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What has this to do with models of arithmetic? More than meets the eye.

Wilfrid Hodges [5, page 181]

The main aim of this lecture is to show that collection is fact a form of induction.

2.1 Strong fragments of arithmetic
Let us put together all the algebraic facts about N into our base theory.

Definition. The theory of non-negative parts of discretely ordered commutative rings (PA−) is
axiomatized by

(i) ∀x, y, z
(
(x+ y) + z = x+ (y + z)

)
;

(ii) ∀x, y (x+ y = y + x);

(iii) ∀x, y, z
(
(x× y)× z = x× (y × z)

)
;

(iv) ∀x, y (x× y = y × x);

(v) ∀x, y, z (x× (y + z) = x× y + x× z);

(vi) ∀x (x+ 0 = x);

(vii) ∀x (x× 0 = 0 ∧ x× 1 = x);

(viii) ∀x, y, z (x < y ∧ y < z → x < z);

(ix) ∀x (x 6< x);

(x) ∀x, y (x < y ∨ x = y ∨ y < x);

(xi) ∀x, y, z (x < y → x+ z < y + z);

(xii) ∀x, y, z (z > 0 ∧ x < y → x× z < y × z);

(xiii) ∀x, y
(
x < y → ∃z (y = x+ z + 1)

)
;

(xiv) 0 < 1 ∧ ∀x (x > 0→ x > 1);

(xv) ∀x (x > 0).

Induction distinguishes arithmetic from algebra. It is the defining property of N.

Definition. Let Γ be a class of LA-formulas. The theory IΓ consists of the axioms of PA− and

∀z̄
(
θ(0, z̄) ∧ ∀x

(
θ(x, z̄)→ θ(x+ 1, z̄)

)
→ ∀x θ(x, z̄)

)
for all θ ∈ Γ. Peano arithmetic (PA) is

⋃
n∈N IΣn.
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The induction scheme can be paraphrased as: if a definable set contains 0 and is closed under
successor, then it must contain all numbers.

There are various ways in which pairs of natural numbers (x, y) can be coded into a single
z = 〈x, y〉. For concreteness, let us fix the following.

Definition (Cantor [3]). 〈x, y〉 = 1
2 (x+ y)(x+ y + 1) + y.

For the purposes of this course, it does not matter exactly how pairing is defined as long as
〈x, y〉 = z is ∆0, and the following hold.

Lemma 2.1. I∆0 proves

(a) ∀x, y, z
(
z = 〈x, y〉 → x 6 z ∧ y 6 z

)
;

(b) ∀x, y ∃!z (z = 〈x, y〉); and

(c) ∀z ∃!x, y
(
z = 〈x, y〉

)
.

Proof. Exercise. The bound in part (a) helps make I∆0 applicable.

Pairing extends iteratively to the coding of (k + 2)-tuples for every k ∈ N by setting

〈x1, x2, . . . , xk+1, xk+2〉 = 〈〈x1, x2, . . . , xk+1〉, xk+2〉.

This allows one to ‘contract’ unbounded quantifiers of the same kind without affecting quantifier
complexity, e.g., if n ∈ N and θ ∈ Πn, then we can rewrite the Σn+1-formula ∃x̄ θ(x̄, z̄) as

∃w ∀x̄6w
(
w = 〈x̄〉 ∧ θ(x̄, z̄)

)
,

and the formula would stay Σn+1. As a result, blocks of unbounded quantifiers can always be
assumed to be of length one whenever our model satisfies I∆0.

Our first application of this is to show induction implies collection.

Definition. BΣn = I∆0 + Coll(Σn) for all n ∈ N.

The letter B stands for bounding here. Be aware that PA− +
⋃

n∈N Coll(Σn) 0 I∆0: see
Exercise 7.7 in Kaye’s book [7].

Definition. Let M be an LA-structure. Denote by LA(M) the language obtained from LA by
adding a new constant symbol for every element of M . The structure M expands naturally to
an LA(M)-structure. The classes Σn(M),Πn(M),∆n(M) are defined as in the usual arithmetic
hierarchy, except that we now allow the new constant symbols to appear in the formulas.

Theorem 2.2 (Parsons [11]). IΣn+1 ` BΣn+1 for every n ∈ N.

