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Since 1931, the year Gödel’s Incompleteness Theorems were published, mathemati-
cians have been looking for a strictly mathematical example of an incompleteness in
first-order Peano arithmetic, one which is mathematically simple and interesting and
does not require the numerical coding of notions from logic.

Jon Barwise [8, page 1133]

We show that the totality of the Ackermann function is not provable in IΣ1.

5.1 The Grzegorczyk hierarchy
At the end of last lecture, we saw that end extensions are always ∆0-elementary. It is thus tempting
to say that all cuts are ∆0-elementary. However, this is not strictly correct because some cuts are
not even LA-structures.

Definition. A multiplicative cut, or an am-cut, is a cut that is closed under multiplication (and
hence also addition).

Proposition 4.12 implies that every end extension satisfies all Σ1-formulas true in the ground
model, and every am-cut satisfies all Π1-formulas true in the universe it lives in.

Corollary 5.1. If M |= I∆0 and I is an am-cut of M , then I |= I∆0.

Proof. Notice PA− ⊆ Π1. One can verify that the scheme of ∆0-induction is equivalent over PA−

to the Π1-sentences

∀z̄ ∀b
(
η(0, z̄) ∧ ∀x<b

(
η(x, z̄)→ η(x+ 1, z̄)

)
→ ∀x6b η(x+ 1, z̄)

)
,

where η ∈ ∆0. For instance, to prove the sentence displayed above, one applies induction to the
∆0-formula x < b→ η(x, z̄).

Alternatively, one can show that all am-cuts of a model of I∆0 satisfy ∆0-induction using the
equivalence of L∆0 and I∆0 that we got from Theorem 2.3.

The following fast growing functions come from the Grzegorczyk hierarchy [4]. They can also be
viewed as a version of the Ackermann function [1]. Notice the name ‘Ackermann function’ may
refer to different functions for different authors. The domain of definition below is intended to be
some model of arithmetic.

Definition. Set F0(x) = x+ 1 and

Fn+1(x) = F (x+1)
n (x) =

x+ 1 times︷ ︸︸ ︷
Fn ◦ Fn ◦ · · · ◦ Fn(x)

Example 5.2. F2(2) = F
(3)
1 (2) = F1 ◦ F1 ◦ F1(2) = F1 ◦ F1 ◦ F (3)

0 (2) = F1 ◦ F1(5)

= F1 ◦ F (6)
0 (5) = F1(11) = F

(12)
0 (11) = 23.
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Observation. Evaluating Fn(x) is a matter of rewriting terms. So, via a suitable coding of terms,
we can express Fn(x) = y over I∆0 as

there is a sequence 〈Fn(x), . . . , y〉 of terms obeying the rewriting rules set out
in the definition of the Fn’s.

Such an expression has the variables n, x, y free, and is Σ1. One can readily verify that

I∆0 ` ∀n, x, y, y′
(
Fn(x) = y ∧ Fn(x) = y′ → y = y′

)
.

The following lemma is one of the ways to explain why it usually does not matter where the
Fn’s are evaluated.

Lemma 5.3. Let n, x, y ∈ I ⊆e M |= I∆0 where I is an am-cut. For all y′ ∈M , if I |= Fn(x) = y
and M |= Fn(x) = y′, then y = y′.

Proof. Since Fn(x) = y is Σ1, we know M |= Fn(x) = y by Proposition 4.12. Thus the observation
above tells us y = y′.

The Fn’s have many nice monotonicity properties, only two of which are relevant to us here.

Lemma 5.4. IΣ1 proves

(a) ∀n, x Fn(x) > x; and

(b) ∀m,n, x
(
m < n→ Fm(x) < Fn(x)

)
.

Proof. First, show by Π1-induction on k that

∀n
(
∀x Fn(x) > x→ ∀k, x F (k+1)

n (x) > x
)
.

Then prove (a) by induction on n leaving x universally quantified. For (b), fix m,x and show by
induction on k that Fm(x) < Fm+k+1(x).

There is a good description of which recursive functions can be proved total in IΣ1 in terms of
the Grzegorczyk hierarchy.

Proposition 5.5. IΣ1 ` ∀x ∃y Fn(x) = y for every n ∈ N.
Proof. Straightforward induction on n.

Theorem 5.6. IΣ1 0 ∀n ∀x ∃y Fn(x) = y.

The rest of the lecture is devoted to a proof of this. The first proofs of this theorem are all
proof-theoretic. Here we employ a model-theoretic method that has a combinatorial flavour. In
particular, we will need some Pigeonhole Principle. Recall from Example 2.5 that as in set theory,
we identify a number a in a model of arithmetic with the set of its predecessors {0, 1, . . . , a− 1}.
Coded Pigeonhole Principle. Let a, b ∈ M |= I∆0 + exp where a < b, and let g ∈ M code a
function a→ b. Then Im(g) 6= b.

