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No list of open problems concerning models of PA is complete without the venerable
Scott set Problem.

Roman Kossak and James Schmerl [4, page 289]

4.1 Second-order arithmetic

Let us go back to Scott’s theorem which says that all exponential cuts, when expanded by the
coded sets, satisfy the Weak König Lemma.

Theorem 3.5 (essentially Scott [5]). Let M |= I∆0 +exp and I be a proper exponential cut of M .
If T is an unbounded binary tree in Cod(M/I), then it has an unbounded branch B ∈ Cod(M/I).

Suppose I and M are as in the statement of the theorem. Then with the structure inherited
from M , it can be shown that I is itself a model of I∆0 + exp. Recall the definition of binary trees
and branches involves the relation ⊆p. So formally speaking, we need to specify in which structure
this relation is evaluated. It will turn out that the evaluations in M and in I agree with each other,
because σ ⊆p τ is ∆0 by Lemma 3.7(d); see Proposition 4.12 below. For the purpose of this proof,
let us interpret ⊆p in M . For other purposes, it would be more informative to interpret ⊆p in I.

Proof. Let t ∈M such that T = Ack(t/I). Since T is unbounded,

I ⊆ {len τ : τ ∈ Ack(t) ∧ ∀σ⊆pτ σ ∈ Ack(t)}
=
{
` ∈M : M |= ∃τ∈Ack(t)

(
` = len τ ∧ ∀σ⊆pτ σ ∈ Ack(t)

)}
.

Using ∆0-overspill, find τ0 ∈ Ack(t) such that len τ0 ∈M \ I. Notice

{τ ∈ Ack(t) : τ ⊆p τ0} ∈ Cod(M)

by ∆0-separation from Theorem 2.7. Let b ∈M code this set, and B = Ack(b/I). Clearly B ⊆ T .
Lemma 3.7(h) says B is a branch. It remains to show B is unbounded. If τ ∈ B, then len τ < τ ∈ I,
making len τ ∈ I since I is a cut. Conversely, suppose ` ∈ I. Then τ0�` ⊆p τ0. Lemma 3.7 implies
τ0�` < 2`+1. So τ0�` ∈ I because I is an exponential cut. Therefore τ0�` ∈ Ack(b/I) = B with
len(τ0�`) = `, as required.

This proof is a nice demonstration of how nonstandard methods work: we show a fact about a
smaller structure by passing on to a larger structure, and then restrict back to the smaller one.

Theorem 3.5 can be stated much more neatly using the language of second-order arithmetic.
Note that our logic will always be first-order; it is only the arithmetic that becomes second-order.

Definition. The language for second-order arithmetic is denoted LII. It has a number sort and a
set sort, which are assumed to partition the universe of any LII-structure. Elements of the number
sort are called first-order objects, or simply numbers. Elements of the set sort are called second-
order objects, or sets. Lowercase Roman letters n,m, x, y, . . . are reserved for number variables,
and uppercase Roman letter A,B,X, Y, . . . are reserved for set variables. Within the number sort,

22



we have the symbols of LA together with equality. There is also a binary relation ∈ in LII that
relates a first-order object to a second-order object. Equality on the set sort is not a primitive
notion in LII; it is defined via extensionality :

∀X,Y
(
∀x (x ∈ X ↔ x ∈ Y )↔ X = Y

)
.

An LII-formula is ∆0
0 if all its quantifiers are bounded (number) quantifiers. If n ∈ N, then

Σ0
n =

{
∃x̄1 ∀x̄2 · · · Qx̄n ξ(x̄1, x̄2, . . . , x̄n, z̄, Z̄) : Q ∈ {∀,∃} and ξ ∈ ∆0

0

}
, and

Π0
n =

{
∀x̄1 ∃x̄2 · · · Q′x̄n ζ(x̄1, x̄2, . . . , x̄n, z̄, Z̄) : Q′ ∈ {∀,∃} and ζ ∈ ∆0

0

}
.

