
MODEL THEORY OF ARITHMETIC

Lecture 7: Recursive saturation

Tin Lok Wong

19 November, 2014

One of the most significant by-products of the study of admissible sets with urelements
is the emphasis it has given to recursively saturated models. [. . . C]ountable recursively
saturated models (for finite languages) possess many of the desirable properties of
saturated models and special models. The notion of resplendency was introduced to
isolate some of these desirable properties.

John Stewart Schlipf [10]

Definition. Fix a recursive language L , i.e., one in which all syntactical notions are recursive.
Let M be an L -structure and Γ be a class of L -formulas.

(i) A type over M is a set of L (M)-formulas p(v̄) with finitely many free variables v̄ that is
consistent with ElemDiag(M).

(ii) A type p(v̄) is realized in M if M |=
∧∧

p(ā) for some ā ∈M .

(iii) A type p(v̄) is recursive if it involves only finitely many parameters, say c̄ ∈M , and that

{pθ(v̄, z̄)q : θ(v̄, c̄) ∈ p(v̄)}

is recursive.

(iv) The model M is recursively saturated if all recursive types over M are realized in M .

(v) A Γ-type is a type in which all elements are of the form θ(v̄, c̄) where θ ∈ Γ and c̄ ∈M .

(vi) The model M is Γ-recursively saturated if all recursive Γ-types over M are realized in M .

At first sight, recursive saturation may seem an ‘unhappy marriage’ between model theory and
recursion theory, as some authors put it. Nevertheless, it turns out to work wonderfully well with
models of arithmetic.

First and most important of all, since there are only countably many recursive sets, the number
of recursive types over any infinite structure M is exactly card(M). So by an elementary chain
argument, every infinite structure for a recursive language has a recursively saturated elementary
extension of the same cardinality. In particular, there exist countable recursively saturated models
of arithmetic. Notice no countably saturated model of arithmetic is countable because any such
model must code all subsets of N.

In Section 7.1, we look at some connections between recursive saturation and arithmetic. In
Section 7.2, we show a general model-theoretic property possessed by all countable recursively
saturated models called resplendency. The two sections are independent of each other.

7.1 Definability of the standard cut
Recursive types are nice because they are always coded in models of sufficiently strong arithmetic.
Here we prove a slightly more general proposition that we already saw in Theorem 4.14.

45

Proposition 7.1 (essentially Scott [11]). If I (e M |= I∆0 + exp, where I is multiplicative, then
(I,Cod(M/I)) |= ∆0

1-CA.

Proof. We only show ∆1-CA. Let ϕ,ψ ∈ ∆0(I) such that

I |= ∀x
(
∃u ϕ(u, x)↔ ∀v ψ(v, x)

)
. (1)

We want S = {x ∈ I : I |= ∃u ϕ(u, x)} ∈ Cod(M/I). The plan is to overspill (1) into M \ I, and
then reduce S to some ∆0-definable set in M , which we can code with I∆0 + exp. Note

S = {x ∈ I : M |= ϕ(u, x) for some u ∈ I}
= {x ∈ I : M |= ψ(v, x) for all v ∈ I}

by Proposition 4.12. This implies whenever b ∈ I,

M |= ∀u, v, x<b
(
ϕ(u, x)→ ψ(v, x)

)
. (2)

Apply ∆0-overspill to find b ∈M \ I such that (2) holds. Then for all x ∈ I,

• M |= ∃u<b ϕ(u, x)⇒M |= ∀v<b ψ(v, x) by (2),

• M |= ∀v<b ψ(v, x)⇒ I |= ∀v ψ(v, x) since b > I and ψ ∈ ∆0,

• I |= ∀v ψ(v, x)⇒ I |= ∃u ϕ(u, x) by (1),

• I |= ∃u ϕ(u, x)⇒M |= ∃u<b ϕ(u, x) since b > I and ϕ ∈ ∆0.

By ∆0-separation from Theorem 2.7, we know S∗ = {x < b : M |= ∃u<b ϕ(u, x)} ∈ Cod(M). So
S = S∗ ∩ I ∈ Cod(M/I).

Remark 7.2. Full exp is not needed in this theorem. For the proof above to go through, it suffices
to have 2b for some b ∈M \ I.