Proof. Without loss, we may assume Dom(g) 6= ∅. We will show by ∆0-induction on d that

M |= ∀d ∀g<d ∀a, b<g
(
g : a+ 1→ b+ 1 ∧ a < b→ ∃y6b ∀x6a (g(x) 6= y)

)
.

Here we use abbreviations from set theory. For example, the expression g(x) = y stands for
〈x, y〉 ∈ Ack(g), which is ∆0.

Let g ∈ M code a function a+ 1 → b+ 1, where a < b. Note b > a > 0. So b > 0. Take any
v < b. If v 6∈ Im(g) or b 6∈ Im(g), then we are done. So suppose not. If g(a) < b, then we may as
well assume g(a) = v. Let U = g−1(b) and define g′ ∈M by

Ack(g′) = Ack(g) ∪ {〈u, v〉 : u ∈ U} \ {〈a, g(a)〉, 〈u, b〉 : u ∈ U}.

Then g′ code a function a→ b, and g′ < g since v < b. Ignoring the trivial case when a = 0, we
may apply the induction hypothesis to find y < b that is not in Im(g′).

To finish the proof, let us show y 6∈ Im(g). If u ∈ U , then g(u) = b > y. If g(a) = b, then
g(a) 6= y for the same reason. If g(a) < b, then g(a) = v 6= y because v ∈ Im(g′) but y 6∈ Im(g′). If
x 6 a but x 6∈ U ∪ {a}, then g(x) = g′(x) 6= y since y 6∈ Im(g′).

By going through the proof of Theorem 2.7 carefully, one can verify that the proof above actually
does not require exp.
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Figure 5.1: Proving the Coded Pigeonhole Principle
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Figure 5.2: Semiregular cuts

5.2 Semiregular cuts
Since we cannot construct nonstandard models of IΣ1 from scratch, we need a way of building new
models from old ones. In analogy to the argument for showing the independence of the axiom of
infinity from the rest of ZFC using the hereditarily finite sets, we consider cuts that satisfy IΣ1,
called semiregular cuts. This notion of cuts came from that of regular cardinals. Informally speaking,
no coded function from a smaller initial segment can have an image unbounded in a semiregular
cut.

Definition (Kirby–Paris [5]). Let M |= I∆0. A cut I ⊆e M is semiregular if

whenever f ∈M which codes a function with domain a ∈ I,

Im(f) ∩ I 6⊆cf I.

Here X ⊆cf Y means “X is an unbounded (or cofinal) subset of Y ”.

There is a notion of regular cuts in arithmetic that also came from the regularity of cardinals.
This other notion turns out to be strictly stronger than semiregularity [5].

Example 5.7. The standard cut N is semiregular in all M |= I∆0, because every element of N has
only finitely many predecessors.

Before showing that semiregular cuts satisfy IΣ1, we need to first check they are indeed
LA-structures.

Lemma 5.8. Semiregular cuts in models of I∆0 + exp are multiplicative.
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M

a+ (b− 1)

I

a

Figure 5.3: The image of f : b→M defined
by f(x) = a+x, where a, b ∈ I but a+ b 6∈ I

M

a(b− 1)
...
a(x0 + 1) = ax0 + a

I

d
ax0 = y0...
2a
a
0

Figure 5.4: The image of g : b→M defined
by g(x) = ax, where a, b ∈ I but ab 6∈ I

Proof. Let a, b ∈ I (e M |= I∆0 + exp where I is semiregular in M . Without loss, assume a, b 6= 0.
Define f : b → M by f(x) = a + x. This is coded in M because we have ∆0-separation from
Theorem 2.7. By semiregularity,

Im(f) ∩ I = [a, a+ b) ∩ I 6⊆cf I,

so that we must have a + b ∈ I. Define g : b → M by g(x) = ax. This is again coded in M by
∆0-separation. Using semiregularity, find d ∈ I that bounds Im(g) ∩ I. Notice

{y < d : M |= ∃x<b (g(x) = y)} ∈ Cod(M)

by ∆0-separation. It contains 0 and so must be nonempty. Let y0 be its maximum, which we
know exists by Lemma 2.6(b). Find x0 < b such that y0 = ax0. We already showed I is closed
under addition. So a(x0 + 1) = ax0 + a ∈ I. By the maximality of y0, it must be the case that
x0 = max Dom(g) = b− 1. Thus ab = a(x0 + 1) ∈ I.