An LII-formula is ∆0
n if it is equivalent to both a Σ0

n- and a Π0
n-formula (over some theory or some

LII-structure). Formulas in LII with no set quantifiers are called arithmetical or ∆1
0. Equivalently,

we can define ∆1
0 =

⋃
n∈N Σ0

n. We write LII-structures as pairs (M,X ), where M is the universe
for the number sort, and X is the universe for the set sort. In this case, we also call M and X
respectively the first- and second-order parts of (M,X ).

Remark 4.1. • By restricting to the number sort, we view LA as a sublanguage of LII.

• Checking whether two sets X,Y ⊆ N are equal involves checking infinitely many equivalences

x ∈ X ↔ x ∈ Y,

where x ranges over N. Therefore, even if we have complete bitwise information about X
and Y , this cannot be determined within a finite number of computation steps. This matches
with the fact that X = Y is Π0

1. Allowing the equality of sets to be a primitive in LII would
destroy our recursion-theoretic understanding of the arithmetical hierarchy, most notably
Fact 4.3 below.

• Bounded quantifiers are defined as in the case of LA. In particular, all bounded quantifiers
are number quantifiers.

• The superscript 0 in Σ0
n,Π

0
n,∆

0
n distinguishes these formula classes from their first-order

counterparts Σn,Πn,∆n, which are not allowed to involve second-order objects. Similarly,
we reserve the word arithmetic for formulas that do not involve second-order objects. In
other words, the arithmetic formulas are essentially the LA-formulas.

• Let (M,X ) be any LII-structure. By extensionality, the relation ∼ defined by

X ∼ Y ⇔ (M,X ) |= X = Y

is an equivalence relation on X . In the quotient LII-structure (M,X /∼), equality on the
set sort is interpreted as real equality. Moreover (M,X /∼) ≡ (M,X ). So we may assume
without loss of (much) generality that equality on the set sort is always interpreted as real
equality, and furthermore X ⊆ P(M).

Example 4.2. (1) (N,P(N)) is called the standard model of second-order arithmetic.

(2) If I ⊆e M |= I∆0, then (I,Cod(M/I)) is an LII-structure.

Definition. WKL denotes an LII-sentence that expresses

∀tree T ∃branch B ⊆ T (∀` ∃τ∈T len τ = `→ ∀` ∃τ∈B len τ = `).

All these give another way of stating Scott’s Theorem 3.5.

Theorem 3.5 (reformulated). Let M |= I∆0 +exp and I be a proper exponential cut of M . Then
(I,Cod(M/I)) |= WKL.

As in the case of LA, arithmetical formulas have recursion-theoretic meanings.
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Definition. Let A ⊆ N. A program with oracle A is defined recursively as the programs Prog〈θ〉
in Lecture 1, except we allow another family of basic programs Prog〈t(x̄) ∈ A〉, where t ranges over
number terms, that satisfies

Prog〈t ∈ A〉(x̄) =

{
true, if t(x̄) ∈ A;

false, otherwise,

for all x̄ ∈ N. Let k ∈ N. Then S ⊆ Nk is recursively enumerable in A, or r.e. in A, if

S = {x̄ ∈ Nk : P (x̄) = true}

for some program P with oracle A. The set S is recursive in A if both S and Nk \ S are r.e. in A.

Informally speaking, a set S being r.e. or recursive in another set A implies that one can extract
information about S using information about A. Therefore, we may view such A as possessing at
least as much information as S does.

By a similar proof, one can obtain an analogue of Corollary 1.7 for the arithmetical hierarchy.

Fact 4.3. Let A ⊆ N.

(a) The sets r.e. in A are exactly those that are Σ0
1-definable in (N,P(N)) with A as the only set

parameter.

(b) The sets recursive in A are exactly those that are ∆0
1-definable in (N,P(N)) with A as the

only set parameter.

A main difference in the axiom schemes in LII compared to those in LA is the appearance of
set parameters.