One important connection between recursive saturation and arithmetic is about satisfaction
predicates. First, we need a way to code sequences of bounded lengths. We can do this using the
Ackermann interpretation from Lectures 2 and 3. More traditional coding methods involve the
Chinese Remainder Theorem or the unique factorization of primes. See Kaye’s book [7, Chapter 5]
or the Hájek–Pudlák book [6, Section I.1(b)] for the precise definitions.

Notation. Work within I∆0 + exp. Fix a formula Seq ∈ ∆0 that picks out codes of sequences. We
denote by seqlen(s) the length of the sequence (coded by) s. The ith element in the sequence s is
denoted [s]i. The formulas ` = seqlen(s) and x = [s]i are both ∆0. They satisfy the following.

(1) ∀s∈Seq ∃!` seqlen(s) = `.

(2) ∀s∈Seq ∀i<seqlen(s) ∃!x [s]i = x.

(3) ∀s∈Seq ∀i> seqlen(s) ∀x [s]i 6= x.

(4) ∀i, s, x
(
x = [s]i → x 6 s ∧ i 6 s

)
.

(5) ∀s, t∈Seq
(
seqlen(s) 6 seqlen(t) ∧ ∀i<seqlen(s) [s]i 6 [t]i → s 6 t

)
.

(6) ∃s∈Seq seqlen(s) = 0.

(7) ∀s∈Seq ∀x ∃s′∈Seq
(
seqlen(s′) = seqlen(s) + 1 ∧ ∀i<seqlen(s) [s′]i = [s]i ∧ [s′]seqlen(s) = x

)
.

We write [x̄] for the code of the sequence x̄.

A satisfaction predicate is a formula S(θ, [x̄]) that can evaluate the truth value of a given
formula θ under a particular variable assignment [x̄]. In other words, such S(θ, [x̄]) behaves the
same as θ(x̄). Formally, one needs a lot of care when defining satisfaction, e.g., to make sure
formulas and variable assignments match properly. We are content with an informal approach
here, which should pose no risk of ambiguity in our context. We should, however, be aware of the
complications, and convince ourselves that the missing details can in theory be filled in.

46

Theorem 7.3 (essentially Kleene [8]). There is a formula ∆0-Sat(θ, s) that is ∆1 over I∆0 + exp
for which I∆0 + exp proves

(a) ∀θ, s
(
∆0-Sat(θ, s)→ θ ∈ ∆0 ∧ s ∈ Seq

)
; and

(b) Tarski’s clauses for satisfaction for ∆0-formulas.

In particular, for every θ ∈ ∆0,

I∆0 + exp ` ∀x̄
(
θ(x̄)↔ ∆0-Sat(θ, [x̄])

)
.

Proof sketch. Let U be a universal program, i.e., a program for which

• P halts on input x̄ if and only if U halts on input pPq, [x̄]; and

• if P halts on input x̄, then U(pPq, [x̄]) = P (x̄)

for all programs P and all inputs x̄. Using Fact 1.6, find υ ∈ Σ1 such that U = Prog〈υ〉. Define

∆0-Sat(θ, [x̄]) = υ(pProg〈θ〉q, [x̄]).

It satisfies Tarski’s clauses and is equivalent to ¬∆0-Sat(¬θ, [x̄]), because ∆0-programs always halt.
So ∆0-Sat ∈ ∆1. All these can be formalized in I∆0 + exp. See Kaye’s book [7, Chapter 9] or the
Hájek–Pudlák book [6, Subsection I.1(d)] for the details.

Using this, one can define satisfaction for formulas higher in the arithmetic hierarchy.

Definition. Fix a formula ∆0-Sat as in Theorem 7.3. Define Σ0-Sat = Π0-Sat = ∆0-Sat. Modulo
some syntactical checks and transformations, define for every n ∈ N,

(i) Σn+1-Sat
(
∃ȳ η(x̄, ȳ), [x̄]

)
= ∃[ȳ] Πn-Sat(η, [x̄, ȳ]); and

(ii) Πn+1-Sat(θ, [x̄]) = ¬Σn+1-Sat(¬θ, [x̄]).

Observations. (1) Σn+1-Sat ∈ Σn+1 and Πn+1-Sat ∈ Πn+1 over I∆0 + exp for every n ∈ N.

