
MODEL THEORY OF ARITHMETIC

Lecture 1: The arithmetic hierarchy

Tin Lok Wong

8 October, 2014

[These theorems] go a long way to explaining why recursion theory is relevant to
the study of models of arithmetic.

Richard Kaye [3, page 28]

1.1 The arithmetic hierarchy

Definition. The language for arithmetic LA has

• constant symbols 0, 1;

• binary function symbols +,×; and

• a binary relation symbol <.

The standard model of arithmetic is (N, 0, 1,+,×, <), which we also denote by N. All other LA-
structures are nonstandard.

Example 1.1. An LA-term is just a polynomial.

The arithmetic hierarchy classifies the (quantifier) complexity of LA-formulas. In this classi-
fication, quantifiers that are bounded are thought of as simple enough as to not contribute any
complexity to the formulas in which they appear.

Definition. Assuming t is an LA-term not involving the variables x̄, we abbreviate

∀x̄ (x̄ < t→ · · ·) as ∀x̄<t (· · ·)
and ∃x̄ (x̄ < t ∧ · · ·) as ∃x̄<t (· · ·),

where x1, x2, . . . , xk < t means
∧∧k

i=1 xi < t. Such quantifiers are said to be bounded. A formula is
∆0 if all its quantifiers are bounded. Let n ∈ N. A Σn-formula is one of the form

∃x̄1 ∀x̄2 · · · Qx̄n ξ(x̄1, x̄2, . . . , x̄n, z̄),

where Q ∈ {∀,∃} and ξ ∈ ∆0. A Πn-formula is one of the form

∀x̄1 ∃x̄2 · · · Q′x̄n ζ(x̄1, x̄2, . . . , x̄n, z̄),

where Q′ ∈ {∀,∃} and ζ ∈ ∆0. Formulas that are equivalent to both a Σn- and a Πn-formula are
called ∆n.

The definition of ∆n is only meaningful when it is specified over which theory or in which
structure the equivalence is supposed to hold.

Lemma 1.2. Σn ∪Πn ⊆ Σn+1 ∩Πn+1 for all n ∈ N.

Proof. The blocks of quantifiers x̄j in the definition of Σn and Πn can be empty.

Every LA-formula is logically equivalent to a formula in Σn for some n ∈ N. In practice, we
are mostly interested in the complexity of formulas modulo logical equivalence only.

1

LA

∆0

Σ1Π1

∆1

Σ2Π2

∆2

...

Figure 1.1: The arithmetic hierarchy

1.2 Recursion theory

Recursion theory helps one understand the arithmetic hierarchy intuitively.

Definition. Every LA-formulas θ corresponds to a program (or function in the programming
sense) Prog〈θ〉 as defined recursively below. If P is a program, then P (x̄) = δ means ‘P on input x̄
returns δ after finitely many steps of running’. The components for or, for and while below are
all meant to be run in parallel. We interpret if -then-else statements in the programming way,
not the logical way.

(i) If t(x̄), s(x̄) are LA-terms, then Prog〈t(x̄) = s(x̄)〉 and Prog〈t(x̄) < s(x̄)〉 are defined by

boolean Prog〈t(x̄) = s(x̄)〉(number x̄) {
if t(x̄) = s(x̄)
then return true

else return false

end if
}

boolean Prog〈t(x̄) < s(x̄)〉(number x̄) {
if t(x̄) < s(x̄)
then return true

else return false

end if
}

(ii) If θ(x̄) is an LA-formula, then Prog〈¬θ〉 is defined by

boolean Prog〈¬θ〉(number x̄) {
if Prog〈θ〉(x̄) = true

then return false

2

else return true

end if
}

(iii) If η(x̄), θ(x̄) are LA-formulas, then Prog〈η ∨ θ〉 is defined by

boolean Prog〈η ∨ θ〉(number x̄) {
if Prog〈η〉(x̄) = true or Prog〈θ〉(x̄) = true

then return true

else return false

end if
}

(iv) If θ(x̄, y) is an LA-formula and t(x̄) is an LA-term, then Prog〈∃y<t θ〉 is defined by

boolean Prog〈∃y<t θ〉(number x̄) {
for y ← 0, 1, . . . , t(x̄)− 1
if Prog〈θ〉(x̄, y) = true then return true end if

end for
return false

}

(v) If θ(x̄, y) is an LA-formula, then Prog〈∃y θ〉 is defined by

boolean Prog〈∃y θ〉(number x̄) {
y ← 0
while Prog〈θ〉(x̄, y) = false do
y ← y + 1

end while
return true

}

The clauses for conjunction, bounded universal quantification, and universal quantification are
derived from these. Alternatively, they can be explicitly defined as follows.