Proof. We proceed by (an external) induction on n ∈ N. Suppose IΣm+1 ` BΣm+1 for allm < n ∈ N.
Let M |= IΣn+1. Take any a ∈M and any ϕ(v, x, y) ∈ Πn(M) such that

M |= ∀x<a ∃y ∃v ϕ(v, x, y). (∗)

Thanks to the help of pairing, the blocks of quantifiers can be assumed to consist only of single
variables. We claim that

M |= ∀t6a ∃b ∀x<t ∃y, v<b ϕ(v, x, y)︸ ︷︷ ︸
Πn︸ ︷︷ ︸

Πn over BΣn︸ ︷︷ ︸
Σn+1 over BΣn

,

which suffices to finish the proof since a 6 a. If n = 0, then ϕ ∈ ∆0 and so BΣn is actually not
needed in the complexity calculation above. If n = m + 1, then M |= IΣn+1 ` IΣn = IΣm+1 `
BΣm+1 = BΣn by the induction hypothesis. So in any case, the formula inside the largest curly
bracket above is Σn+1 over M . We can thus use IΣn+1 internally in M to prove our claim.
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Figure 2.1: Showing IΣn ` LΠn
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Figure 2.2: Showing LΣn ` IΠn
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Figure 2.3: Showing IΣn ` IΠn

The case when t = 0 is trivial because no x ∈ M is less than 0. Suppose t < a and b ∈ M
such that M |= ∀x<t ∃y, v<b ϕ(v, x, y). Using our hypothesis (∗), find y0, v0 ∈ M |= ϕ(v0, t, y0).
Setting b′ = max{b, v0, y0}+ 1 gives

M |= ∀x<t+ 1 ∃y, v<b′ ϕ(v, x, y),

completing the induction.

This proof is a nice demonstration of the beautiful interplay between internal and external
induction. This seems to be a characteristic of nonstandard arithmetic, and cannot even be found
in mainstream set theory. Notice we would run into problems in this proof if we allow the variable x
in line (∗) to be a tuple of length more than one. It is known [10] that IΣ0 0 BΣ0.

Instead of proving induction from collection straightaway, we take a detour.

Definition. Let Γ be a set of LA-formulas. Then LΓ consists of the axioms of PA− and

∀z̄
(
∃x η(x, z̄)→ ∃x

(
η(x, z̄) ∧ ∀x′<x ¬η(x′, z̄)

))
for all η ∈ Γ.

The LΓs refer to the least number principle, which says that every nonempty set of natural
numbers has a least element. It is well-known that this principle is the contrapositive of induction,
but the level-by-level equivalence appears to be non-trivial, especially if we want to avoid mentioning
collection.

Theorem 2.3 (Paris–Kirby [10]). IΣn, IΠn, LΣn and LΠn are equivalent for every n ∈ N.
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Proof. (IΣn ` LΠn.) Let M |= IΣn. Take η(x) ∈ Πn(M) such that

M |= ∀x
(
η(x)→ ∃x′<x η(x′)

)
. (†)

Define θ(x) to be ∀x′6x ¬η(x′). It is Σn overM because either n = 0 orM |= BΣn by Theorem 2.2.
So IΣn applies to θ. Notice M |= θ(0), since otherwise M |= η(0), which is not possible by (†).
Suppose x ∈M |= ¬θ(x+ 1). First find x′ 6 x+ 1 such that M |= η(x′) by unravelling θ. Then,
using assumption (†), find x′′ < x′ such that M |= η(x′′). Now x′′ < x′ 6 x+ 1, implying x′′ 6 x.
So M |= ¬θ(x). By IΣn, we conclude M |= ∀x θ(x). This makes M |= ¬∃x η(x).

(IΠn ` LΣn.) Proceed as in the previous paragraph. We do not know IΠn ` BΣn for n > 0 yet,
but this is not needed because the bounded universal quantifier in θ is now added in front of an
unbounded quantifier of the same kind.

(LΣn ` IΠn.) Let M |= LΣn. Pick any θ(x) ∈ Πn(M) such that M |= ∃x ¬θ(x). Using LΣn,
find x0 ∈ M |= ¬θ(x0) ∧ ∀x<x0 θ(x). If x0 = 0, then M |= ¬θ(0). If x0 > 0, then x0 − 1 exists,
and M |= θ(x0 − 1) by minimality. In either case, we are done.

(LΠn ` IΣn.) Follow the argument in the previous paragraph.
(IΣn ` IΠn.) Let M |= IΣn. Take θ(x) ∈ Πn(M) such that M |= ∃x ¬θ(x). We want

either M |= ¬θ(0) (1)

or M |= ∃x
(
θ(x) ∧ ¬θ(x+ 1)

)
. (2)

Pick c ∈M |= ¬θ(c). Define θ′(x) to be ¬θ(c− x), i.e.,

x 6 c→ ∃w6c (c = x+ w ∧ ¬θ(w)︸ ︷︷ ︸
Σn

)

︸ ︷︷ ︸
Σn

.