(2) If Γ is Σn or Πn for some n ∈ N, then for all θ ∈ Γ,

I∆0 + exp ` ∀x̄
(
θ(x̄)↔ Γ-Sat(θ, [x̄])

)
.

A simple application of these satisfaction predicates is a characterization of Σn+1-recursive
saturation in terms of the definability of the standard cut, which, in a sense, says

recursive saturation = overspill at N.

Theorem 7.4 (H. Friedman [5], implicitly). For all n ∈ N and all M |= BΣn+1 + exp, the following
are equivalent.

(a) M is Σn+1-recursively saturated.

(b) N is not Σn+1-definable in M .

Proof. Let us first prove the easier direction (a)⇒ (b). Suppose (b) does not hold. Let θ ∈ Σn+1(M)
that defines N in M . Then the recursive Σn+1-type

p(v) = {θ(v)} ∪ {v > n : n ∈ N}

is not realized in M . So (a) fails.
Consider the implication (b)⇒ (a). Suppose (b) holds. Notice M 6= N as a result. Let p(v̄) be

a recursive Σn+1-type over M . The plan is to use (b) to overspill the finite satisfiability of p to
full satisfiability in M . To execute the plan, recall (N,Cod(M/N)) |= ∆0

1-CA from Proposition 7.1.
Find c ∈M that codes p. Since p is a type over M , for every k ∈ N,

M |= ∃v̄ ∀θ<k
(
θ ∈ Ack(c)︸ ︷︷ ︸

∆0

→ Σn+1-Sat(θ, [v̄])︸ ︷︷ ︸
Σn+1

)
︸ ︷︷ ︸

Σn+1 over BΣn+1

.

This overspills into M \ N by (b). Any witness to the overspilled statement realizes p. So
(a) holds.

47

It then follows from Proposition 3.3 that all nonstandard models of IΣn+1, where n ∈ N,
are Σn+1-recursively saturated. In particular, all nonstandard models of PA are Σn-recursively
saturated for every n ∈ N. However, we will meet in Lecture 9 some nonstandard models of PA
that are not recursively saturated. One can also find nonstandard models of BΣ0 + exp (in which
N must not be Σ0-definable) that are not Σ0-recursively saturated [7, Theorem 10.10].

Remark 7.5. The argument in the proof of Theorem 7.4 also shows that all models constructed
by means of the Arithmetized Completeness Theorem within a nonstandard model of RCA0 are
recursively saturated.

7.2 Resplendency
Let us leave arithmetic for the moment, and study some general model theory. If one has not come
across the word resplendent before, then she/he is invited find out its literal meaning in a dictionary
for amusement.

Definition. A structure M in a recursive language L is resplendent if

whenever ϕ is a formula in a recursive language L ∗ ⊇ L and c̄ ∈M such that ϕ(c̄) is
consistent with ElemDiag(M), there is an expansion of M satisfying ϕ(c̄).

Informally speaking, a structure is resplendent if and only if it has so many types of subsets
that it can expand to model whatever sentence it can consistently model in an expansion. Compare
this with saturation: a structure is saturated if and only if it has so many types of elements that it
possesses whatever kind of elements it can consistently possess. These two notions of richness turn
out to coincide for arithmetic as well as in many other circumstances.

Theorem 7.6 (Barwise, Ressayre, independently). Let M be a countable recursively saturated
structure for a recursive language L . Then M is resplendent. In fact, if L ∗ is a recursive extension
of L , and Φ is a recursive set of L ∗(M)-formulas consistent with ElemDiag(M) that involves only
finitely many parameters from M , then M expands to a model of Φ.

Barwise’s proof [2, Theorem IV.5.7] uses admissible sets. We follow the more elementary proof
from Ressayre [9, Theorem 2.3] here. It will be handy to be able to realize r.e. types in recursively
saturated structures.

Craig’s Trick [4]. Every r.e. theory in a recursive language is equivalent to a recursive theory.

Proof. Let T be a recursive theory in a recursive language L . Use Corollary 1.7 to find θ ∈ ∆0

such that T = {σ ∈ L : N |= ∃x θ(x, pσq)}. Then T is equivalent to the recursive theory{
σ ∧ σ ∧ · · · ∧ σ︸ ︷︷ ︸
(n+ 1)-many σ’s

∈ L : n ∈ N |= ∃x<n θ(x, pσq)
}
.

