ N such that

Bν+1 = Ak+1

Then

Bν = Ak by (‡)
∴ Bν−1 = Ak−1 by (‡)

...
∴ Bν−k = A1 by (‡)
∴ Bν−(k+1) = A0 = ∅ by (‡).

However, condition (†) also implies Bν−(k+1) = Ak′+1 6= ∅ for some k′ ∈ N. This gives the required
contradiction.

As observed by Smith [10], the θi’s in the proof above need not be standard. However, if they
are indeed all standard, then a ΣMν -satisfaction class for some nonstandard ν is enough to make the
proof go through.

98



Further exercises
These exercises are about an application of satisfaction classes to general model theory.

Definition. A structure M for a recursive language L is said to be chronically resplendent if

whenever ϕ is a formula in a recursive language L ∗ ⊇ L and c̄ ∈M such that ϕ(c̄) is
consistent with ElemDiag(M), there is a resplendent expansion of M satisfying ϕ(c̄).

It is clear that chronically resplendent structures are resplendent. So, the following is a
strengthening of Theorem 7.6.

Theorem 14.5 (Schlipf [9, p. 183]). Let M be a countable recursively saturated structure in a
recursive language L . Then M is chronically resplendent.

We will use a slight generalization of Theorem 14.4 to prove this theorem.

(a) Go through the proof of Theorem 14.4 and convince yourself that Theorem 14.4 remains
true when M is replaced by an expansion M ′ of M in a recursive language L ′, provided
M ′ satisfies full induction in the language L ′.

Proof of Theorem 14.5. Let ϕ be a formula in a recursive language L ∗ ⊇ L , and c̄ ∈M such that
ElemDiag(M) + ϕ(c̄) is consistent. Without loss of generality, suppose L ∗ ∩LA = ∅. Define

L ′ = L ∗ ∪LA ∪ {d} and L ′′ = L ′ ∪ {S},

where d is a new constant symbol and S is a new binary predicate symbol. Consider the set Ψ of
L ′′(M)-formulas consisting of the following:

• the axioms of PA−;

• the induction axioms for all L ′′-formulas, i.e.,

∀z̄
(
θ(0, z̄) ∧ ∀x

(
θ(x, z̄)→ θ(x+ 1, z̄)

)
→ ∀x θ(x, z̄)

)
for all formulas θ(x, z̄) in the language L ′′;

• d > 0 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n-many 1’s

for all n ∈ N;

• S satisfies the L ′-version of Tarski’s clauses (T0)–(T4); and

• ϕ(c̄).

(b) By considering a bijection N→M , apply resplendency from Theorem 7.6 to show that every
finite subset of ElemDiag(M) + Ψ is consistent.

(c) Conclude, using Theorem 7.6 and part (a), thatM has a resplendent expansion satisfying ϕ(c̄).

Theorem 14.5 remains true if we can replace ϕ(c̄) by a recursive set of formulas, as in Theorem 7.6.
It is unknown whether every resplendent structure is chronically resplendent [9, p. 192].

Further reading
Kotlarski’s survey [6] and Engström’s thesis [2] both contain plenty of information about satisfaction
classes. For some nice applications, see Kossak [3].
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