(vi) If η(x̄), θ(x̄) are LA-formulas, then Prog〈η ∧ θ〉 is defined by

boolean Prog〈η ∧ θ〉(number x̄) {
if Prog〈η〉(x̄) = false or Prog〈θ〉(x̄) = false

then return false

else return true

end if
}

(vii) If θ(x̄, y) is an LA-formula and t(x̄) is an LA-term, then Prog〈∀y<t θ〉 is defined by

boolean Prog〈∀y<t θ〉(number x̄) {
for y ← 0, 1, . . . , t(x̄)− 1
if Prog〈θ〉(x̄, y) = false then return false end if

end for
return true

}

(viii) If θ(x̄, y) is an LA-formula, then Prog〈∀y θ〉 is defined by

boolean Prog〈∀y θ〉(number x̄) {
y ← 0
while Prog〈θ〉(x̄, y) = true do
y ← y + 1

end while
return false

}

3

Notice programs may loop forever and return no value, because we allow while loops for
unbounded quantification.

Remark 1.3. There is another natural way to set up the clause for ∧: for LA-formulas η(x̄), θ(x̄),
we may define

boolean Prog〈η ∧ θ〉(number x̄) {
if Prog〈η〉(x̄) = true and Prog〈θ〉(x̄) = true

then return true

else return false

end if
}

where the and returns true if and only if both of the conjuncts return true. In general, this
behaves differently from what we defined, but their behaviours coincide when all the formulas
involved are ∆0.

Mental exercise 1.4. Imagine what the programs corresponding to the following formulas do.

(1) prime(x) denotes the ∆0-formula

x > 1 ∧ ∀y<x ∀z<x (x 6= yz).

(2) not-Goldbach denotes the Σ1-sentence

∃x

(
∃u<x (x = 2u+ 4)

∧ ∀y<x ∀z<x
(
prime(y) ∧ prime(z)→ x 6= y + z

)).
By construction, it is apparent that whether the program Prog〈θ〉 associated with a formula θ

returns true on an input is closely related to whether this input satisfies θ. This is true for Σ1-
formulas, but false already for Π1-formulas. Therefore, logically equivalent formulas may in general
result in programs that halt on different inputs.

Proposition 1.5. Let k ∈ N and θ(x1, x2, . . . , xk) ∈ Σ1. Then for all x1, x2, . . . , xk ∈ N,

N |= θ(x̄) ⇔ Prog〈θ〉(x̄) = true.

Proof. First, show by induction on the complexity of θ that Prog〈θ〉 halts on all inputs, and that
the proposition is true for all θ ∈ ∆0. Then one verifies the addition of unbounded existential
quantifiers to ∆0-formulas preserves the equivalence we want.

It is believed that the programs corresponding to LA-formulas capture already all concepts
about N that can ‘mechanically’ be decided. Nevertheless, such a statement cannot be proved
mathematically because ‘mechanically’ cannot be rigorously defined.

Church–Turing Thesis. For any k ∈ N and S ⊆ Nk, the following are equivalent.

(a) There is a ‘mechanical’ algorithm A such that

S = {x̄ ∈ Nk : A on input x̄ returns true}.

(b) There is an LA-formula θ such that

S = {x̄ ∈ Nk : Prog〈θ〉(x̄) = true}.

Definition. Let k ∈ N. A set S ⊆ Nk is recursively enumerable, or r.e. for short, if there is an
LA-formula θ(x̄) such that

S = {x̄ ∈ Nk : Prog〈θ〉(x̄) = true}.

The set S ⊆ Nk is recursive if both S and Nk \ S are r.e.

4

Surprisingly, restricting the complexity of the formula to Σ1 does not decrease the power of our
programs at all.

Fact 1.6. Fix k ∈ N. For every r.e. S ⊆ Nk, there exists θ ∈ Σ1 such that

S = {x̄ ∈ Nk : Prog〈θ〉(x̄) = true}.

Proof. Outside the scope of this course. We will merely include a sketch of the proof here; see
Section 3.1 in Kaye [3] for an analogous argument in full detail.

Fix a program P such that S = {x̄ ∈ Nk : P (x̄) = true}. Write a program U0 that halts on
every given input x̄, s ∈ N, and returns true if and only if P on input x̄ returns true in at most
s-many steps. This can be done without the use of while. So U0 = Prog〈η〉 for some η ∈ ∆0. For
such η, we have by Proposition 1.5

S = {x̄ ∈ Nk : P (x̄) = true} =
⋃
s∈N
{x̄ ∈ Nk : U0(x̄, s) = true} = {x̄ ∈ Nk : N |= ∃s η(x̄, s)}.

This, together with Proposition 1.5, yields a recursion-theoretic characterization of the arith-
metic hierarchy.

Corollary 1.7. (a) The r.e. sets are precisely the Σ1-definable sets in N.

(b) The recursive sets are precisely the ∆1-definable sets in N.

There are similar characterizations of formula classes higher in the arithmetic hierarchy in terms
of universal machines and oracle machines. We will touch on these later in the course.

1.3 Collection

Recall from the definition of the arithmetic hierarchy that bounded quantifiers are considered im-
material when counting the complexity of an LA-formula. So the levels of the arithmetic hierarchy
should be invariant under bounded quantification. The axioms responsible for this invariance are
known as the collection axioms.

