
MODEL THEORY OF ARITHMETIC

Lecture 8: Back-and-forth

Tin Lok Wong

26 November, 2014

Harvey [Friedman] was on the Flip Wilson show. It must have been in 1971 [. . .]
since [. . .] Joram Hirschfeld was just finishing his thesis then. He heard Harvey talk
about embedding models of PA as initial segments and that gave him an idea that
ended up in his thesis.

James Schmerl, as quoted by Ali Enayat [1]

8.1 The standard system
The set of complete types realized is an important invariant for a structure. Recall a type over a
structure M for a language L is a set of L (M)-formulas p(v̄) with finitely many free variables that
is consistent with ElemDiag(M). Equivalently, a set p(v̄) of L (M)-formulas with finitely many free
variables is a type over M if and only if it is finitely satisfied in M , i.e., we have M |= ∃v̄

∧∧
p0(v̄)

for all finite p0(v̄) ⊆ p(v̄). Quite often, the p(v̄)’s are closed under finite conjunction. In these cases,
to verify the finite satisfiability of p(v̄) in M , it suffices to show M |= ∃v̄ θ(v̄) for every θ ∈ p.

Definition. Let M be a structure in a language L .

• Let p(v̄) be a type over M . Sometimes, we write p(v̄) = p(v̄/c̄) to indicate the finitely many
parameters c̄ ∈M that appear in p(v̄). In this case, let

p(v̄/z̄) = {θ(v̄, z̄) : θ(v̄, c̄) ∈ p(v̄, c̄)}.

• A type p(v̄/c̄) is complete if for all θ(v̄, z̄) ∈ L ,

either θ(v̄, c̄) ∈ p(v̄/c̄) or ¬θ(v̄, c̄) ∈ p(v̄/c̄).

• If ā, c̄ ∈M , then tp(ā/c̄) = {θ(v̄, c̄) ∈ L (c̄) : M |= θ(ā, c̄)}.

Notice a type of the form tp(ā/c̄) is always complete and is realized in the model it comes from.
In a recursively saturated model of arithmetic, the set of realized complete types has a particularly
nice characterization.

Definition. Let M |= I∆0. The standard system of M , denoted SSy(M), is Cod(M/N). A
type p(v̄) is coded in M if it involves only finitely many parameters, say c̄ ∈M , and

{pθ(v̄, z̄)q : θ(v̄, c̄) ∈ p(v̄)} ∈ SSy(M).

Proposition 8.1. A complete type p(v̄/c̄) over a recursively saturated M |= I∆0 is realized if and
only if it is coded.

Proof. First, suppose p(v̄/z̄) ∈ SSy(M). Let s ∈M such that p(v̄, z̄) = Ack(s/N). Then

p′(v̄) = {θ(v̄, c̄)↔ pθq ∈ Ack(s) : θ ∈ LA}

is a recursive type that is essentially the same as p. So p(v̄) is realized in M by recursive saturation.

51

Conversely, suppose p(v̄) is realized by ā ∈M . Then since we can coded any finite set,

q(w) = {θ(ā, c̄)↔ pθq ∈ Ack(w) : θ ∈ LA}

is a recursive type over M . So it is realized in M by recursive saturation. Any s ∈M realizing q
codes p.

Remark 8.2. One sees that the completeness of the type is only used in coding realized types. One
also readily sees that the proposition no longer holds if this completeness requirement is dropped.

As a corollary, a countable recursively saturated model of arithmetic is completely determined
by its theory and its standard system.

Theorem 8.3. The following are equivalent for countable recursively saturated M,N |= I∆0.

(a) M ∼= N .

(b) Th(M) = Th(N) and SSy(M) = SSy(N).

Proof. The implication (a)⇒ (b) is trivial. For the converse, suppose (b) holds. We carry out a
back-and-forth argument to find an isomorphism M → N . By recursion, we will define (rm)m∈N
in M and (sm)m∈N in N such that f : rm 7→ sm is an isomorphism M → N . At each step m ∈ N,
we have r0, r1, . . . , rm−1 ∈M and s0, s1, . . . , sm−1 ∈ N satisfying the inductive condition

tpM (r̄) = tpN (s̄).

This ensures f preserves the interpretation of all LA-symbols. In particular, our f will be injective
on its domain.

The inductive condition is satisfied initially because tpM () = Th(M) = Th(N) = tpN ().
Suppose r0, r1, . . . , rm−1 ∈M and s0, s1, . . . , sm−1 ∈ N that satisfy the inductive condition.