Semiregular cuts actually satisfy a bit more than just IΣ1.

Theorem 5.9 (Kirby–Paris [5]). The following are equivalent for I (e M |= I∆0 + exp.

(a) I is semiregular in M .

(b) I is multiplicative and (I,Cod(M/I)) |= WKL0.

Proof. We will only show that the semiregularity of I implies I |= IΣ1, because this is the only
part we will need. Suppose I is semiregular. We know from Corollary 5.1 and Lemma 5.8 that
I |= I∆0. In view of Theorem 2.3, it suffices to show I |= LΣ1. Pick η(x, y) ∈ ∆0(I) such that
I |= ∃x ∃y η(x, y). Let a ∈ I |= ∃y η(a, y) and c ∈M \ I. The plan is to use semiregularity to find
a bound for the y-quantifier in ∃y η(x, y) such that the Σ1-formula becomes ∆0 below a. Define
f : a+ 1→M by

f(x) =

{
(min y 6 c)(M |= η(x, y)), if it exists;
c, otherwise.

This function is coded in M by ∆0-separation. Using semiregularity, find d ∈ I that bounds
Im(f) ∩ I. In other words, for all x 6 a,

f(x) ∈ I ⇔ f(x) < d. (∗)

Now, for every x 6 a, the following implications hold.

I |= ∃y<d η(x, y) ⇒ I |= ∃y η(x, y).

I |= ∃y η(x, y) ⇒ M |= η(x, y) for some y ∈ I by Proposition 4.12.
M |= η(x, y) for some y ∈ I ⇒ M |= η(x, f(x)) and f(x) ∈ I as f(x) = (minx)(η(x, y)).
M |= η(x, f(x)) and f(x) ∈ I ⇒ M |= ∃y<d η(x, y) by (∗).
M |= ∃y<d η(x, y) ⇒ I |= ∃y<d η(x, y) by Proposition 4.12.
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kth step

s0 = s = Fr(r)

s1

s2

...

I = sup{rk : k ∈ N}
...

r2

r1

r0 = r

N

sk

F
(rk+1)
ν (rk) = Fν+1(rk)

F
(rk)
ν (rk)

...

F
(3)
ν (rk)

F
(2)
ν (rk)

Fν(rk)

rk

Figure 5.5: Catching a semiregular cut

It follows that min{x 6 a : I |= ∃y η(x, y)} = min{x 6 a : I |= ∃y<d η(x, y)}. The latter exists
because of L∆0 and our choice of a.

We are finally ready to show Theorem 5.6. The argument presented here is from Kirby–Paris [5].
The intuitive idea behind the unprovability of the totality of the Ackermann function in IΣ1 is that
this function grows too fast. It grows so fast that the gap between r and Fr(r) for a nonstandard r
is big enough to catch a cut satisfying IΣ1. In such a cut Fr(r) cannot exist.

Proof of Theorem 5.6. Work in a countable nonstandard M |= IΣ1 + ∀n ∀x ∃y Fn(x) = y, which
we know exists by the Compactness Theorem. Unless otherwise specified, the Fn’s in this proof are
all evaluated in M . Pick r ∈M \ N and let s = Fr(r). By an external recursion, we will build

[r, s] = [r0, s0] ⊇ [r1, s1] ⊇ [r2, s2] ⊇ · · ·

with the induction condition that Fn(rk) 6 sk for all n, k ∈ N. At the end, we will make

I = sup{rk : k ∈ N} = {x ∈M : x < rk for some k ∈ N}

semiregular, so that I |= IΣ1 + ∀y Fr(r) 6= y by Theorem 5.9 and Lemma 5.3.
Notice [r0, s0] satisfies the inductive condition by Lemma 5.4. Let (fk)k∈N be an enumeration of

all functions M →M in Cod(M) in which every such function appears infinitely often. This exists
because M is countable. Suppose [rk, sk] is found. Consider fk. If Dom(fk) 6= a for any a 6 rk,
then we can set [rk+1, sk+1] = [rk, sk], because it does not look like fk can harm the semiregularity
of I at the current stage. Suppose Dom(fk) = ak, where ak 6 rk. Use Σ1-overspill to find ν ∈M \N
such that sk > Fν+1(rk) = F

(rk+1)
ν (rk). There are at most ak points in Im(fk), but there are

rk + 1 disjoint subintervals of [rk, sk] of the form [F
(i)
ν (rk), F

(i+1)
ν (rk)), where i 6 rk. The Coded

Pigeonhole Principle applies to this situation because the function gk : a→ rk + 1 defined by

gk(x) = min
{
i 6 rk : F (i+1)