So IΣn is applicable to θ′. Notice M |= θ′(0) because M |= ¬θ(c). If M |= ∀x (θ′(x)→ θ′(x+ 1)),
then M |= ∀x θ′(x), which implies M |= θ′(c) and thus M |= ¬θ(0), giving condition (1). So
suppose not. Let x ∈ M |= θ′(x) ∧ ¬θ′(x + 1). The second conjunct implies x + 1 6 c, so that
x 6 c. Substituting these values back into θ′ makes M |= ¬θ(c − x) ∧ θ(c − (x + 1)). Therefore,
condition (2) is true.

(IΠn ` IΣn.) Use the argument in the previous paragraph. The formula θ′ remains Πn because
it can be written as

x 6 c→ ∀w6c (c = x+ w → ¬θ(w)).

2.2 The Ackermann interpretation
The reason why we do not need more function symbols in our language LA, say one for exponentia-
tion, is because we can already define most operations of interest using only + and ×. For example,
with some coding, one can express y = 2x as a Σ1-formula. With more dirty work, one can actually
make this ∆0.

Fact 2.4 (Bennett [2]). There is a ∆0-formula ε(x, y) such that I∆0 proves

(a) ∀x, y, y′
(
ε(x, y) ∧ ε(x, y′)→ y = y′

)
;

(b) ε(0, 1) ∧ ∀x, y
(
ε(x, y)↔ ε(x+ 1, 2y)

)
.

Proof. Outside the scope of this course. See Gaifman–Dimitracopoulos [4].

It is known [9] that I∆0 can only prove the totality of functions of polynomial growth. So I∆0

does not prove the totality of exponentiation. Nevertheless, we can state it as an extra assumption
if needed. The totality of exponentiation can easily be proved using Σ1 induction.

Definition. Let exp be the sentence ∀x ∃y ε(x, y), where ε is a formula provided by Fact 2.4.
Write y = 2x for ε(x, y) from now on.
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Exponentiation is essential for the (carefree) coding of sets. For example, if a ∈M |= I∆0 and
if we were to code all subsets of {0, 1, . . . , a} in M , then there must be a total of 2a+1 codes.

Our method of coding sets originated from Ackermann [1].

Definition. Let i ∈ Ack(x) denote a ∆0-formula that expresses ‘the ith digit in the binary
expansion of x is 1’, say

∃w<x ∃p6x ∃r<p
(
p = 2i ∧ x = (2w + 1)p+ r

)
.

Let M |= I∆0. If c ∈M , then Ack(c) = {i ∈M : M |= i ∈ Ack(c)}. These sets are said to be coded
in M . The set of all coded subsets of M is denoted Cod(M).

Example 2.5. Let a ∈M |= I∆0 + exp. Then a = {0, 1, . . . , a− 1} is coded by 11 · · · 1︸ ︷︷ ︸
a-many 1s

2 = 2a − 1.

Coded sets are thought of as nice subsets of the model. Notice all of them are ∆0-definable.

Lemma 2.6. Let c ∈M |= I∆0.

(a) If i ∈ Ack(c), then i < 2i 6 c.

(b) If Ack(c) 6= ∅, then it has a minimum and a maximum.

Proof sketch. For the maximum in part (b), consider the least m such that [m, c]∩Ack(c) = ∅.

It would be good if many sets are nice, for example, if all definable sets are coded. However,
this is not possible because every coded set is bounded above. Fortunately, given enough induction,
we have no other obstacle.

Definition. Let M be an LA-structure and Γ be a class of LA-formulas. A set S is Γ-definable
(with parameters) in M if

S = {x̄ ∈M : M |= θ(x̄, c̄)}

for some θ ∈ Γ and some c̄ ∈M . The collection of all Γ-definable sets in M is denoted Γ-Def(M).
Set ∆n-Def(M) = Σn-Def(M) ∩ Πn-Def(M) for every n ∈ N. If a ∈ M and S ⊆ M , then
S�a = {x ∈ S : x < a}.

Theorem 2.7 (Harvey Friedman). For all n ∈ N and all M |= I∆0 + exp, the following are
equivalent.

(a) M |= IΣn.

(b) S�a ∈ Cod(M) for every S ∈ Σn-Def(M) and every a ∈M .

The analogous statement about ∆n+1-definable sets involves the collection schemes.