Forth. Suppose m = 2`+ 1. We force f to be total in these steps. Consider c` ∈M , which comes
from a fixed enumeration (c`)`∈N of M . We put c` ∈ Dom(f) by setting rm = c`. We want sm ∈ N
such that tpM (r̄, rm) = tpN (s̄, sm). Let p(v/r̄) = tpM (rm/r̄). Then p(v/z̄) ∈ SSy(M) = SSy(N)
by Proposition 8.1. The set p(v/s̄) is finitely satisfied in N because if θ(v, s̄) ∈ p(v, s̄), then

θ(v, r̄) ∈ p(v/r̄) = tpM (rm/r̄)

∴ M |= ∃v θ(v, r̄) since M |= θ(rm, r̄),
∴ N |= ∃v θ(v, s̄) by the inductive condition on r̄, s̄.

Since p(v/s̄) is a recursive complete type over N , we can apply Proposition 8.1 to find sm ∈ N
realizing it.

Back. Suppose m = 2`+ 2. In these steps, we make f surjective by a symmetric argument.

Remark 8.4. The same proof shows countable recursively saturated M |= I∆0 are homogeneous, in
the sense that if ā, b̄ ∈M of the same type, then (M, ā) ∼= (M, b̄).

Every back-and-forth proof (we will meet) consists essentially of a suitable inductive condition
and some back-and-forth lemmas which tells us we can extend the partial mappings in the ways we
want while preserving the inductive condition. We will not bother ourselves with other details any
more in future back-and-forth proofs.

8.2 Self-embeddings
Our next application of back-and-forth arguments is an instance of a whole range of results that
was historically very influential. These results say that every nonstandard model of arithmetic is
isomorphic to a proper initial segment of itself. The following also provides a partial converse to
Theorem 6.3 as claimed on page 43.

52

Theorem 8.5 (essentially Robert Solovay [6]). Let n ∈ N. Then every countable recursively
saturated M |= BΣn+1 is isomorphic to a proper n-elementary cut of itself.

Proof. We follow the proof in Chapter 12 of Kaye’s book [2]. First, find d ∈M that realizes

p(v) = {∃x̄ θ(x̄)→ ∃x̄<v θ(x̄) : θ ∈ Πn}.

(It can be verified that any element above a proper n-elementary cut must realize this type.) We
carry out a back-and-forth argument so that at each step, we have r̄, s̄ ∈ M of the same finite
length satisfying the inductive condition

M |= ∃x̄ θ(x̄, r̄)→ ∃x̄<d θ(x̄, s̄) for all θ ∈ Πn. (∗)

The required embedding f maps the r’s to the corresponding s’s. The inductive condition implies
f is n-elementary and Im(f) < d.

The inductive condition (∗) is satisfied initially because d realizes p.
Suppose r̄, s̄ ∈M that satisfy (∗).

Forth. We ensure f is total. Take any r′ ∈M . We will make r′ ∈ Dom(f). It suffices to realize

q(v) = {∃x̄ θ(x̄, r̄, r′)→ ∃x̄<d θ(x̄, s̄, v) : θ ∈ Πn}.

This q is finitely satisfied in M because if θ ∈ Πn such that M |= ∃x̄ θ(x̄, r̄, r′), then

M |= ∃v, x̄ θ(x̄, r̄, v)

∴ M |= ∃v, x̄<d θ(x̄, s̄, v) by (∗).

So we get what we want by recursive saturation.

Back. We ensure Im(f) ⊆e M . Take any s′ < max{s̄}. We make s′ ∈ Im(f) by realizing

q′(v) = {∃x̄ θ(x̄, r̄, v)→ ∃x̄<d θ(x̄, s̄, s′) : θ ∈ Πn}.

This q′ is finitely satisfied in M because if θ ∈ Πn such that M |= ∀x̄<d ¬θ(x̄, s̄, s′), then

M |= ∃v<max{s̄} ∀x̄<d ¬θ(x̄, s̄, v)

∴ M |= ∀b<d ∃v<max{s̄} ∀x̄<b ¬θ(x̄, s̄, v)︸ ︷︷ ︸
Σn over BΣn

∴ M |= ∀b ∃v<max{r̄} ∀x̄<b ¬θ(x̄, r̄, v) by (∗),
∴ M |= ∃v<max{r̄} ∀x̄ ¬θ(x̄, r̄, v) by BΣn+1.

So we are done by recursive saturation.