Definition. • Let Γ be a set of LII-formulas. Then IΓ consists of all sentences of the form

∀z̄ ∀Z̄
(
θ(0, z̄, Z̄) ∧ ∀x

(
θ(x, z̄, Z̄)→ θ(x+ 1, z̄, Z̄)

)
→ ∀x θ(x, z̄, Z̄)

)
,

where θ ∈ Γ.

• The theory ∆0
1-CA consists of all sentences of the form

∀z̄ ∀Z̄
(
∀x
(
ϕ(x, z̄, Z̄)↔ ψ(x, z̄, Z̄)

)
→ ∃X ∀x

(
x ∈ X ↔ ϕ(x, z̄, Z̄)

))
,

where ϕ ∈ Σ0
1 and ψ ∈ Π0

1.

• RCA0 = PA− + IΣ0
1 + ∆0

1-CA.

• WKL0 = RCA0 + WKL.

The acronyms CA and RCA stand for comprehension axiom and recursive comprehension axiom
respectively. Historically, theories in LII mostly came with induction for all LII-formulas. When
this is not the case, a subscript 0 was added. Since LII-theories with full induction are increasing
rare nowadays, many people have started using the unsubscripted names for other things.

Example 4.4. (1) (N,P(N)) |= WKL0.

(2) (N,∆1-Def(N)) |= RCA0, essentially because one can unravel each ∆1-definable oracle into a
program using Corollary 1.7. The same proof actually shows (M,∆1-Def(M)) |= RCA0 for
all M |= IΣ1.

We will do some coding inside these theories. So it is good to know in advance that coding
works as expected there.

Proposition 4.5. IΣ1 ` exp.

Proof. Using Fact 2.4, prove ∀x ∃y (y = 2x) by Σ1-induction on x.
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4.2 The Arithmetized Completeness Theorem

Theorem 3.5 says that the coded subsets in every proper exponential cut satisfy the Weak König
Lemma. We will prove a partial converse to this, that the first-order part of every model of WKL0

is a proper exponential cut of some model of I∆0 + exp.
For this, we need a method of building end extensions of a model of arithmetic M , i.e., ex-

tensions K ⊇e M . The method we choose here is called the Arithmetized Completeness Theorem.
This theorem is essentially a formalization of Gödel’s Completeness Theorem for first-order logic
within arithmetic. It is a surprisingly powerful method of constructing new models of arithmetic
from existing ones.

For the formalization, we assume a well-behaved Gödel numbering p·q of terms, formulas,
sentences, proofs, etc. in which all the syntactical operations, such as substitution, are ∆0-definable,
and all the usual properties are provable in I∆0 + exp. Often, we will identify a syntactical object
with its Gödel number.

Definition. Given a theory T that is ∆0-definable in N, fix a ∆0-formula T -Proof(p, θ) which
expresses ‘p is a proof of θ from T ’, and let

Con(T ) = ¬∃p T -Proof(p,⊥).

Here ⊥ denotes the logical constant for falsity. We sometimes view T -Proof(p, θ) and Con(T ) as
LII-formulas in which T is a free set variable.

Remark 4.6. Notice if T is ∆0-definable, then Con(T ) ∈ Π1. When viewed as LII-formulas, we
know T -Proof(p, θ) ∈ ∆0

0 and Con(T ) ∈ Π0
1.

Lemma 4.7. RCA0 proves the Compactness Theorem in the form

∀T
(
∀t
(
Ack(t) ⊆ T → Con(Ack(t))

)
→ Con(T )

)
.

Proof. Follow the usual proof. Notice by ∆0-separation from Theorem 2.7, the set of assumptions
used in a proof is always coded.

Recall a theory H is Henkinized if for every formula θ, there is a constant symbol c such that

H ` ∃x θ(x)→ θ(c). (∗)

Sentences of the form above are sometimes called Henkin axioms. From a consistent Henkinized
theory H, we ‘read off’ a term model K as follows.

• If c is a constant symbol, then [c] = {d : H ` c = d}.

• K = {[c] : c is a constant symbol}.

• If c is a constant symbol, then cK = [c].

• If f is a function symbol and [c] ∈ K, then fK([c]) = [f(c)].