Proof of Theorem 7.6. We will find by recursion sentences ϕ0, ϕ1, . . . ∈ L ∗(M) such that

Φω = Φ + {ϕn : n ∈ N}

is complete, consistent, Henkinized, and includes ElemDiag(M). The term model of Φω will then
be an expansion of M satisfying Φ. Recursive saturation will provide us enough constant symbols
in L ∗(M) to Henkinize without further expanding the language.

At each step n ∈ N, we inductively assume

Φn = Φ + {ϕk : k < n} is consistent with ElemDiag(M). (∗)

By hypothesis, we know Φ0 satisfies this condition. Now suppose Φn is already found, and it
satisfies (∗). Consider the L ∗(M)-formula ψn(v), which comes from some fixed enumeration of all
L ∗(M)-formulas. The countability of M is used here to find such an enumeration. By insisting ϕn
to be either ∀v ¬ψn(v) or ψn(a) for some a ∈M , we force a Henkin axiom for ψn to hold in Φω.
This, in particular, makes Φω complete too.

48

Without loss of generality, suppose we cannot define ϕn to be ∀v ¬ψn(v) while maintaining
the inductive condition. Let c1, c2, . . . , c` ∈ M be the finitely many parameters that appear
in Φn, and d1, d2, . . . , dm ∈ M be the parameters that appear in ψn but not in Φn. We will
indicate all parameters from M for the rest of the proof. In particular, we write Φn = Φn(c̄) and
ψn(v) = ψ(v, c̄, d̄). Find α(c̄, d̄) ∈ ElemDiag(M) such that Φn(c̄) + α(c̄, d̄) ` ∃v ψn(v, c̄, d̄). We
may assume α(c̄, d̄) contains no parameters other than those already indicated because any further
parameters can be quantified out existentially.

Without loss of generality, we suppose further that setting ϕn to be ψn(ci, c̄, d̄) for any i =
1, 2, . . . , ` would violate the inductive condition. For each such i, fix βi(c̄, d̄) ∈ ElemDiag(M) such
that Φn(c̄) + βi(c̄, d̄) ` ¬ψn(ci, c̄, d̄). As in the previous paragraph, we may assume no further
parameters appear here.

Recall from Section 4.2 that provability in a recursive theory is r.e. So the set

p(v) =
{
θ(v, c̄, d̄) ∈ L (c̄, d̄) : Φn(c̄) ` ∀v, z̄

(
ψn(v, c̄, z̄) ∧ v 6∈ {c̄} → θ(v, c̄, z̄)

)}
is r.e. By Craig’s Trick, recursive saturation applies to p. To show that p is a type overM , it suffices
to prove the consistency of single formulas from p with ElemDiag(M), because the conjunction of
finitely many formulas from p is again an element of p. Now, if θ(v, c̄, d̄) ∈ p(v), then

Φn(c̄) ` ∀v, z̄
(
ψn(v, c̄, z̄) ∧ v 6∈ {c̄} → θ(v, c̄, z̄)

)
by the definition of p,

∴ Φn(c̄) ` ∀z̄
(
α(c̄, z̄) ∧

∧̀∧
i=1

βi(c̄, z̄)→ ∃v θ(v, c̄, z̄)
)

by the choices of α(c̄, d̄), βi(c̄, d̄),

∴ M |= ∀z̄
(
α(c̄, z̄) ∧

∧̀∧
i=1

βi(c̄, z̄)→ ∃v θ(v, c̄, z̄)
)

by (∗), noting the formula is in L (M),

∴ M |= ∃v θ(v, c̄, d̄) because M |= α(c̄, d̄) ∧
∧∧`

i=1 βi(c̄, d̄).

Apply recursive saturation to find a ∈M that realizes p. Notice a 6∈ {c̄} because the formula v 6= ci
is in p(v) for every i ∈ {1, 2, . . . , `}.

Set ϕn = ψn(a, c̄, d̄). Then the inductive condition again holds because if θ(a, c̄, d̄) ∈ L (a, c̄, d̄)
such that Φn(c̄) + ψn(a, c̄, d̄) ` θ(a, c̄, d̄), then

Φn(c̄) ` ∀v, z̄
(
ψn(v, c̄, z̄)→ θ(v, c̄, z̄)

)
since Φ(c̄) does not involve a, d̄,

∴ θ(v, c̄, d̄) ∈ p(v) by the definition of p,
∴ M |= θ(a, c̄, d̄) since a realizes p.