Definition. Let n ∈ N. The collection scheme for Σn-formulas, denoted Coll(Σn), is axiomatized
by all sentences of the form

∀z̄ ∀a
(
∀x̄<a ∃ȳ θ(x̄, ȳ, z̄)→ ∃b ∀x̄<a ∃ȳ<b θ(x̄, ȳ, z̄)

)
,

where θ ∈ Σn.

Roughly speaking, the scheme Coll(Σn) says that whenever we have Σn-definable function that
has a bounded domain, the range must be bounded too. Notice the converses to collection axioms
are tautologies.

Example 1.8. The standard model N |= Coll(Σn) for every n ∈ N. More generally, every regular
cardinal, when viewed as an LA-structure, satisfies Coll(Σn) for every n ∈ N. Therefore, collection
is, in a sense, only a cardinality property.

Theorem 1.9. Let n ∈ N. Then the Σn- and the Πn-formulas are both closed under bounded
quantification over Coll(Σn).

Proof. We prove this by induction on n. The base case is clear because Σ0 = Π0 = ∆0.
Suppose the theorem is true for Σn and Πn. Consider the Σn+1-formula ∃ȳ θ(x̄, ȳ, z̄), where

θ ∈ Πn. Appending a bounded existential quantifier in front does not change the complexity of this
formula because existential quantifiers commute with each other, so that the induction hypothesis
can easily be applied. So let us turn to bounded universal quantifiers. Given any LA-term t, the
formula ∀x<t ∃ȳ θ(x, ȳ, z̄) is uniformly equivalent over Coll(Σn+1) to

∃s ∀x<t ∃ȳ<s θ(x, ȳ, z̄),

which is equivalent to a Σn+1-formula over Coll(Σn) by the induction hypothesis. At the same time,
∃x<t ∀ȳ ¬θ(x, ȳ, z̄) must be equivalent to a Πn+1-formula over Coll(Σn+1). So we are done.

5

Further exercises

The appearance of the collection axioms in Theorem 1.9 is not an accident. As shown by Adamowicz
and Kossak [1], under mild conditions, it is necessary for the collection axioms to hold if we were
to have an arithmetic hierarchy that is invariant under bounded quantification.

Let n ∈ N. We denote by ΣG
n+1 the closure of Σn+1 under bounded quantification and existential

quantification. Work in a fixed LA-structure M in which < is a linear order with no maximum
element. Suppose a, c̄ ∈M and θ ∈ Σn+1 such that

M |= ∀x̄<a ∃y θ(x̄, y, c̄) ∧ ∀b ∃x̄<a ∀y<b ¬θ(x̄, y, c̄).

They witness a failure of Coll(Σn+1) in M .

(a) Let ψ(u, x̄) ∈ ΣG
n+1. By considering

∀x̄<a ∃y ∀u<y
(
θ(x̄, y, c̄) ∧ ψ(u, x̄)

)
or otherwise, show that {x̄ ∈M : M |= ∀u ψ(u, x̄)} is ΣG

n+1-definable in M .

(b) Conclude that if Σn+1 is closed under bounded quantification in M , then the arithmetic
hierarchy collapses to Σn+1 in M , i.e., every definable set is Σn+1-definable in M .

In this course, we will see virtually no LA-structure in which the arithmetic hierarchy collapses.

Further reading

There is a very good reason why we can usually ignore bounded quantifiers. Recall a formula is
existential if it contains no universal quantifiers.

MRDP Theorem. For every Σ1-formula θ(x̄), there exists an existential LA-formula θ′(x̄) such
that N |= ∀x̄

(
θ(x̄)↔ θ′(x̄)

)
.

We can read this as saying that over the standard model, bounded quantifiers can be eliminated
without affecting quantifier complexity. It is key to the solution of Hilbert’s Tenth Problem. Both
Matiyasevich’s book [4] and Davis’s book [2] contain an exposition and a proof of this theorem.
The other two letters in the name of the theorem refer to Julia Robinson and Hilary Putnam.

References

[1] Zofia Adamowicz and Roman Kossak. A note on BΣn and an intermediate induction schema.
Mathematical Logic Quarterly, 34(3):261–264, 1988.

[2] Martin Davis. Computability and Unsolvability. Dover Publications, Mineola, 1982. Reprint of
the McGraw-Hill, New York, 1958 edition. Includes a new appendix “Hilbert’s Tenth Problem
is Unsolvable” originally appeared in the American Mathematical Monthly.

[3] Richard Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides. Clarendon
Press, Oxford, 1991.

[4] Yuri V. Matiyasevich. Hilbert’s Tenth Problem. Foundations of Computing Series. The MIT
Press, Cambridge, 1993. With a foreword by Martin Davis.

[5] Charles Parsons. On a number theoretic choice schema and its relation to induction. In Akiko
Kino, John Myhill, and Richard E. Vesley, editors. Intuitionism and Proof Theory, volume 60 of
Studies in Logic and the Foundations of Mathematics, pages 459–473. North-Holland Publishing
Company, Amsterdam, 1970.

6