• If R is a relation symbol and [c] ∈ K, then RK([c]) exactly when R(c) ∈ H.

One can verify that the term model originated from a consistent Henkinized theory H actually
satisfies H. These enable us to rephrase the Completeness Theorem in terms of Henkinized theories.

Gödel’s Completeness Theorem. Every consistent theory has a complete consistent Henkinized
extension.

This reformulation can be readily formalized in LII.

Theorem 4.8 (Simpson [6]). The following are equivalent over RCA0.

(a) WKL.

(b) Gödel’s Completeness Theorem.
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T

¬θ2 θ2

¬θ1 θ1

¬θ0

¬θ2 θ2

¬θ1

¬θ2 θ2

θ1

θ0

Figure 4.1: The tree of completions of a theory T

Proof sketch. Consider (a) ⇒ (b). Henkinization can be achieved by adding sufficiently many
Henkin axioms in a suitably expanded language. So we concentrate on completing the given
consistent theory T . Let (θi) be an enumeration of all sentences. Denote

Θ(σ) = {¬θi : i < lenσ ∧ i 6∈ Ack(σ)} ∪ {θi : i < lenσ ∧ i ∈ Ack(σ)}.

By ∆0
1-CA, the set

{σ : ∃p<lenσ (T + Θ(σ))-Proof(p,⊥)}

exists. Notice it is a binary tree. It is unbounded because if Ξ is a consistent set of sentences and
θ is a formula, then either Ξ∪{θ} or Ξ∪{¬θ} is consistent. One can verify that every unbounded
branch in this tree corresponds to a complete consistent extension of T . So we are done by WKL.

We omit the proof of (b)⇒ (a) because it will not be used here. You may find it in Simpson’s
book [6, Theorem IV.3.3].

A side remark is that this theorem provides one way to separate WKL0 from RCA0.

Corollary 4.9. (N,∆1-Def(N)) 6|= WKL.

Proof. Being satisfied in N, we know PA is consistent. So N |= Con(PA). However, Gödel’s
Incompleteness Theorem implies that no recursive extension of PA can be both consistent and
complete. By Corollary 1.7, this means no complete consistent extension of PA is ∆1-definable
in N. Therefore, our version of Gödel’s Completeness Theorem fails in (N,∆1-Def(N)). Theorem 4.8
then gives us the required failure of WKL.

Notice Theorem 4.8 is entirely internal to the model of arithmetic in question. The major fur-
therance in the Arithmetized Completeness Theorem is in observing that, when viewed externally,
the complete consistent Henkinized extension constructed using Theorem 4.8 gives rise to an end
extension of the first-order part of the ground model.

Recall that if K is a structure for a language L , then the elementary diagram of K, denoted
ElemDiag(K), is defined by

ElemDiag(K) = {θ(c̄) : M |= θ(c̄) where θ ∈ L and c̄ ∈ K}.

Definition. Let L be a language in (M,X ) |= RCA0, Then the non-logical symbols in L with
standard arities constitute a language in the real world, which we denote by Std(L ). Terms and
formulas in Std(L ) can be considered terms and formulas in L within (M,X ), but not necessarily
the other way round. If T is a set of L -formulas in (M,X ), then the set of all Std(L )-formulas
in T is denoted Std(T ).

Arithmetized Completeness Theorem (ACT). Let (M,X ) |= WKL0 and T ∈X be a theory
extending PA−. If (M,X ) |= Con(T ), then there exist K ⊇e M and H ∈X such that

(a) (M,X ) |= ‘H is a complete consistent Henkinized theory extending T ’; and

(b) ElemDiag(K) ⊆ H.

In particular, such K |= Std(T ).
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Proof. Apply Theorem 4.8 to find H ∈X satisfying (a). We know Std(H) is complete, consistent,
and Henkinized in the real world because H is so in (M,X ). Let K be the term model of Std(H).
Then the usual argument shows ElemDiag(K) = Std(H) ⊆ H. It remains to verify that M ⊆e K.