ν (rk) > fk(x)
}

is in Cod(M) by Σ1-separation in Theorem 2.7. Let [rk+1, sk+1] be an interval of the form
[F

(i)
ν (rk), F

(i+1)
ν (rk)), where i 6 rk, which contains no point from Im(fk). Such an interval satisfies

the inductive condition because ν > N, and so we can move on to the next step of the construction.
Now, if f : a→M in Cod(M) where a ∈ I, then for some large enough k ∈ N we have f = fk

and a 6 rk, so that rk+1 ∈ I that bounds Im(f) ∩ I by construction. Therefore, the cut I is
semiregular in M .
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Further exercises
The argument we saw in this lecture is an instance of a general way of obtaining the unprovability
of Π2-sentences originated from Kirby–Paris [5] called the method of indicators.

Definition. Let T be an LA-theory extending IΣ1. An indicator for cuts satisfying T is a binary
function Y that is Σ1-definable over T without parameters and has the following properties.

(1) IΣ1 proves

(i) ∀x, y, y′
(
y 6 y′ → Y (x, y) 6 Y (x, y′)

)
; and

(ii) ∀n, x, y
(
Y (x, y) > n→ ∃y′6y Y (x, y′) = n

)
.

(2) For every a, b ∈M |= IΣ1,

a ∈ I < b for some am-cut satisfying T ⇔ Y (a, b) > N.

In these exercises, we demonstrate how indicators give rise to unprovability results generally.

(a) Define Y (x, y) = (maxn)(Fn(x) 6 y); more precisely, define Y (x, y) = n to be the formula

Fn(x) 6 y ∧ ∀z6y (z 6= Fn+1(x)).

Using what we saw in this lecture, explain why Y is an indicator for cuts satisfying IΣ1.

Let T be a consistent LA-theory extending IΣ1, and let Y be an indicator for cuts satisfying T .

(b) As we will see in Lecture 8, every consistent extension of BΣ1 has a model that is isomorphic
(and hence elementarily equivalent) to a proper cut of itself. Use this fact to show that
T ` ∀x ∃y Y (x, y) > n for every n ∈ N.

(c) Show T 0 ∀n ∀x ∃y Y (x, y) > n by imitating the proof of Theorem 5.6.

Further comments

Provably total recursive functions
The class of recursive functions a true LA-theory can prove total is a useful indication of how
strong this theory is.

Definition. A provably total recursive function of an LA-theory T is a formula ϕ ∈ Σ1 such that

T ` ∀x ∃!y ϕ(x, y).

For convenience, instead of referring to these as formulas, we usually use functional notation.

The provably total recursive functions of IΣ1 have a particularly neat description.

Definition. A function N→ N is primitive recursive if its values can be computed by a program
built up from polynomial functions using only for-loops with polynomial bounds.

Notice this is not the same as the functions with ∆0-graphs, because it may be hard to compute
the values of a function even though it is easy to check that a value is correct.

Theorem 5.10 (Mints [7], Parsons [9], Takeuti [10], independently). The provably total recursive
functions in IΣ1 are exactly the primitive recursive functions.

So, Proposition 5.5 says Fn is primitive recursive for every n ∈ N. In fact, more is true.

Theorem 5.11 (Grzegorczyk [4]). Every primitive recursive function F : N→ N is dominated (or
majorized) by some Fn where n ∈ N, i.e., F (x) 6 Fn(x) for all large enough x ∈ N.

This can be proved using Further exercise (a), and it easily implies Theorem 5.6.
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The Pigeonhole Principle
The Pigeonhole Principle usually does not appear in coded form as we presented it. More frequently,
it appears as schemes.

Definition. Let Γ be a set of LA-formulas. Then Γ-PHP is the scheme

∀z̄ ∀a
(
∀x<a ∃!y6a θ(x, y, z̄)→ ∃y6a ∀x<a ¬θ(x, y, z̄)

)
,

where θ ∈ Γ.

As Dimitracopoulos and Paris [3] showed, there is a level-by-level correspondence between the
hierarchy of Pigeonhole Principles and the induction–collection schemes. Putting together our
Coded Pigeonhole Principle and Theorem 2.7, we see that I∆0 + exp ` ∆0-PHP. It is, however,
not known whether exp can be removed in this statement.

Question 5.12 (Angus Macintyre). Does I∆0 ` ∆0-PHP?

Further reading
The first true ‘mathematically interesting’ statement that is unprovable in PA was discovered [8]
using the method of indicators described in the Further exercises. For an accessible introduction to
independence results, see Kirby–Paris [6] or Bovykin [2].
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