Remark 8.6. The proof above works for all countable recursively saturated M |= PA− + Coll(Σn+1).

Remark 8.7. Examining this proof, one sees that full recursive saturation is actually not necessary.
The amount of saturation used can be reduced to the non-∆0(Σn+1)-definability of N, which all
nonstandard models of IΣn+1 enjoy. It follows that every countable nonstandard model of IΣn+1 is
isomorphic to a proper n-elementary initial segment of itself.

As we saw, with recursive saturation, it is simply a matter of writing down a type to get the
kind of elements we want.

8.3 Fixing cuts pointwise
Finally, we demonstrate how to build automorphisms using back-and-forth arguments. An auto-
morphism of a structure M is, as usual, a bijection M →M that preserves the interpretations of all
symbols in the language of M . The group of automorphisms of a structure M is denoted Aut(M).

53

Definition. If M |= PA− and g ∈ Aut(M), then

Ifix(g) = {x ∈M : g(x′) = x′ for all x′ 6 x}.

Let g ∈ Aut(M), where M |= PA−. Then Ifix(g) is closed under successor, because if g(x) = x,
then g(x + 1) = x + 1. So Ifix(g) is a cut. Similarly, one can verify that Ifix(g) is closed under
addition and multiplication. Nevertheless, we cannot go much further than this.

Theorem 8.8 (Smoryński [7]). The following are equivalent for a cut I of a countable recursively
saturated M |= PA.

(a) I is exponential.

(b) I = Ifix(g) for some g ∈ Aut(M).

Proof. We first prove (b) ⇒ (a). Let g ∈ Aut(M) and a ∈ Ifix(g). Pick any x 6 2a. We
show g(x) = x. Without loss of generality, assume x 6= 0. From Further exercise 3(b), we see
max Ack(x) = lenx = blog xc 6 a ∈ Ifix(g), and so max Ack(g(x)) = g(max Ack(x)) = max Ack(x).
Also, if i < lenx, then

i ∈ Ack(x) ⇔ g(i) ∈ Ack(g(x)) ⇔ i ∈ Ack(g(x))

because i < lenx 6 a ∈ Ifix(g). So Ack(x) = Ack(g(x)). Applying extensionality from Further
exercise 3(d), we conclude x = g(x).

Now, consider (a)⇒ (b). Suppose I is exponential. Without loss of generality, assume I 6= M .
We carry out a back-and-forth argument so that at each step, we have r̄, s̄ ∈M of the same finite
length satisfying

tp(r̄, x) = tp(s̄, x) (†)

for all x less than some b ∈M \ I. The required automorphism g maps the r’s to the corresponding
s’s at the end. The inductive condition ensures that g preserves the interpretation of all symbols
in LA, and fixes I pointwise.

Clearly, the inductive condition is initially satisfied.
During the construction, we need to make sure g is total, surjective, and moves arbitrarily small

points above I. These are possible by the next two lemmas. The only point to note is that since
I is exponential, if 22a

> I, then a > I too. modulo Lemmas 8.9 and 8.10

The first lemma ensures the function can be made total and surjective.

Lemma 8.9 (Kotlarski [5], Smoryński [7], Alena Vencovská, independently). Let r̄, s̄, a be elements
of a recursively saturated M |= PA such that (†) holds for all x < 2a

2

, and a > N. Then for every
r′ ∈M , there exists s′ ∈M such that

tp(r̄, r′, x) = tp(s̄, s′, x) whenever x < a.

Proof. We want to realize

p(v) =
{
∀x<a

(
θ(r̄, r′, x)↔ θ(s̄, v, x)

)
: θ ∈ LA

}
.

Pick θ0, θ1, . . . , θk−1 ∈ LA. We want to find v whose behaviour with respect to these formulas over s̄
and parameters less than a is the same as that of r′ over r̄. The idea is to code such behavioural
pattern of r′ with a code that is small enough to be transferrable to the s’s using (†). For simpler
calculations, we employ a non-standard pairing function here. The details are as follows. Apply
separation from Theorem 2.7 to find c ∈M such that

Ack(c) = {kx+ i < ka : M |= i < k ∧ θi(r̄, r′, x)}.

Then Lemma 3.7 implies c < 21+len c 6 2ka < 2a
2

, because k ∈ N < a. Therefore, since

M |= ∃v ∀i<k ∀x<a
(
kx+ i ∈ Ack(c)↔ θi(r̄, v, x)

)
54

f

f ′

a

u0

b

f(a)

Figure 8.1: Proving the injective version of the Coded Pigeonhole Principle

as witnessed by r′, we have by (†)

M |= ∃v ∀i<k ∀x<a
(
kx+ i ∈ Ack(c)↔ θi(s̄, v, x)

)
.