Let L be the language of H. Notice L ⊇ LA because T ⊇ PA−. So the language L in (M,X )
contains the term

a = 0 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
a-many 1’s

for every a ∈ M . Exploiting the fact that H is Henkinized, find a constant symbol ca in L for
which H ` ca = a for each a ∈ M . Abbreviating ∃p PA−-Proof(p, θ) as PA−-Prov(θ), one can
verify using IΣ0

1 that (M,X ) satisfies

(1) PA−-Prov(p0 = 0 ∧ 1 = 1q);

(2) ∀a, b PA−-Prov(pa+ b = a+ b ∧ a× b = a× bq);

(3) ∀a, b
(
a < b→ PA−-Prov(pa < bq)

)
;

(4) ∀a, b
(
a 6= b→ PA−-Prov(pa 6= bq)

)
; and

(5) ∀a PA−-Prov
(
p∀x<a+ 1 (x = 0 ∨ x = 1 ∨ · · · ∨ x = a)q

)
.

Therefore H contains

(1) 0 = c0 ∧ 1 = c1;

(2) ca + cb = ca+b ∧ ca × cb = ca×b for all a, b ∈M ;

(3) ca < cb for all a, b ∈M such that a < b;

(4) ca 6= cb for all distinct a, b ∈M ; and

(5) ∀x<ca+1 (x = c0 ∨ x = c1 ∨ · · · ∨ x = ca) for all a ∈M .

The sentences in (1)–(4) above say that the map a 7→ cKa is an embedding M → K. So we may
regard M ⊆ K. The sentences in (5) tell us M ⊆e K. To see this, let c be a constant symbol
in Std(L ) and a ∈ M such that [c] < cKa+1 = [ca+1]. Then pc < ca+1q ∈ H. Applying (5), one
obtains i 6 a in M such that pc = ciq ∈ H. As c = ci is a Std(L )-sentence in the real world, we
know actually pc = ciq ∈ Std(H), and so [c] = [ci] = cKi .

In view of the Arithmetized Completeness Theorem, if we want to end extend the first-order part
of (M,X ) |= WKL0 to a model of some theory T , then it suffices to show that (M,X ) |= Con(T ∗)
for some T ∗ ∈X for which Std(T ∗) ⊇ T . So to get the promised converse to Theorem 3.5, all we
need is an appropriate consistency condition.

Fact 4.10. IΣ1 ` Con(I∆0 + exp).

Proof. It involves eliminating cuts in proofs, and is thus outside the scope of this course. Please
consult Theorem II.8.11 in Simpson [6] for the details.

Corollary 4.11. Let (M,X ) |= WKL0. Then there is K )e M such that K |= I∆0 + exp.

Proof. Consider
I∆0 + exp + {c > a : a ∈M},

where c is a new constant symbol, and a is as defined in the proof of the Arithmetized Completeness
Theorem. This theory is in (M,X ) because of ∆0

1-CA. It is consistent within (M,X ) by the
Compactness Theorem in Lemma 4.7. An application of the Arithmetized Completeness Theorem
gives K ⊇e M that satisfies I∆0 + exp. This extension K of M is proper because of cK .

There is a caveat in the proof above: the definition of I∆0+exp in M is given by an LA-formula
via Corollary 1.7, and the models M and N may disagree on this formula. So it may happen that
an axiom of the real I∆0+exp is actually not an element of the M -version of I∆+exp. Fortunately,
this is not possible because I∆0 + exp can be defined by a ∆0-formula.
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Proposition 4.12. Let M,K |= PA− such that M ⊆e K. Then

M |= ξ(c̄) ⇔ K |= ξ(c̄)

for all c̄ ∈M and ξ ∈ ∆0.

Proof sketch. Induction on ξ. For example, if M |= ∀x<t(c̄) ξ(x, c̄) where t is some LA-term
and ξ is a formula that satisfies the proposition, then K |= ∀x<t(c̄) ξ(x, c̄) too by the induction
hypothesis, because t(c̄) ∈M and so every x < t(c̄) in K must also be in M .