Theorem 2.8 (folklore). For all n ∈ N and all M |= I∆0 + exp, the following are equivalent.

(a) M |= BΣn+1.

(b) S�a ∈ Cod(M) for every S ∈ ∆n+1-Def(M) and every a ∈M .

Theorems 2.7 and 2.8 will be proved in the next lecture.

Corollary 2.9 (Paris–Kirby [10]). BΣn+1 + exp ` IΣn for every n ∈ N.

Proof. Because ∆n+1 ⊇ Σn over any model.

The equivalence of induction and collection in first-order arithmetic should be seen as a happy
but rare coincidence. In second-order arithmetic, collection is much weaker than induction. In set
theory, induction is much weaker than collection.
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Figure 2.4: Implications between induction and collection schemes

Further exercises
Corollary 2.9 actually does not need exp.

Theorem 2.10 (Paris–Kirby [10]). BΣn+1 ` IΣn for every n ∈ N.

Proof. Proceed by induction on n ∈ N.

(a) Explain why BΣ1 ` IΣ0.

Suppose n ∈ N such that BΣn+1 ` IΣn. Let M |= BΣn+2 and θ(x) ∈ Σn+1(M) such that

M |= θ(0) ∧ ∀x
(
θ(x)→ θ(x+ 1)

)
.

Take any a ∈M . Write θ(x) as ∃ū η(ū, x), where η ∈ Πn(M).

(b) Show that M |= ∃b ∀x6a ∃ū<b
(
η(ū, x) ∨ ∀v̄ ¬η(v̄, x)

)
.

Fix b ∈M |= ∀x6a ∃ū<b
(
η(ū, x) ∨ ∀v̄ ¬η(v̄, x)

)
.

(c) Deduce that M |= ∀x6a
(
∃ū η(ū, x)↔ ∃ū<b η(v̄, x)

)
.

(d) Apply induction on the formula x 6 a→ ∃ū<b η(ū, x) to show that M |= θ(a).

Further reading
• Although PA− seems entirely algebraic, it is strong enough for many arithmetic purposes.
For instance, it proves all true Σ1-sentences [7, Chapter 2]. It admits the Incompleteness
Theorems [7, 13], and the coding of sequences [6], etc. It can even interpret I∆0 [13, page 286].

• In Theorem 2.3, we noted the delicateness of the level-by-level equivalence between induction
principles and least number principles. This delicateness is further demonstrated by the fact
that such equivalence at the ∆1-level is still open.

Definition. Let n ∈ N. The theory I∆n+1 consists of the axioms of PA− and

∀z̄
(
∀x
(
ϕ(x, z̄)↔ ψ(x, z̄)

)
∧ ϕ(0, z̄) ∧ ∀x

(
ϕ(x, z̄)→ ϕ(x+ 1, z̄)

)
→ ∀x ϕ(x, z̄)

)
for all ϕ ∈ Σn+1 and ψ ∈ Πn+1. Similarly L∆n+1 consists of the axioms of PA− and

∀z̄
(
∀x
(
ϕ(x, z̄)↔ ψ(x, z̄)

)
∧ ∃x ϕ(x, z̄)→ ∃x

(
ϕ(x, z̄) ∧ ∀x′<x ¬ϕ(x′, z̄)

))
for all ϕ ∈ Σn+1 and ψ ∈ Πn+1.

Our proof of Theorem 2.3 shows L∆n+1 ` I∆n+1 for every n ∈ N. Jeff Paris asked whether
the converse holds. This was partially answered by Slaman.

Theorem 2.11 (Slaman). I∆n+1 + exp ` L∆n+1 for every n ∈ N.

12



Since IΣ1 proves exp but I∆1 does not, this provides an answer to all but one levels.

Question 2.12 (Jeff Paris). Does I∆1 ` L∆1?

See Slaman’s paper [12] for more information, including a proof of the following.

Theorem 2.13 (Robin Gandy). L∆n+1 and BΣn+1 are equivalent for every n ∈ N.

• Observe that when proving the equivalence of IΣn and IΠn in Theorem 2.3, we introduced a
new parameter. The introduction of such a parameter cannot be avoided in general, because
the parameter-free induction schemes for Σn- are Πn-formulas are no longer equivalent [8],
except when n = 0.

• It is known that the converses to Theorem 2.2 and Corollary 2.9 do not hold, i.e., we know
BΣn+1 0 IΣn+1 and IΣn 0 BΣn+1 + exp for every n ∈ N. See Paris–Kirby [10] or Chapter 10
of Kaye’s book [7] for the proofs.
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