Thus we get Φn+1(a, c̄, d̄) as required.

Further exercises
These exercises explore the relationship between recursive saturation and partial (nonstandard)
inductive satisfaction classes. We work in a fixed nonstandard M |= PA throughout.

Definition. A partial inductive satisfaction class on M is a subset S ⊆M2 that satisfies

(i) induction with M , i.e., the structure (M,S), where S is interpreted as a new predicate, satisfies
the induction scheme for all formulas in the expanded language LA ∪ {S}; and

(ii) Tarski’s clauses for satisfaction for all standard LA-formulas.

In particular, condition (ii) above implies that for all formulas θ ∈ LA and all x̄ ∈M ,

M |= θ(x̄) ⇔ S(pθq, [x̄]).

(a) Review the proof of Tarski’s theorem on the undefinability of truth. Show that no partial
(inductive) satisfaction class on M is definable in M .

(b) Imitate the proof of Theorem 7.4, or otherwise, to show that if M has a partial inductive
satisfaction class S, then M is recursively saturated.

(c) Use resplendency to show that if M is countable and recursively saturated, then it has a
partial inductive satisfaction class.

49

Further comments

The arithmetic hierarchy is strict
A diagonalization argument similar to that for Tarski’s theorem on the undefinability of truth shows
∆0-Sat 6∈ ∆0, and for every n ∈ N,

Σn+1-Sat 6∈ Πn+1 and Πn+1-Sat 6∈ Σn+1.

Therefore, the arithmetic hierarchy does not collapse, cf. the Further exercises in Lecture 1.

Truth definition without exponentiation
The existence of satisfaction predicates without exp turns out to relate to Question 3.9. See the
paper by Adamowicz, Kołodziejczyk, and Paris [1] for the most recent status of the problems.

Resplendency implies recursive saturation
The stronger version of Theorem 7.6 clearly admits a converse. There is also a partial converse to
the weaker version. In particular, a countable LA-structure is recursively saturated if and only if it
is resplendent. Uncountable recursively saturated structures need not be resplendent [7, page 251].

Theorem 7.7 (Jon Barwise [10]). Let L be a language with only finitely many non-logical symbols.
Then every resplendent structure for L is recursively saturated.

References
[1] Zofia Adamowicz, Leszek Aleksander Kołodzieczyk, and Jeff B. Paris. Truth definitions without

exponentiation and the Σ1 collection scheme. The Journal of Symbolic Logic, 77(2):649–655,
June 2012.

[2] Jon Barwise. Admissible Sets and Structures: An Approach to Definability Theory. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin, 1975.

[3] Jon Barwise and John Stewart Schlipf. An introduction to recursively saturated models and
resplendent models. The Journal of Symbolic Logic, 41(2):531–536, June 1976.

[4] William Craig. On axiomatizability within a system. The Journal of Symbolic Logic, 18(1):30–
32, March 1953.

[5] Harvey M. Friedman. Countable models of set theory. In Adrian R.D. Mathias and Hartley
Rogers, editors. Cambridge Summer School in Mathematical Logic, volume 337 of Lecture
Notes in Mathematics, pages 539–573. Springer-Verlag, Berlin, 1973.

[6] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1993.

[7] Richard Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides. Clarendon
Press, Oxford, 1991.

[8] Stephen Cole Kleene. Recursive predicates and quantifiers. Transations of the American
Mathematical Society, 53(1):41–73, January 1943.

[9] Jean-Pierre Ressayre. Models with compactness properties relative to an admissible language.
Annals of Mathematical Logic, 11(1):31–55, May 1977.

[10] John Stewart Schlipf. Toward model theory through recursive saturation. The Journal of
Symbolic Logic, 43(2):183–206, June 1978.

[11] Dana Scott. Algebras of sets binumerable in complete extensions of arithmetic. In Jacob C.E.
Dekker, editor. Recursive Function Theory, volume V of Proceedings of Symposia in Pure
Mathematics, pages 117–121. American Mathematical Society, Providence, Rhode Island, 1962.

50