If v ∈M witnesses this, then whenever i < k and x < a,

M |= θi(r̄, r
′, x) ⇔ kx+ i ∈ Ack(c) ⇔ M |= θi(x̄, v, x).

The second lemma ensures the function moves arbitrarily small points above the cut. We first
need an alternative version of the Coded Pigeonhole Principle.

Coded Pigeonhole Principle (injective version). Let M |= I∆0 + exp. If f : a→ b coded in M ,
where a > b, then f is not injective.

Proof. We proceed by strong induction on the code of f . The base case is true because the
Pigeonhole Principle holds in N. Now consider f : a+ 1→ b+ 1, where a > b. If card f−1(b) > 2,
then we are already done. If b 6∈ Im(f) or f(a) = b, then we can apply the induction hypothesis
to f�a to get distinct u1, u2 < a such that f(u1) = f(u2). So suppose f−1(b) = {u0} and u0 6= a.
Consider the coded function f ′ : a→ b defined by

f ′(u) =

{
f(a), if u = u0;
f(u), otherwise.

The induction hypothesis then gives us distinct u1, u2 < a such that f ′(u1) = f ′(u2). If u1 6= u0 6= u2,
then f(u1) = f(u2). If u1 = u0, then f(a) = f ′(u1) = f ′(u2) = f(u2). Symmetrically, if u2 = u0,
then f(a) = f ′(u2) = f ′(u1) = f(u1). In any case, we are done.

Notice exp is again not necessary here.

Lemma 8.10 (Smoryński [7]). Let r̄, s̄, a be elements of a recursively saturated M |= PA such
that (†) holds for all x < 2a2

, and a > N. Then for every d > 2a2

, there exist distinct r′, s′ ∈ M
such that r′ < d and

tp(r̄, r′, x) = tp(s̄, s′, x) whenever x < a.

Proof. We want to realize

p(u, v) = {u 6= v ∧ u < d} ∪
{
∀x<a

(
θ(r̄, u, x)↔ θ(s̄, v, x)

)
: θ ∈ LA

}
.

Pick θ0, θ1, . . . , θk−1 ∈ LA. We count the behavioural patterns, in the sense described in the proof
of Lemma 8.9, that are realized below d. Define f : d→ 2ka by

Ack(f(u)) = {kx+ i < ka : M |= i < k ∧ θi(r̄, u, x)}.

55

By separation, this function is coded in M . Notice d > 2a2

> 2ka since k ∈ N < a. So the
injective version of the Coded Pigeonhole Principle applies. Find distinct u1, u2 < d which satisfy
f(u1) = f(u2). As in the proof of Lemma 8.9, we get v ∈M such that whenever i < k and x < a,

M |= θi(s̄, v, x) ⇔ kx+ i ∈ Ack(f(u1)) ⇔ M |= θi(r̄, u1, x) ⇔ M |= θi(r̄, u2, x).

Either u1 6= v or u2 6= v because u1 6= u2. So at least one of (u1, v), (u2, v) is what we want.

Further exercises
We investigate which automorphisms of an elementary cut can extend to the whole model. A
technical condition is needed [4, Section 5].

Definition. Let M |= I∆0. A function f : N→M is coded in M if there is c ∈M such that

〈n, x〉 ∈ Ack(c) ⇔ f(n) = x

for all n ∈ N and all x ∈ M . A cut I ⊆e M is ω-coded from above if there is a coded f : N→ M
such that

inf{f(n) : n ∈ N} = {x ∈M : x < f(n) for all n ∈ N} = I.

Fix a countable recursively saturated M |= PA, and I 4e M that is not ω-coded from above.

Theorem 8.11 (Kossak–Kotlarski [3]). The following are equivalent for g ∈ Aut(I).

(a) Both g(X), g−1(X) ∈ Cod(M/I) whenever X ∈ Cod(M/I).

(b) g extends to ĝ ∈ Aut(M).

Proof. (1) Show (b)⇒ (a).

For (a)⇒ (b), we proceed with a back-and-forth argument. At every step, we have r̄, s̄ ∈M of
the same finite length that satisfy the inductive condition

tp(r̄, x) = tp(s̄, g(x)) for all x ∈ I. (‡)

This ensures the function ĝ that maps the r’s to the corresponding s’s extends g, and preserves the
interpretations of all symbols in LA.