Further exercises

Corollary 4.11 tells us that given any (M,X ) |= WKL0, we can find K |= I∆0 + exp in which
M ⊆e K. It says nothing about the relationship between X and Cod(K/M), although one would
expect them to be somehow related in view of Theorem 3.5. These exercises will show that this
suspicion is correct, at least for countable models.

Theorem 4.13 (Scott [5]; Tanaka [8]). Let (M,X ) be a countable model of WKL0. Then there
is K )e M such that K |= I∆0 + exp and Cod(K/M) = X .

Proof. This is taken from Enayat [1]. Follow the proof of Corollary 4.11 to find H0 ∈X such that
(M,X ) believes H0 to be a complete consistent Henkinized extension of I∆0 + exp. By recursion,
we will build a sequence H0 ⊆ H1 ⊆ H2 ⊆ · · · of theories in X in increasingly big languages. Each
of these theories will be complete, consistent, and Henkinized from the point of view of (M,X ).

Enumerate X as (Dn)n∈N using countability. Suppose we already found Hn satisfying the
inductive conditions. Let dn be a new constant symbol. Remember how the a’s were defined in
the proof of the Arithmetized Completeness Theorem.

(a) Show that (M,X ) models the consistency of

Hn ∪ {a ∈ Ack(dn) : a ∈ Dn} ∪ {a 6∈ Ack(dn) : a ∈M \Dn}.

Use the Arithmetized Completeness Theorem to find Hn+1 ∈ X that (M,X ) believes to be
complete, consistent, Henkinized, and extends the theory displayed above.

Set H =
⋃

n∈NHn.

(b) Explain why Std(H) is a complete consistent Henkinized extension of I∆0 + exp.

Let K be the term model of Std(H).

(c) Show that M can be considered a proper cut of K.

(d) Explain why X ⊆ Cod(K/M).

(e) Use ∆0
1-CA in (M,X ), or otherwise, to show that Cod(K/M) ⊆X .

Further reading

• Theorem 4.8 is an example of a theorem from Reverse Mathematics, a subject in which the
exact axioms needed to prove various mathematical theorems are determined. Simpson’s
book [6] is the definitive reference for Reverse Mathematics. You may find in his Theo-
rem IV.3.3 that if the Compactness Theorem is formulated as

if every coded subset of a theory T has a model, then T has a model,

then in contrary to Lemma 4.7 above, it is equivalent to WKL over RCA0.
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• The Arithmetized Completeness Theorem is arguably the most powerful method in building
end extensions of models of arithmetic. In particular, it is one of the few techniques that works
even for uncountable models. See Smoryński’s notes [7] for more applications. Traditionally,
the Arithmetized Completeness Theorem is formulated within first-order arithmetic. Our
approach via second-order arithmetic has the advantage of allowing easier iterations, as
demonstrated in the Further exercises.

• There is a gap between WKL in Theorem 3.5 and WKL0 in Theorem 4.13. These two sides
are known to meet at a theory called WKL∗0, at least when the exp condition on the bigger
model is dropped. The theory WKL∗0 is defined to be PA− + I∆0

0 + exp + ∆0
1-CA.

Theorem 4.14 (Scott [5]). Let M |= I∆0 and I be a proper exponential cut of M . Then
(M, I) |= WKL∗0.

Theorem 4.15 (Enayat–Wong [2]). Let (M,X ) be a countable model of WKL∗0. Then
there exists K )e M such that K |= I∆0 and Cod(K/M) = X .

It is not known whether this theorem would remain true if the countability condition is
dropped. The special case when the first-order part is standard is perhaps one of the most
well-known open questions in the model theory of arithmetic.

Question 4.16 (Scott [5]). Is it true that every (N,X ) |= WKL0 realizes as (N,Cod(M/N))
for some M |= I∆0?

Knight and Nadel [3] showed that Scott’s question has a positive answer if X is additionally
required to have size at most ℵ1. Therefore, in the situation when the Continuum Hypothesis
holds, we already have a full answer.
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