(2) Explain why (‡) is satisfied initially.

The back-and-forth lemma below will ensure ĝ is total and surjective. modulo Lemma 8.12

Lemma 8.12 (Kossak–Kotlarski [3]). Let r̄, s̄ ∈M that satisfy (‡), and g ∈ Aut(M) that satisfies
clause (a) in Theorem 8.11. Then for every r′ ∈M , there is s′ ∈M such that

tp(r̄, r′, x) = tp(s̄, s′, g(x)) for all x ∈ I.

Proof. Without loss, suppose I 6= M . Pick any d ∈M \ I.

(3) Use recursive saturation to find c ∈M that satisfies

M |= ∀x<d
(
〈θ, x〉 ∈ Ack(c)↔ θ(r̄, r′, x)

)
for all formulas θ ∈ LA.

Fix such c ∈M . Using (a), find c′ ∈M such that

g(Ack(c/I)) = Ack(c′/I).

56

(4) Pick b ∈ I. Let c̃′ ∈M such that Ack(c̃′) = {〈θ, x〉 ∈ Ack(c′) : θ, x < g(b)}. Use (‡) to show

M |= ∃v ∀x<g(b)
(
〈θ, x〉 ∈ Ack(c̃′)↔ θ(s̄, v, x)

)
for every formula θ ∈ LA.

Given a formula θ ∈ LA, define f(θ) to be the maximum b′ 6 d which makes

M |= ∃v ∀x<b′
(
〈θ, x〉 ∈ Ack(c′)↔ θ(s̄, v, x)

)
.

(5) Show that f(θ) ∈M \ I for all formulas θ ∈ LA.

(6) Explain why there is b′ ∈M \ I that bounds Im(f) from below.

(7) Deduce the existence of s′ ∈M as required by the lemma.

Further comments

Coded types and realized types
Putting together various facts from previous lectures gives us a converse to Proposition 8.1.

Proposition 8.13. Let M |= I∆0 + exp in which a complete type is coded if and only if it is
realized. Then M is recursively saturated.

Proof sketch. We can safely assume M 6= N because according to our definition, all sets in SSy(N)
are finite and so cannot be a complete type. Let p(v̄/c̄) be a recursive type overM . Then it is coded
in M by Proposition 7.1. The set q(z̄) = tp(c̄) is also coded in M because it is realized. Apply
Theorem 4.8 and Theorem 3.5 to find a complete consistent p∗(v̄/z̄) ⊇ p(v̄/z̄) ∪ q(z̄) in SSy(M).
Then p∗(v̄/c̄) is realized in M since it is complete and coded. Any element that realizes p∗(v̄/c̄)
realizes p(v̄/c̄) too.

By previous remarks about Proposition 7.1 and Theorem 3.5, we see that actually exp is not
needed here. The second half of Section 15.2 in Kaye’s book [2] describes how these propositions
can make sense for theories with even less coding.

References
[1] Ali Enayat. Variations on a theme by Friedman. Presentation slides available at http://cage.

ugent.be/programFriedman/slides/Enayat_Ghent_Friedman (ver. 2).pdf, last retrieved
on 28 November 2014.

[2] Richard Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides. Clarendon Press,
Oxford, 1991.

[3] Roman Kossak and Henryk Kotlarski. Results on automorphisms of recursively saturated models
of PA. Fundamenta Mathematicae, 129:9–15, 1988.

[4] Roman Kossak and Henryk Kotlarski. On extending automorphisms of models of Peano
arithmetic. Fundamenta Mathematicae, 149:245–263, 1996.

[5] Henryk Kotlarski. On elementary cuts in recursively saturated models of Peano Arithmetic.
Fundamenta Mathematicae, 120(3):205–222, 1984.

[6] Jeff B. Paris. Some conservation results for fragments of arithmetic. In Chantal Berline, Kenneth
Mc Aloon, and Jean-Pierre Ressayre, editors. Model Theory and Arithmetic, volume 890 of
Lecture Notes in Mathematics, pages 251–262. Springer-Verlag, Berlin, 1981.

[7] Craig Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. In Dirk
van Dalen, Daniel Lascar, and Timothy J. Smiley, editors. Logic Colloquium ’80, volume 108 of
Studies in Logic and the Foundations of Mathematics, pages 273–278. North-Holland Publishing
Company, Amsterdam, 1982.

57

